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Abstract

This work investigates the reproducibility of the paper " Explaining RL decisions with tra-
jectories “ by Deshmukh et al. (2023). The original paper introduces a novel approach in
explainable reinforcement learning based on the attribution decisions of an agent to specific
clusters of trajectories encountered during training. We verify the main claims from the
paper, which state that (i) removing trajectories induces a lower initial state value, (ii) clus-
ters present high-level behaviours, (iii) distant trajectories influence the decision of an agent,
and (iv) humans correctly identify the attributed trajectories to the decision of the agent.
We recover the environments used by the authors based on the partial original code they
provided for one of the environments (Grid-World), and implemented the remaining two
from scratch (Seaquest and HalfCheetah). While we confirm that (i), (ii), and (iii) partially
hold, we extend on the largely qualitative experiments from the authors by introducing a
quantitative metric to further support (iii), and new experiments and visual results for (i).
Moreover, we investigate the use of different clustering algorithms and encoder architectures
to further support (ii). We could not support (iv), given the limited extent of the original
experiments. We conclude that, while some of the claims can be supported, further investi-
gations and experiments could be of interest. We recognize the novelty of the work from the
authors and hope that our work paves the way for clearer and more transparent approaches.

1 Introduction

Reinforcement Learning (RL), formalized in the pioneering work of Sutton & Barto (2018), focuses on
learning how to map situations to actions, in order to maximize a reward signal. The agent aims to discover
which actions are the most rewarding by testing them. This addresses the problem of how agents should learn
a policy that takes actions to maximize the cumulative reward through interaction with the environment.
A recent pivotal focus in RL is the increasing attention on the explainability of these algorithms, a crucial
factor for their adoption in real-world applications. Precedent work in the field of XRL include Puiutta &
Veith (2020), Korkmaz (2021) and Coppens et al. (2019). This reproducibility report focuses on the work of
Deshmukh et al. (2023), which proposes an innovative approach to enhance the transparency of RL decision-
making processes. Given the rising interest and applications of Offline RL (Levine et al. (2020),Kumar et al.
(2020)), obtaining explainable decision is an important desideratum. Deshmukh et al. (2023) introduces a
novel framework in the offline RL landscape. This new approach is based on attributing the decisions of an
RL agent to specific trajectories encountered during its training phase. It counters traditional methods that
predominantly rely on highlighting salient features of the state of the agent(Iyer et al. (2018)).

We intend to not only validate the original results by Deshmukh et al. (2023), but also explore the ro-
bustness and generalizability of the proposed methodology across different environments and settings. Our
reproducibility study is a step toward ensuring that advancements in this domain are both transparent and
trustworthy, paving the way for a better understanding of RL systems.
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2 Scope of Reproducibility

Explainability and interpretability have recently become of great interest for the adoption of AI systems in
real-world applications. In particular, understanding and explaining the behavior and decisions of RL agents
is a crucial task considering the plausible large-scale adoption of these systems. On top of the aforementioned
ones in Section 1, other examples of Explainable Reinforcement Learning (XRL) studies include a high-level
decision language approach by Puri et al. (2019) as well as Pawlowski et al. (2020) and Madumal et al.
(2020). The goal of this report is to analyze the reproducibility of the work by Deshmukh et al. (2023).
Given the novelty of the work, it follows that there is no existing benchmark to compare the results claimed
by the authors. Our contribution lies mostly in the formalization, verification, and interpretation and per se
of these results. We proceed by verifying the claims made by the authors, which we summarize and re-state
as follows here below:

• RTISV - Removing Trajectories induces a lower Initial State Value: Including all relevant
trajectories in the training data will result in higher or equal initial state value estimates compared to
training sets where key trajectories are omitted. This holds also for other metrics we may consider.
The definitions can be found in Section 3.3.

• CHLB - Cluster High-Level Behaviours: Different embedding clusters represent different mean-
ingful high-level and interpretable behaviors.

• DTDA - Distant Trajectories influence Decisions of the Agents: Decisions performed by
RL agents can be influenced by trajectories distant from the state under consideration. In such
scenarios looking only at the features in the action space may not provide a full understanding of
the behaviour of an agent.

• HS - Human Study: Humans may accurately identify the determinant trajectories that influenced
the decision of an RL agent.

3 Methodology

The original paper code is not yet publicly available. However, we obtained part of the code from the authors:
we were given the Grid-World environment, together with part of its related experiments. We followed their
code and expanded upon it, in order to verify the claims. On the other hand, we wrote completely from
scratch the implementation for Seaquest and HalfChetaah.

3.1 Environments

The investigations made in the paper regard three different types of Reinforcement Learning environments:

1. Grid-World, a grid-like environment in which the agent has a discrete state and action space. The
game consists of an agent starting from a point in the grid and moving inside it. The goal is to
reach a ’green’ cell while avoiding entering a ’red’ cell, while making the smallest number of steps
possible. The default grid has a size of 7x7.

2. Seaquest, a video-game-like environment in which the agent has a discrete state and action space.
The game consists in a submarine moving underwater. Here more information on the Atari Seaquest
environment.

3. HalfCheetah, a video-game-like environment where the agent has a continuous state and action space.
The game consists of a 2-dimensional robot having a number of joints. The goal is to get the cat
shaped robot to run, by turning its joints using rotational forces (torque). Here more information
on the HalfCheetah environment.
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3.2 Datasets

Datasets used in the analysis have the same composition between the three environments. Each dataset
D comprises of a set of nτ trajectories. Each τj is a k-step trajectory and each trajectory step is a tuple
τj = [τj,1, τj,2, ..., τj,k] where τj,i = (oi, ai, ri). Here oi is the observation in that step, ai is the action taken in
that step and ri is the per-step reward. However, collecting data depends on the environment in which the
experiments are made. Regarding Grid-World, agents are trained specifically to generate data trajectories.
For Seaquest data is instead downloaded from d4rl-Atari Repository. In the HalfCheetah case data is also
downloaded d4rl Repository of Fu et al. (2020).

