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Abstract

Recent studies have proved that prompt tuning
can improve the performance of pre-trained lan-
guage models on downstream tasks. However,
in the task of relation extraction (RE), there are
still a large number of confusing samples that
hinder prompt-tuning method from achieving
higher accuracy. Inspired by previous works,
we innovatively utilize contrastive learning to
solve this problem. We propose a prompt-
tuning-based framework and apply contrastive
learning to optimize the representation of in-
put sentences in embedding space. At the same
time, we design a more general template for RE
task, and further use knowledge injection to im-
prove performance of the model. Through ex-
tensive experiments on public datasets, the mi-
cro F'-score(%) of our model exceeds the ex-
isting SOTA on the Re-TACRED and TACREV
datasets by 0.5 and 1.0, respectively. Mean-
while, in the few-shot scenario, our model also
has a more robust performance than fine-tune
methods.

1 Introduction

The Relation Extraction (RE) task is a fundamental
problem in Natural Language Processing (NLP).
As the core task of information extraction (IE), RE
extracts effective structured semantic information
from unstructured text, which has a crucial impact
on many downstream tasks.

Recently, the self-supervised PLMs, such as
ELMo (Peters et al., 2018), GPT (Radford et al.,
2019) and BERT (Devlin et al., 2018), have been
widely used in NLP. One of the general paradigms
of pre-trained language models (PLMs) is to trans-
fer rich contextual knowledge to specific down-
stream tasks by fine-tuning model parameters. Al-
though the PLMs obtain a wealth of semantic
knowledge, it remains a challenge for the paradigm
to extract the specific knowledge required and to
improve the utilization of knowledge.

With the release of GPT-3 (Brown et al., 2020),
the application of prompt-tuning PLMs has been
widespread studied. Prompt-tuning bridges the gap
between pre-training and fine-tuning as a new fine-
tuning method, and makes task-specific pre-train
models more concise under multiple scenarios. As
shown in Figure 1, the RE task based on prompt-
tuning is transformed into a cloze task, which is
to predict the [mask] in the prompt, thereby in-
ferring the implied relationships between entities.
Each [mask] has a set of candidate words that
make up the answer space. Some recent studies
have shown that the prompt-tuning method can also
achieve excellent performance in the few-shot set-
ting (Gao et al., 2020; Schick and Schiitze, 2021;
Liu et al., 2021b).

For the RE task with prompt-tuning, a series of
researchs have focused on automatic prompts gen-
eration (Schick et al., 2020; Schick and Schiitze,
2021; Shin et al., 2020; Gao et al., 2021a) for
handling labor-intensive human-picked constructs
of prompts. However, automatically generated
prompts do not have satisfactory performance com-
pared with manually designed prompts and require
additional computation cost for generation and ver-
ification. For manually designed prompts, a ma-
jor challenge is how to construct appropriate tem-
plates with rich knowledge. By injecting additional
information into the prompt template design and
the answer construction (Han et al., 2021; Chen
et al., 2021; Zhou and Chen, 2021), the templates
will have semantic level knowledge of relation and
entity types in the relevant domain to implement
more precise RE. Further complicating the issue,
for these multi-class classification tasks, the above
methods are unable to distinguish between a pair
of confusing relations.

To solve the above problems, we propose a novel
model for RE that incorporates contrastive learn-
ing into the prompt-tuning paradigm. To make
the model better understand the semantic informa-



tion of the input samples, we take full advantage
of the bias samples by constructing positive and
negative samples, and use contrastive learning to
optimize the semantic representation of inputs in
embedding space. For the better effect of prompt,
we inject entity types into prompt as additional
knowledge. Through a great deal of experiments
on public datasets, we observe that knowledge in-
jection can further improve the performance of the
prompt-tuning paradigm. We conduct extensive
experiments on three popular sentence-level RE
datasets. The results show that CLoCE can signif-
icantly outperform existing state-of-the-art base-
lines. Specifically, our model advances the previ-
ous SOTA on Re-TACRED and TACREV. Mean-
while, our model achieves better results with few
training epochs. In addition, experiments under
low-resource scenario show that the model still has
robust effect in few-shot setting. Our contributions
can be summarized as follows:

* We propose a prompt-based framework
Contrastive Learning Optimize Continous
prompt Embedding(CLoCE): enlighteningly
processing biased samples during training pro-
cess to construct positive and negative sam-
ples, and applying contrastive learning to op-
timize the semantic representations in embed-
ding space so as to distinguish confusing rela-
tion more accurately. To the best of our knowl-
edge, it is the first work to introduce con-
trastive learning for the prompt-tuning method
in RE tasks.

