

EVOLUTIONARY ARCHITECTURE SEARCH THROUGH GRAMMAR-BASED SEQUENCE ALIGNMENT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Neural architecture search (NAS) in expressive search spaces is a computationally
 012 hard problem, but it also holds the potential to automatically discover completely
 013 novel and performant architectures. To achieve this we need effective search
 014 algorithms that can identify powerful components and reuse them in new
 015 candidate architectures. In this paper, we introduce two adapted variants of the
 016 Smith-Waterman algorithm for local sequence alignment and use them to compute
 017 the edit distance in a grammar-based evolutionary architecture search. These
 018 algorithms enable us to efficiently calculate a distance metric for neural architectures
 019 and to generate a set of hybrid offspring from two parent models. This facilitates the
 020 deployment of crossover-based search heuristics, allows us to perform a thorough
 021 analysis on the architectural loss landscape, and track population diversity during
 022 search. We highlight how our method vastly improves computational complexity
 023 over previous work and enables us to efficiently compute shortest paths between
 024 architectures. When instantiating the crossover in evolutionary searches, we achieve
 025 competitive results, outperforming competing methods. Future work can build upon
 026 this new tool, discovering novel components that can be used more broadly across
 027 neural architecture design, and broadening its applications beyond NAS.

1 INTRODUCTION

031 Neural architecture search (NAS) (Elsken et al., 2019) has traditionally operated in constrained
 032 search spaces, defined by limited operations and fixed topologies. Popular benchmarks such as
 033 NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang, 2020) restrict exploration
 034 to cell-based architectures built from only a handful of primitives. While these constraints simplify
 035 optimisation, they confine the search to narrow structural templates that cannot lead to fundamentally
 036 better architectures but rather incremental improvements of existing ones.

037 Recently, more expressive NAS search spaces have been proposed to enable broader architectural
 038 discovery. For example, Hierarchical NAS (Schrodi et al., 2023) expands cell-based spaces by
 039 including high-level macro design choices such as network topology. Similarly, Ericsson et al. (2024)
 040 introduce *einspace*, a parameterised context-free grammar (PCFG) that spans architectures of varying
 041 depth, branching patterns, and operation types. Unlike earlier spaces that only fine-tuned existing
 042 templates, these approaches unlock the potential to discover fundamentally new architectures.

043 However, this expressiveness comes at the cost of scalability. The vast size and complexity of
 044 grammar-based spaces make exploration difficult. Evolutionary operators such as mutation and
 045 crossover, while effective in small DAG-based spaces (Real et al., 2019), do not easily transfer to
 046 these flexible representations. Moreover, the lack of tractable distance metrics for large graphs or
 047 trees hinders the ability to control diversity or measure smoothness within the search. Advancing NAS
 048 therefore requires efficient metrics and recombination operators tailored to expressive spaces.

049 Prior work on shortest edit path crossover (SEPX) demonstrated a theoretically principled method by
 050 finding the minimal sequence of graph edits needed to transform one parent into the other (Qiu and Mi-
 051 kkkulainen, 2023). This approach addresses the permutation problem where different graph encodings
 052 represent equivalent networks. While SEPX can yield high-quality offspring in smaller spaces, it does
 053 not scale well to the larger, more complex architectures of modern NAS. Computing the true shortest
 edit path essentially requires solving a graph edit distance problem, which is NP-hard (Bougleux et al.,

054 2017). As the number of nodes and connections increases, graph matching becomes computationally
 055 intractable (as we show in Figure 3), limiting SEPX’s applicability in expressive NAS spaces.
 056

057 In this work, we propose a scalable alternative: *a novel evolutionary crossover operator inspired*
 058 *by local sequence alignment*. By leveraging the context-free grammar representation introduced
 059 in *einspace* (Ericsson et al., 2024), our method represents each architecture as a sequence of tokens
 060 and employs a constrained variant of the Smith-Waterman algorithm (Smith and Waterman, 1981) to
 061 identify high-scoring local alignments between parent sequences. These alignments serve as a shortest
 062 edit path between architectures and can be used to guide recombination, ensuring that offspring inherit
 063 coherent and functionally analogous substructures. Furthermore, the edit distance we get is a metric on
 064 space of functional architectures and can be used to aid the search itself, controlling diversity, as well
 065 as to perform extensive analysis on the architectural loss landscape. Crucially, these benefits can be
 066 attained due to the efficient computation that offers orders of magnitude speed-ups compared to SEPX.
 067

- 068 • We introduce an efficient grammar-based sequence-alignment algorithm for computing edit
 069 paths and distances between neural architectures in expressive search spaces, guaranteeing
 070 syntactic validity. We show that this reduces computation time by orders of magnitude
 071 compared to previous methods.
- 072 • Our algorithm enables powerful new applications: (a) crossover along the shortest edit path
 073 in grammar-based NAS, and (b) diversity measurement and architectural loss landscape
 074 analysis through its use as a distance metric.
- 075 • We demonstrate these applications in one of the most expressive search space to date,
 076 establishing new tools for both search and interpretability in NAS. Our analysis reveals the
 077 loss landscape at unprecedented scale, quantifying its smoothness and clustered structure.

079 2 BACKGROUND

080 **Neural architecture search.** NAS is commonly described in terms of three components: a *search*
 081 *space*, which defines the set of candidate architectures; a *search strategy*, which explores that space;
 082 and a *performance estimator*, which evaluates candidate models (Elsken et al., 2019). This work
 083 focuses on methods that enrich search strategies and enable more effective exploration and analysis
 084 of expressive search spaces.

085 **Grammar-based search spaces.** Context-free grammars (CFGs) provide a compact and expressive
 086 way to encode architectures through a set of production rules. The *einspace* framework (Ericsson et al.,
 087 2024) builds on this idea by constructing a grammar that allows for complex architecture topologies
 088 while keeping a simple set of rules. In particular, the rule
 089

$$090 \quad M \rightarrow B \, M \, M \, A^1, \quad (1)$$

091 specifies a branching (2) module where two independent submodules (M) are combined via a
 092 branching operator (B) followed by an aggregation operator (A). The resulting component allows for
 093 branching structures in the network, and thus break the sequential nature of the architectural encodings.
 094 In addition to Branching modules, other production rules of the grammar describe Sequential
 095 and Routing modules, and terminal nodes can be grouped into types—Branching, Aggregation,
 096 Pre-Routing, Post-Routing and Computation. For more details, see Ericsson et al. (2024).
 097

098 **Evolutionary search.** Evolutionary algorithms search by maintaining a population of candidate
 099 architectures and iteratively applying selection and variation operators (Liu et al., 2023). Variation
 100 is typically achieved through *mutation*, which introduces small random edits, and *crossover*, which
 101 recombines substructures from two parents into new offspring. While mutation drives local exploration,
 102 effective crossover can accelerate search by sharing and recombining high-performing architectural
 103 motifs across the population.

104
 105 ¹We specifically refer to the branching obtained with two submodules (branching factor of 2), as these are
 106 sampled independently from the grammar. For branching factors of 4 or 8, a single submodule is repeated, which
 107 does not introduce permutation invariance problems.

108

3 RELATED WORK

110 Recent NAS methods use context-free grammars (CFGs) to create more expressive architectural
 111 search spaces. Hierarchical NAS (Schrodi et al., 2023) uses grammars to compose diverse macro-
 112 and micro-structures, expanding significantly beyond traditional cell-based spaces. Ericsson et al.
 113 (2024) employs probabilistic CFGs with recursive rules, enabling novel architectures with varied
 114 depth, width, and operations, encompassing varied known performant models. Grammar-based NAS
 115 significantly enhances architectural expressiveness, enabling diverse structures such as CNNs and
 116 Transformer variants in the same space. However, the resulting vast search spaces require specialised
 117 strategies—e.g., Bayesian optimisation (Ru et al., 2021) or seeded evolutionary methods (Ericsson
 118 et al., 2024)—to effectively navigate them.

119 The natural encoding for architectures in these spaces is the derivation tree, formed by following the
 120 production rules of the grammar to the architecture string sequence. The fastest and simplest way
 121 of crossing over such an encoding is subtree crossover (STX), which simply swaps two non-terminal
 122 nodes from the parent architectures (Nordin et al., 1998). This facilitates the sharing of well-performing
 123 blocks, but its simplicity hinders its ability to discover hybrid blocks. Consequently, the population
 124 diversity can stagnate, and both the exploration and exploitation of the architectural space become
 125 mainly driven by mutation operators rather than the crossover itself.

126 Moreover, evolutionary NAS crossover faces the permutation problem, where different representations
 127 can encode the same functional architecture.

