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Abstract

Recent studies have proved that prompt tuning001
can improve the performance of pre-trained lan-002
guage models on downstream tasks. However,003
in the task of relation extraction (RE), there are004
still a large number of confusing samples that005
hinder prompt-tuning method from achieving006
higher accuracy. Inspired by previous works,007
we innovatively utilize contrastive learning to008
solve this problem. We propose a prompt-009
tuning-based framework and apply contrastive010
learning to optimize the representation of in-011
put sentences in embedding space. At the same012
time, we design a more general template for RE013
task, and further use knowledge injection to im-014
prove performance of the model. Through ex-015
tensive experiments on public datasets, the mi-016
cro F1-score(%) of our model exceeds the ex-017
isting SOTA on the Re-TACRED and TACREV018
datasets by 0.5 and 1.0, respectively. Mean-019
while, in the few-shot scenario, our model also020
has a more robust performance than fine-tune021
methods.022

1 Introduction023

The Relation Extraction (RE) task is a fundamental024

problem in Natural Language Processing (NLP).025

As the core task of information extraction (IE), RE026

extracts effective structured semantic information027

from unstructured text, which has a crucial impact028

on many downstream tasks.029

Recently, the self-supervised PLMs, such as030

ELMo (Peters et al., 2018), GPT (Radford et al.,031

2019) and BERT (Devlin et al., 2018), have been032

widely used in NLP. One of the general paradigms033

of pre-trained language models (PLMs) is to trans-034

fer rich contextual knowledge to specific down-035

stream tasks by fine-tuning model parameters. Al-036

though the PLMs obtain a wealth of semantic037

knowledge, it remains a challenge for the paradigm038

to extract the specific knowledge required and to039

improve the utilization of knowledge.040

With the release of GPT-3 (Brown et al., 2020), 041

the application of prompt-tuning PLMs has been 042

widespread studied. Prompt-tuning bridges the gap 043

between pre-training and fine-tuning as a new fine- 044

tuning method, and makes task-specific pre-train 045

models more concise under multiple scenarios. As 046

shown in Figure 1, the RE task based on prompt- 047

tuning is transformed into a cloze task, which is 048

to predict the [mask] in the prompt, thereby in- 049

ferring the implied relationships between entities. 050

Each [mask] has a set of candidate words that 051

make up the answer space. Some recent studies 052

have shown that the prompt-tuning method can also 053

achieve excellent performance in the few-shot set- 054

ting (Gao et al., 2020; Schick and Schütze, 2021; 055

Liu et al., 2021b). 056

For the RE task with prompt-tuning, a series of 057

researchs have focused on automatic prompts gen- 058

eration (Schick et al., 2020; Schick and Schütze, 059

2021; Shin et al., 2020; Gao et al., 2021a) for 060

handling labor-intensive human-picked constructs 061

of prompts. However, automatically generated 062

prompts do not have satisfactory performance com- 063

pared with manually designed prompts and require 064

additional computation cost for generation and ver- 065

ification. For manually designed prompts, a ma- 066

jor challenge is how to construct appropriate tem- 067

plates with rich knowledge. By injecting additional 068

information into the prompt template design and 069

the answer construction (Han et al., 2021; Chen 070

et al., 2021; Zhou and Chen, 2021), the templates 071

will have semantic level knowledge of relation and 072

entity types in the relevant domain to implement 073

more precise RE. Further complicating the issue, 074

for these multi-class classification tasks, the above 075

methods are unable to distinguish between a pair 076

of confusing relations. 077

To solve the above problems, we propose a novel 078

model for RE that incorporates contrastive learn- 079

ing into the prompt-tuning paradigm. To make 080

the model better understand the semantic informa- 081
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tion of the input samples, we take full advantage082