* We design a general template for the sentence-
level RE to improve the generalization of the
framework. Knowledge is injected into the
prompt template to improve the performance
of the model.

* To verify the effectiveness, we conduct ex-
periments on the three most frequently used
sentence-level relation extraction datasets and
our model outperforms existing SOTA.

2 Related Work

Relation Extraction RE is a sub-task of IE which
pays more attention to the relationship between
specific entities. The pioneering approaches are
pattern-based methods (Soderland et al., 1995;
Califf and Mooney, 1997), which automatically
construct pattern rules from grammatical elements.

Feature-based methods (Zhou et al., 2005; Jiang
and Zhai, 2007; Nguyen et al., 2007) use feature
engineering on entities and contexts before clas-
sification tasks. Methods based on Convolutional
Neural Networks (Zeng et al., 2014), Recurrent
Neural Networks (Vu et al., 2016) and Long Short-
Term Memory Networks (Zhou et al., 2016) intro-
duce neural networks to relation extraction. Graph-
based methods (Zhang et al., 2018; Guo et al.,
2019, 2020) construct entities graph for inferenc-
ing. Recently, PLMs have achieved excellent suc-
cess by labeling amounts of data. Impressive re-
sults are achieved by using limited annotated sen-
tences to fine-tune PLMs (Han et al., 2018a; Gao
et al., 2019). In contrast to the traditional methods,
BERT-based models (Wu and He, 2019; Joshi et al.,
2020; Yu et al., 2020) have become mainstreamed
trend. On this basis, Lyu and Chen (2021) use
entity type to constrain relation classification and
achieve SOTA performance on TACRED(Zhang
et al., 2017).

To avoid using a multitude of labor-intensive an-
notated instances, recent trend is few-shot settings.
Han et al. (2018b) construct FewRel which is a
few-shot relation extraction dataset based on the
N-way K-shot method. Gao et al. (2020) focus
on the application of snowball in Few-Shot Rela-
tion Learning. Han et al. (2021) achieve a balance
between performance and cost based on manually
selecting sub-prompts. Chen et al. (2021) propose
a method to jointly optimize prompt templates and
answer words in continuous space.

Contrastive Learning Contrastive learning con-
centrates on learning the common features be-
tween instances of the same class(Positive sam-
ple) and distinguishing the differences between in-
stances of the different classes(Negative sample).
For different tasks’ loss functions, the contrastive
learning can be effective, since some methods op-
timizing these loss functions that are combined
with the contrastive learning loss function. Wu
et al. (2020) combine word-level and sentence-level
losses based on contrastive learning to optimize
sentence-level PLMs. Giorgi et al. (2021) design a
self-supervised objective for learning universal un-
labeled sentence embeddings. Zhang et al. (2021)
propose a contrastive learning framework to sep-
arate different categories that overlap with each
other in the representation space better at the begin-
ning of the learning process.

Other methods use contrastive learning to con-
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Figure 1: Model architecture of prompt-tuning and CLoCE. In CLoCE-D we use the Roberta-encoder and embedding
layer as the sentence encoder in this figure with which parameters are shared during the classification process. In
comparison, the sentence encoder of CLoCE-S is a single embedding layer sharing parameters.

struct augmentation samples and fine-tune the mod-
els. Yan et al. (2021) propose ConSERT, a con-
trastive framework for self-supervised sentence rep-
resentation transfer. Gao et al. (2021b) propose
another contrastive learning framework SimCSE
by exploiting random-sampled dropout as minimal
data augmentation.

Prompt-tuning With the emerging of GPT-3
(Brown et al., 2020), manually creating prompts
to handle NLP tasks has become a novel paradigm
for few-shot learning. Schick and Schiitze (2020,
2021) use pre-defined manually crafted templates
in a few-shot learning setting. Although manually
crafted templates can be fairly accurate, it is still
possible that the best performance prompt cannot
be designed (Jiang et al., 2020). Many methods
have been proposed (Wallace et al., 2019; Haviv
et al., 2021) to automate discrete prompts search
so as not to leverage labor-intensive prompt en-
gineering. Shin et al. (2020) propose gradient-
based search to automatically generate templates
and label words. Gao et al. (2021a) introduce a
pre-trained model TS to generate template tokens.
In relation to discrete prompts, several studies on
continuous prompts (Qin and Eisner, 2021; Ham-
bardzumyan et al., 2021) relax the pattern restric-
tions of the embeddings of template words. Li
and Liang (2021) propose Prefix-Tuning to opti-
mize a continuous task-specific vector with few
parameters. Furthermore, Liu et al. (2021b) pro-
pose P-tuning to insert trainable variables into the

embedding input. Liu et al. (2021a) ameliorate the
original prefix-tuning through deep prompt tuning
and introduce deeper representations for pseudo
tokens.