128 Traditional methods for ordered tree edit distance, as proposed for example by Zhang and Shasha
 129 (1989), fail to address this issue. SEPX (Qiu and Miikkulainen, 2023), on the other hand, addresses
 130 the permutation problem by recombining parent architectures via minimal graph edit operations,
 131 preserving maximal common structures and ensuring permutation invariance. SEPX outperforms
 132 standard evolutionary methods theoretically and empirically (Qiu and Miikkulainen, 2023), but
 133 computing exact graph edit distances is NP-hard, restricting its practical use to small-scale graphs
 134 (e.g., NAS-Bench-101’s 7-node cells). This computational limitation hampers its scalability to larger,
 135 more complex architectures. In general, none of the methods proposed in the literature make use of
 136 the inherit structures found in the functional neural architectures represented by the corresponding
 137 trees and graphs, and thus tend to compute unnecessary alignment options.

138 An alternative approach to calculate edit paths and distances is to treat the architecture graph as
 139 a linearised sequence and apply sequence alignment methods, such as the Needleman-Wunsch
 140 (NW) (Needleman and Wunsch, 1970) and Smith-Waterman (SW) algorithms (Smith and Waterman,
 141 1981). This has been studied in the context of NAS by Mateo Avila Pava (2024), who use NW to
 142 compute distances between architectures and thus study and control population diversity during search.
 143 The main restriction of this approach, however, is that it only works for sequential representations of
 144 architectures, often known as chain-structured spaces. This means it cannot be used for more complex
 145 network topologies including components like skip connections and multi-head branching. Moreover,
 146 the authors do not integrate the edit path into a crossover operator but rather use a simple one-point
 147 crossover, which again limits the exploration to sequential architectures.

148 Our approach achieves the crossover and distance metric abilities of SEPX (Qiu and Miikkulainen,
 149 2023) but at a vastly improved speed due to our treatment of the encoding in a hybrid tree/sequential
 150 way. We use fast dynamic programming to deal with the purely sequential part of the architectures,
 151 while recursively applying the method on any branching components to tackle permutation invariance.
 152 This effectively combines Smith-Waterman with the ordered and constrained unordered tree edit
 153 distance algorithms into an efficient method for our setting (Smith and Waterman, 1981; Zhang and
 154 Shasha, 1989; Zhang, 1996).

155

4 PROPOSED METHOD

158 Given a well-defined grammar, any model can be expressed as a sequential set of tokens by serialising
 159 the derivation tree. Building on the work by Mateo Avila Pava (2024), we propose two variants of the
 160 Smith-Waterman algorithm (Smith and Waterman, 1981) to be used as a computationally efficient edit
 161 distance metric and crossover operator. The addition of constraints within the scoring system extends
 the validity of this method from sequence alignment to ordered trees, yielding our proposed constrained

Smith-Waterman crossover (CSWX) algorithm. CSWX works on a sequential representation of the architectures, presents a high flexibility and computational efficiency, and provides a thorough component-level comparison of the two parent models, alongside the produced offspring.

We further modify CSWX to recursively compute and collapse submatrices corresponding to permuted subsections of the alignment matrix, achieving invariance to permutation, producing the recursive constrained Smith-Waterman crossover (RCSWX) algorithm. This allows the calculation of shortest edit paths and distances between complex graph and semi-ordered tree topologies through grammar-based search space definitions. For further explanation of the subtree crossover (STX) and shortest edit path crossover (SEPX), which will be used to compare the proposed methods with, please refer to Appendix A.

4.1 CONSTRAINED SMITH-WATERMAN CROSSOVER

We introduce CSWX in Algorithm 1. Using **Serialise**, we convert each parent model into a simplified sequence. Nodes implied by structure, e.g. *Sequential*, *Grouping*, *Aggregation*, are omitted. To delimit branches and routing nodes, we insert *separator* tokens. To satisfy Smith-Waterman, we prefix each sequence with a *start* token and place the two sequences on perpendicular axes (see Figure 1).

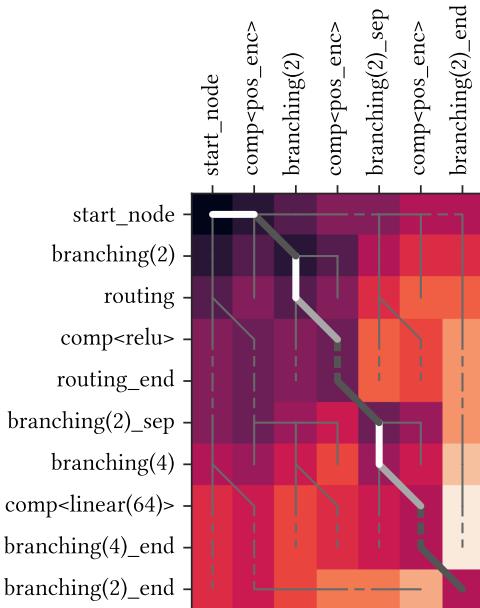
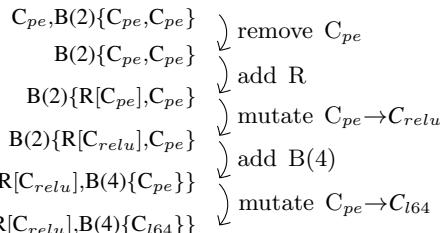


Figure 1: Example *dists* and *paths* matrices overlaid. Lighter coloured cells denote a higher distance from the first parent model, shown on top. Moving towards the right entails deleting a node from the first model, moving downwards represents the addition of a node from the second model, and moving diagonally corresponds to a node substitution. Dashed lines signal the closure of branching and routing nodes. The optimal mutation path is traced back in thicker lines, whose brightness reflects the weight of each operation, being brightest intensities a cost of 1, and darker ones reaching a cost of 0.

Lastly, these operations are applied within the **GenerateOffspring** function, which produces the desired offspring as the same tree-based format used for the parent models. For visualisations of the architectures that can be constructed along the shortest path in Figure 1, see Appendix B. Further details and pseudocode for all described functions is provided in Appendix C.

Then, we compute the minimum-cost path that transforms the first parent into the second via additions, deletions, and substitutions. For each operation considered, we check its validity through the **ValidPath** function. This ensures that we only substitute nodes of the same type (e.g., a branching node cannot be replaced by a terminal node). Moreover, if we try to add, delete, or substitute a separator node, it checks that we performed the same operation to the corresponding Routing or Branching node, and that all Routing and Branching nodes we may have added, deleted, or substituted within that path are properly closed by their corresponding separator, avoiding incongruous models. We sequentially fill all positions within the *dist* and *paths* matrices, starting from the top left, selecting the path that presents the smallest cost to reach each one. Once the bottom right corner of the matrix is reached, the best path is traced back and transformed into a series of operations through the **TraceBack** function. Following said path from Figure 1 would yield the following offspring.



If we performed all these operations, we would simply obtain the second model; as we are interested in creating a hybrid offspring, we sample a subset of operations through the **SelectOperations** function.

216 **Algorithm 1:** Constrained Smith-Waterman Crossover

217 **Input:** $model1$, the derivation tree for the first architecture to cross over
 218 $model2$, the derivation tree for the second architecture to cross over
 219 $skewness$, the skewness of the operation sampling probability distribution

220 **Output:** $offspring$, the derivation tree for the resulting hybrid architecture

221

222 2 $model1_{seq} \leftarrow \text{Serialise}(model1)$
 223 3 $model2_{seq} \leftarrow \text{Serialise}(model2)$
 224 4 $dist \leftarrow$ empty array of dimensions length of $model1_{seq} \times$ length of $model2_{seq}$
 225 5 $paths \leftarrow$ empty array of dimensions length of $model1_{seq} \times$ length of $model2_{seq}$
 226 6 **for** $i \leftarrow 1$ **to** length of $model1_{seq}$ **do**
 227 7 **for** $j \leftarrow 1$ **to** length of $model2_{seq}$ **do**
 228 8 $mut, add, rem \leftarrow \infty$
 229 9 **if** $\text{ValidPath}(paths, model1_{seq}, model2_{seq}, i, j, \text{"sub"})$ **then**
 230 10 $mut \leftarrow dist[i-1, j-1] + \text{SubstitutionCost}(model1_{seq}[i], model2_{seq}[j])$
 231 11 **if** $\text{ValidPath}(paths, model1_{seq}, model2_{seq}, i, j, \text{"add"})$ **then**
 232 12 $add \leftarrow dist[i-1, j] + 1 - (\text{model1}_{seq}[i] \text{ is a separator node})$
 233 13 **if** $\text{ValidPath}(paths, model1_{seq}, model2_{seq}, i, j, \text{"rem"})$ **then**
 234 14 $rem \leftarrow dist[i, j-1] + 1 - (\text{model2}_{seq}[j] \text{ is a separator node})$
 235 15 $dist[i, j] \leftarrow \min(mut, add, rem)$
 236 16 $path[i, j] \leftarrow (\text{"sub"}, \text{"add"}, \text{"rem"})[\text{argmin}(mut, add, rem)]$

237

238 17 $ops_{valid} \leftarrow \text{TraceBack}(model1_{seq}, model2_{seq}, dist, paths)$
 239 18 $ops_{selected} \leftarrow \text{SelectOperations}(ops_{valid}, skewness)$
 240 19 $offspring \leftarrow \text{GenerateOffspring}(model1_{seq}, model2_{seq}, ops_{selected})$

241

242

243 4.2 RECURSIVE CONSTRAINED SMITH-WATERMAN CROSSOVER

244

245 Collapsing each architecture to a serialised sequence that is fed to CSWX introduces a branch-order
 246 permutation problem. As an example, a skip connection around a linear layer ($B(2)\{C_{l64}, C_{id}\}$)
 247 is functionally identical regardless of the order of the linear layer and the identity operation in the
 248 encoding. The straight-forward approach to handling this is to compute the complete alignment
 249 matrix for every combination of branch swaps in either parent architecture. However, this method
 250 risks becoming intractable as the number of permutations increases for longer models. We therefore
 251 propose a recursive version of CSWX: RCSWX, which reuses all possible pre-computed information
 252 in the alignment matrix, and only recalculates the cells that would be affected by the swapping of
 253 the branches. RCSWX scales much better on bigger architectures while identifying the same set of
 254 operations for generating hybrid offspring as the brute force approach.