of the bias samples by constructing positive and083

negative samples, and use contrastive learning to084

optimize the semantic representation of inputs in085

embedding space. For the better effect of prompt,086

we inject entity types into prompt as additional087

knowledge. Through a great deal of experiments088

on public datasets, we observe that knowledge in-089

jection can further improve the performance of the090

prompt-tuning paradigm. We conduct extensive091

experiments on three popular sentence-level RE092

datasets. The results show that CLoCE can signif-093

icantly outperform existing state-of-the-art base-094

lines. Specifically, our model advances the previ-095

ous SOTA on Re-TACRED and TACREV. Mean-096

while, our model achieves better results with few097

training epochs. In addition, experiments under098

low-resource scenario show that the model still has099

robust effect in few-shot setting. Our contributions100

can be summarized as follows:101

• We propose a prompt-based framework102

Contrastive Learning Optimize Continous103

prompt Embedding(CLoCE): enlighteningly104

processing biased samples during training pro-105

cess to construct positive and negative sam-106

ples, and applying contrastive learning to op-107

timize the semantic representations in embed-108

ding space so as to distinguish confusing rela-109

tion more accurately. To the best of our knowl-110

edge, it is the first work to introduce con-111

trastive learning for the prompt-tuning method112

in RE tasks.113

• We design a general template for the sentence-114

level RE to improve the generalization of the115

framework. Knowledge is injected into the116

prompt template to improve the performance117

of the model.118

• To verify the effectiveness, we conduct ex-119

periments on the three most frequently used120

sentence-level relation extraction datasets and121

our model outperforms existing SOTA.122

2 Related Work123

Relation Extraction RE is a sub-task of IE which124

pays more attention to the relationship between125

specific entities. The pioneering approaches are126

pattern-based methods (Soderland et al., 1995;127

Califf and Mooney, 1997), which automatically128

construct pattern rules from grammatical elements.129

Feature-based methods (Zhou et al., 2005; Jiang 130

and Zhai, 2007; Nguyen et al., 2007) use feature 131

engineering on entities and contexts before clas- 132

sification tasks. Methods based on Convolutional 133

Neural Networks (Zeng et al., 2014), Recurrent 134

Neural Networks (Vu et al., 2016) and Long Short- 135

Term Memory Networks (Zhou et al., 2016) intro- 136

duce neural networks to relation extraction. Graph- 137

based methods (Zhang et al., 2018; Guo et al., 138

2019, 2020) construct entities graph for inferenc- 139

ing. Recently, PLMs have achieved excellent suc- 140

cess by labeling amounts of data. Impressive re- 141

sults are achieved by using limited annotated sen- 142

tences to fine-tune PLMs (Han et al., 2018a; Gao 143

et al., 2019). In contrast to the traditional methods, 144

BERT-based models (Wu and He, 2019; Joshi et al., 145

2020; Yu et al., 2020) have become mainstreamed 146

trend. On this basis, Lyu and Chen (2021) use 147

entity type to constrain relation classification and 148

achieve SOTA performance on TACRED(Zhang 149

et al., 2017). 150

To avoid using a multitude of labor-intensive an- 151

notated instances, recent trend is few-shot settings. 152

Han et al. (2018b) construct FewRel which is a 153

few-shot relation extraction dataset based on the 154

N-way K-shot method. Gao et al. (2020) focus 155

on the application of snowball in Few-Shot Rela- 156

tion Learning. Han et al. (2021) achieve a balance 157

between performance and cost based on manually 158

selecting sub-prompts. Chen et al. (2021) propose 159

a method to jointly optimize prompt templates and 160

answer words in continuous space. 161

Contrastive Learning Contrastive learning con- 162

centrates on learning the common features be- 163

tween instances of the same class(Positive sam- 164

ple) and distinguishing the differences between in- 165

stances of the different classes(Negative sample). 166

For different tasks’ loss functions, the contrastive 167

learning can be effective, since some methods op- 168

timizing these loss functions that are combined 169

with the contrastive learning loss function. Wu 170

et al. (2020) combine word-level and sentence-level 171

losses based on contrastive learning to optimize 172

sentence-level PLMs. Giorgi et al. (2021) design a 173

self-supervised objective for learning universal un- 174

labeled sentence embeddings. Zhang et al. (2021) 175

propose a contrastive learning framework to sep- 176

arate different categories that overlap with each 177

other in the representation space better at the begin- 178

ning of the learning process. 179

Other methods use contrastive learning to con- 180

2
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Figure 1: Model architecture of prompt-tuning and CLoCE. In CLoCE-D we use the Roberta-encoder and embedding
layer as the sentence encoder in this figure with which parameters are shared during the classification process. In
comparison, the sentence encoder of CLoCE-S is a single embedding layer sharing parameters.