For relation extraction, Han et al. (2021) devise
prompt tuning with rules. This approach designs
several simple sub-prompts and combines these
sub-prompts according to logical rules to form
task-specific prompts for multiple-class classifi-
cation task. Chen et al. (2021) propose a novel
knowledge-aware prompt-tuning to encode seman-
tic knowledge among entity types and relations by
prompt template design and answer construction
with injected knowledge.

3 Method

In this section, we give the definition of sentence-
level RE task and the general paradigm of prompt-
tuning in this task in Section 3.1. In Section 3.2,
template design and knowledge injection are intro-
duced first. The second part of Section 3.2 intro-
duces the complete process of relation classifica-
tion and focus on how contrastive learning opti-
mizes the semantic representation space. Finally,
we introduce our training process “an alternate way
of training” from a holistic perspective.

3.1 Relation Extraction

Definition of Relation Extraction Relation extrac-
tion is a critical task in NLP. Let D = {X, R}
denote a RE dataset, where X is the set of sen-



tences and ‘R is defined as the set of relation labels.
For each instance, the input of RE task is a to-
ken sequence x = {t1,to, - ,t,} € X, where
es = {ti,--,tj} and e, = {ty,,--- ,tn} repre-
sent subject entity and object entity. The output of
RE task is the prediction of relation € R between
es and e,, which is usually presented in the form
of probability vector.

Abstractly, RE task is to infer the relation r € R
between e, and e, from given sentence zt € X, the
location of the entities, the type of the entities and
other annotation information of the entities. All we
need to do is find a function f from the function
space to fit the mapping f(z%) — 7;(el,el) € R
more accurately.

Fine-tuning of PLMs Given a PLM Fpyas
for RE, general fine-tuning methods first con-
vert the instance x* = {t1,t2, -+ ,t,} into
{[CLS],t1,t9, -+ ,tn, [SEP]} as an input se-
quence of PLM. The PLM JFpr) encodes
all the tokens of input sequence into the
corresponding hidden vectors such as h =
{hicssys b hay- -+ by hsss) ).

Normally, a [CLS] head is utilized to com-
pute the probability distribution over the class
set Y with the softmax function p(- | z) =
Softmax(Wh[CLS] +b), where h[CLS] is the
embedding vector of [CLS], W is an original ma-
trix that needs to be randomly initialized before
fine-tuning, and b is a bias vector. The parameters
of Fpry, b and W are tuned to the cross-entropy
loss over p(y | ) on the X'.

Prompt-tuning Prompt-tuning transforms RE
task into the prediction task of mask with PLMs.
Specifically, for each input sentence, the template
function 7 maps the input x € X to a sequence
that fuses the original input and the template as
Zprompt = T (x). This process adds additional in-
formation into the original template such as the
entity name. V is a set of label words in the vocab-
ulary of language model Fpypq, and M : Y — V
is an injective mapping that connects task labels
and label words V.

In addition to keeping the original words in
x, one or more [MASK] is placed into Zprompt
to fill in the label words. Since Fp,aq can pre-
dict the correct token at the masked position, we
can formalize p(y | x) with the probability dis-
tribution over V at the masked position, namely
Py | 2) = p(MASK] = M(y) | Zprompr). Tak-
ing the description in Figure 1 as an example, we

map & to Tprompt = [CLS] @ [SEP] Obama is
[MASK] [MASK] [MASK] American [SEP]".

We can use Fpoa to encode Tprompt tO gain
the hidden vector of [MASK] and generate a
probability distribution p( [MASK] | Zprompt)
to describe which words in V are suitable to
replace [MASK] words. Ultimately, we set
M(y = “the residence of”) — “per
countries_of_residence” as one label, and
M(y = “countries of birth”) — “per
countries_of_birth” as another label, respec-
tively.

Depending on whether Fppp¢ predicts
“was birth in” or “birth”, we can deter-
mine whether the relation label of input =z
is either “per countries_of_birth” or
“per : countries_of_residence”.