255 RCSWX separates the alignment matrix into submatrices delimited by branching nodes. The number
 256 of nested branching nodes for a certain submatrix is referred to as its depth d . For each submatrix, we
 257 enumerate the 2^d possible branch-order permutations as auxiliary submatrices and compute them as in
 258 CSWX. At each *separator* token that closes a branching node, RCSWX collapses the corresponding
 259 submatrices into one by retaining, for every cell, the minimum-cost path across all permutations. Note
 260 that the collapse does not imply selecting a singular submatrix, but rather combining them by selecting
 261 the best path to reach each individual cell in the alignment matrix. Collapsing at the *separator* tokens
 262 enforces the constraints and preserves global optimality, yielding permutation invariance while keeping
 263 computation feasible.

264 4.3 PROPERTIES OF CSWX AND RCSWX

265 4.3.1 ASYMPTOTIC SCALING

266 The SEPX algorithm (Qiu and Miikkulainen, 2023) requires the computation of the Graph Edit
 267 Distance (GED) between the two parent architectures, which finds the node correspondence that
 268 minimises the total edit cost. The search is combinatorial, thus the number of possible mappings

270 between two graphs of size n_1 and n_2 is $n_1^{n_2}$. This $O(n_1^{n_2})$ scaling makes this approach practically
271 intractable for crossover of longer architectures.
272

273 In contrast, by treating the architectures as serialised trees instead of graphs we can use dynamic
274 programming through the Smith–Waterman algorithm, which gives us CSWX that scales with
275

$$T_{CSWX} = O(n_1 n_2). \quad (2)$$

276 Making CSWX permutation invariant by enumerating all permutations of b branching nodes introduces
277 an exponential factor 2^b , yielding a total scaling of $O(n_1 n_2 2^b)$ for this brute-force approach.
278 Considering that each branching block is composed of 5 tokens (opening, first branch, separator,
279 second branch, closing), then in the worst case every branch can itself be a branching block. This
280 yields a maximum of $b = (n_1 + n_2)/4$ branch nodes, giving worst-case scaling
281

$$T_{BF-CSWX} = O\left(n_1 n_2 2^{\frac{n_1+n_2}{4}}\right). \quad (3)$$

282 RCSWX reduces this exponential factor by reusing partial results within each alignment cell. Instead
283 of a global cost of 2^p (with p the maximum nesting depth), the cost locally at a cell (i, j) is only
284 $2^{d_{ij}}$, where d_{ij} is the number of simultaneously open branches. The total runtime is therefore
285 $\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 2^{d_{ij}}$. The worst case scenario, where both parent models are composed of maximally
286 nested branching blocks along a single branch—which is similar to what may happen in U-Net style
287 networks (Ronneberger et al., 2015)—yields a scaling of
288

$$T_{RCSWX} = O(m^{2m}) \quad (4)$$

289 for $m = \frac{n_1}{4} - 1$ assuming $n_1 = n_2$. RCSWX is faster than SEPX and brute-force CSWX in all cases.
290

293 4.3.2 CSWX AND RCSWX AS DISTANCE METRICS

295 The edit path computed by (R)CSWX naturally yields an edit distance between two architectures.
296 We consider this distance on two related domains. Let \mathcal{A} denote the set of neural architectures,
297 where two architectures are considered identical if they are functionally equivalent (e.g., differing
298 only by functionally inconsequential permutations of operations). Let \mathcal{B} denote the set of syntactic
299 representations of these architectures in the *einspace* grammar (sequences or trees, where branch order
300 is explicit). We now show that the edit distances defined by CSWX and RCSWX satisfy the axioms
301 of a metric on their respective domains.
302

303 **Non-negativity.** Each edit operation has a cost $c_{i,j} \in [0, 1]$, so summing over them yields nonnegative
304 edit distances.
305

306 **Identity of Indiscernibles.** If two input architectures are identical, the shortest edit path follows
307 the diagonal of the alignment matrix with all mutation costs $c_{i,j} = 0$, giving $d_{CSWX}(x, x) = 0$ for any
308 $x \in \mathcal{B}$. For non-identical syntactic representations, CSWX may assign a positive cost even when
309 the architectures are functionally equivalent (e.g., differing only by branch permutations). RCSWX
310 resolves this by mapping syntactic forms in \mathcal{B} to their functional counterparts in \mathcal{A} , ensuring that
311

$$d_{RCSWX}(x, y) = 0 \iff f_{\mathcal{B} \rightarrow \mathcal{A}}(x) = f_{\mathcal{B} \rightarrow \mathcal{A}}(y), \quad x, y \in \mathcal{B}. \quad (5)$$

312 **Symmetry.** Swapping the two input architectures simply transposes the alignment matrix. All node
313 additions will become node deletions and vice-versa, and the final distance will be identical.
314

315 **Triangle Inequality.** The edit distance between two architectures is defined as the cost of the
316 optimal alignment path between them. Consider three architectures x, y, z . The path from x to z can
317 be decomposed by first aligning x to y , and then y to z . Concatenating these two valid edit paths
318 yields a feasible (though not necessarily optimal) path from x to z with cost $d(x, y) + d(y, z)$. Since
319 Smith–Waterman always finds the minimal-cost valid alignment under the grammar constraints, the
320 optimal cost from x to z cannot exceed this concatenated cost. Therefore,
321

$$d(x, z) \leq d(x, y) + d(y, z). \quad (6)$$

322 By satisfying all axioms, $d_{CSWX} : \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}_{\geq 0}$ is a metric in the *syntactic* space, while
323 $d_{RCSWX} : \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}$ is a metric in the *semantic* space of architectures.
324

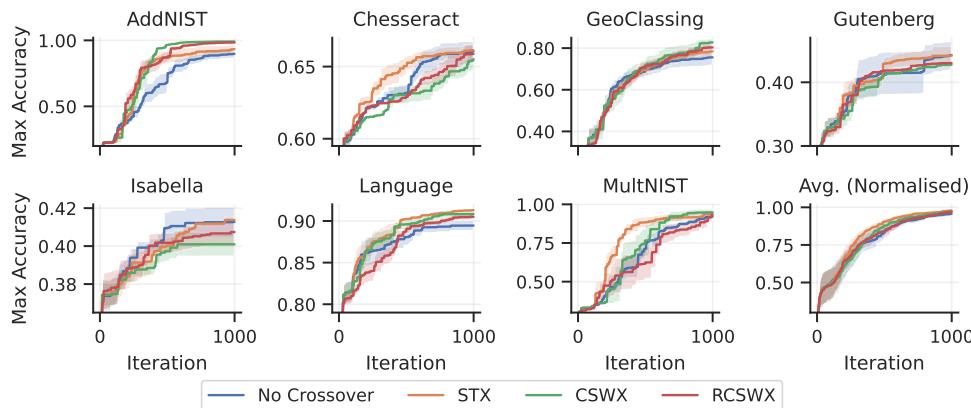
324 **5 EXPERIMENTS**
 325

326 This section lays out the experiments performed to check the capabilities of the (R)CSWX algorithm,
 327 both in terms of exploration capabilities and computational expense. We use a subset of datasets from
 328 the Unseen NAS benchmark (Geda et al., 2024). Population sizes, running times and other similar hy-
 329 perparameters were based off of previous experience on the datasets and explored search spaces (Geda
 330 et al., 2024; Ericsson et al., 2024). Experiments at scale ran on JUWELS (Kesselheim et al., 2021) and
 331 code is made available online at <https://redacted/for/review> under the MIT license.
 332