3.3 Model Description

Across all three environments, trajectory attributions and explanations are made through the following 5
steps, also summarized in Figure 1:

Figure 1: Trajectory attribution process by Deshmukh et al. (2023)

a. In Grid-World trajectories are generated by training different agents using Model-based offline RL
through the Dyna-Q Algorithm (Appendix A.1). Trajectories are then encoded. In Grid-World
the authors define a Seq2Seq LSTM based encoder-decoder architecture. After training, only the
output of the encoder which corresponds to the trajectory embedding of Figure 1 is kept. On the
other hand, in both Seaquest and HalfCheetah the trajectories encoders are pre-trained. For the
former, the model is obtained following the instructions on pre-trained decision transformer. For
the latter, the pre-trained model is downloaded from the GitHub repository pre-trained trajectory
transformer from Janner et al. (2021). Both architectures are GPTs. Last but not least, these
encodings are then embedded.

b. The embeddings are passed through the XMeans clustering algorithm introduced by Pelleg et al.
(2000). The implementation used by the authors is the one from Novikov (2019). Using XMeans is
an arbitrary choice and in Section 4.2.1 we will investigate other options.

c. The cluster representations are embedded obtaining the representative embedding of given trajecto-
ries.

d. The so-called complementary datasets are obtained. That is, for each cluster we create a different
dataset where for each cluster j we retain all the data but those trajectories belonging to cluster
j itself. We obtain then 10, 8, and 10 complementary datasets for the three environments respec-
tively, and train for each complementary dataset new explanation policies and actions. In particular
for Seaquest and HalfCheetah we use two algorithms to do so, DiscreteSAC Christodoulou (2019)
and SAC Haarnoja et al. (2018) respectively. They are state-of-the-art Reinforcement Learning
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algorithms merging Q-Learning with policy-optimization, used following the d4rl implementation by
Seno & Imai (2022).

e. In the end, the decision made in a given state is attributed to a trajectory cluster.

Evaluation of new policies and actions is done through 5 metrics:

• Initial State Value Estimate (ISV) · E(V (s0))
This metric is measuring the expected long-term returns in evaluating offline Reinforcement Learning
training. The higher the ISV value, the better our trained policy.

• Local Mean Absolute Action-Value Difference · E[|∆Qπorig(s)|]
Estimating how much the original policy differs from the new calculated one. High values are
desirable.

• Action Contrast Measure · E[1(πorig(s) ̸= πj(s))]
Quantifying the disparity between recommended actions coming from the new explanation policies
and original actions. Higher values are associated with better policies.

• Wasserstein distance · Wdist(d̄, d̄j)
It measures the distance over a metric space between the original data embedding set and the
complementary data embedding sets.

• Cluster attribution frequency · P(cfinal = cj)
Computes the probability of a cluster being responsible one for an RL decision.

A low Wasserstein distance and high Action Contrast Measure values correspond with a higher frequency
attribution.

3.4 Hyper-parameters

In order to reproduce the experiments of the paper we strictly used, when available, the same hyperparam-
eters used by the authors. This was the case for Grid-World. No seed was indicated. Regarding Seaquest
and HalfCheetah we developed the code from scratch. Hence, we cannot be certain about the exact hyper-
parameters used by the authors. In all instances, we retained the default settings provided by the libraries.
If certain essential values were absent, we chose those that aligned with the settings used in Grid-World.

3.5 Experimental Set up and Code

Our experimental setup follows the approach of Deshmukh et al. (2023) in proving their claims. For claims
CHLB and DTDA we visually inspect the trajectories by plotting them, together with additional experiments.
RTISV claim is carefully taken care of by inspecting the 5 different metrics previously introduced. HS claim
is verified by replicating the analogous human study.

3.6 Computational Requirements & Environmental Impacts

The experiments were performed using a MacBook with Apple M2 Pro silicon chip with 10 CPU cores (1),
MacBook with Apple M1 silicon chip with 8 CPU cores (2), and a Microsoft Windows 11 Pro with Intel(R)
Core(TM) i7-10710U with 6 CPU cores (3). Most of the experiments in Grid-World run easily and in seconds
on our local machines. On the other hand the running time for Seaquest and HalfCheetah with machine (1),
can vary between 50 minutes (with 10 steps per epoch) and 8 hours (with 100 steps per epoch). We employed
pre-trained models both for Seaquest and HalfCheetah as explained in Sections 3.3 and 3.2. The same is done
for some additional experiments on Grid-World (Section C.2). Discussion on the environmental impact of
these models has been addressed in previous literature (Rillig et al. (2023)). In addressing our own ecological
footprint, we used the Code Carbon Tool (on machine (1)) to estimate our total energy consumption in
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obtaining cluster attributions. In Grid-World the estimated consumption is approximately 0.000170 kWh of
electricity. Whereas in Seaquest we use 0.005133 kWh of electricity. Similarly, in HalfCheetah we consume
0.004783 kWh. We then use the CO2e equation to obtain the corresponding CO2 emissions. The formula

CO2e = CI · PUE · P · t

is comprised of CI Carbon Intensity (fixed value of 0.954), PUE Power Usage Effectiveness (also fixes to
1.58), P Power required (estimated through Code Carbon Tool) and the training time t in hours. Our final
emissions are available in Table 1.

