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ABSTRACT

Window attention, position embeddings, and high resolution finetuning are core
concepts in the modern transformer era of computer vision. However, we find
that naı̈vely combining these near ubiquitous components can have a detrimental
effect on performance. The issue is simple: interpolating position embeddings
while using window attention is wrong. We study two state-of-the-art methods
that have these three components, namely Hiera and ViTDet, and find that both
do indeed suffer from this bug. To fix it, we introduce a simple absolute window
position embedding strategy, which solves the bug outright in Hiera and allows
us to increase both speed and performance of the model in ViTDet. We finally
combine the two to obtain HieraDet, which achieves 61.7 box mAP on COCO,
making it state-of-the-art for models that only use ImageNet-1k pretraining. This
all stems from what is essentially a 3 line bug fix, which we name “absolute win”.

1 INTRODUCTION

Transformer-based architectures dominate many tasks throughout computer vision (Zhai et al., 2021;
Li et al., 2022a; Kirillov et al., 2023). But despite their ubiquity, these architectures are relatively
new, and thus many best practices have yet to be set in stone. In this paper, we focus on a relatively
unassuming operation in modern vision transformers: interpolating position embeddings.

Absolute position embeddings added at the beginning of a transformer allow the model to distinguish
between tokens based on location, an important detail for most vision tasks. While natural language
processing (NLP) can sometimes get away with omitting a position embedding (Haviv et al., 2022),
those in computer vision often find themselves adding additional position embeddings to deal with
more difficult tasks (e.g., detection in Li et al. (2022a)). Several recent works even design custom
position embeddings to inject directly into attention (Liu et al., 2021b; Graham et al., 2021; Li et al.,
2022b), so that location information is right where it is needed.

However, these additional position embeddings can be costly: techniques like attention bias (Liu et al.,
2021b; Graham et al., 2021) or relative position embeddings (Li et al., 2022b;a) are added directly
into the attention matrix. Not only are these operations slow, but they also cannot benefit from recent
innovations such as Flash Attention (Dao et al., 2022; Dao, 2023) that speed up transformers by not
constructing the attention matrix. Ideally, we would like to avoid relative position embeddings and
just use simple and fast absolute position embeddings like the original ViT (Dosovitskiy et al., 2020).

So, why do most architectures not use absolute positioning embeddings? One potential reason
becomes apparent when we study Hiera (Ryali et al., 2023), a modern hierarchical vision transformer
that only uses absolute position embeddings. Hiera is as powerful and more efficient than other
state-of-the-art vision architectures, while being composed entirely of simple ViT blocks. Instead of
adding more position bias architecturally (e.g., with relative position embeddings), it learns good
spatial biases through a strong pretext task (i.e., MAE (He et al., 2022)). This makes it the perfect
case study for modern architectural design paired with simple absolute position embeddings.

And immediately, an issue presents itself: Hiera does not interpolate well. When finetuning Hiera on
images that are even slightly larger than what it was trained on, the accuracy of the resulting model
plummets. This includes mediocre results on detection, where ViT outperforms Hiera (Ryali et al.,
2023). The culprit, we discover, is the interaction between window attention and absolute position
embeddings. That is, having window attention and absolute position embeddings in the same model

∗Work done during an internship at Meta. Code and models at https://github.com/facebookresearch/hiera.
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Figure 1: Window Attention is Bugged when used with absolute position embeddings and finetuned
at high resolution. We study two methods that suffer from this bug: Hiera (Ryali et al., 2023) and
ViTDet (Li et al., 2022a). For each, we show a channel of their position embeddings. (a) Hiera’s
embedding learns repeated patterns aligned with window attention. (b) Interpolating breaks alignment.
(c) ViTDet pretrains with global attention, adding windows for finetuning. (d) After interpolating,
each window only has a piece of the full position embedding, despite each using the full attention
operation from pretraining. (e) We introduce absolute window embeddings (Fig. 3) to fix both.

induces a bug when interpolating to larger images. To solve this, we introduce a simple absolute
window-aware position embedding (namely, “absolute win”) that can be interpolated to any image
size without issue. This change alone is enough to completely alleviate any problems with image size
in Hiera, resulting in strong performance on both image and video benchmarks at high resolution.

However, the problem goes deeper: this is an issue in any model that uses both absolute position
embeddings and window attention at once, e.g., ViTDet (Li et al., 2022a), a state-of-the-art method for
detection without extra detection data. In fact, Li et al. find that adding relative position embeddings
is necessary for good performance, and we believe this bug is the reason. By using our absolute win
method for detection, we can remove almost all the relative position embeddings in the model. This
allows for an up to 43% speed-up over the original model while increasing mAP. Furthermore, fixing
the bug unlocks other techniques that allow us to increase Hiera’s performance on detection by up
to 1.5 mAP on COCO (Lin et al., 2014), significantly outperforming ViT and establishing a new
state-of-the-art for detection and instance segmentation with only ImageNet-1k pretraining.

Note that we do not claim to introduce any exceedingly novel techniques here. Instead, we identify
and analyze a bug present in the current state-of-the-art, introduce a simple strategy to fix it, and
establish best practices for interpolating position embeddings. We then show how this alone is enough
to improve the state-of-the-art in image and video classification, detection, and instance segmentation.

2 BACKGROUND AND RELATED WORK

In this paper, we explore a bug caused by the combined use of three popular components in computer
vision: window attention, absolute position embeddings, and high resolution finetuning.

Window Attention. In transformers, global attention (Vaswani et al., 2017) compares each token
to all other tokens. This is the default for ViTs (Dosovitskiy et al., 2020), but it is often costly
and potentially wasteful for larger image sizes. Several alternative attention approaches have been
proposed for vision, such as pooling attention (Wang et al., 2021; 2022; Fan et al., 2021; Li et al.,
2022b) or linear attention (Choromanski et al., 2020; Wang et al., 2020; Bolya et al., 2022). However,
particularly popular is window attention (Liu et al., 2021b; Chu et al., 2021; Dong et al., 2022; Li
et al., 2022a; Ryali et al., 2023), which compares each token only to those in the same window as
itself. This makes compute a function of window size, rather than image size, making it much faster.
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Figure 2: Abs Pos Embed for Window Attn. A
channel from the learned absolute position em-
beddings in Hiera (Ryali et al., 2023), a simple
hierarchical ViT that uses window attention.

in-1k acc @ ft res
model pos embed 224px 256px
Hiera-LMAE absolute 85.6 85.2 (- 0.4)

absolute win 85.7 86.0 (+0.3)

Hiera-BSup absolute 81.8 81.4 (- 0.4)

absolute win 82.4 82.7 (+0.3)

Table 1: Finetuning at higher res than the de-
fault (224px) fails when using a Hiera model
with its default absolute pos emb. Absolute win
fixes this for MAE trained models and increases
performance for fully supervised (Sup) models.

Absolute Position Embeddings. By default, attention has no spatial bias, i.e., each token is treated
the same regardless of its position. The original transformer (Vaswani et al., 2017) as well as ViT
(Dosovitskiy et al., 2020) introduce spatial bias using an absolute position embedding (abs pos
embed) different for each spatial location and added directly to each token after the embedding
or patchification step. Subsequent strategies have been proposed that add this bias directly to the
attention layers, such as relative position embeddings (Shaw et al., 2018; Huang et al., 2020; Liu et al.,
2021a; Wu et al., 2021), attention bias (Liu et al., 2021b; Graham et al., 2021), or rotary embeddings
(Su et al., 2021). While these are effective, they are often much slower than simply adding an absolute
embedding at the start of the network. Furthermore, works such as Hiera (Ryali et al., 2023) show
that relative position embeddings (relpos) are not necessary so long as the model is trained effectively.