333 **5.1 SEARCH PERFORMANCE ANALYSIS**
 334

335 We compare the results yielded by (R)CSWX with those obtained using Subtree Crossover (STX)
 336 and with no crossover across **five** different random seeds. We set both the crossover and mutation
 337 probabilities to 1.0, while the no crossover method uses only mutation. **All (R)CSWX hyperparameters**
 338 **such as substitution weights and operation sampling skewness are left as default—see Appendix C**
 339 **for details.** We start with a randomly sampled initial population of 100 architectures, and run the search
 340 for 900 more iterations to a total of 1000 architecture evaluations. Each update works in a steady-state
 341 fashion—that is, we generate a new offspring model and remove the oldest one. The parent models
 342 for offspring generation are chosen by tournament selection.
 343

344 Figure 2 demonstrates the attained validation performances throughout the search and Table 1 shows
 345 the final test scores. They highlight the importance of **choosing an appropriate search strategy to**
 346 **explore each individual space: some datasets make good use of the information sharing enabled**
 347 **by crossover—e.g., using CSWX on AddNIST or STX on Chesseract—while others benefit from**
 348 **a less constrained exploration—e.g., mutation-only searches on Isabella. In some cases, relying on**
 349 **RCSWX’s permutation invariant interpolation underperformed compared to the ones using CSWX,**
 350 **which inject some noise into the shortest path in the form of unnecessary mutation operations. All**
 351 **methods achieved similar validation behaviour on average, but mutation-based approaches show**
 352 **higher overfitting as their test scores are lowest.**
 353



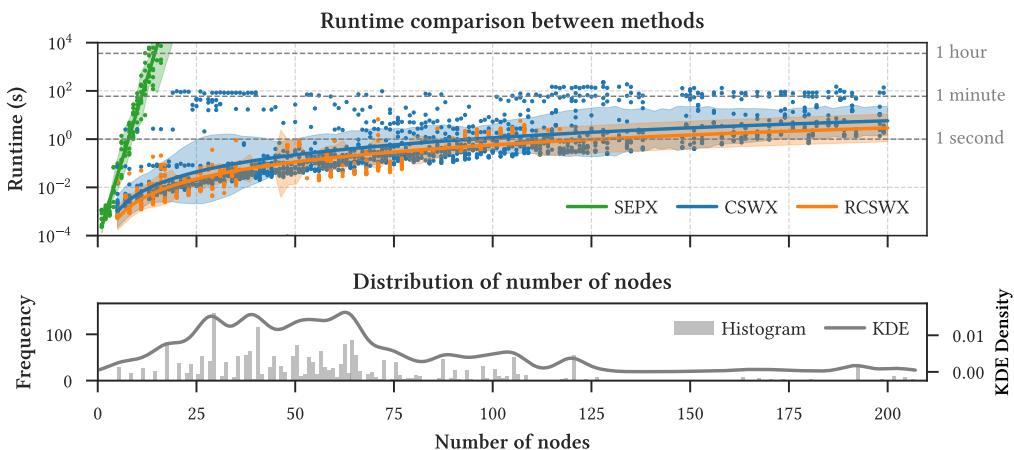
366 Figure 2: Search results comparing STX, CSWX and RCSWX-based evolutionary search with
 367 mutation-only searches. The plots show the mean across **five** seeds and the standard error of the mean.
 368 To assess the average performance, we normalise the results based on the lowest and highest attained
 369 performance within each dataset and combine them into a single plot by averaging (bottom right).
 370

371 Table 1: Test performances of the best models found on the validation set during search, reporting
 372 the mean and standard deviation across **five** seeds. Significance testing can be found in Appendix G.
 373

Dataset	AddNIST	Chesseract	GeoClassing	Gutenberg	Isabella	Language	MultNIST	Avg.
No Crossover	82.13 ± 11.46	60.10 ± 0.78	79.05 ± 2.44	43.35 ± 1.49	48.79 ± 2.25	93.59 ± 1.06	87.99 ± 3.29	70.71 ± 1.79
STX	97.07 ± 0.30	60.91 ± 0.49	86.27 ± 2.03	42.77 ± 1.07	49.94 ± 3.81	96.16 ± 0.61	91.68 ± 2.41	74.97 ± 0.73
CSWX	90.64 ± 4.12	58.80 ± 0.82	82.80 ± 3.29	45.75 ± 1.37	53.25 ± 1.83	95.95 ± 0.41	88.94 ± 2.89	73.73 ± 0.93
RCSWX	95.82 ± 0.36	59.94 ± 0.52	85.90 ± 2.58	44.84 ± 0.41	47.27 ± 3.48	95.41 ± 0.55	91.87 ± 1.22	74.44 ± 0.66

378 5.2 SCALABILITY OF CONSTRAINED SMITH-WATERMAN CROSSOVER
379

380 To prove the computational tractability of the proposed (R)CSWX, the architectures generated in
381 Experiment 5.1 were sorted according to their number of nodes. Then, crossovers were generated using
382 SEPX, CSWX and RCSWX algorithms, whose runtimes are shown in Figure 3. Note that SEPX and
383 RCSWX are guaranteed to produce the same edit paths as they are applied to the same graphs—that is,
384 the *einspace* decision trees—given that they employ the same scoring matrix for the addition, deletion
385 and mutation of layers. We have confirmed this empirically, as all edit paths resulting from SEPX
386 in Figure 3 are identical to those calculated using RCSWX. Maintaining the same operation sampling
387 strategy would also yield the same offspring and, thus, equivalent search results when applied to NAS.
388



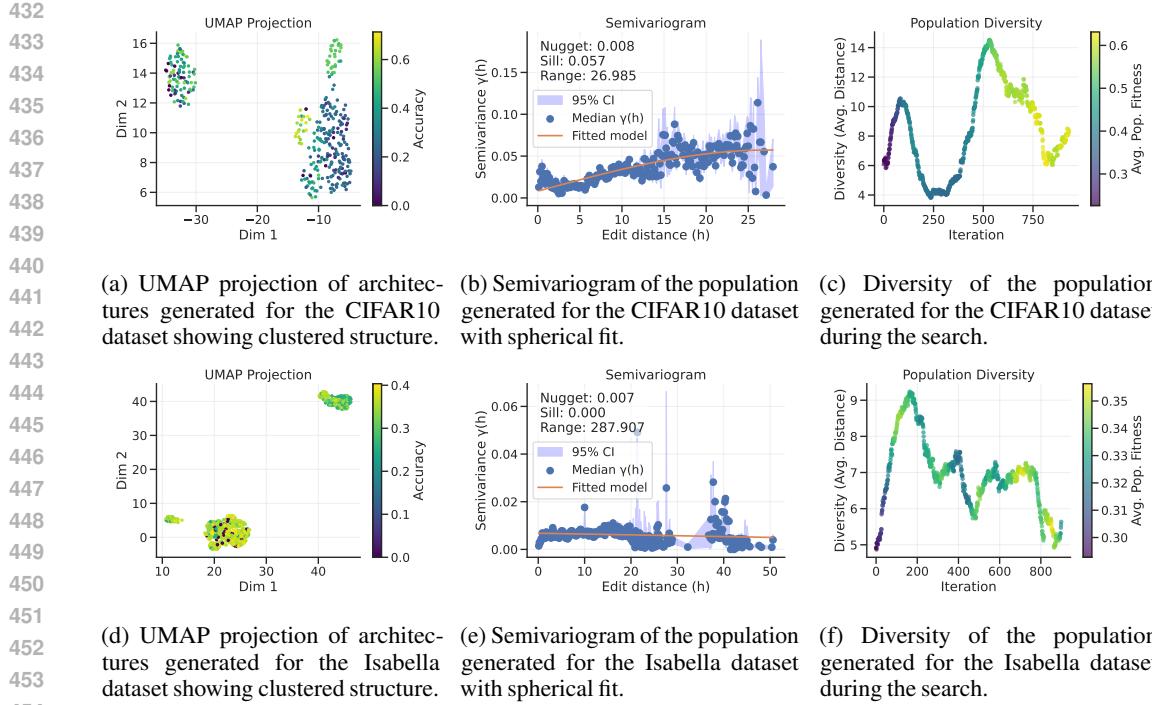
405 Figure 3: Runtime (s, log scale) against node count for RCSWX, CSWX and SEPX. Scatter markers
406 show raw measurements. Solid lines are global fits: power-law for (R)CSWX and exponential for
407 SEPX, with shaded regions showing adaptive error bounds from local log-residual standard deviations.
408 Extrapolated fits suggest increasing runtime with model complexity. Bottom plot shows the realistic
409 distribution of node counts we see in our searches, highlighting the unfeasibility of SEPX in this setting.
410