π Grid-World Seaquest HalfCheetah
CO2e lbs (10 steps per epoch) 0.0000021 0.0064470 0.0060070

CO2e lbs (100 steps per epoch) - 0.0618965 0.0576760

Table 1: Emission levels in training our models from top to bottom. The results highlight our CO2
equivalent levels in training the models. Seaquest and HalfCheetah were both trained using a two different
number of iterations per epoch. However, Grid-World was not trained with a different configuration as a
good performance was attained when using the standard hyper-parameters employed by the authors.

4 Results

4.1 Results reproducing original paper and verification of the claims

In order to verify the previously stated claims, we proceed with an empirical evaluation, aiming to reproduce
the results obtained by the authors. They present some variance with respect to the ones reproduced in this
article. This is due to the absence of a seed in the code provided for Grid-World. Concerning the other two
environments, the lack of reproducibility is due to a total absence of the original code.

4.1.1 Removing Trajectories induces a lower Initial State Value

In the Grid-World environment, the authors introduced different metrics to show that trajectories play an
important role in obtaining high-quality policies. The values obtained by the authors are reported in Table
1 of the original paper. The results are in general reproducible, with a small variation due to the absence
of seed. We present our findings in Table 2, providing evidence for the claim of the authors. The original
policy, trained on all the trajectories, achieves the highest ISV among all.

We report the reproduced results for the Seaquest environment in Table 3. We observe that the results are not
similar to the ones in the original papers. This discrepancy could be attributed to several factors. The setup
process, involving the installation of numerous packages and the use of outdated libraries, likely introduced
minor computational variances. Moreover, similarly to Grid-World, the absence of a standardized seeding
protocol might have contributed to worsening these variations. Additionally, changes in game versions, such
as upgrading Seaquest from v4 to v5, affected the game-play dynamics, increasing the available action space.
The choice of the difficulty level of the game also influenced the dataset, as easier versions had shorter
trajectories due to quicker game terminations. Another motive for this is given by the limited amount of
training we carried for our agent. In fact, given computational limitations, we are not able to train for a
long horizon of time. Moreover, the settings of the experiments from the authors are unclear. There is no
notion or explanation for what it means to train an agent until saturation, and no further details on the
hyperparameters of the experiments (for additional details, see Appendix D). On the other hand, even given
the differences and limitations explained above, the Claim RTISV still holds. The policy trained on the
whole dataset achieves a higher ISV than any of the other ones. At the same time, also the other metrics
are consistent in terms of conclusions we can draw. We conclude that the difference in reproducibility is
due to the limited details given by the authors, together with the limitation on our computational resources.
Results for HalfCheetah are reported in Table 5.

We perform a further analysis to highlight the reproducibility of the results. To have a better comparison of
our results with the one obtained by the authors, we report in Table 4 the average values for the metrics we
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π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 0.3061 - - - -

0 0.3055 0.0011 0.0410 1.0000 0.0000
1 0.3053 0.0016 0.0410 0.0085 0.0000
2 0.3049 0.0028 0.1224 0.0741 0.0000
3 0.3055 0.0219 0.0000 0.0023 0.0000
4 0.3054 0.0399 0.1224 0.0047 0.1250
5 0.2991 0.0316 0.0410 0.0021 0.3750
6 0.2849 0.0721 0.1633 0.0041 0.0000
7 0.3055 0.0129 0.0204 0.0006 0.0000
8 0.3057 0.0289 0.0204 0.0009 0.0000
9 0.3046 0.0175 0.1430 0.0006 0.5000

Table 2: Quantitative Analysis and reproducibility study of Claim RTISV for Grid-World

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 3.569 - - - -

0 3.375 0.217 0.125 0.0008 0.0000
1 2.796 0.869 0.375 1.0000 0.0000
2 2.785 0.881 0.000 0.00007 0.0000
3 3.016 0.622 0.125 0.05962 0.0000
4 2.138 1.609 0.000 0.00494 0.12
5 2.901 0.750 0.125 0.00148 0.88
6 2.061 1.697 0.125 0.00971 0.0000
7 2.664 1.018 0.000 0.00001 0.0000

Table 3: Quantitative Analysis and reproducibility study of Claim RTISV for Seaquest

are investigating. We report an average across the clusters. We found (minimal) differences in our results,
which can be attributable to missing training details from the authors. The ISV for the original policy
coincides to one of the original paper. We neglect the last column since all probabilities sum to one. This
further supports the ISV claim of the authors.

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j)
Mean Clusters (Original Paper) 0.3027 0.0231 0.0821 0.0301

Mean Clusters(Reproduced) 0.3029 0.0230 0.0714 0.1098
|∆| 0.0002 0.0001 0.0107 0.0797

Table 4: Additional Quantitative Analysis on claim RTISV for Grid-World.

4.1.2 Cluster High-Level Behaviours

In Grid-World, this claim can be verified by either observing their shared high-level behavioural patterns
or by using some quantitative metric. We deemed the latter to be a more appropriate approach. Thus, we
proceeded to define this starting from inspecting trajectories belonging to that cluster and calculating the
percentage of such manifesting a certain pattern. We show one trajectory for each of the three analyzed
clusters in Figure 2. The following high-level behaviours are retrieved: ’Achieving Goal in Top right corner’,
’Mid-grid journey to goal’ and ’Falling into lava’. A practical explanation of this self-defined metric can
be done analyzing the trajectory behavior of ’Falling into lava’. This is spotted by looking for a -1 reward
value in the last but one state, and then calculating the percentage of trajectories that have this wanted
characteristic within each cluster. We repeat this for every cluster and pick those with a percentage value
greater then 90%. The procedure is then iterated for the other two categories, by changing the characteristics
to look for. In the ’Achieving Goal in Top right corner’ we look for a +1 reward in the last but one state
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and going towards position 6. Whereas in the ’Mid-grid Journey to goal’ category we look for trajectories
starting in the middle of the grid and having a positive reward in the last but one state. These align with
the behaviours found by the authors. The claim is thus supported. Note that cluster labels vary from those
highlighted by the authors given the absence of a seed.