High Resolution Finetuning. Finetuning models at higher resolutions (high res) has been a common
practice in computer vision in the past (Huang et al., 2019; Tan & Le, 2019), so it’s not a surprise
that the same is true for modern vision transformers (Liu et al. (2021b); Li et al. (2022b), etc.). In
fact, the only component that depends on image size in most ViTs is the position embedding. The
standard strategy to resize, e.g., an absolute position embedding is to simply upsample them with
bicubic interpolation as in Dosovitskiy et al. (2020). However, in this paper we show that doing this
in an architecture that has both window attention and absolute position embeddings can lead to errors.

3 DISCOVERING A BUG

We begin our exploration of absolute position embeddings with Hiera (Ryali et al., 2023), a modern
hierarchical (i.e., multi-scale) vision transformer that forgoes architectural bells-and-whistles in favor
of learning spatial bias through a strong pretext task (MAE, He et al. (2022)). This includes using
absolute position embeddings like ViT (Dosovitskiy et al., 2020) instead of more complex relative
position embeddings (Li et al., 2022a;b) or attention bias (Liu et al., 2021b; Graham et al., 2021).

While Hiera works well in its default configuration, we obtain a puzzling result when finetuning the
model on even a slightly larger image size. If we take an original Hiera-L model pretrained on 224px
images and finetune it on 256px images for ImageNet-1k (Deng et al., 2009), the top-1 accuracy
drops by 0.4% (see “absolute” in Tab. 1). Needless to say, this is the opposite of what’s supposed to
happen: prior work significantly benefits from finetuning on larger images.

The problem. For efficiency, Hiera uses “mask unit” attention within the first two stages of the
network. This is essentially window attention, but each window always corresponds to the same
8× 8 tokens in the input (i.e., the windows get smaller as the tokens are pooled). This results in some
interesting emergent properties when used alongside learned absolute position embeddings.

In Fig. 2, we show two channels from Hiera’s learned position embeddings, one from the public
Hiera-B model pretrained with MAE, and the other from training Hiera-B fully supervised from
scratch. In both cases, the learned position embeddings are tiled. That is, there is a repeating 8× 8
pattern in the embedding. And unsurprisingly, this has the same layout as Hiera’s window attention.
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Figure 3: Absolute Win embraces the behavior
in Fig. 2 by explicitly learning position embed-
dings as the sum of a tiled window embedding
and an interpolated global embedding. See Ap-
pendix D for more learned embedding examples.

Figure 4: Window Repetition increases over
training for the baseline Hiera models. Here we
measure the average pairwise cosine similarity
between the position embedding of each window.

Figure 5: Absolute Win Similarity. Cosine
similarity between tokens in the learned window
and global embeddings (Fig. 3). E.g., the top left
patch for window embed compares the top left
token in the window embedding with all other
tokens in the window embedding.

position embedding in-1k acc @ ft res
method global size 224px 256px
absolute win 14× 14 85.7 85.9 (+0.2)

7× 7 85.7 86.0 (+0.3)

3× 3 85.5 85.9 (+0.4)

global only 7× 7 85.5 85.8 (+0.3)

window only none 84.8 85.1 (+0.3)

Table 2: Varying Global Size. We default to a
global embedding of 7× 7 for the global embed-
ding in Tab. 1. This turns out to be optimal for
both 224px and 256px acc (Hiera-LMAE).

Normally, this would not be an issue. However, when finetuning on larger image sizes, it is standard
practice in vision to interpolate the position embeddings (i.e., via bicubic interpolation). But in this
case, naı̈vely interpolating misaligns the learned embeddings for each window with the windows
themselves (see Fig. 1ab). In most cases, this drastically changes the position embeddings for each
window, which explains the low accuracy after finetuning in Tab. 1.

Why it happens. Position embeddings add spatial bias to the model, which allows attention to learn
operations that depend on a token’s position. Thus, learned position embeddings are closely tied to
the behavior of attention. Since each window shares the same weight matrix (for Q, K, and V ), any
update made to attention in one window would affect all other windows as well. This would cause
the behavior of attention to average out for each window during training. And if position embeddings
are closely tied to this behavior, then it is not surprising that they would become similar as well.

However, that is not the full picture: the tiling effect is significantly more pronounced in an MAE
trained model than a fully supervised one (Fig. 2). MAE deletes most windows during pretraining,
which seems to encourage the model to learn redundant operations for each window. That is, each
window should be treated the same no matter the position, as not all windows are guaranteed to exist
in the forward pass. This produces a starkly different embedding, which suggest that MAE pretrained
and fully supervised models are learning completely different attention operations.

To motivate this hypothesis, in Fig. 4 we plot the average pairwise cosine similarity of the windows
in Hiera-L’s position embedding throughout training. For both images and video, pretraining with
MAE causes the window similarity to increase drastically over the course of training (though not to
1.0, because Hiera still has global attention as well). Video reaches lower similarity, perhaps because
video compression makes discerning the precise location of a token not as beneficial. In contrast, a
fully supervised image model does increase in similarity, but not as much. The trend suggests each
model relies on spatial information differently, with supervised models potentially not enough.

The fix. While not necessarily a problem itself, Hiera’s tiled position embedding behavior prevents
it from interpolating properly. But instead of treating it as a problem, we fix it by embracing the
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tiling behavior and baking it in to the position embeddings. Since Hiera has both window and global
attention (window in stages 1 and 2, global in 3 and 4), we define a separate window embedding and
global embedding. The former is the size of one window (8× 8 tokens), while the latter is the size of
the feature map without windows (7× 7). Both are randomly initialized and learned during training.

To construct Hiera’s full 56× 56 position embedding, we tile the window embedding and interpolate
the global embedding, then add the results (see Fig. 3). This is similar to the learned behavior
of absolute embeddings (Fig. 2), but we can now interpolate properly (Fig. 1e): tile the window
embedding and interpolate the global embedding to the desired size (cropping as necessary). This is a
drop in replacement to the original absolute position embeddings, but with slightly fewer parameters.

To test our strategy, we pretrain a Hiera-L model with 400 epochs of MAE on ImageNet-1k using
224px images and then finetune on either 224px or 256px images in Tab. 1. When finetuning on 256px
images, the original absolute embeddings drop accuracy by 0.4%. Our absolute window embeddings,
on the other hand, both increase accuracy at 224px (slightly, likely due to faster convergence)
and obtain the expected accuracy after finetuning at 256px. Moreover, they significantly increase
performance for a fully supervised Hiera-B.1 Thus, we entitle this method “absolute win”.

Analysis. We can study the effect position embeddings have by measuring their similarity. If the
position embedding for two tokens are similar, then they are likely to be paired in attention (see
Appendix E). We present the similarity of individual tokens within the learned 8×8 window and 7×7
global embeddings in Fig. 5 for our Hiera-L model trained with absolute win. The global embeddings
act as expected: tokens close by (or in a close row or column) are considered similar. However, the
window embeddings act very differently. In fact, they seem to perform dilated convolution.

Furthermore, we study the importance of each component in Tab. 2. Our default 7× 7 size for global
embeddings seems to be optimal. Moreover, both window and global embeddings alone fix the bug,
since the window embed will always align with window attn and the global embed is at the resolution
where windows are pooled to 1× 1. Neverthless, together they result in the most performant model.