struct augmentation samples and fine-tune the mod-181

els. Yan et al. (2021) propose ConSERT, a con-182

trastive framework for self-supervised sentence rep-183

resentation transfer. Gao et al. (2021b) propose184

another contrastive learning framework SimCSE185

by exploiting random-sampled dropout as minimal186

data augmentation.187

Prompt-tuning With the emerging of GPT-3188

(Brown et al., 2020), manually creating prompts189

to handle NLP tasks has become a novel paradigm190

for few-shot learning. Schick and Schütze (2020,191

2021) use pre-defined manually crafted templates192

in a few-shot learning setting. Although manually193

crafted templates can be fairly accurate, it is still194

possible that the best performance prompt cannot195

be designed (Jiang et al., 2020). Many methods196

have been proposed (Wallace et al., 2019; Haviv197

et al., 2021) to automate discrete prompts search198

so as not to leverage labor-intensive prompt en-199

gineering. Shin et al. (2020) propose gradient-200

based search to automatically generate templates201

and label words. Gao et al. (2021a) introduce a202

pre-trained model T5 to generate template tokens.203

In relation to discrete prompts, several studies on204

continuous prompts (Qin and Eisner, 2021; Ham-205

bardzumyan et al., 2021) relax the pattern restric-206

tions of the embeddings of template words. Li207

and Liang (2021) propose Prefix-Tuning to opti-208

mize a continuous task-specific vector with few209

parameters. Furthermore, Liu et al. (2021b) pro-210

pose P-tuning to insert trainable variables into the211

embedding input. Liu et al. (2021a) ameliorate the 212

original prefix-tuning through deep prompt tuning 213

and introduce deeper representations for pseudo 214

tokens. 215

For relation extraction, Han et al. (2021) devise 216

prompt tuning with rules. This approach designs 217

several simple sub-prompts and combines these 218

sub-prompts according to logical rules to form 219

task-specific prompts for multiple-class classifi- 220

cation task. Chen et al. (2021) propose a novel 221

knowledge-aware prompt-tuning to encode seman- 222

tic knowledge among entity types and relations by 223

prompt template design and answer construction 224

with injected knowledge. 225

3 Method 226

In this section, we give the definition of sentence- 227

level RE task and the general paradigm of prompt- 228

tuning in this task in Section 3.1. In Section 3.2, 229

template design and knowledge injection are intro- 230

duced first. The second part of Section 3.2 intro- 231

duces the complete process of relation classifica- 232

tion and focus on how contrastive learning opti- 233

mizes the semantic representation space. Finally, 234

we introduce our training process “an alternate way 235

of training” from a holistic perspective. 236

3.1 Relation Extraction 237

Definition of Relation Extraction Relation extrac- 238

tion is a critical task in NLP. Let D = {X ,R} 239

denote a RE dataset, where X is the set of sen- 240
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tences and R is defined as the set of relation labels.241