Figure 2: Reproducing and verifying claim CHLB in Grid-World. Cluster 1 showcases the presence
of behaviour ’Achieving Goal in top right corner’. Cluster 6 of ’Mid-grid journey to goal’ and cluster 2 of
’Falling into lava’. Three High-Level Behaviours found match those highlighted by the authors.

In our Seaquest analysis, we tried to replicate the cluster findings from the original study in Figure 3.
We noticed differences in the number of data points and their distribution. Converting 717 trajectories
into around 24,000 sub-trajectories for the XMeans algorithm revealed more data points than shown in the
original graph of the authors. This discrepancy could be due to two reasons: (i) the choice of game mode
and data source might affect the length of observations, which was not detailed by the original authors, and
(ii) the authors might have used a more complex method to aggregate data post-encoding than the simple
averaging they described.

a. Author Seaquest b. Our Seaquest c. Author HalfCheetah d. Our HalfCheetah

Figure 3: Clustering differences in Seaquest and HalfCheetah: This figure contrasts the clustering
outcomes between our study and the original paper. Figure (a) and (c) illustrate the clusters of the authors for
Seaquest and HalfCheetah, while figure (b) and (d) reflect our observations, revealing significant differences
in distribution and amount of data points. These discrepancies may highlight the influence of game mode
choices, dataset specifics, and data aggregation techniques on clustering outcomes.

Additionally, when trying to interpret the high-level meaning of those clusters, we obtained some discrep-
ancies. Results in Figure 4 show a strong link between the ’Filling Oxygen’ behavior and cluster 7, while
the other behaviors remained unclear, questioning the specific claims of the authors. However, this does
not undermine the broader notion of ’meaningful clusters’, but, given the scope of this paper, finding those
interpretations was deemed excessively time-consuming and beyond our current objectives. More details can
be found in Appendix B.2.

In the context of the HalfCheetah environment, assessing the significance of clusters proved challenging due
to the high-dimensional and intricate nature of the observation space.
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(a) Average time spent by each cluster
filling their oxygen tanks

(b) Average number of submarine de-
structions per cluster

(c) Average surface combat encounters
per cluster

Figure 4: This figure evaluates high-level player behaviours in the clusters of the Seaquest game.
Sub-figure (a) shows the average time spent on filling oxygen, sub-figure (b) details the average submarine
explosion, and sub-figure (c) counts surface combat encounters. These insights collectively enhance our
understanding of the meaning within each cluster.

4.1.3 Distant Trajectories influence Decisions of the Agents

We start by analyzing claim DTDA in the discrete Grid-World environment. The authors perform a quali-
tative analysis to support their claim. We try to reproduce the results and the plots given the code provided
by the authors. The hyperparameters are set equal to the default values. The results of Figure 2 in the paper
by Deshmukh et al. (2023) are reproducible using the code given by the authors. Note that it may take
more than one attempt to reproduce these results. This is due to the possible variation of clusters from each
iteration of the code. Nevertheless, we found that these results were easily reproducible with little effort.
Results are shown in Figure 5. The trajectories (i),(ii), (iii) are equivalent to the ones indicated in the paper
by the authors. We plot an additional trajectory which is part of the attributed cluster. It is important to
stress that also (iv) is distant from the state (1, 1) we are considering. This investigation confirms the claim
of the paper. However, given the highly qualitative justification provided by the authors, we seek a more
structured and quantitative way of analyzing this claim. We defer these experiments to Section 4.2.3.

Figure 5: Plot of grid and trajectories reproducing results and verifying Claim DTAG. The
original optimal action is ’right’ in the state (1,1). When removing the trajectories belonging to the attributed
clusters, all decisions are equally optimal, i.e. ’right’, ’left’,’ up’, or ’down’. This decision is attributed to 8
different trajectories, of which 4 plotted here above.

4.1.4 Human Study

In order to verify this claim we reproduce the experiments as well as the study setup of the authors.
Deshmukh et al. (2023) study is conducted on 10 people, which may not itself be sufficient to support
the claim. In trying to improve this, we doubled the interviewees to 20 people, each of whom first received
an explanation of how Grid-World navigation works. Following this explanation, they all gained a full
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understanding of the navigation process. 40% are university graduates in mathematics and computer science.
45% are student graduates in engineering. The remaining 5% come from different study backgrounds. We
begin by showing two Attributed Trajectories (Attr traj 1 and Attr traj 2 ), one Random Trajectory, and one
Trajectory belonging to an Alternate cluster for each state. We investigate two questions. (i) Which single
trajectory do you believe best explains the action suggested? (ii) Can you point out all the trajectories you
believe explain the action suggested?

Averaging between both states, the results on Question (i) highlight how almost ∼ 72.5% of the interviewees
correctly identify one of the two attributed trajectories. For Question (ii), Figure 6 shows that in ∼ 63%
of the cases, humans can correctly identify all the attributed trajectories. The results obtained are similar
to the ones of the authors. However, given the very limited sample size of our experiments, we do not have
enough evidence to support the claim.