4 EXPANDING TO DETECTION

In Sec. 3, we explored how an interaction between window attention and absolute position embeddings
caused undesirable behavior in learned position embeddings using Hiera (Ryali et al., 2023) as our
test platform. However, Hiera is not the only model that uses both window attention and absolute
position embeddings. In fact, a common strategy when applying vanilla vision transformers (ViT,
Dosovitskiy et al. (2020)) to high resolution downstream tasks is to add window attention.

4.1 VITDET

Of particular note is ViTDet (Li et al., 2022a), a popular method to use ViTs for object detection.
ViTDet takes a standard 224px ViT model (i.e., with 14× 14 tokens) pretrained with MAE (He et al.,
2022), and then finetunes at resolutions of 1024px or more. But doing this with global attention is
too expensive, so instead the authors convert all but 4 of the attention layers in the model to window
attention, with each window being 14× 14 tokens (i.e., the same as the pretrained model). Naturally,
ViT uses absolute position embeddings, so to allow the model to input larger images, ViTDet naı̈vely
interpolates them. Finally, ViTDet adds relative position embeddings (Li et al., 2022b) to the attention
module in each layer, which the authors find important for good performance.

Does ViTDet also suffer from the bug? ViTDet has all the necessary components for the titular bug
to occur: window attention, absolute position embeddings, and naı̈ve interpolation; but this time, in a
different order. Hiera trains a model with both absolute position embeddings and window attention,
and then tries to interpolate the result. On the other hand, ViTDet takes an interpolatable position
embedding (learned or sinusoidal), interpolates it, and then adds window attention during finetuning.

While not as egregious, this is still wrong. As described in Sec. 3, position embeddings are how
attention implements spatial operations. Drastically changing the position embeddings when finetun-
ing, then, would change the operation performed from what the model learned during pretraining.

1This suggests pure transformers (ViT, Hiera) learn suboptimal pos embeds when fully supervised on IN-1k.
With careful design, it may be possible to obtain MAE-like performance w/ supervised training (see Appendix B).
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COCO mAP
relpos abs win box mask ms/im

all ✗ 55.6 49.2 97
✓ 55.8 (+0.2) 49.3 (+0.1) 97

none ✗ 54.6 48.5 66
✓ 55.0 (+0.4) 49.1 (+0.6) 66

ga only ✗ 55.1 48.9 69
✓ 55.8 (+0.7) 49.6 (+0.7) 68

Table 3: Fixing ViTDet-L by tiling the original
position embeddings. Absolute win reduces the
need for relative position embeddings (relpos) to
only the 4 global attention (ga) layers.

COCO mAP
strategy location box mask ms/im
relative all attn 55.8 49.3 97

win attn 55.0 49.0 75
global attn 55.8 49.6 68

absolute patchify 55.1 49.1 66
global block 55.1 49.0 66
global qkv 55.0 49.0 67

Table 4: Global Embed for ViTDet. Learning
absolute position embeddings from scratch dur-
ing finetuning doesn’t work, so we opt to use
relpos added to just global attention instead.

Interpolating the position embedding and adding window attention certainly “drastically changes the
position embeddings” for each window by spliting one embedding into multiple parts (see Fig. 1cd).

Applying Absolute Win. To fix this, we can apply the same “absolute win” technique, but in a
different way. The original ViT model operates at a resolution of 14 × 14 tokens. Based on that,
ViTDet sets the size of each window to 14× 14 in the interpolated model. Thus, if we want attention
to perform the same operation it did during pretraining, we simply need to ensure that each 14× 14
window has the same position embedding—i.e., by tiling the position embeddings instead of naı̈vely
interpolating them. Essentially, we construct an absolute win embedding with the original pretrained
position embeddings acting as window embeddings (Fig. 6). Note that ViTDet has 4 global attention
layers, so we still need a global embedding. We will discuss how to achieve that in the next section.

If we apply this technique to a ViTDet model on COCO (Lin et al., 2014) using the same training
setup as Li et al. (2022a), we only get small gains for both box and mask (see Tab. 3). Does this
mean that ViTDet is not actually affected by the bug? Actually, the secret is in the relative position
embeddings (relpos): not adding them during finetuning drops performance by up to 1 mAP box and
0.7 mAP mask for the original model. If we then apply absolute win without relpos, we gain +0.4
mAP box and +0.6 mAP mask. This means that a portion of the gain for box mAP and most of the
the gain from mask mAP for using relpos in the first place is due to the bug.

Removing Relative Position Embeddings. Does this matter? If relpos can make up the difference,
why would we want to remove it? Simple: relpos is slow. In Tab. 3, we present the inference runtime
for each model (A100 fp16). Using relpos in every attention layer can slow the model down by 47%.

We now return to the component missing from our implementation of absolute win for detection:
the global embedding. Using the pretrained model’s embeddings as the finetuned model’s window
embeddings is correct for the window attention layers. However, the model still has 4 global attention
layers that now use the wrong position embeddings. We addressed this in Sec. 3 with a global
embedding, but the pretrained model does not have one here. We could try to train our own during
finetuning, but this would adversely affect the windows from pretraining (Tab. 4: absolute, patchify).

Instead, we want to inject this position information directly into the layers with global attention,
avoiding those with window attention. However, if we add a zero-initialized absolute position
embedding to either the input to the block or the outputs of qkv (as is done in DETR (Carion et al.,
2020)) for blocks with global attention, we also see no gain (Tab. 4). Not being able to learn good
absolute embeddings during supervised finetuning is not so surprising, as we found supervised
Hiera-B in Sec. 3 to also not be able to learn good absolute position embeddings from scratch. But
we do have an embedding strategy that does not require a good pretext task to learn: namely, relpos.

Thus, our final method for absolute win applied to ViTDet is to tile the pretrained model’s position
embeddings and learn new relative position embeddings for only the 4 global attention layers. The
result in Tab. 3 is a model that is stronger than the original ViTDet-L, while being significantly faster.

4.2 HIERADET

If absolute win can improve ViT for detection, then what about Hiera? In Ryali et al. (2023), Hiera
outperforms ViT in almost all cases when not finetuned at a higher res. However, Hiera-L performs
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Figure 6: Absolute Win for Detection. For
detection, we apply absolute win recursively by
tiling the original model’s pos embed.

COCO mAP
model abs win box mask ms/im
ViT-L ✗ 55.6 49.2 97
ViT-L ✓ 55.8 49.6 68
Hiera-L ✗ 55.0 48.6 -
Hiera-L‡ ✗ 55.6 49.3 92
Hiera-L‡ ✓ 56.2 50.0 67

Table 5: Fixing HieraDet-L by applying abso-
lute win recursively. Our implementation (‡)
already outperforms the original (Ryali et al.,
2023), but absolute win embeddings allows Hi-
eraDet to considerably outperform even ViTDet.

significantly worse than ViT-L for detection (55.0 v.s. 55.6 box mAP on COCO). Of course, this
result is bugged. Hiera uses the same set up as ViTDet, i.e., funetune at 1024px images. Thus, we
should expect to see a drop in accuracy as in Tab. 1. Naturally, we can fix this with absolute win.

Building a Model. We build on the methodology of Ryali et al. (2023) to construct our HieraDet.
We replace the ViT backbone with Hiera and use an FPN (Lin et al., 2017) to aggregate multi-scale
features. We then use the same Mask R-CNN (He et al., 2017) heads as ViTDet. Similar to ViTDet,
we replace the global attention in Hiera with window attention of the same scale (i.e., 14 × 14
windows for stage 3 and 7× 7 windows for stage 4) and leave the existing windows in stages 1 and
2 unchanged. Then to allow mixing between windows like ViTDet, we choose 3 equally dispersed
attention layers in stage 3 to remain global (which we find to be optimal, see Appendix C).