3.2 Our Approach

Template Design and Knowledge Injection To
make templates more generic on RE tasks, as
shown in Figure 1, we design the template as: " the
relation of [MASK]q1 [MASK]g and [MASK]j
[MASK]4 s [MASK]5 ", where [MASK]s and
[MASK]4 are the head entity and tail entity. In
contrast to PTR (Han et al., 2021), our template
is more generic on different datasets. For more
precise prediction of the relation [MASK] 5, we in-
ject the knowledge of entity type into the template
as [MASK]q and [MASK] 3. In contrast to Know-
Prompt (Chen et al., 2021), we inject knowledge
directly into templates instead of noisy input. Intu-
itively, this is more helpful for inference process.
Relation Classification Different from using
MLP for classification after obtaining feature via
an encoder such as BERT, we take full advantage of
the characteristics of the masked language model
and fuse classification information into the soft la-
bels for prediction. For each input sample, CLoCE
will fill the entity name [MASK]g and [MASK] 4,
entity type [MASK]; and [MASK]3 into the de-
signed template. After splicing the input sentence
and the prompt, the number of input tokens keeps
uniform by truncating or filling with hyperparam-
eter as len,,q, Which is defined as the max length
of sequence. The token sequence is defined as S.
Processing by embedding layer, the output tensor
obtains a primary semantic representation, in which
the embedding vector of each token can be trained.
Afterwards, we input the primary representation
of token sequence S " into the RoBERTa-encoder



for deeper semantic representations. The output
tensor Y has the same shape as S’. We define the
vector () as one-hot encode to locate the masked po-
sition. We use the vector () to obtain the predicted
representation of the [MASK] from Y and map it
to a c-dimensional tensor by computing the simi-
larity between soft labels and prediction to infer
the probability of each class. Both the parameters
of embedding layer and the RoOBERTa-encoder are
optimized by backpropagation.
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Figure 2: The process of constructing positive and nega-
tive sample pairs.

Contrastive Learning As shown in Figure 2,
each annotated instance in training set has the true
relation 74.4.. In each epoch of training, we ob-
tain the predicted result. Compared with the true
label,we construct two sets to collect samples with
correct or incorrect predictions , which called cor-
rect prediction set NVoreet and error prediction set
N error:

For each instance 2L 1ror OF Nepror that has the
predicted relation 77, € R, we select an anno-
tated instance xiowe ¢t from Neopper that has the
same relation with 2%, €8 70 ot = Tirue-
Further, we replace [A1] and [B1] that are the
head and tail entity in 27, with [A] and [B]
that are the head and tail entity in 2. There-
fore 7 ... with [A] and [B] becomes a positive
sample.

Likewise, for each instance x%.... of Nerrors
unlike before, we select an annotated instance
from Ncorrect that has the same relation
with 22, ., i.€. 720 eet = Tirrop- Then we sub-
stitute [C1] and [D1] that are the head and tail
entity in 27, .., with [C] and [D] that are the

head and tail entity in ¢ ... A positive sample is

J
1"correct

generated by xiowect with [C] and [D].

In contrastive learning module, CLoCE input the
positive example pairs and the negative example
pairs, and then minimize the contrastive learning
loss /¢, for backpropagation after obtaining the
sentence-level feature expression. The contrastive
loss function is shown below, where m is a train-
able parameter. The purpose of this module is to
close the semantic feature representation of the
same relationship and push away the semantic fea-
ture representation of different relationships.

ECL = L(67 Ya S’ia S])
1
EES
(Siusjvyi)eNtotal

+ ;- %(max{(), m — DG(Sia Sj)})2]

[(1 = %:)Dj(S:, S5)

The contrastive learning loss function is shown
above where m is a trainable parameter. If the dis-
tance between negative examples is greater than
m, the loss is not calculated. M is the number
of samples in Neorreer and Nepror. CLOCE uses
cosine distance to represent distance between sen-
tences in the sample as following. From the input
sequence to the embedding space, embedding layer
or RoBERTa-encoder can be used.

- S S-S
Dy(5i,S5) =1 - EARERDS

Alternate Training Since our algorithm is based
on the wrong predicted samples in each epoch
from classification, we adopt an alternate train-
ing method. In each epoch, we first use the cross-
entropy loss /.. to optimize the model end-to-end.
At the same time, we collect bias samples to con-
struct positive and negative samples as the input of
contrastive learning module. The training of com-
parative learning module is carried out after each
epoch.