Figure 6: Human Study. The plot represents human answers to the two questions introduced. Attr traj
1 and Attr traj 2 are trajectories belonging to the cluster attributed for the decision of the agent in the
specific state. Random stands for a randomly selected trajectory from the whole set. Whereas Alternate is a
randomly selected trajectory from the whole set without those belonging to the attributed cluster. The results
presented are for states (1,1) and (5,2). In both states we notice a decent level of human understanding. This
suggests a meaningful understanding of which trajectories influence the agent’s decision-making process.

4.2 Results beyond original paper

In all our additional experiments, we introduce a seeding mechanism in XMeans. This allows us to obtain
consistent results over multiple runs, fixing the reproducibility issue we encountered in previous sections.
Moreover, most of the experiments in this section are done using the proposed number of trajectories by
Deshmukh et al. (2023), (60 in Grid-World 7x7, 717 in Seaquest, 1000 in HalfCheetah), unless specified
otherwise.

4.2.1 Improving clustering algorithm

While XMeans has proven to be useful in determining almost accurately the correct clustering trajectories,
we propose a different approach by using DBSCAN algorithm. Introduced in Ester et al. (1996), DBSCAN
is a non-parametric density-based clustering method that groups together sets of points packed together.
This algorithm could lead to new clusters, and possibly different insights we may be able to extract from
them.

Results: Figure 7 shows a better visual clusters representation computed by DBSCAN. This outcome is
particularly visible in the reduced amount of overlaps which are instead present in XMeans. Metrics results
are available in C.1.

9



Under review as submission to TMLR

Figure 7: Clustering Methods: XMeans vs DBSCAN . Through DBSCAN we obtain a lower number
of clusters which eliminates overlaps between XMeans clusters 2, 3 and 0, 1. This better visual representation
is mainly due to a difference in the algorithmic process.

4.2.2 Additional high-level behaviour

The three initial patterns explained in 4.1.2 are found both when using XMeans and DBSCAN and also
when training with a higher number of trajectories (250). In this section, we investigate whether other
meaningful high-level behaviours exist. We successfully identified an additional pattern. That is, each
trajectory belonging to the same cluster has the same length. However, this last behaviour emerges only
when using 60 trajectories with both XMeans and DBSCAN. It is not found when the number of trajectories
used increases to 250. This phenomenon may arise due to the increased granularity of each cluster, a scale
varying with the number of trajectories. Namely, by keeping the number of clusters fixed, less granularity
is obtained. Thus each cluster can obtain worse cluster representations by grouping a larger number of
trajectories together. However, this does not negate the claim of the authors. That is because the original
behaviours are also spotted with a higher number of trajectories.

4.2.3 Are distant trajectories really important?

Section 4.1.3 highlighted how trajectories far from our state of interest can influence the decision of our
agent. However, it is not explicitly clear to what extent this is true. We strive to perform a more rigorous
analysis, considering each state with attributed trajectories responsible for a decision change. For each of
these attribution sets, we compute the average distance from the state to its trajectories. A rigorous definition
of how we calculate the average and the distances can be found in Appendix C.3, together with a detailed
pseudo-code in 1. In our experiments, two different cluster algorithms are employed. For DBSCAN we set
ϵ = 2.04. Ten final clusters are obtained. No seed is needed given the deterministic nature of DBSCAN. The
other cluster method is XMeans. The seed is set to 0 and 99 respectively for the initialization of the centers
and for the XMeans algorithm. We perform our experiments on the Grid-World Four Room Environment
introduced by Sutton et al. (1999). Its size is 11x11. Given the larger grid and the scope of our experiment,
we generate a higher number of trajectories. Namely, we produce 250 trajectories that end in a positive
terminal and 50 trajectories that achieve a negative reward.

Results: Figure 8 shows the Bar-plot of these trajectories. We can observe that the average lengths are
mostly larger than 6 in both settings. Interestingly, we note that using the XMeans algorithm we have no
state which is explained only by trajectories passing through it. From the results of the plot, we conclude
that indeed distant trajectories are important to explain the decision of an RL agent, further confirming
Claim DTDA.
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Figure 8: Distances between states and their attributed trajectories. On the x-axis, we have 4 bins,
respectively in the range 0-3, 3-6, 6-9, and 9+. (i) shows the results using the DBSCAN algorithm. We
see that we have many trajectories with a length bigger than 9. The states that fell in the blue bin were
explained only by 1 or 2 trajectories. This is due to how DBSCAN constructs the clusters, which favors a
big variance in size between them. We had then a bigger chance of having clusters with few trajectories that
were all passing through an attributed state. (ii) shows the results using the XMeans algorithm. We note
again that the majority of the states had a large average distance to their attributed trajectories.

4.2.4 Are trajectories important to obtain a good ISV? Are some more important than others?

We further analyze if trajectories are important to obtain a good ISV. Specifically, we see if the clusters
more often present in the attribution set hold a larger importance in influencing the ISV. Figure 9 shows an
inverse correlation between the number of times a cluster was responsible for a change in the decision and
the ISV of the policy trained without that cluster. This further validates claim RTISV, providing additional
insights. Extra details can be found in Appendix C.4.

Figure 9: Correlation between Action Value and the Cluster Attribution Frequency. (i) The plot
obtained using the DBSCAN algorithms shows a (weak) correlation of the action value with the attribution
frequency of a cluster. We clearly observe that Cluster 1, which was the one attributed more often, is of
crucial importance. (ii) The plot obtained using XMeans clearly shows the phenomena of Claim 2. There is
a clear negative correlation between the two quantities, which highlights the importance of data trajectories.
Again, the cluster attributed to most agent decisions, i.e. Cluster 7, constitutes a fundamental portion of
the training data that leads to a high-value policy.