Applying Absolute Win. But what do we do for position embeddings? We now have two “scales” of
window attention: the 8× 8 windows originally within Hiera, and the 56× 56 windows (i.e., 14× 14
at stage 3 and 7 × 7 at stage 4 after downsampling) added following ViTDet. Simple—we have
multiple scales of window attention, so apply absolute win recursively. At the lowest level, we have
our pretrained Hiera model with 8× 8 window and 7× 7 global embeddings. Then we construct a
56× 56 embedding from these as in Fig. 3, and then use that as the window embedding for the entire
HieraDet model (see Fig. 6). We also add relpos to just the 3 global attention layers to serve as the
new global embedding. Finally, with the position embeddings corrected, we can now use layer-wise
lr decay (Clark et al., 2020; Bao et al., 2021) which boosts performance for larger models.2

We show the results of these changes in Tab. 5 for a Hiera-L on COCO. Without absolute win
embeddings, our HieraDet is already +0.6 box mAP and +0.7 mask mAP over the original Hiera for
detection results in Ryali et al. (2023), matching the performance of ViTDet-L. However, applying
absolute win unlocks Hiera’s performance even further, adding another +0.6 box mAP and +0.7
mask mAP on top. This makes our HieraDet-L with absolute win +1.2 box mAP and +1.4 mask
mAP over the original, while being faster (due to having only 3 relpos).

5 RESULTS

With the bug fixed, both Hiera and ViT perform better on several tasks. Here we evaluate absolute
win v.s. the original models and other state-of-the-art. See Appendix A for implementation details.

Image Recognition. In Tab. 6 we evaluate the effectiveness of absolute win for Hiera on ImageNet-1k
(Deng et al., 2009) by pretraining for 1600 epochs on 224px images3 using the hyperparameters
from Ryali et al. (2023) and then finetuning on either 224px or 384px images. We then compare the
resulting models to other existing work, i.e. MViTv2 (Li et al., 2022b) and Swin (Liu et al., 2021b),
that have both 224px and 384px results as well as the original Hiera models (Ryali et al., 2023) which
we finetune at 384px. In particular, we care about the performance increase from finetuning at a
larger image size (i.e., not the raw acc, as that would be unfair for supervised models). Compared
to models of the same compute, Hiera with absolute win benefits more from increased resolution,

2ViTDet uses this, but the Hiera detection experiments in Ryali et al. (2023) do not. It turns out that this is
because the bugged interpolated embeddings need to be retrained in order to get good accuracy.

3See Appendix F for a discussion about pretraining with higher resolutions.
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224px 384px ∆
model acc flops acc flops acc
MViTv2-B† 84.4 10.2G 85.2 36.7G +0.8
Hiera-B 84.5 9.4G 85.0 30.3G +0.5
Hiera-Babs win 84.5 9.4G 85.8 30.3G +1.3
Swin-B† 83.5 15.4G 84.5 47.0G +1.0
Hiera-B+ 85.2 12.7G 85.2 40.3G +0.0
Hiera-B+abs win 85.1 12.7G 86.2 40.3G +1.1
MViTv2-L† 85.3 42.1G 86.0 140G +0.7
Hiera-L 86.1 40.3G 86.4 128G +0.3
Hiera-Labs win 86.1 40.3G 86.9 128G +0.8
Hiera-H 86.9 125G 86.7 383G -0.2
Hiera-Habs win 86.8 125G 87.3 383G +0.5

Table 6: ImageNet-1k Results. Comparing to
other models that train at both 224px and 384px.
Hiera with our absolute win gains more from
high res than others (Li et al., 2022b; Liu et al.,
2021b; Ryali et al., 2023). † Fully supervised.

16×224px 32×320px ∆
model acc flops acc flops acc
ViT-L 85.2 597G 86.1 3958G +0.9
Hiera-L 87.3 413G 87.4 2962G +0.1
Hiera-Labs win 87.1 413G 88.0 2962G +0.9
ViT-H 86.6 1192G 87.4 7397G +0.8
Hiera-H 87.8 1159G 88.1 7003G +0.3
Hiera-Habs win 87.6 1159G 88.4 7003G +0.8

Table 7: Kinetics-400 Results. Frames × img
size w/ 3 spatial and 5 temporal crops. ViT uses
4 temporal crops at high res (Tong et al., 2022).

in-1k acc @ ft res
model 224px 256px 320px 448px
Hiera-B 84.5 84.2 (- 0.3) 84.6 (+0.1) 84.8 (+0.3)

w/ abs win 84.5 84.9 (+0.4) 85.4 (+0.9) 85.7 (+1.2)

Hiera-B+ 85.2 84.3 (- 0.9) 85.1 (- 0.1) 84.9 (- 0.3)

w/ abs win 85.1 85.3 (+0.2) 86.0 (+0.9) 86.2 (+1.1)

Hiera-L 86.1 85.7 (- 0.4) 86.2 (+0.1) 86.6 (+0.5)

w/ abs win 86.1 86.5 (+0.4) 86.7 (+0.6) 87.0 (+0.9)

Hiera-H 86.9 86.5 (- 0.4) 86.9 (- 0.0) 86.5 (- 0.4)

w/ abs win 86.8 87.0 (+0.2) 87.2 (+0.4) 87.3 (+0.5)

Table 8: Image Size Comparison. Evaluating
the performance of absolute win on additional
finetune resolutions. Without absolute win, per-
formance significantly degrades. Note that we
use the same hyperparameters in each experi-
ment here, which is not necessarily optimal.

model frames size mAP flops
ViT-L 16 2242 37.0 597G

MViTv2-L 40 3122 38.5 2828G

Hiera-L 16 2242 39.8 413G

Hiera-Labs win 32 3202 42.4 2962G

ViT-H 16 2242 39.5 633G

Hiera-H 16 2242 42.5 672G

Hiera-Habs win 32 3202 43.8 7003G

Table 9: AVA v2.2 Results. Video action local-
ization compared to models pretrained on K400
with masked image modeling (Tong et al., 2022;
Ryali et al., 2023; Wei et al., 2022).

while retaining 224px acc. We further test this in Tab. 8, where we present more finetune resolutions.
While the original model can lose accuracy at some resolutions, absolute win solves the issue.

Video Recognition. We perform a similar experiment in Tab. 7 on Kinetics-400 (Kay et al., 2017)
action classification for video using 3200 ep of pretraining and the same hyperparameters as Ryali
et al. (2023). We then finetune using 32 frames (each of 320px) to compare with Video MAE (Tong
et al., 2022). We interpolate the temporal embedding linearly and use absolute win on the spatial
embedding. While our 224px models are not as strong as Hiera’s, our 320px results clearly show the
benefits of absolute win, resulting in a Hiera-L model that outperforms Video MAE by 1-2% at high
res. In Tab. 9, we test this further by finetuning the resulting model on AVAv2.2 (Gu et al., 2018), an
action localization dataset. This allows us to outperform the prior state-of-the-art for K400 pretraining
by +2.6 AP for L and +1.3 AP for H. Thus, absolute win is as effective on video as images.

Object Detection and Segmentation. We evaluate our absolute win applied to ViTDet and HieraDet
for object detection and instance segmentation on COCO (Lin et al., 2014) using Detectron2 (Wu
et al., 2019) training on train2017 and testing on val2017. ViT baselines are from ViTDet (Li et al.,
2022a) and Hiera baselines are from the original paper (Ryali et al., 2023). For ViT, we keep all
hyperparameters the same, but for Hiera we use our own implementation as described in Sec. 4.2.