For each instance, the input of RE task is a to-242

ken sequence x = {t1, t2, · · · , tn} ∈ X , where243

es = {ti, · · · , tj} and eo = {tm, · · · , tn} repre-244

sent subject entity and object entity. The output of245

RE task is the prediction of relation r ∈ R between246

es and eo, which is usually presented in the form247

of probability vector.248

Abstractly, RE task is to infer the relation r ∈ R249

between es and eo from given sentence xi ∈ X , the250

location of the entities, the type of the entities and251

other annotation information of the entities. All we252

need to do is find a function f from the function253

space to fit the mapping f(xi) → rj(e
i
s, e

i
o) ∈ R254

more accurately.255

Fine-tuning of PLMs Given a PLM FPLM256

for RE, general fine-tuning methods first con-257

vert the instance x = {t1, t2, · · · , tn} into258

{[CLS], t1, t2, · · · , tn,[SEP]} as an input se-259

quence of PLM. The PLM FPLM encodes260

all the tokens of input sequence into the261

corresponding hidden vectors such as h =262

{h[CLS], h1, h2, · · · , hn, h[SEP]}.263

Normally, a [CLS] head is utilized to com-264

pute the probability distribution over the class265

set Y with the softmax function p(· | x) =266

Softmax (Wh[CLS]+b), where h[CLS] is the267

embedding vector of [CLS], W is an original ma-268

trix that needs to be randomly initialized before269

fine-tuning, and b is a bias vector. The parameters270

of FPLM , b and W are tuned to the cross-entropy271

loss over p(y | x) on the X .272

Prompt-tuning Prompt-tuning transforms RE273

task into the prediction task of mask with PLMs.274

Specifically, for each input sentence, the template275

function T maps the input x ∈ X to a sequence276

that fuses the original input and the template as277

xprompt = T (x). This process adds additional in-278

formation into the original template such as the279

entity name. V is a set of label words in the vocab-280

ulary of language model FPLM, and M : Y → V281

is an injective mapping that connects task labels282

and label words V .283

In addition to keeping the original words in284

x, one or more [MASK] is placed into xprompt285

to fill in the label words. Since FPLM can pre-286

dict the correct token at the masked position, we287

can formalize p(y | x) with the probability dis-288

tribution over V at the masked position, namely289

p(y | x) = p([MASK] = M(y) | xprompt). Tak-290

ing the description in Figure 1 as an example, we291

map x to xprompt =“[CLS] x [SEP] Obama is 292

[MASK] [MASK] [MASK] American [SEP]". 293

We can use FPLM to encode xprompt to gain 294

the hidden vector of [MASK] and generate a 295

probability distribution p([MASK] | xprompt) 296

to describe which words in V are suitable to 297

replace [MASK] words. Ultimately, we set 298

M(y = “the residence of”) → “per : 299

countries_of_residence” as one label, and 300

M(y = “countries of birth”) → “per : 301

countries_of_birth” as another label, respec- 302

tively. 303

Depending on whether FPLM predicts 304

“was birth in” or “birth”, we can deter- 305

mine whether the relation label of input x 306

is either “per : countries_of_birth” or 307

“per : countries_of_residence”. 308

3.2 Our Approach 309

Template Design and Knowledge Injection To 310

make templates more generic on RE tasks, as 311

shown in Figure 1, we design the template as: " the 312

relation of [MASK]1 [MASK]2 and [MASK]3 313

[MASK]4 is [MASK]5 ", where [MASK]2 and 314

[MASK]4 are the head entity and tail entity. In 315

contrast to PTR (Han et al., 2021), our template 316

is more generic on different datasets. For more 317

precise prediction of the relation [MASK]5, we in- 318

ject the knowledge of entity type into the template 319

as [MASK]1 and [MASK]3. In contrast to Know- 320

Prompt (Chen et al., 2021), we inject knowledge 321

directly into templates instead of noisy input. Intu- 322

itively, this is more helpful for inference process. 323

Relation Classification Different from using 324

MLP for classification after obtaining feature via 325

an encoder such as BERT, we take full advantage of 326

the characteristics of the masked language model 327

and fuse classification information into the soft la- 328

bels for prediction. For each input sample, CLoCE 329

will fill the entity name [MASK]2 and [MASK]4, 330

entity type [MASK]1 and [MASK]3 into the de- 331

signed template. After splicing the input sentence 332

and the prompt, the number of input tokens keeps 333

uniform by truncating or filling with hyperparam- 334

eter as lenmax which is defined as the max length 335

of sequence. The token sequence is defined as S. 336

Processing by embedding layer, the output tensor 337

obtains a primary semantic representation, in which 338

the embedding vector of each token can be trained. 339

Afterwards, we input the primary representation 340

of token sequence S
′

into the RoBERTa-encoder 341
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for deeper semantic representations. The output342

tensor Y has the same shape as S
′
. We define the343

vector Q as one-hot encode to locate the masked po-344

sition. We use the vector Q to obtain the predicted345

representation of the [MASK] from Y and map it346

to a c-dimensional tensor by computing the simi-347

larity between soft labels and prediction to infer348

the probability of each class. Both the parameters349

of embedding layer and the RoBERTa-encoder are350

optimized by backpropagation.351
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Figure 2: The process of constructing positive and nega-
tive sample pairs.