5 Discussion

Across this work, we performed several experiments aimed at reproducing key findings of Deshmukh et al.
(2023). The outcomes of this reproducibility study partially confirm their claims. Analyzing our results and
additional experiments, we can sustain claim RTISV for Grid-World and Seaquest. Our results for HalfChee-
tah do not sustain this claim. CHLB is accepted only in Grid-World. In Seaquest we identified only one
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out of three high-level behaviors. This is not enough to support the claim. We were not able to obtain any
high-level behaviour for HalfCheetah. On claim DTDA, we obtained results consistent with the original ones,
supporting the claim for both Grid-World and Seaquest. On the former, our additional experiments further
show that distant trajectories have a significant impact on the decision of the agent. In HalfCheetah, due to
the plotting constraints caused by the usage of a third-party software, we could not confirm nor deny this
claim. The Human Study was carried out only in Grid-World. While we obtained similar results, the claim
was very superficially investigated by the authors. Their original experiments were not sufficient to support
HS. Our survey, although more extensive, was limited due to time and resources constraints. As a conse-
quence, we can not confirm HS. Reproducibility varies significantly between environments. The Grid-World
code provided by the authors lacked a proper seeding mechanism. Despite this, similar reproducibility was
not highly jeopardized. Using seeding, we solved the aforementioned issue, carving out randomness. All of
our experiments, both in Section 4.1 and 4.2 are completely reproducible. First, in Seaquest and HalfCheetah
the code was unavailable. Relevant implementation details, hyperparameters, and training techniques were
not mentioned in the paper. We coded everything from scratch. This includes the whole trajectory attri-
bution process, environment requirements, library dependencies, training and evaluation loops, and many
more. In spite of these difficulties, we were able to perform the original experiments, supporting most of
the claims of the authors when obtaining relevant evidence. We provide our complete code implementation.
Additional training and implementation details can be found in Appendix D.

What was easy: The authors shared the code for the Grid-World environment directly with us, although
it is not publicly available online. This facilitated our ability to try to reproduce some of the results of the
paper for this environment. In addition, the code provided was relatively easy to understand and adapt
in order to expand our reproducibility study further. This allowed us to extensively produce additional
experiments.

What was difficult: As mentioned throughout previous sections of the paper, the implementations for the
Seaquest and HalfCheetah environments were not provided to us, thus leading to our implementation from
scratch. Although very relevant to the results, the paper only briefly mentions Additional Training Details
in the appendix, lacking any other explanation about the Python environment being used, any data pre-
processing stage, or tweaks required for compatibility. With regards to the environment issues, it is worth
noting that, being the field very novel and active, some of the libraries implemented do not get developed
any longer. This may be the case of ’mujoco-py’, the library on which HalfChetaah relies on: because of this,
we had to backtrack compatibility between dependencies of libraries that are in constant development and
some whose support has been interrupted for years. On top of this, we also encountered compatibility issues
between different Operative Systems: MacBooks produced post-2020 abandoned Intel-based processors to
adopt natively built Apple Silicon processors. This required the community to rebuild packages to support
a new architecture (arm64 vs x86/x64), in order for these libraries to be able to run on these devices.
Co-occurrently, support for Mujoco-py has been halted, thus requiring a somewhat convoluted installation
procedure, consisting of manual pointers definition, third-party compilers requirement and many other details
we decided not to bother the reader with. Needless to say, the lack of code in this delicate instance, required
extensive trial and error experimentation with dependencies and installation procedures, thus slowing down
the overall process for housekeeping operations rather than actual development. We believe the lack of
transparency with regards to the aforementioned environments led to such striking differences in absolute
value results between our reproduced results and the original ones: again, details on the training procedure
and model implementation should have been made public, given the rather complex nature of the task at
hand, along with hyperparameters setup, which we go over in further detail in Appendix D.

Communication with the authors: Communication with the authors was carried out by the course
coordinators themselves at the beginning of the course. We received the aforementioned subset of the
original implementation halfway through the course, thus leading to the issues discussed in the previous
section. No further communication with the authors has been conducted by us.
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A Appendix: Methodology

A.1 Model description

Dyna-Q Algorithm
Introduced in Sutton (1990), Dyna-Q is a Model based Reinforcement Learning Algorithm. Conceptually
it is an algorithm that illustrates how real and simulated experience can be combined in building a policy.
Dyna-Q algorithm (10) introduced in Section 3.3 starts by initializing a so-called Q table. A table made of
all possible states vs all possible actions. The model also contains a state, action, next state, and reward
tuples. This way the model can be both improved and queried to get the next state in the planning part. The
process begins by observing state S (a), and then selecting the next action A, in a greedy manner (b). After
taking the action A, we observe a reward R and a state S′. These two values are then used in the formula
in (d) to update the Q table cell corresponding with state s and action a. After these classic Q-Learning
steps we perform a loop (f) which consists of the added Dyna-Q part. First, we randomly select a state S
and an action A and then we deduce a new state S′ and a new reward R which will then be used to update
the Q-table as before.

Figure 10: Dyna-Q algorithm

B Appendix: Results reproducing original paper and verification of the claims

B.1 Removing trajectories induces a lower ISV

Despite the challenges in replicating the exact clustering outcomes for Half Cheetah as highlighted earlier,
5 reveals some interesting patterns. The table provides a quantitative analysis that, despite reproducibility
issues, still shows consistent trends across different metrics.