In Tab. 10, we compare ViTDet and HieraDet with absolute win the results from their original papers
by finetuning Mask R-CNN (He et al., 2017) or Cascade Mask R-CNN (Cai & Vasconcelos, 2019).
In every case, absolute win improves performance. Notably, the performance increase is slight
for ViTDet (as its extra relpos hides the improvement), but our version is much faster (see Fig. 7).
Furthermore, absolute win both speeds up HieraDet and results in huge performance improvements:
up to 1.5 APbox and 1.6 APmask for the base model. The resulting Hiera models outperform ViTDet.

In Fig. 7, we benchmark our models against ViTDet as well as MViTv2 (Li et al., 2022b) and Swin
(Liu et al., 2021b) using ImageNet-21k pretraining from Li et al. (2022a), and the more recent Swin
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Mask R-CNN Cascade Mask R-CNN

model APbox APmask APbox APmask

ViT-B 51.6 45.9 54.0 46.7
ViT-Babs win 52.2 46.2 54.1 47.0
Hiera-B 52.2 46.3 - -
Hiera-B‡

abs win 53.7 47.9 55.8 48.4
Hiera-B+ 53.5 47.3 - -
Hiera-B+‡

abs win 54.3 48.2 56.8 49.1
ViT-L 55.6 49.2 57.6 49.8
ViT-Labs win 55.8 49.6 57.8 50.0
Hiera-L 55.0 48.6 - -
Hiera-L‡

abs win 56.2 50.0 58.4 50.7
ViT-H 56.7 50.1 58.7 50.9
ViT-Habs win 56.9 50.3 58.8 51.0
Hiera-H‡

abs win 57.0 50.3 59.0 51.1

Table 10: COCO w/ Absolute Win. Compari-
son between our ViTDet and HieraDet with ab-
solute win and without. ‡ Our implementation.

single-scale test multi-scale test

model APbox APmask APbox APmask

Swin-L HTC++, 21K, sup 57.1 49.5 58.0 50.4
MViTv2-H Cas, 21K, sup 57.1 48.8 58.4 50.1
CBNetV2 HTC, 21K, sup 59.1 51.0 59.6 51.8
ViTDet-H Cas, 1K, MAE 60.4 52.0 61.3 53.1

w/ absolute win
Hiera-B Cas, 1K, MAE 57.7 49.6 59.3 51.2
Hiera-B+ Cas, 1K, MAE 58.5 50.4 60.0 52.0
Hiera-L Cas, 1K, MAE 60.1 51.6 61.5 53.0
Hiera-H Cas, 1K, MAE 60.7 52.0 61.7 53.3

Table 11: COCO Results on minival for meth-
ods pretrained on ImageNet (Liu et al., 2021b; Li
et al., 2022b; Liang et al., 2022; Li et al., 2022a).

Figure 7: COCO Runtime. Benchmarked on
the same A100 using Mask R-CNN (fp16, bs=8).

single-scale test

model APmask APmask
rare APbox

Detic Zhou et al. (2022) 41.7 41.7 -
CBNetV2 2021 Comp Winner

Fu et al. (2021) 49.2 45.4 -
ViTDet-L Li et al. (2022a) 46.0 34.3 51.2
ViTDet-H Li et al. (2022a) 48.1 36.9 53.4

w/ absolute win
Hiera-B abs win 42.9 32.0 47.7
Hiera-B+ abs win 43.9 30.7 48.9
Hiera-L abs win 47.1 37.4 52.5
Hiera-H abs win 48.9 38.0 54.6

Table 12: LVIS v1 Results. System-level com-
parison using the same setup as Li et al. (2022a).

using SimMIM (Xie et al., 2022) pretraining. Our method significantly speeds up both ViTDet and
HieraDet, with the resulting HieraDet being faster and more accurate than everything else.

Finally, like in Li et al. (2022a), we present additional results using cascade (cas), 1280px images,
and softnms (Bodla et al., 2017) with and without test-time augmentation. In Tab. 11, we compare
the resulting model to other ImageNet pretrained work. HieraDet with absolute win is extremely
strong: with our bug fix, Hiera-B outperforms methods using heavier backbones and pipelines like
HTC (Chen et al., 2019). Moreover, multi-scale testing requires interpolating the position embedding.
Thus, our models with absolute win benefit more, with Hiera-L outperforming ViT-H on box mAP.

We conduct the same experiment on LVIS (Gupta et al., 2019) using the setup from ViTDet in Tab. 12.
Our version of HieraDet also significantly outperforms ViTDet. It comes close to the results from the
LVIS-optimized 2021 challenge winner (Fu et al., 2021), despite using only baseline LVIS strategies.

6 CONCLUSION

We find a bug, fix it with absolute win, and show extensively how doing so improves the state-of-the-
art. Our findings lead to a few practical suggestions. From Hiera: embracing the emergent behavior
of a model can lead to significant gains. From ViTDet: minimizing the disparity between pretraining
and finetuning can lead to optimal performance. But more than that, we discover a potential issue
for any method with window attention and absolute position embeddings. While we only show two
examples here, several others use these components. Moreover, other methods could be partially
affected—e.g., Swin has window attention but uses relative embeddings, which if replaced with
absolute embeddings could lead to a faster model. We hope that future work can use these techniques
to obtain a more powerful and more efficient state-of-the-art, which we would see as an absolute win.
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A IMPLEMENTATION DETAILS

Here we list the details and configurations for each set of experiments.

A.1 IMAGE RECOGNITION

For our image recognition experiments, we train and evaluate on ImageNet-1k (Deng et al., 2009)
using MAE pretraining for 1600 epochs following the same hyperparameters in Ryali et al. (2023).
For finetuning, our hyperparameters follow Ryali et al. (2023) for the most part. We us these same
hyperparameters for all image sizes in Tab. 6 and Tab. 8. Note that different hyperparameters might
be optimal for higher resolution, but that is out of scope for our experiments here. We list the settings
we use for finetuning in Tab. 13 below.

config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate 2e-3 (B); 1e-3 (B+, L, H)
learning rate schedule cosine decay
warmup epochs 5
epochs 100 (B, B+); 50 (L, H)
augmentation RandAug (9, 0.5) (Cubuk et al., 2020)

batch size 1024
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
label smoothing (Szegedy et al., 2016) 0.1
drop path (Larsson et al., 2017) 0.1 (B, B+); 0.2 (L); 0.3 (H)
dropout (Srivastava et al., 2014) 0.7 (B, B+); 0.9 (L); 0.85 (H)

Table 13: Finetuning settings for ImageNet-1K. We use the same settings for each image size.

Note that we finetune the large image models directly from the pretrained model. Also, for larger
image sizes for H models, we had to use both activation checkpointing and torch 2.0 scaled dot
product attention to allow the same batch size to fit in GPU memory. The latter could affect accuracy.

A.2 VIDEO RECOGNITION

For video recognition, we conduct experiments on Kinetics-400 (Kay et al., 2017) action classification
and AVA v2.2 (Gu et al., 2018) action localization. Like for ImageNet-1k, for Kinetics-400, we use
the same 3200 epoch pretraining settings as Ryali et al. (2023), as well as the same finetuning settings
for the original 16×224px resolution. For 32×320px, we finetune with the settings in Tab. 14.

config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 1e-8
learning rate 1.6e-4
learning rate schedule cosine decay
epochs 30
repeated sampling 2
augmentation RandAug (7, 0.5) (Cubuk et al., 2020)

batch size 128
gradient clipping 5.0
label smoothing (Szegedy et al., 2016) 0.1
drop path (Larsson et al., 2017) 0.5 (L32×320px), 0.6 (H32×320px)
dropout (Srivastava et al., 2014) 0.5
layer-wise decay (Clark et al., 2020) 0.9

Table 14: Finetuning settings for Kinetics-400. Finetuning at 32 frames and 320px resolution.