Contrastive Learning As shown in Figure 2,352

each annotated instance in training set has the true353

relation rtrue. In each epoch of training, we ob-354

tain the predicted result. Compared with the true355

label,we construct two sets to collect samples with356

correct or incorrect predictions , which called cor-357

rect prediction set Ncorrect and error prediction set358

Nerror.359

For each instance xierror of Nerror that has the360

predicted relation rierror ∈ R, we select an anno-361

tated instance xjcorrect from Ncorrect that has the362

same relation with xitrue, e.g. rjcorrect = ritrue.363

Further, we replace [A1] and [B1] that are the364

head and tail entity in xjcorrect with [A] and [B]365

that are the head and tail entity in xierror. There-366

fore xjcorrect with [A] and [B] becomes a positive367

sample.368

Likewise, for each instance xierror of Nerror,369

unlike before, we select an annotated instance370

xjcorrect from Ncorrect that has the same relation371

with xierror, i.e. rjcorrect = rierror. Then we sub-372

stitute [C1] and [D1] that are the head and tail373

entity in xjcorrect with [C] and [D] that are the374

head and tail entity in xierror. A positive sample is375

generated by xjcorrect with [C] and [D]. 376

In contrastive learning module, CLoCE input the 377

positive example pairs and the negative example 378

pairs, and then minimize the contrastive learning 379

loss ℓCL for backpropagation after obtaining the 380

sentence-level feature expression. The contrastive 381

loss function is shown below, where m is a train- 382

able parameter. The purpose of this module is to 383

close the semantic feature representation of the 384

same relationship and push away the semantic fea- 385

ture representation of different relationships. 386

387

ℓCL = L(θ, Y, Si, Sj) 388

=
1

M

∑
(Si,Sj ,yi)∈Ntotal

[(1− yi)D
2
θ(Si, Sj) 389

+ yi ·
1

2
(max{0,m−Dθ(Si, Sj)})2] 390

The contrastive learning loss function is shown 391

above where m is a trainable parameter. If the dis- 392

tance between negative examples is greater than 393

m, the loss is not calculated. M is the number 394

of samples in Ncorrect and Nerror. CLoCE uses 395

cosine distance to represent distance between sen- 396

tences in the sample as following. From the input 397

sequence to the embedding space, embedding layer 398

or RoBERTa-encoder can be used. 399

S⃗i = Fθ
PLM (Si), S⃗j = Fθ

PLM (Sj) 400

Dθ(S⃗i, S⃗j) = 1− S⃗i·S⃗j

∥Si∥2∥Sj∥2
401

Alternate Training Since our algorithm is based 402

on the wrong predicted samples in each epoch 403

from classification, we adopt an alternate train- 404

ing method. In each epoch, we first use the cross- 405

entropy loss ℓce to optimize the model end-to-end. 406

At the same time, we collect bias samples to con- 407

struct positive and negative samples as the input of 408

contrastive learning module. The training of com- 409

parative learning module is carried out after each 410

epoch. 411

Two versions of the CLoCE are provided to opti- 412

mize primary semantic representation (CLoCE-S) 413

or deeper semantic representation (CLoCE-D) re- 414

spectively. CLoCE-S only trains the embedding 415

layer in contrastive learning module. In contrast, 416

CLoCE-D trains both the embedding layer and 417

RoBERTa-encoder during each epoch. On different 418

datasets, CLoCE-S and CLoCE-D have their own 419

merits. 420
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Model TACRED TACREV Re-TACRED
PA-LSTM(Zhang et al., 2017) 65.1 73.3 79.4
GCN(Zhang et al., 2018) 64.0 - -
CGCN(Zhang et al., 2018) 66.4 74.6 80.3
C-AGGCN(Guo et al., 2019) 69.0 - -
BERT-LSTM-BASE(Shi and Lin, 2019) 67.8 - -
R-BERT(Wu and He, 2019) 69.4 - -
ROBERTA-LARGE(Liu et al., 2019) 68.7 76.0 84.9
SPANBERT(Joshi et al., 2020) 70.8 78.0 85.3
GDPNET(Xue et al., 2021) 70.5 80.2 -
LUKE(Yamada et al., 2020) 72.7 80.6 90.3
PTR(Han et al., 2021)† 71.9 81.5 90.6
KNOWPROMPT(Chen et al., 2021)† 70.9 81.2 89.6
CLoCE-S(our) 69.9 82.0 89.6
CLoCE-D(our) 70.2 81.9 91.9