411 We can see that SEPX quickly becomes intractable at around 20 nodes, while CSWX and RCSWX can
412 be efficiently computed in less than a second for many input architecture pairs. RCSWX even gets to
413 71 nodes before any computation takes longer than one second. We also see that while the asymptotic
414 scaling of RCSWX as shown above is exponential in the number of nested branching structures, this
415 is not a bottleneck in practice.
416

417 5.3 SMOOTHNESS OF THE SEARCH SPACE

418 As shown above, RCSWX acts as an efficiently computable metric on the search space of architectures.
419 To highlight the benefits of this we use it to analyse the structure, and in particular smoothness, of
420 the architectural loss landscape. We calculate the distance between every pair of the 1000 architectures
421 generated for a single seeded search run on the CIFAR10 dataset, [which is a relatively simple and](#)
422 [well studied dataset, and on the Isabella dataset, that contains fewer, more complex data samples](#). The
423 1000×1000 matrices of distances, along with the precomputed performances of said models, have
424 been used to generate the following plots.
425

426 Figures 4a and 4d show two-dimensional UMAP projections based on the edit-distance matrix. The
427 projections reveal that the explored search spaces are highly fragmented: architectures cluster into
428 a small number of well-separated islands. Within each cluster, models are close in edit distance and
429 tend to exhibit somewhat similar performance, but there is less evidence of continuity across clusters.
430 This suggests that while local neighbourhoods may be smooth, the global search space is disconnected.
431 [Some noise can be observed within clusters in both UMAPs, which may correlate to destructive](#)
432 [mutations—e.g., disruption of functional blocks, excessive feature condensation, etc—that yield low](#)
433 [performing models even within promising regions of the architecture spaces.](#)
434



486 of tokens, and shows very promising results, both in terms of exploration/exploitation capabilities
 487 (cf. Figure 2) and computational expense (cf. Figure 3).
 488

489 Regarding empirical compute times, Figure 3 shows that CSWX can be slower than RCSWX. This may
 490 partly stem from implementation overhead, but also from the fact that RCSWX enforces constraints
 491 that reduce the number of valid paths, yielding more consistent runtimes. In contrast, CSWX often
 492 tracks many longer alignment paths, leading to higher variance and worse scaling. Nonetheless, both
 493 methods remain well within acceptable compute times even for large architectures.
 494

495 CSWX enables crossover-based optimisers to be applied to grammar-based encodings such as
 496 *einspace* (Ericsson et al., 2024), while RCSWX adds permutation invariance, making it a valuable
 497 distance metric between different architectures and components and, thus, enable the future possibility
 498 of controlling diversity during search. Prior work argues that small architectural changes rarely
 499 lead to large performance shifts (Yang et al., 2019; Wan et al., 2021), implying that the simpler, less
 500 computationally expensive CSWX might be enough to produce near-optimal results. Interestingly,
 501 the noise introduced by imperfect model alignment can even be beneficial during architecture searches.
 502 Figure 2 shows CSWX sometimes outperforming RCSWX, which may be explained precisely by a
 503 higher exploration of the space induced by the absence of permutation invariance, forcing the addition
 504 and removal of whole branches during crossover that would otherwise simply be swapped and mutated.
 505 With a larger amount of additions and deletions, CSWX may select a very unbalanced set of operations
 506 that changes the size (and thus complexity) of the models considerably. This, in turn, broadens the
 507 search and is especially advantageous when the initial population is weak or when the search space
 508 contains difficult local minima. Imperfect alignment may also result in the addition and deletion of
 509 whole functional blocks—mimicking the behaviour of STX—acting like structured mutations that
 510 successfully guide exploration given a diverse and performant enough initial population.
 511

512 RCSWX, by contrast, encourages steadier exploitation by keeping the search focused near the
 513 best individuals in the initial population, which may hinder the exploration of novel regions of the
 514 architectural space. However, although our initial assessment shows varying performance of the
 515 RCSWX-driven genetic algorithm, this crossover tool could be employed to construct better search
 516 strategies. For instance, the reuse of functional blocks, which seems to be a very performant strategy,
 517 could be mimicked and even improved by (R)CSWX: the alignment matrices provide element-wise
 518 addition, deletion and substitution costs, which enable the identification of highly performing sequences
 519 that can be preserved during offspring generation or even added to the grammar for subsequent
 520 mutation steps. Further research is needed to study how these crossover mechanisms interact with more
 521 sophisticated optimisation strategies—such as those described in Appendix F—especially given the
 522 exploration–exploitation challenges and the differing behaviour across the loss landscapes examined
 523 here. Regardless, our focus in this work is to introduce a theoretically motivated, computationally effi-
 524 cient crossover operator for grammar-based NAS, intended as a tool for further research, rather than as
 525 a benchmark for state-of-the-art performance for any given search strategy or exploration-exploitation
 526 balance. Although spanning around 140 000 architecture evaluations, our results from seven datasets
 527 and five seeds provide only an initial assessment of (R)CSWX-driven searches, showing their potential.
 528

529 When used as a distance metric, RCSWX allows us to analyse the smoothness of the search space in an
 530 unprecedented way. The plots in Figure 4 support the claim that, while sharing common characteristics,
 531 architectural search spaces are indeed quite unique. The two datasets analysed in this work, CIFAR10
 532 and Isabella, are both locally smooth, in the sense that small mutations tend to produce architectures of
 533 similar quality. However, CIFAR10 is much more globally rugged and fragmented than Isabella, with
 534 clusters separated by large distances and little performance correlation across them, while the Isabella
 535 search space appears to be much flatter, with little performance difference among clusters. This has
 536 direct implications for search: local methods such as crossover-based evolution or hill-climbing can
 537 effectively exploit neighbourhoods, but escaping to distant high-performing clusters may require
 538 restarts or more exploratory strategies. Indeed, the pure mutation-based strategy yields the fastest
 539 convergence on the Isabella loss landscape, presumably because the crossover-based approaches tend
 540 to exploit the flat space instead of freely exploring outwards.
 541

542 Future work can focus on explicitly controlling the exploration-exploitation trade-off by means of the
 543 introduced distance metric, implementing and analysing methods like the ones described in Appendix
 544 F. We also believe that the shortest paths generated from the crossover method can be used to assign
 545 component-level merit within architectures, aiming towards the discovery and reuse of performant
 546 architectural blocks and opening up a whole new dimension to explore in the grammar-based NAS field.
 547

540 REFERENCES

541

542 Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., and Vento, M. (2017). Graph edit
543 distance as a quadratic assignment problem. *Pattern Recognition Letters*, 87:38–46. Advances
544 in Graph-based Pattern Recognition.

545 Chen, D., Krimmel, M., and Borgwardt, K. (2025). Flatten graphs as sequences: Transformers are
546 scalable graph generators.

547 Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architecture
548 search.

550 Elsken, T., Metzen, J. H., and Hutter, F. (2019). Efficient multi-objective neural architecture search
551 via lamarckian evolution. In *International Conference on Learning Representations (ICLR’19)*.

552 Ericsson, L., Espinosa, M., Yang, C., Antoniou, A., Storkey, A., Cohen, S. B., McDonagh, S., and
553 Crowley, E. J. (2024). einspace: Searching for neural architectures from fundamental operations.

555 Gead, R., Towers, D., Forshaw, M., Atapour-Abarghouei, A., and McGough, A. S. (2024). Insights
556 from the use of previously unseen neural architecture search datasets. In *Proceedings of the
557 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 22541–22550.

558 Geler, Z., Kurbalija, V., Ivanović, M., Radovanović, M., and Dai, W. (2019). Dynamic time warping:
559 Itakura vs sakoe-chiba. In *2019 IEEE International Symposium on INnovations in Intelligent
560 SysTems and Applications (INISTA)*, pages 1–6.

562 Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In *IEEE International Conference
563 on Neural Networks, 1995. Proceedings*, volume 4, pages 1942–1948 vol.4.

564 Kesselheim, S., Herten, A., Krajsek, K., Ebert, J., Jitsev, J., Cherti, M., Langguth, M., Gong, B., Stadtler,
565 S., Mozaffari, A., Cavallaro, G., Sedona, R., Schug, A., Strube, A., Kamath, R., Schultz, M. G.,
566 Riedel, M., and Lippert, T. (2021). Juwels booster – a supercomputer for large-scale ai research.

568 Koza, J. R. (1994). *Genetic programming II: automatic discovery of reusable programs*. MIT Press,
569 Cambridge, MA, USA.

570 Lankford, S. and Grimes, D. (2024). Neural architecture search using particle swarm and ant colony
571 optimization.

573 Liu, M. and Ji, S. (2022). Neighbor2seq: Deep learning on massive graphs by transforming neighbors
574 to sequences.

575 Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan, K. C. (2023). A survey on evolutionary neural
576 architecture search. *IEEE Transactions on Neural Networks and Learning Systems*, 34(2):550–570.

578 Mateo Avila Pava, René Groh, A. M. K. (2024). Sequence alignment-based similarity metric in
579 evolutionary neural architecture search. In *AutoML 2024*.