Two versions of the CLoCE are provided to opti-
mize primary semantic representation (CLoCE-S)
or deeper semantic representation (CLoCE-D) re-
spectively. CLoCE-S only trains the embedding
layer in contrastive learning module. In contrast,
CLoCE-D trains both the embedding layer and
RoBERTa-encoder during each epoch. On different
datasets, CLoCE-S and CLoCE-D have their own
merits.



Model TACRED TACREV Re-TACRED
PA-LSTM(Zhang et al., 2017) 65.1 73.3 79.4
GCN(Zhang et al., 2018) 64.0 - -
CGCN(Zhang et al., 2018) 66.4 74.6 80.3
C-AGGCN(Guo et al., 2019) 69.0 - -
BERT-LSTM-BASE(Shi and Lin, 2019) 67.8 - -
R-BERT(Wu and He, 2019) 69.4 - -
ROBERTA-LARGE(Liu et al., 2019) 68.7 76.0 84.9
SPANBERT (Joshi et al., 2020) 70.8 78.0 85.3
GDPNET(Xue et al., 2021) 70.5 80.2 -
LUKE(Yamada et al., 2020) 72.7 80.6 90.3
PTR(Han et al., 2021)t 71.9 81.5 90.6
KNOWPROMPT(Chen et al., 2021)T 70.9 81.2 89.6
CLoCE-S(our) 69.9 82.0 89.6
CLoCE-D(our) 70.2 81.9 91.9

Table 1: Results on TACREDTACREYV and Re-TACRED datasets with micro £ -score(%) as metrics. To ensure a
fair comparison, following the previous work, we exclude the influence of the no-relation samples when calculating
F1-score(%). The bold font is the current SOTA. The data that is not specially marked is the experimental results
provided by the original paper. The data marked as “t" is the results of the code reproduction provided by the original
author. Due to some random factors, the results may be different from the original paper. In the column, CLOCE-S
is our model for optimizing shallow semantic representation by contrastive learning. Relatively CLOCE-D is our

model for optimizing deep semantic information.

4 Expriment

In this section, we detail our experiments from
three parts: datasets, basic settings and result anal-
ysis. In section 4.1, the information of datasets
used in experiments is shown. In section 4.2, We
introduce the baselines, metrics and parameter set-
tings in experiments. The results on the full-dataset
and few-shot dataset are introduced in section 4.3.
The last part of this section analyses the training
process.

4.1 Datasets

Following the previous work, we select three of the
most popular datasets for sentence-level RE tasks:
TACRED (Zhang et al., 2017), TACREV (Alt et al.,
2020) and ReTACRED (Stoica et al., 2021). Table
2 shows the number of samples and relations in the
three datasets. TACRED is a large-scale relation
extraction dataset developed by the Stanford NLP
group. This dataset is widely used for sentence-
level tasks of relation extraction. TACREV revises
the validation set and test set of original TACRED,
meanwhile retains the training set. Re-TACRED
makes some corrections to all sets of TACRED,
including labeling bias and simplifying the classifi-
cation of entity relation.

In order to observe the performance of the model
in the low-resource scenario, we refer to the method
of KnowPrompt (Chen et al., 2021) to construct
few-shot datasets. Specifically, we construct the

Dataset ‘ #Train‘ #Val ‘ #Test ‘ #Rel
TACRED 68124 | 22631 | 15509 | 42
TACREV 68124 | 22631 | 15509 | 42
RE-TACRED | 58465 | 19584 | 13418 | 40

Table 2: Statistics of different datasets.

training set with K =8, 16 and 32 samples which
are randomly selected from each class in training
set.

4.2 Experimental Settings

Baselines and Metrics We choose baselines con-
sidering representative works of RNN, GCN and
PLMs. KnowPrompt (Chen et al., 2021) and PTR
(Han et al., 2021) are the representative works of
prompt-tuning for RE. To be consistent with the
previous work, we select F’-micro(%) as the evalu-
ation index, and keep unrelated entity pairs outside
the calculation.

Hyperparameters In order to reduce the bias of
the results of experiment which caused by the hy-
perparameters, we keep the hyperparameters neu-
tral in the experiment environment settings. The
hyperparameters of all CLoCE model experiments
remain unchanged and other models preserve the
original settings of the relevant papers.

In the full-dataset experiments, our batchsize is
set to 16, and the learning rates of the classification
module and the contrastive learning module are set
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Figure 3: Results on validation set during training process. Accurancy(%) is treated as the evaluation index.

to 3e-5 and le-6, respectively. After each epoch of
the classification module, contrastive learning mod-
ule is executed. There 5 epochs are trained in total.
In the few-shot experiment, we set random seeds 1-
5 to generate a few-shot training set with K'=8, 16,
32, the test set and validation set remain unchanged
from the original dataset, and other parameters are
consistent with the full-dataset experiment.