π E[V (s0)] E[|∆Qπorig (s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 3.3615 - - - -

0 3.4558 0.0942 0.0038 1.0000 0.1000
1 3.4691 0.1076 0.0028 0.3047 0.3000
2 3.2958 0.0656 0.0035 0.8730 0.0000
3 3.3621 0.0006 0.0017 0.8483 0.0000
4 3.3624 0.0009 0.0022 0.2986 0.6000
5 3.5280 0.1665 0.0041 0.5340 0.0000
6 3.3444 0.0170 0.0016 0.5245 0.0000
7 3.3206 0.0408 0.0052 0.6162 0.0000
8 3.3745 0.0602 0.0028 0.6039 0.0000
9 3.3826 0.0337 0.0013 0.7855 0.0000

Table 5: Quantitative Analysis and reproducibility study of Claim RTISV for HalfCheetah
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B.2 Meaningful Clusters

In order to obtain Figure 4, we specifically analyzed the oxygen tank indicator at the bottom of the
screen, recognizable by its unique color. An increase in the bar is interpreted as the submarine refilling
its oxygen tank, while a empty tank resulted in a submarine explosion. This might occur either from
running out of oxygen or sustaining damage from enemies. For the ’Fighting with head out’ behavior, we
monitored the position of the submarine within the top 30 pixels of the screen. We would consider it as
engaging in surface combat if it remained in this area for more than 10 out of the 30 frames in a sub-trajectory.

The analysis highlights distinct behaviors: Cluster 7 is linked to ’Filling Oxygen’, and Clusters 2 and 3 to
’Submarine Burst’, with no clear trend for ’Fighting with Head Out’. 11 shows overlapping behaviors across
clusters, complicating the attribution of specific actions. Consequently, the most representative cluster
appears to be the one of refueling oxygen: two frames depict the submarine at the surface (directly implying
oxygen refueling), while the remaining three suggest imminent game resets, indirectly associated with oxygen
refill.

(a) Filling Oxygen – Cluster 9

(b) Submarine Bursts – Cluster 2

(c) Fighting with Head Out – Cluster 5

Figure 11: Reproducing Figure 8 of the authors paper. High-level Behaviours found in clusters
for Seaquest formed using trajectory embeddings produced using decision transformer. The figure shows
3 example high-level behaviours along with the action description and id of the cluster representing such
behaviour
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C Appendix: Results beyond original paper

C.1 Improving clustering algorithm

Table 6 is mirroring the results produced in Table 2. In this section however we produce metrics results
using DBSCAN clustering algorithm, instead XMeans. As introduced before the values are similar to those
attained in the original table.

π E[V (s0)] E[|∆Qπorig (s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 0.3059 - - - -

0 0.3056 0.0018 0.0613 1.0000 0.0000
1 0.2980 0.0326 0.1429 0.0009 0.1250
2 0.3045 0.0406 0.1225 0.0020 0.0000
3 0.3058 0.0281 0.0000 0.00007 0.0000
4 0.3045 0.0026 0.1021 0.0003 0.5000
5 0.3045 0.0288 0.1225 0.0005 0.0000
6 0.2859 0.069 0.0817 0.0018 0.3750
7 0.3058 0.0204 0.0205 0.0457 0.0000

Table 6: Quantitative Analysis of DBSCAN algorithm

C.2 Implementing different encoder techniques

Although in the Grid-World Environment the LSTM-based Seq2Seq encoding used by the authors has proven
to be efficient, we set out to experiment with different techniques. Our hope is that they could provide a
better encoding for the trajectories. For this, we employed two kinds of pre-trained encoders:

• BERT base model introduced in Devlin et al. (2019) is a state-of-the-art transformers-based model for
Natural Language Processing. Pre-trained using Masked-Language Modelling its high performance
as an encoder made it a good candidate to replace the LSTM in the paper.

• Trajectory Transformer originally proposed in Janner et al. (2021). It is a transformer-based model
that takes as input data of the form (state, action, reward) matching perfectly with the data provided
by the authors.

Results: Experiments in Table 7 are performed over 250 trajectories, 200 positive and 50 negative. We
obtain similar performance across all metrics, and an inspection of high-level behaviors of the clusters as in
section 4.2.2 highlights the similar results.

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j)
Mean Clusters (Original Paper) 0.3451 0.0224 0.9035 0.1821

Mean Clusters (BERT) 0.3427 0.04074 0.8645 0.1098
Mean Clusters (Traj Transformers) 0.3413 0.0325 0.039 0.0723

Table 7: Quantitative comparison of LSTM, Bert and Trajectory Transformers

C.3 Are distant trajectories really important?

Distance State-Trajectory and its importance Let us formally define the following variables:

• S: set containing all states with at least one attributed trajectory

• Ts: set of all the attributed trajectories for the state s ∈ S

• ti,s: i-th trajectory in the attribution set Ts. Each trajectory i has length li

• a∗(b; c): distance from point b to point c in our grid. It is calculated by implementing the A∗ search
algorithm.
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• d(ti,s; s): distance from state s to trajectory ti,s. Mathematically, for each point pj ∈ ti,s,

d(ti,s; s) =
{0 : if ∃ pj ∈ ti,s s.t. pj = s

1
li

∑li

j=1 a∗(pj , s) : otherwise

• d(Ts, s): Average distance of the attribution set Ts from its respective state s. We implement it as:

d(Ts, s) = 1
|Ts|

|Ts|∑
k=1

d(tk,s; s)

Given the elements introduced above, we can calculate the average distance of a state from its attributed
trajectories, denoted by d(Ts, s). Note that in the formulation above, if a trajectory ti,s passes through the
state s, we set d(tk,s; s) = 0. This is a design choice, which can be further justified. In fact, we are interested
in considering ’far’ only the trajectories where there is no interaction with the state s itself.