580 Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similarities
581 in the amino acid sequence of two proteins. *Journal of Molecular Biology*, 48(3):443–453.

583 Nordin, P., Keller, R., and Francone, F. (1998). *Genetic Programming: An Introduction on the
584 Automatic Evolution of computer programs and its Applications*, pages 101–102. Morgan Kaufmann
585 Publishers Inc.

586 Qiu, X. and Miikkulainen, R. (2023). Shortest edit path crossover: A theory-driven solution to the
587 permutation problem in evolutionary neural architecture search. In *Proceedings of the International
588 Conference on Machine Learning (ICML)*, volume 202 of *Proceedings of Machine Learning
589 Research*, pages 28422–28447. PMLR. Also available as arXiv:2210.14016.

590 Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized Evolution for Image Classifier
591 Architecture Search. In *Proceedings of the Conference on Artificial Intelligence (AAAI’19)*.

593 Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical
594 image segmentation. In *MICCAI*, volume abs/1505.04597.

594 Ru, B., Wan, X., Dong, X., and Osborne, M. (2021). Interpretable neural architecture search via
595 bayesian optimisation with weisfeiler-lehman kernels. In *International Conference on Learning
596 Representations (ICLR'21)*.

597

598 Schrodi, S., Stoll, D., Ru, B., Sukthanker, R., Brox, T., and Hutter, F. (2023). Construction of
599 hierarchical neural architecture search spaces based on context-free grammars.

600

601 Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences. *Journal
of Molecular Biology*, 147(1):195–197.

602

603 Turky, A., Alsaïd, B., Talib, M. A., Nasir, Q., Waraga, O. A., and Mokhamed, T. (2026). Neural
604 architecture search using particle swarm and iterated local search optimization for image
605 classification. *Cluster Comput.*, 29(1).

606

607 Wan, X., Ru, B., Esperança, P. M., and Carlucci, F. M. (2021). Approximate neural architecture search
608 via operation distribution learning. *CoRR*, abs/2111.04670.

609

610 Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M., and Sheinin, V. (2018). Graph2seq: Graph to
611 sequence learning with attention-based neural networks.

612

613 Yang, A., Esperança, P. M., and Carlucci, F. M. (2019). NAS evaluation is frustratingly hard. *CoRR*,
614 abs/1912.12522.

615

616 Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., and Hutter, F. (2019). NAS-Bench-101:
617 Towards reproducible neural architecture search. In *Proceedings of the 36th International
Conference on Machine Learning (ICML'19)*.

618

619 Zhang, K. (1996). A constrained edit distance between unordered labeled trees. *Algorithmica*,
620 15(3):205–222.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

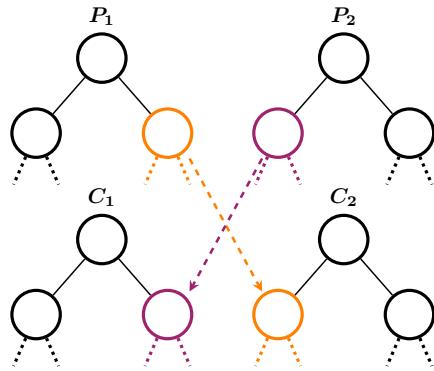
643

644

645

646

647

648 A ALTERNATIVE CROSSOVER METHODS
649
650651 In this section, the two methods used to compare against throughout the paper are explained in detail.
652 Both methods successfully generate hybrid offspring, although they differ significantly in complexity
653 and scope.654
655 A.1 SUBTREE CROSSOVER
656658 Subtree crossover is a classical genetic programming operator that exchanges entire subtrees between
659 parent derivation trees. Koza (1994) demonstrated that this approach preserves coherent functional
660 units, which are essential for maintaining effective computational building blocks. Transferring whole
661 subtrees encourages the reuse of well-performing substructures and supports modular, hierarchical
662 problem solving. Furthermore, its ability to handle variable-length representations allows for a more
663 scalable exploration of complex search spaces. In grammar-based NAS, it is crucial that the exchange
664 subtrees produce syntactically valid architectures. This is achieved by restricting the crossover
665 operation to subtrees rooted at identical non-terminal symbols.666
667
668
669
670
671
672
673
674
675
676
677
678
679
Figure 5: Illustration of subtree crossover. Parent architectures P_1 and P_2 swap selected subtrees (highlighted), generating two offspring architectures C_1 and C_2 .Figure 5 on the left provides a visual illustration of subtree crossover. Two parent architectures, P_1 and P_2 , exchange selected subtrees to yield offspring C_1 and C_2 . This procedure swaps portions of the derivation trees while maintaining grammatical validity. Algorithm 2 formalises the process. It begins by extracting node types from each parent and identifying common non-terminal symbols as potential crossover points. If no common non-terminal exists, the crossover is not performed. Otherwise, a random common node is selected from each parent, and the corresponding subtree from one parent replaces that of the other. This approach preserves key structural components and ensures that the resulting architecture adheres to the prescribed grammar.680
681
682
683
684
685
686
687
Algorithm 2: Subtree Crossover688
689
690
691 **Input:** $model1$, the derivation tree for the first architecture to cross over
692 $model2$, the derivation tree for the second architecture to cross over
693
694 **Output:** $offspring$, the derivation tree for the resulting hybrid architecture
695
696 1 $model1_{types} \leftarrow$ the type of each node in ($model1$)
697 2 $model2_{types} \leftarrow$ the type of each node in ($model2$)
698 3 $common_{types} \leftarrow \{node_t \mid node_t \in model1_{seq} \cap model2_{seq}, node_t \text{ is a non-terminal symbol}\}$
699 4 **if** $common_{types} = \emptyset$ **then**
700 5 **return** failure (no common non-terminals)
701
702 6 Randomly select $node_t \in common_{types}$
703 7 $pos_1 \leftarrow$ the position of a random occurrence of $node_t$ in $model1_{types}$
704 8 $pos_2 \leftarrow$ the position of a random occurrence of $node_t$ in $model2_{types}$
705 9 $node_1 \leftarrow \text{ExtractSubtree}(model1, pos_1)$
706 10 $node_2 \leftarrow \text{ExtractSubtree}(model2, pos_2)$
707 11 $offspring \leftarrow \text{ReplaceSubtree}(model1, pos_1, node_2)$
708 12 **return** $offspring$

702 A.2 SHORTEST EDIT PATH CROSSOVER
703

704 Shortest edit path crossover (SEPX) (Qiu and Miikkulainen, 2023) is designed to overcome the
705 permutation problem in evolutionary NAS. Both parent architectures, $model1$ and $model2$, are
706 represented as graphs, where a graph edit operation modifies the graph by inserting, deleting, or
707 substituting a node or an edge. The graph edit distance (GED) is defined as the minimum total cost
708 (with unit cost per operation) required to transform one graph into an isomorphic copy of the other,
709 so that GED equals the length of the shortest edit path between the two graphs.

710 Formally, let

$$711 \quad ops^* = \operatorname{argmin}_{ops_i \in ops} \sum_{j=1}^{|ops_i|} cost(ops_{i,j}),$$

714 be the shortest edit path from $model1$ to $model2$, which contains d^* unique edit operations. SEPX
715 generates an offspring graph $offspring$ by applying half of these edits to $model1$, sampled at random
716 out of ops^* . That is,

$$718 \quad offspring = ops_{\pi_r(\lceil d^*/2 \rceil)}^* \circ ops_{\pi_r(\lceil d^*/2 \rceil - 1)}^* \circ \dots \circ ops_{\pi_r(1)}^*(model1),$$

720 Here, π_r denotes a random permutation of the edit operation indices, and the composition \circ indicates
721 sequential application of the edit operations.

722 SEPX first computes the GED between the two parent graphs, determining the minimal sequence
723 of edit operations needed to convert one parent into the other. About half of these operations are then
724 randomly chosen and applied to one parent, producing an offspring. By aligning the parent graphs
725 before recombination, the method overcomes the permutation problem—where different genotypes
726 encode the same phenotypes—and preserves shared structural components.

727
728 **Algorithm 3:** SEPX

729 **Input:** $model1$, the graph representation of the first architecture to cross over
730 $model2$, the graph representation of the second architecture to cross over
731 **Output:** $offspring$, the graph representation of the resulting hybrid architecture

```

732 1  $ops^* \leftarrow \text{ComputeShortestEditPath}(model1, model2);$ 
733 2  $ops_{selected} \leftarrow$  a random subset of half of the mutations in  $ops^*$ 
734 3  $offspring \leftarrow \text{GenerateOffspring}(model1_{seq}, model2_{seq}, ops_{selected})$ 
735 4 return  $offspring$ 
```

737 In summary, the key steps are to **ComputeShortestEditPath** to determine the minimal edit sequence,
738 then perform operation selection by randomly sampling half of these operations, and finally **GenerateOffspring**
739 by applying the selected edits. Standard crossover is often disrupted by the permutation
740 problem because different orderings of identical substructures can lead to destructive recombination.
741 By aligning parent graphs using GED, SEPX preserves coherent functional units, making it both a
742 theoretically principled and practically effective method for combining neural architectures.