Enviroment The experimental environment uses
two V100 GPU distributed to train a single
model. The cuda vision is 10.2.

4.3 Experimental Results

Main Results For full-dataset experiments, the
results show that the prompt-tuning method sig-
nificantly outperforms the pre-training based ap-
proaches and other neural network approaches. It
can be concluded that prompt-tuning can better im-
prove the knowledge utilization of PLMs. In the
comparison with prompt-tuning methods, CLoCE
surpasses the current SOTA model in £ on both
Re-TACRED and TACREYV, and the performance
on TACRED is close to SOTA, indicating the ef-
fectiveness of our model. By contrast, the opti-
mization of deep or primary semantic features by
contrastive learning has different performance on
different datasets.

On small-scale datasets, the prompt-tuning meth-
ods are generally better than the pre-training based
methods. The result indicates that prompt-tuning
still has strong robustness in the scene of low-
resource setting. The result shows that CLoCE per-
forms better than FINE-TUNING method in most
cases but weaker than PTR(Han et al., 2021) in
K =8 settings. Extreme low-resource settings is
still a challenge for CLoCE.

4.4 Analysis of Training Process

From Figure 3, the module of contrastive learning
achieve higher accuracy and Fj-score with fewer

Few-shot Experiments

Splite | Model | TACRED | TACREV | Re-TACRED
FINE-TUNING - 10.5 20.1
PTR 28.1 253 43.6
K=8 | KNOWPROMPT - 28.6 45.8
CLOCE-S 10.5 13.2 13.8
CLOCE-D 9.6 12.6 10.9
FINE-TUNING - 19.2 47.4
PTR 30.7 27.2 51.8
K=16 | KNOWPROMPT - 30.8 53.8
CLOCE-S 16.1 22.8 48.4
CLOCE-D 19.0 28.5 51.2
FINE-TUNING - 26.0 53.6
PTR 32.1 33.1 54.8
K=32 | KNOWPROMPT - 34.2 55.2
CLOCE-S 29.2 26.2 543
CLOCE-D 27.7 29.2 52.6

Table 3: The results in the few-shot situation use micro
Fi-score(%) as the evaluation index. K is defined as
the number of samples randomly selected for each cate-
gory in the training set of the original datasets. Refer-
ring to KNOWPROMPT(Chen et al., 2021), each experi-
ment uses a random seed of 1-5 to generate the K -shot
dataset. The experimental results of FINE-TUNING
method, PTR and KNOWPROMPT are all from the
original paper.The FINE-TUNING method refers to the
BERT-BASE model.

| TACRED | TACREV | Re-TACRED

| NUM MAX | NUM MAX | NUM MAX

KI | 4 869 | 5 915 | 4 920
CLOCE-S | 4 871 | 3 921 | 3 927
CLOCE-D | 4 8.8 | 3 921 | 4 926

Table 4: The best performance and epoch number
on the validation set during training. The evaluation
index uses micro Fj-score(%). In the first column,
the three models are Prompt-tuning with knowledge
injected(KI), CLoCE for optimizing primary seman-
tic embedding(CLOCE-S), and CLoCE for optimizing
deeper semantic representation(CLOCE-D).



epochs. In the three datasets, basically, CLOCE
performs best after 3 epochs on the validation set
on average. In contrast, KI need more epochs, 4 on
average or more, for better performance.

At the same time, in order to verify the effective-
ness of the contrastive learning and keep other set-
tings unchanged, we use the template after knowl-
edge injection and decouple the contrastive learn-
ing module. By comparison, it is found that our
contrastive learning module can improve the se-
mantic representation of prompt.

5 Conclusions

Prompt-tuning is a powerful tool for solving RE
task. CLoCE provides a new framework for RE. In
the full-dataset experiments, CLoCE outperforms
most of the existing methods. However, it is still
a big challenge to introduce contrastive learning
into prompt-tuning framework in the few-shot set-
ting. Especially in some extreme scenario (e.g. K
= 8), the performance of CLoCE is still close to
fine-tune method. At the same time, contrastive
learning module can improve the speed of global
optimization to a certain extent. CLoCE utilizes
fewer epochs to achieve better results with less
training times, which is also one of its competitive-
ness in low-resource scenario.
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