We finetune the high res models on top of the 16×224px finetuned model, not from the pretrained one
(to save time). Activation checkpointing was used for both models, and mixup was disabled because
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each gpu had a batch size of 1. To interpolate the position embeddings temporally, we linearly
interpolate the temporal embeddings from Hiera, and use absolute win for the spatial embeddings.
Like with the low resolution models, we sample frames with a temporal stride of 4.

We take the 32×320px finetuned Kinetics-400 model and finetune it further on AVA v2.2 using the
following settings in Tab. 15.

config values
optimizer SGD
weight decay 1e-8
learning rate 3.6 (L32×320px), 3.2 (H32×320px)
learning rate schedule cosine decay
warmup epochs 5 (L32×320px), 8 (H32×320px)
epochs 30
batch size 128
drop path (Larsson et al., 2017) 0.5
dropout (Srivastava et al., 2014) 0.5
layer-wise decay (Clark et al., 2020) 0.9

Table 15: Finetuning settings for AVA. Finetuning at 32 frames and 320px resolution.

The H model required us to use a batch size of 1 per GPU even with activation checkpointing, which
we found to be unstable. Thus, we use a lower learning rate and more warmup epochs for the H
model to compensate. It is possible that a higher learning rate would result in better performance.

A.3 DETECTION AND INSTANCE SEGMENTATION

For detection with ViTDet, we use all the same parameters as Li et al. (2022a). Our settings for
HieraDet, however, are very different to Ryali et al. (2023). We list those settings in Tab. 16 here:

config values
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.1
learning rate 1.4e-4 (B); 7e-5 (B+); 1.2e-4 (L); 6e-5 (H)
learning rate schedule step-wise decay
epochs 100 (B, B+, L); 75 (H)
augmentation LSJ [0.1, 2.0]
batch size 64
drop path (Larsson et al., 2017) 0.2 (B); 0.3 (B+); 0.45 (L); 0.55 (H)
layer-wise decay (Clark et al., 2020) 0.85 (B, B+); 0.9 (L); 0.925 (H)
window attn size 8, 4, 14, 7
global attn layers 12-16-20 (B, B+); 23-33-43 (L, H)
relpos global attn layers only

Table 16: Settings for COCO. HieraDet finetuning settings for both Mask and Cascade R-CNN.

We use these settings for every COCO experiment, except for our 1280px experiment where we
increase the droppath for H to 0.6. When we use softnms (Bodla et al., 2017), we use the linear
method.

Our settings for LVIS are the same as in Tab. 16, except we use repeat factor sampling and federated
loss as in Li et al. (2022a). To compensate we also adjust the learning rates: 1.4e-4 (B); 1.4e-4 (B+);
2.4e-4 (L); 6e-5 (H). Finally, all models use 100 epochs for LVIS like in Li et al. (2022a).

A.4 SPEED BENCHMARKING

We use a single NVIDIA A100 40GB GPU to benchmark speed for all baselines and our approach.
All detection results were benchmarked with a batch size of 8 using fp16 in detectron2, taking
multiple tests and throwing out the first 25%. For attention layers (in ViT and Hiera) not using relpos,
we accelerate attention using torch 2.0’s scaled dot product attention function. We used Li et al.’s
Detectron2 code for each approach. We approximate Hiera without absolute win as our version of
HieraDet with all layers having relpos. The full benchmark results are as follows in Tab. 17.
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ms / im
method B B+ L H
MViTv2 47 - 104 210
Swin 33 - 44 -
ViT 58 - 97 133
ViT abs win 40 - 68 101
Hiera 47 57 92 -
Hiera abs win 36 42 67 107

Table 17: Detection Benchmarking. The numbers for Fig. 7. Using 1024px images on COCO with
Mask R-CNN on a single A100 with a batch size of 8 and half precision.

Figure 8: Window Repetition for fully super-
vised baseline Hiera models on ImageNet-1k.
Like Fig. 4, but here showing both Hiera-B and
Hiera-L models. Notably, the L model does not
reach the same level of window similarity as B.

model pos embed acc ∆

Hiera-LSup absolute 76.1
absolute win 79.8 +3.7

Hiera-BSup absolute 81.8
absolute win 82.4 +0.6

Table 18: Fully Supervised Training. Absolute
win can significantly improve the performance
of a Hiera model trained from scratch. However,
Hiera-L here benefits significantly more than
Hiera-B. Fig. 8 has a potential answer: Hiera-
L doesn’t learn the repeated window pattern.

B ABSOLUTE WIN FOR FULLY SUPERVISED MODELS

It’s common knowledge that training pure transformers fully supervised with only ImageNet-1k data
is suboptimal (Dosovitskiy et al., 2020; Zhai et al., 2021; He et al., 2022). This is true for Hiera as
well (Ryali et al. (2023) Appendix). However, the specific mechanism that causes this deficiency or
the details behind why pretraining with, e.g., MAE helps so much is still not fully understood.

In Sec. 3, make two interesting observations: Hiera’s window repetition behavior is less pronounced
when training fully supervised from scratch than when training with MAE, and absolute win can
improve performance for fully supervised models. In order to shed some light on the differences
between what supervised and MAE-pretrained models learn, we explore these two observations.

In Fig. 8, we show the window similarity over fully supervised training of a Hiera model from scratch.
While the Hiera-B model learns some kind of repeated window embedding, the Hiera-L model
specifically does not. And we find that this is correlated with accuracy. In Tab. 18, we show the final
accuracies of these two models, and the Hiera-L model performs significantly worse than the Hiera-B
model. This is not surprising, since it is likely for these larger models to overfit on ImageNet-1k.
However, interestingly using absolute win increases the accuracy of the L model by 3.7%.

We would like to emphasize: simply rearranging a few parameters at the start of the network
drastically improves performance for a supervised Hiera-L model. It does not seem reasonable,
then, that the accuracy drop is a wholly attributable to overfitting. There are, after all, 48 layers of
parameters between the position embeddings and the outputs of a Hiera-L model. If the model can
overfit with one position embedding, then it can overfit with a slightly different position embedding.

Instead of overfitting, it seems that these models do not learn a good prior for attention. While MAE
requires spatial reasoning to perform well, fully supervised classification does not. Attention does
not have explicit signal from supervised classification, making it more likely for a fully supervised
model to get stuck in a bad local optimum for attention. Simply rearranging the position embedding
can allow the model to find a new optimum that makes better use of spatial information.

But, we note that supervised training is not necessarily the problem. To test this, we perform one
more experiment through the lens of repeated window position embeddings. This time, we take a
baseline Hiera-L model pretrained with MAE and reset the position embeddings, then do 50 epochs
of supervised training. In Fig. 9, we compare this to training that same model from scratch (for 300
supervised epochs). And interestingly enough, the model is able to relearn its position embeddings

15



Published as a conference paper at ICLR 2024

Figure 9: Resetting the Pos Embed for an MAE pretrained Hiera-L model before finetuning. Unlike
training completely from scratch, the MAE-pretrained model quickly relearns a position embedding
with high window similarity. However, it doesn’t fully reach the original similarity.

under supervised training. Thus, the task itself is not directly responsible for the repeated position
embeddings. Instead, the learned attention operation is, meaning that MAE enables the model to settle
into a good local optimum for attention. Though, note that the model with reset position embeddings
does not relearn exactly the same position embedding (falling just short on window similarity). It
obtains 84.1% accuracy v.s. the original model’s 85.6%.