743
744 A.3 COMPARISON TO OTHER DISTANCE/(DIS)SIMILARITY AND CROSSOVER OPERATORS

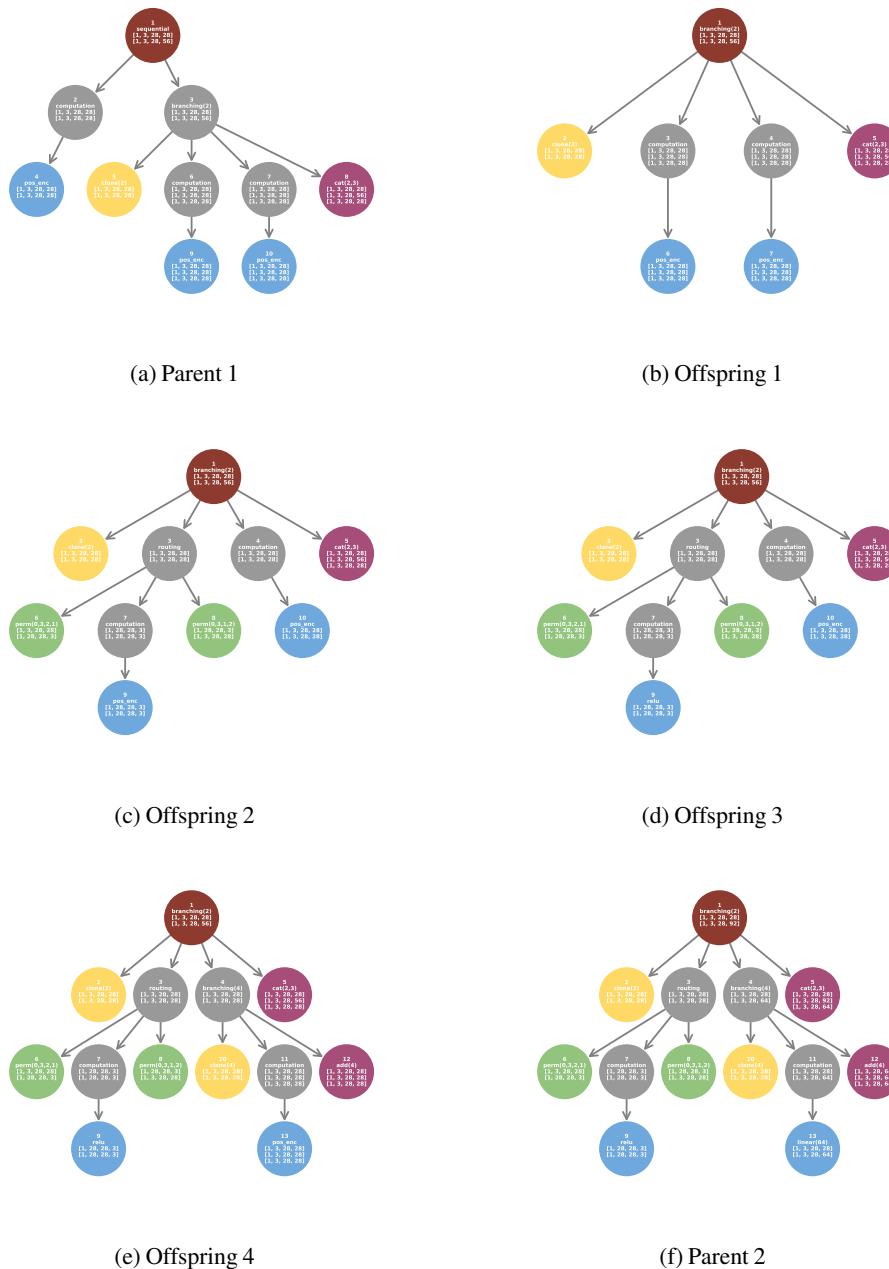
745 Figure 2 compares (R)CSWX to various other methods in the literature that have been applied in the
746 context of NAS.

748 Table 2: Comparison with other methods for computing distances between architectures and using
749 them as crossover operators.

751 Method	752 Distance Metric	753 Crossover Operator	754 Encoding	755 Spaces	Scaling
WL kernel (Weisfeiler–Lehman)	✗	✗	Graph	Any	$O(h(n_1 + m_1 + n_2 + m_2))$
NWNAS (Needleman–Wunsch)	✓	✗	Sequence	Chain-based	$O(n_1 n_2)$
GED/SEPX (Graph Edit Distance)	✓	✓	Graph	Cell-based / general DAGs	$O(n_1^{n_2})$
CSWX	✓	✓	Ordered Tree	Grammar-based	$O(n_1 n_2)$
RCSWX	✓	✓	Semi-ordered Tree	Grammar-based	$O\left(\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} 2^{d_{ij}}\right)$

756 B EXAMPLE INTERMEDIATE OFFSPRING
757
758

759 In this section, we show the two original models and four offspring architectures—as represented
760 by their derivation trees—that could be generated from the CSWX example in Figure 1.



805 Figure 6: From left to right, top to down: original model 1 (a), and offspring models resulting from
806 the removal of the leftmost Computation node (b), the addition of a Routing node (c), the mutation
807 of a positional encoding into a ReLU terminal node (d), the addition of a Branching(4) node (e) and
808 mutation of a positional encoding into a linear terminal node (f), resulting in original model 2.
809

810 C CONSTRAINED SMITH-WATERMAN CROSSOVER FUNCTIONS 811

812 In this section, a more detailed description of the functions referenced in 1 is laid out.
813

814 The **Serialise** function ensures that the resulting list of nodes required to perform CSWX contains the
815 minimal information required while ensuring that the rules of the grammar are preserved. Commencing
816 with a $node_{start}$, it will recursively add the nodes to a list, ignoring Sequential and terminal nodes
817 that can be inferred from the context, and add a $node_{sep}$ after every branch and routing module to
818 signal where it ends. These separator nodes will contain information about the node they are closing
819 and about whether it signals the separation between two branches or the end of the last branch.
820

821 There is almost a one-to-one conversion between the tree and the list representation of the models,
822 save for the order in which the Sequential nodes are nested (which makes no difference in the actual
823 architecture of the represented models).
824

825 **Algorithm 4:** Serialise

826 **Input:** $node$, the model or node we want to serialise
827 **Output:** $node_{seq}$, a serialised representation of $node$

```

828 1 if  $node$  is the root node then
829 2    $node_{seq} \leftarrow node_{start}$ 
830 3 else
831 4    $node_{seq} \leftarrow \emptyset$ 
832 5 if  $node$  is not a terminal node then
833 6   if  $node$  is not a sequential node then
834 7      $node_{seq} \leftarrow node_{seq} \cup node$ 
835 8   for  $child \in$  children of  $node$  do
836 9      $node_{seq} \leftarrow node_{seq} \cup \text{Serialise}(child)$ 
837 10    if  $child$  is not a terminal node and  $node$  is a branching or routing node then
838 11       $node_{seq} \leftarrow node_{seq} \cup node_{sep}$ 

```

840 The **SubstitutionCost** function is really straightforward, comparing two nodes to assign a cost of
841 substituting one into the other.
842

843 **Algorithm 5:** SubstitutionCost

844 **Input:** $node1$, the first node to compare
845 $node2$, the second node to compare
846 **Output:** $cost$, the dissimilarity between $node1$ and $node2$

```

847 1 if  $node1$  and  $node2$  are the same type of node then
848 2   if The first and last children of  $node1$  and  $node2$  are the same type of node then
849 3     if The first and last children of  $node1$  and  $node2$  have the same hyperparameters then
850 4        $cost \leftarrow 0$ 
851 5     else
852 6        $cost \leftarrow 0.25$ 
853 7   else
854 8      $cost \leftarrow 0.5$ 
855 9 else
856 10    $cost \leftarrow \text{inf}$ 

```

859 If the nodes to compare are Computation nodes, the first and last child will be the same—the type of Com-
860 putation operation—, while for Branching and Routing nodes the first and last children will define the
861 kind of operations performed. For instance, the $node1$ Branching(4)group(1,4), M, cat(1,4) would have:
862

- **SubstitutionCost**($node1$, Branching(4)group(1,4), M, cat(1,4)) = 0

864 • **SubstitutionCost**(*node1*, Branching(8)group(1,8), M, cat(1,8)) = 0.25
 865 • **SubstitutionCost**(*node1*, Branching(4)clone(4), M, add(4)) = 0.5
 866 • **SubstitutionCost**(*node1*, Computation(identity)) = inf
 867

868 As of now, the substitution costs are arbitrarily fixed, but in the future they could be modulated by
 869 factors such as the probabilities of sampling each type of node from the grammar, the observed
 870 impact of substituting one layer into another throughout the search or any given a-priori information,
 871 among others. One way of making the mutation cost of performing a mutation that swaps a derivation
 872 tree node y for another node x depend solely on the sampling probabilities would be defining it
 873 as $C(x, y) = \sum_{i=1}^N \left(\prod_{j=1}^{M_i} \left(1 - P(x_i^j) \right) \right) \left(1 - \mathbb{1}_{x_i^j}(y_i^j) \right)$, where N is the maximum depth of the
 874 sampling of the hyperparameters of a node (for instance, Computation \rightarrow linear \rightarrow 64 would have
 875 $N=2$), M_i is the number of options for the current depth (Computation \rightarrow linear | act_function | identity
 876 would have $M_1=3$), and $\mathbb{1}_{x_i^j}(y_i^j)$ is the indicator function signaling whether y_i^j is the same as x_i^j .
 877

878 A brief analysis of the sensitivity of the distance calculation to the actual mutation costs has been
 879 carried out in Appendix D.