We designed and implemented Algorithm 1. We provide a high-level pseudo-code for a better understanding
of the steps we perform.

Algorithm 1: Algorithm for calculating the average distance State - Attributed Trajectories
1 Inputs: S, Ts for s ∈ S
2 foreach s ∈ S do
3 D = empty list
4 foreach ti,s ∈ Ts do
5 M = empty list
6 foreach pj ∈ ti,s do
7 point distance = a∗(pj , s)
8 append point distance to M
9 end

10 end
11 m = Average of the list M
12 Append m to D
13 Set m = 0
14 end
15 return the list D. It contains the average distances of each state s from its attributed trajectories.

We introduced a clear metric, together with an algorithm that provides details on how to compute it.

C.4 Are data trajectories important to obtain a good action value? Are some more important than
others?

In this section, we aim to provide further details on experiments on the assumptions of Claim RTISV.
Values from both the original paper and from Table 2 suggest that data trajectories are important to obtain
a good ISV for our state. We are interested to see if some of the clusters are more important than others in
determining this value. The setting of the experiments is equivalent to the one introduced in Section 4.2.3

Figure 9 shows that data trajectories play a factor in obtaining a satisfying action value. For simplicity, the
original policy is not plotted, but its value is higher than any other policy in both cases. This again connects
with and proves claim RTISV, even with a higher grid size and number of trajectories. The plot illustrates
the action value for each of the policies π1, . . . , πm illustrated in Figure 1. For each cluster Ci, we show the
action value obtained with the policy πi, plotted against the number of times this cluster Ci has been the
responsible cluster for a change in the decision of the agent (on the x-axis). In Figure 9 we observe a clear
inverse correlation between the two. Clusters that have been attributed more often to a change in decision
are important in obtaining a high ISV. In fact, keeping this data out of our policy training induces a lower
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action value for our state. This shows that the higher the importance of the cluster, the higher the gap in
performance. We believe this is an interesting result, which further indicates the conceptual importance of
the trajectory attribution method. In fact, it is not only a matter of the number of trajectories we train on.
We found that specific clusters can hold a larger weight in the decision of an agent. This suggests that some
trajectories are more fundamental than others.

C.5 Additional Hyper-Parameters Experiments

In this section we investigate the change in metrics when hyperparameters regarding the agent training are
changed. We play with the values of alpha, gamma and number of evaluation epochs. We proceed to generate
offline data for each combination of the above mentioned hyperparameter and successively train the authors
Seq2Seq model.

The best results in terms of loss value are shown in Table 8. However while we reach better loss results we

Table 8: Experimental Results

Alpha Gamma Eval. Epochs Loss Value
0.1 0.95 15 0.0678
0.1 0.5 5 0.0965
0.1 0.5 10 0.0965
0.01 0.01 5 0.0369
0.001 0.1 15 0.0815

do not necessarily obtain better overall metrics.

D Appendix: Training setting for Seaquest and HalfCheetah

As mentioned throughout the paper, we implemented from scratch the code for the Seaquest and HalfCheetah
environments. Due to the lack of details provided in the original study, we provide our own setup for the
training of the aforementioned environments.

For Seaquest, we train a Discrete SAC model based on the original work by Christodoulou (2019), developed
by Seno & Imai (2022). Observations for the game were in the form of 84x84 greyscale frames, which we
stacked, forming for each observation a 4x84x84 array. This allowed the model to incorporate some degree of
temporal awareness, also referred to as context in the original work. Subsequently, in order to preserve spatial
information, we implemented a custom encoder for the model, in the form of a Convolutional Neural Network.
We are not aware whether the authors pursued this approach in their study, but due to the nature of the data
itself, we are sure this implementation helped the training and performance by a significant margin. Once
more, due to the nature of the data (images), we implemented a ’pixel’ scaler for preprocessing purposes to
act as a pixel value normalizer.

For HalfCheetah, on the other hand, we implemented a SAC model based on the original work by Haarnoja
et al. (2018). We kept the standard hyperparameters provided in the documentation of the library by Seno
& Imai (2022). One critical missing piece of information we extensively discussed upon implementation was
given by the notion of difference in action between models: due to the continuous nature of the actions in
this environment, it becomes almost impossible for two policies to predict the same set of actions. For this
purpose, we decided to implement a way of comparing actions based through ’numpy.isclose(a,b)’, by Harris
et al. (2020). The similarity formula given by the above method is

|a − b| ≤ (abs. tolerance + rel. tolerance ∗ |b|)

Unlike the built-in ’math.isclose’, the above equation is not symmetric in a and b: it assumes b is the reference
value – so that ’isclose(a, b)’ might be different from ’isclose(b, a)’. Furthermore, the default value of ’abs.

19



Under review as submission to TMLR

tolerance’ is not zero, and is used to determine what small values should be considered close to zero. Once
again, we are not aware of what the authors did on this end, but we have reasons to believe this approach
has grounds for a correct interpretation. We acknowledge potential sensitivity to the results based on the
choice of the hyperparameters of the method, for which we kept the default ones.

Finally, although the authors mention a training schedule until saturation without further explanation, we
followed the guidelines provided in the DR3RLpy framework as outlined by Fu et al. (2021), training both
our models for 10 epochs, each taking 100 steps. We are not aware of whether our approach matches the
one suggested by the authors, but results, although not in absolute value, are relatively consistent with
those provided in the original study. Thus we can conclude that our hyperparameters setting is sufficient for
reproducing the results.
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