Table 1: Results on TACREDTACREV and Re-TACRED datasets with micro F1-score(%) as metrics. To ensure a
fair comparison, following the previous work, we exclude the influence of the no-relation samples when calculating
F1-score(%). The bold font is the current SOTA. The data that is not specially marked is the experimental results
provided by the original paper. The data marked as “†" is the results of the code reproduction provided by the original
author. Due to some random factors, the results may be different from the original paper. In the column, CLOCE-S
is our model for optimizing shallow semantic representation by contrastive learning. Relatively CLOCE-D is our
model for optimizing deep semantic information.

4 Expriment421

In this section, we detail our experiments from422

three parts: datasets, basic settings and result anal-423

ysis. In section 4.1, the information of datasets424

used in experiments is shown. In section 4.2, We425

introduce the baselines, metrics and parameter set-426

tings in experiments. The results on the full-dataset427

and few-shot dataset are introduced in section 4.3.428

The last part of this section analyses the training429

process.430

4.1 Datasets431

Following the previous work, we select three of the432

most popular datasets for sentence-level RE tasks:433

TACRED (Zhang et al., 2017), TACREV (Alt et al.,434

2020) and ReTACRED (Stoica et al., 2021). Table435

2 shows the number of samples and relations in the436

three datasets. TACRED is a large-scale relation437

extraction dataset developed by the Stanford NLP438

group. This dataset is widely used for sentence-439

level tasks of relation extraction. TACREV revises440

the validation set and test set of original TACRED,441

meanwhile retains the training set. Re-TACRED442

makes some corrections to all sets of TACRED,443

including labeling bias and simplifying the classifi-444

cation of entity relation.445

In order to observe the performance of the model446

in the low-resource scenario, we refer to the method447

of KnowPrompt (Chen et al., 2021) to construct448

few-shot datasets. Specifically, we construct the449

Dataset #Train #Val #Test #Rel

TACRED 68124 22631 15509 42
TACREV 68124 22631 15509 42
RE-TACRED 58465 19584 13418 40

Table 2: Statistics of different datasets.

training set with K = 8, 16 and 32 samples which 450

are randomly selected from each class in training 451

set. 452

4.2 Experimental Settings 453

Baselines and Metrics We choose baselines con- 454

sidering representative works of RNN, GCN and 455

PLMs. KnowPrompt (Chen et al., 2021) and PTR 456

(Han et al., 2021) are the representative works of 457

prompt-tuning for RE. To be consistent with the 458

previous work, we select F1-micro(%) as the evalu- 459

ation index, and keep unrelated entity pairs outside 460

the calculation. 461

Hyperparameters In order to reduce the bias of 462

the results of experiment which caused by the hy- 463

perparameters, we keep the hyperparameters neu- 464

tral in the experiment environment settings. The 465

hyperparameters of all CLoCE model experiments 466

remain unchanged and other models preserve the 467

original settings of the relevant papers. 468

In the full-dataset experiments, our batchsize is 469

set to 16, and the learning rates of the classification 470

module and the contrastive learning module are set 471
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Figure 3: Results on validation set during training process. Accurancy(%) is treated as the evaluation index.