A couple of take-aways from this line of inquiry: (1) Overfitting may not be the full story of
poor performance of large transformers trained from scratch on ImageNet-1k - learning suboptimal
attention operations may play a role; (2) the improved results from MAE pretraining can potentially
be replicated when training with only supervised classification, provided the model finds the right
local optimum; (3) absolute win, or some other way of subtly nudging the model in the right direction,
can significantly improve performance for fully supervised models. We leave further exploration of
this subject to future work.

C HIERADET ABLATIONS

Here we ablate the global attention placement for HieraDet mentioned in Sec. 4.2. As described
in Tab. 19 below, we find that placing global attn layers too early or too late in the network hurts
performance. Then, we find that we only need 3 global attention layers to get optimal performance.
Finally, we ablate the stride for placing these layers and find 10 to be optimal. So, our final placement
for Hiera-L is the last layer of stage 3 (43) and then two more layers placed before it at 33 and 23.

ga layers APbox APmask

none 55.2 49.2
10s3 54.0 48.2
10s3, 26s3 55.2 49.2
26s3, 42s3 55.8 49.6

(a) Early Layers. Placing a ga layer early (e.g.,
layer 10) actually hurts performance.

ga layers APbox APmask

none 55.2 49.2
42s3 55.4 49.4
42s3, 47s4 55.3 49.2

(b) Late Layers. Making the last layer in stage 4 a
ga layer also hurts performance slightly.

ga layers APbox APmask

31s3, 43s3 55.9 49.6
19s3, 31s3, 43s3 56.0 49.9
19s3, 27s3, 35s3, 43s3 56.0 49.7

(c) Number of Layers. We do not find any benefit
from using more than 3 ga layers.

ga layers APbox APmask

19s3, 31s3, 43s3 56.0 49.9
23s3, 33s3, 43s3 56.1 49.9
27s3, 35s3, 43s3 55.8 49.6
31s3, 37s3, 43s3 55.9 49.8
41s3, 42s3, 43s3 55.8 49.5

(d) Placement Stride. We find a stride of 10 going
back from the last layer in stage 3 to be the best.

Table 19: HieraDet Global Attention Layers. Ablating the placement of global attention layers in
Hiera, here for a Hiera-L model. The stage the layer belongs to is denoted by s#. We find the optimal
strategy to be placing 3 global attention layers in stage 3 of the model. Note that we use absolute win
in these experiments, but use different hyperparameters for training than the main paper.
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D MORE EMBEDDING VISUALIZATIONS

Here we present visualizations of more channels of the position embeddings described in the main
paper. To show the generality of this issue, we provide visualization of the publicly released “bugged”
Hiera models at different scales: tiny (Fig. 10), base (Fig. 11), and huge (Fig. 12). In each case,
we present a random sample of position the position embeddings. Fig. 13 shows more examples of
absolute win (as in Fig. 3) for a Hiera-L model we trained with the fix.

Figure 10: Hiera-T MAE Image Original Position Embedding. Channels of the position embedding
for the public Hiera-T model pretrained using MAE on images.

Figure 11: Hiera-B MAE Image Original Position Embedding. Channels of the position embedding
for the public Hiera-B model pretrained using MAE on images.
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Figure 12: Hiera-H MAE Image Original Position Embedding. Channels of the position embed-
ding for the public Hiera-H model pretrained using MAE on images.

Figure 13: Hiera MAE Image Absolute Win Position Embedding. Channels of the position
embedding for our Hiera-L model pretrained using MAE on images with absolute win.

D.1 WINDOW SIMILARITY

While the “windowness” of the original Hiera model’s position embeddings are apparent from
visualization, we can also measure this issue quantitatively by looking at the average “similarity”
between windows at the end of training as in Fig. 4. We’ve computed this statistic for all the publicly
available Hiera ImageNet-1k trained models in Tab. 20:
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Model T S B B+ L H
Window Similarity 0.83 0.81 0.84 0.77 0.74 0.66

Table 20: Window Similarity for the publicly released original Hiera MAE models, measured by
taking the average pairwise cosine similarity between all pairs of windows in the position embedding.

While the larger models have less similarity, the similarity is still high for all models. Note that the
values in this table are larger than the final number reached in Fig. 4 because we trained those models
using 400 MAE epochs, whereas the original Hiera models train for 1600 MAE epochs.

E THEORETICAL JUSTIFICATION FOR ABSOLUTE WIN

We’ve showcased the existence of a bug between interpolating position embeddings and window
attention and how absolute win fixes it empirically. In this section, we present additional theoretical
justification for why the bug happens and how to fix it.

E.1 LINKING POSITION EMBEDDINGS TO ATTENTION

In the main paper, we treat the position embedding and the action of attention as intrinsically linked.
Here, we show mathematically why this is the case.

Absolute position embeddings (e.g., in Hiera or ViT) are added directly after patchification. For
each patchified token at position i with n features, xi ∈ Rn, the result of adding the corresponding
position embedding, pi, is

x′
i = xi + pi (1)

This x′
i is immediately passed into the first block of the network and thus the first attention layer. For

the attention matrix (ignoring heads without loss of generality), the model constructs queries qi and
keys ki as qi = x′

iW
T
q and ki = x′

iW
T
k for weight matrices Wq,Wk ∈ Rn×n. The (i, j)th element of

the attention matrix pre-softmax is then

qik
T
j = x′

iW
T
q Wkx

′T
j (2)

For brevity, let Wqk = WT
q Wk. Then, if we substitute back xi, we get:

qik
T
j = (xi + pi)Wqk (xj + pj)

T (3)

When we expand the above expression, we get 4 terms—a term without posemb, 2 cross terms, and
the following explicit position embedding term:

qik
T
j = . . .+ piWqkp

T
j (4)

Importantly, the same Wqk is being used for each position, so the only spatially varying parameters in
this term come from the position embeddings. Thus, any repeated pattern we see in the actual values
of pi and pj (what we visualize in Fig. 2, with similarity plotted in Fig. 5) explicitly affects the action
of attention in this first layer of the network. Then, because of skip connections, it also does so in
subsequent layers (though with less effect in deeper layers). This is consistent with the commonly
held belief that position embeddings have more effect at the start of the network than at the end.

E.2 HOW REPEATED POSITION EMBEDDINGS CAUSE THE BUG

Following Sec. E.1, we can emulate what happens to cause the bug by explicitly defining pi to be
periodic. For simplicity, we will treat x and p as 1D in space, but this can be extended to any number
of dimensions.

Let ℓ denote the length of this 1D image used during pretraining. Then, let us further assume that
the model learns a periodic pattern for p that repeats every t tokens. Then, during finetuning, we
upsample the image size to ℓ′. If we upsample the position embeddings by interpolation, then notably,
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the periodicity of the position embeddings will change, i.e. t′ ̸= t. However, the proportion each
period takes up in the image will remain the same, i.e. t′/ℓ′ = t/ℓ.

Now, let us turn our attention to attention. Consider a model that uses window attention with a
window size of w, which doesn’t change during finetuning. Assuming the window attention is what
caused the periodicity in the position embeddings, then w = t (which is true empirically). Then by
Eq. 4, the position bias for the window starting at position i would be

piWqkp
T
i piWqkp

T
i+1 · · · piWqkp

T
i+w

pi+1Wqkp
T
i pi+1Wqkp

T
i+1 · · · pi+1Wqkp

T
i+w−1

...
...