to 3e-5 and 1e-6, respectively. After each epoch of472

the classification module, contrastive learning mod-473

ule is executed. There 5 epochs are trained in total.474

In the few-shot experiment, we set random seeds 1-475

5 to generate a few-shot training set with K=8, 16,476

32, the test set and validation set remain unchanged477

from the original dataset, and other parameters are478

consistent with the full-dataset experiment.479

Enviroment The experimental environment uses480

two V100 GPU distributed to train a single481

model.The cuda vision is 10.2.482

4.3 Experimental Results483

Main Results For full-dataset experiments, the484

results show that the prompt-tuning method sig-485

nificantly outperforms the pre-training based ap-486

proaches and other neural network approaches. It487

can be concluded that prompt-tuning can better im-488

prove the knowledge utilization of PLMs. In the489

comparison with prompt-tuning methods, CLoCE490

surpasses the current SOTA model in F1 on both491

Re-TACRED and TACREV, and the performance492

on TACRED is close to SOTA, indicating the ef-493

fectiveness of our model. By contrast, the opti-494

mization of deep or primary semantic features by495

contrastive learning has different performance on496

different datasets.497

On small-scale datasets, the prompt-tuning meth-498

ods are generally better than the pre-training based499

methods. The result indicates that prompt-tuning500

still has strong robustness in the scene of low-501

resource setting. The result shows that CLoCE per-502

forms better than FINE-TUNING method in most503

cases but weaker than PTR(Han et al., 2021) in504

K=8 settings. Extreme low-resource settings is505

still a challenge for CLoCE.506

4.4 Analysis of Training Process507

From Figure 3, the module of contrastive learning508

achieve higher accuracy and F1-score with fewer509

Few-shot Experiments
Splite Model TACRED TACREV Re-TACRED

K=8

FINE-TUNING - 10.5 20.1
PTR 28.1 25.3 43.6
KNOWPROMPT - 28.6 45.8
CLOCE-S 10.5 13.2 13.8
CLOCE-D 9.6 12.6 10.9

K=16

FINE-TUNING - 19.2 47.4
PTR 30.7 27.2 51.8
KNOWPROMPT - 30.8 53.8
CLOCE-S 16.1 22.8 48.4
CLOCE-D 19.0 28.5 51.2

K=32

FINE-TUNING - 26.0 53.6
PTR 32.1 33.1 54.8
KNOWPROMPT - 34.2 55.2
CLOCE-S 29.2 26.2 54.3
CLOCE-D 27.7 29.2 52.6

Table 3: The results in the few-shot situation use micro
F1-score(%) as the evaluation index. K is defined as
the number of samples randomly selected for each cate-
gory in the training set of the original datasets. Refer-
ring to KNOWPROMPT(Chen et al., 2021), each experi-
ment uses a random seed of 1-5 to generate the K-shot
dataset. The experimental results of FINE-TUNING
method, PTR and KNOWPROMPT are all from the
original paper.The FINE-TUNING method refers to the
BERT-BASE model.

TACRED TACREV Re-TACRED

NUM MAX NUM MAX NUM MAX

KI 4 86.9 5 91.5 4 92.0

CLOCE-S 4 87.1 3 92.1 3 92.7

CLOCE-D 4 86.8 3 92.1 4 92.6

Table 4: The best performance and epoch number
on the validation set during training. The evaluation
index uses micro F1-score(%). In the first column,
the three models are Prompt-tuning with knowledge
injected(KI), CLoCE for optimizing primary seman-
tic embedding(CLOCE-S), and CLoCE for optimizing
deeper semantic representation(CLOCE-D).
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epochs. In the three datasets, basically, CLOCE510

performs best after 3 epochs on the validation set511

on average. In contrast, KI need more epochs, 4 on512

average or more, for better performance.513

At the same time, in order to verify the effective-514

ness of the contrastive learning and keep other set-515

tings unchanged, we use the template after knowl-516

edge injection and decouple the contrastive learn-517

ing module. By comparison, it is found that our518

contrastive learning module can improve the se-519

mantic representation of prompt.520

5 Conclusions521

Prompt-tuning is a powerful tool for solving RE522

task. CLoCE provides a new framework for RE. In523

the full-dataset experiments, CLoCE outperforms524

most of the existing methods. However, it is still525

a big challenge to introduce contrastive learning526

into prompt-tuning framework in the few-shot set-527

ting. Especially in some extreme scenario (e.g. K528

= 8), the performance of CLoCE is still close to529

fine-tune method. At the same time, contrastive530

learning module can improve the speed of global531

optimization to a certain extent. CLoCE utilizes532

fewer epochs to achieve better results with less533

training times, which is also one of its competitive-534

ness in low-resource scenario.535
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