. . .
...

pi+w−1Wqkp
T
i pi+w−1Wqkp

T
i+1 · · · pi+w−1Wqkp

T
i+w−1

 (5)

For brevity, let’s consider just one row of this matrix, specifically piWqk [pi · · · pi+w−1]
T . To

reason about this vector, we will make one additional assumption about what the position embeddings
learn. And that is, adjacent position vectors in a window learn similar values (pi ∼ pi+1) and far
away positions learn dissimilar values (pi ̸∼ pi+w−1). Note that the exact specifics of what is exactly
similar to what is not explicitly a requirement for the derivation, just this general fact that things
inside the window are treated differently to those across the window. But we can see a similar trend
empirically in Fig. 5 window similarity. The tokens at the edges are not similar to tokens of the
opposite edge, and spatially close tokens are more similar.

Then, observe that in this case our row piWqk [pi · · · pi+w−1]
T will have high magnitude values

along the first couple of elements, and then lower values for the remaining elements. Now, let’s focus
on what happens in the higher resolution image, where w remains the same, but t′ = (ℓ′/ℓ) t.

Presume t′ = t + 1. Now let’s again consider our vector: piWqk [pi · · · pi+w−1]
T . When

i = 0, the situation doesn’t change much: p0 and p1 are similar, and pw−1 is still dissimilar to
p0. However, the situation changes when we look at the next window. p is now periodic with
a period of t′, which is t + 1 = w + 1. Thus, pw is not pt′ , but rather pt′−1. So in the next
window, pwWqk [pw · · · p2w−1]

T , the two spatially adjacent pw and pw+1 are actually pt′−1 and
pt′ , which, modulo the period of t′ is the same as comparing p0 and pt′−1. Thus, these two adjacent
tokens in the window now have a position bias in attention that says they are not specially adjacent,
and in fact on the other side of the window from each other. Moreover, if we take the two farthest
tokens in that window, with position embeddings pw and p2w−1, modulo t′ this becomes wt′−1 and
pt′−3 which (if t′ > 3) are considered similar.

This continues with different patters for all other windows, meaning that whatever position bias the
model learned to rely on during pretaining is now completely lost for finetuning. It is not surprising
then, that the accuracy of the model greatly suffers when this happens. Thus, this mismatch between
t′ and w is the bug.

One interesting property of this result is that, if t′ is a multiple of w, the bug has less of an effect, as
the attention bias matrices will then repeat over the windows with a period of t′/w, rather than shift in
every window. Conversely, the effect of the bug is the greatest when t′ is slightly different than w, as
shown in the above example. We can see this empirically in Tab. 8, where 256px images (pretrained
on 224px) show the largest drop in performance for the bugged model.

E.3 HOW TO FIX THE ISSUE

The bug is caused by interpolating the position embeddings, which results in t′ ̸= t. The simplest
way to alleviate the issue, then, is just to ensure that t′ = t. We do this in two ways for absolute win:
first, window position embeddings explicitly set t′ = t, as we manually define it to be periodic with a
period of t = w, and this doesn’t change when the image size changes. Second, our global position
embedding can explicitly forbid the embeddings from learning a periodic pattern in the first place by
being too small to be affected by the tokens inside of a window. In this case, the model does not have
the stipulation that pi ̸∼ pi+w−1, and instead changes gradually such that the shifting of windows do
not invert what was learned during training. As these are orthogonal solutions, we add them to create
absolute win.
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We choose these solutions because they are simple and they closely resemble what the original model
learns, meaning it can be used as a drop-in replacement. However, there are other potential solutions
we don’t consider in the paper. Specifically, from the derivation in Sec. E.2 hints at another solution
that can still be periodic. Instead of having the model learn pi ̸∼ pi+w−1 (i.e., periodic with harsh
boundaries), we could impose some sort of regularization to ensure that the periodicity is continuous.
That is, pipTi+w−1 ≈ pip

T
i+1. If we enforce the model to learn a smooth transition, the attention bias

will change less from pretraining to finetuning. However, this type of approach would likely require
choosing a good loss function and tuning hyperparameters to get the same accuracy as the original
model. Thus, we leave this direction for future work to explore.

Alternatively, we could simply increase the window size in the larger resolution model, i.e. set
w′ = (ℓ′/ℓ)w. This would also work, but creates a more expensive model (as attention is now over
more tokens), and is not actually always possible. Since w has to be an integer (we can’t reasonably
attend over half a token), this only works for specific resolutions.

F PRETRAINING AT HIGHER RESOLUTIONS

In the main paper, we explore increasing the input resolution of Hiera models by pretraining with
MAE using the standard 224px image resolution and finetuning at different downstream resolutions.
Would it be beneficial to pretrain at the same resolution we finetune at? In this section, we perform
some preliminary experiments to answer that question, both for finetuning on ImageNet-1k and for
COCO detection.

We first begin by pretraining and finetuning at the same resolution on ImageNet-1k. In each case, we
use the same window size (8) and adjust the background position embedding size accordingly (i.e.,
14 for 224, 16 for 256, and 24 for 384). We present these results in Tab. 21.

pretrain finetune in-1k
model mask% res res acc
Hiera-L 60 224 256 86.5

60 256 256 86.4
Hiera-L 60 224 384 86.9

60 384 384 86.8
70 384 384 87.0
80 384 384 86.9
90 384 384 86.4

Table 21: High-Res Pretraining on ImageNet-1k using Heira-L with absolute win. We also vary
the pretrain masking ratio in order to increase task difficulty.

However, the result is that pretraining at a higher resolution actually hurts performance, especially if
you don’t change the task difficulty of the MAE pretraining step. We can get some minor gains for
384px images by pretraining and finetuning with 384 and using a 70% masking ratio, but this is not
nearly worth it for the extra pretraining time.

This result isn’t too surprising. Prior work (Xie et al., 2022) has found that pretraining at a slightly
lower resolution than finetuning performs better on ImageNet-1k using other architectures. But while
pretraining at a higher resolution may not be beneficial for ImageNet-1k, it could have a much greater
effect on downstream tasks like detection, where the resolutions are much higher than anything used
in image classification.

Thus, we also finetune these higher resolution models on COCO and report results in Tab. 22. But
note that there’s an additional axis of consideration here: when applying absolute win for detection,
we tile the original position embedding and replace the global attention with window attention to
match that tiling. So what resolution do we construct the original position embedding with? Using a
bigger resolution means bigger tiles and more pairwise computation in each window.

And here, the trend reverses: the models pretrained with higher resolutions that performed worse on
ImageNet-1k perform a noticable amount better on COCO, even with the same tiling resolution. This
is important because despite the higher cost of pretraining, models with the same tiling resolution
cost the same amount to train and evaluate on detection. So in the case of pretraining with 256 res
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pretrain finetune Mask R-CNN

model mask% res tile res APbox APmask

Hiera-L 60 224 224 56.2 50.0
256 224 56.6 50.1
384 224 56.4 50.0

Hiera-L 60 224 256 56.3 49.8
256 256 56.5 49.9

Hiera-L 60 244 384 56.2 49.8
384 384 56.5 50.0

Table 22: High-Res Pretraining for COCO using the Heira-L pretrained on ImageNet-1k with
absolute win in Tab. 21. Tile res denotes the resolution the position embedding is tiled at as well as
the window size for window attention (which are equivalent when using absolute win). Note that a
higher tile resolution means a slower model, so good performance at low tiling resolutions is ideal.

and finetuning on detection with a tiling res of 224, we essentially got +0.4 box and +0.1 mask AP
for free at finetune / inference time!

It’s likely possible to use this technique to outperform our results in Tab. 11. And moreover, this
approach would likely work for other backbones, e.g. with ViTDet, as well. Simply pretrain at 256,
downsample the position embedding to 224, and then finetune on detection with a position embedding
and window tiling of 224. We leave this for future work to explore.

22