880 The **ValidPath** function is where the "Constrained" in "Constrained Smith-Waterman Crossover"
 881 comes from, discarding paths that would result in models that do not follow the grammar rules.

884 **Algorithm 6:** ValidPath

885 **Input:** *path*, which holds the direction to reach each intermediate model
 886 *model1_{seq}*, the serialised representation of *model1*
 887 *model2_{seq}*, the serialised representation of *model2*
 888 *i*, the starting first index in the matrix
 889 *j*, the starting second index in the matrix
 890 *direction*, the direction we attempt to move towards from the starting position
 891 **Output:** *valid*, which signals whether the direction would be a valid operation

```

 1 node1 ← model1seq[i]
 2 node2 ← model2seq[j]
 3 if direction = "sub" then
 4   if node1 and node2 are the same type of node then
 5     if node1 and node2 are separators then
 6       condition1 ← True
 7       condition2 ← True
 8       i ← i - 1
 9       j ← j - 1
10     while condition1 or condition2 do
11       if path[i, j] = "add" then
12         i ← i - 1
13       else if path[i, j] = "rem" then
14         j ← j - 1
15       else if path[i, j] = "mut" then
16         i ← i - 1
17         j ← j - 1
18       if not condition1 then
19         condition1 ← node1 is a separator that closes model1seq[i]
20       if not condition2 then
21         condition2 ← node2 is a separator that closes model2seq[j]
22       if path[i, j] = "mut" then valid ← True;
23       else valid ← False;
24     else valid ← True;
25   else valid ← False;

```

918
919
920
921
922

923 **26** **else if** *direction* = "add" **then**
924 **if** *node1* is a separator **then**
925 *depth* \leftarrow 0
926 *i* \leftarrow *i* - 1
927 **while** *node1* does not close *model1_{seq}*[*i*] **do**
928 **if** *model2_{seq}*[*j* - *i*] is the start of a branching or a routing node **then**
929 *depth_{change}* \leftarrow 1
930 **else if** *model2_{seq}*[*j* - *i*] closes a branch or a routing node **then**
931 *depth_{change}* \leftarrow -1
932 **else**
933 *depth_{change}* \leftarrow 0
934 **if** *path*[*i*, *j*] = "add" **then**
935 *i* \leftarrow *i* - 1
936 **else if** *path*[*i*, *j*] = "rem" **then**
937 *depth* \leftarrow *depth_{change}*
938 *j* \leftarrow *j* - 1
939 **else if** *path*[*i*, *j*] = "mut" **then**
940 *depth* \leftarrow *depth_{change}*
941 *i* \leftarrow *i* - 1
942 *j* \leftarrow *j* - 1
943 **if** *depth* = 0 **then** *valid* \leftarrow True;
944 **else** *valid* \leftarrow False;
945 **else** *valid* \leftarrow True;
946 **49** **else if** *direction* = "rem" **then**
947 **if** *node2* is a separator **then**
948 *depth* \leftarrow 0
949 *j* \leftarrow *j* - 1
950 **while** *node2* does not close *model2_{seq}*[*j*] **do**
951 **if** *model1_{seq}*[*i* - *j*] is the start of a branching or a routing node **then**
952 *depth_{change}* \leftarrow 1
953 **else if** *model1_{seq}*[*i* - *j*] closes a branch or a routing node **then**
954 *depth_{change}* \leftarrow -1
955 **else**
956 *depth_{change}* \leftarrow 0
957 **if** *path*[*i*, *j*] = "add" **then**
958 *depth* \leftarrow *depth_{change}*
959 *i* \leftarrow *i* - 1
960 **else if** *path*[*i*, *j*] = "rem" **then**
961 *j* \leftarrow *j* - 1
962 **else if** *path*[*i*, *j*] = "mut" **then**
963 *depth* \leftarrow *depth_{change}*
964 *i* \leftarrow *i* - 1
965 *j* \leftarrow *j* - 1
966 **if** *depth* = 0 **then** *valid* \leftarrow True;
967 **else** *valid* \leftarrow False;
968 **else** *valid* \leftarrow True;
969
970
971

972 In the case of attempting the substitution of one node into another, we first check that they are inter-
 973 changeable. Substituting a Branching by a Computation, for instance, would result in an incongruous
 974 model, as the Computation node would not be suitable for holding the Branching node's children;
 975 thus, we only allow substitution between nodes of the same type, regardless of their hyperparameters.
 976 Note that Branching(2) is different from all other Branching nodes, as it holds four children instead
 977 of three, and thus are not interchangeable. If the nodes we want to substitute are both instances of the
 978 $node_{sep}$ class, we trace the path back to make sure that we substituted their associated opening nodes.

979 If we try to add or delete a module, we only have to be careful when dealing with a $node_{sep}$ instance.
 980 If that were the case, we ned to trace back the operations to ensure that (1) the associated opening
 981 node was dealt with with the same operation and (2) that we are not adding or deleting any non-closed
 982 Branching nor Routing nodes, nor any non-opened separator ones.

983 The **TraceBack** function is used to transform the $dists$ and $paths$ matrices into an actual set of
 984 operations that we can perform to transform $model1_{seq}$ into $model2_{seq}$.
 985

986 **Algorithm 7:** TraceBack

988 **Input:** $model1_{seq}$, the serialised representation of $model1$
 989 $model2_{seq}$, the serialised representation of $model2$
 990 $dists$, which holds the distance from $model1$ to every intermediate model
 991 $paths$, which holds the steps to reach each intermediate model from $model1$
 992 **Output:** ops_{valid} , the list of operations to transform $model1$ into $model2$

993 1 $ops_{valid} \leftarrow \emptyset$
 994 2 $i \leftarrow \text{length of } model1_{seq}$
 995 3 $j \leftarrow \text{length of } model2_{seq}$
 996 4 **while** $i > 0$ **or** $j > j$ **do**
 997 5 $op_{new} \leftarrow \{$
 998 6 $id \leftarrow \text{length of } ops_{valid}$, serving as the operation identifier
 999 7 $type \leftarrow \text{the kind of operation ("add_node", "parallelise", "substitute" ...)}$
 1000 8 $value \leftarrow \text{the cost of performing the operation}$
 1001 9 $i \leftarrow \text{the first index where the node starts}$
 1002 10 $j \leftarrow \text{the second index where the node starts}$
 1003 11 $ii \leftarrow \text{the first index where the node's separators start, if any}$
 1004 12 $jj \leftarrow \text{the second index where the node's separators start, if any}$
 1005 13 $ops_{disabler} \leftarrow ops_{disabler}$, the operations that forbid performing op_{new}
 1006 14 $ops_{enabler} \leftarrow ops_{enabler}$, the operations that allow performing op_{new}
 1007 15 }
 1008 16 **if** $op_{new}\{value\} > 0$ **then**
 1009 17 $ops_{valid} \leftarrow ops_{valid} \cup op_{new}$
 1010 18 **if** a branching or routing module has been added or deleted **then**
 1011 19 **for** all operations dealing with nodes contained within **do**
 1012 20 Update their disabler and enabler operations
 1013 21 **if** $path[i,j] = \text{"add"}$ **then**
 1014 22 $i \leftarrow i - 1$
 1015 23 **else if** $path[i,j] = \text{"rem"}$ **then**
 1016 24 $j \leftarrow j - 1$
 1017 25 **else if** $path[i,j] = \text{"mut"}$ **then**
 1018 26 $i \leftarrow i - 1$
 1019 27 $j \leftarrow j - 1$

1020
 1021 Starting from the bottom right corner of the matrices, we follow the path until we reach the top left corner
 1022 and save all the operations that have a cost, along with all the information required to perform them: what
 1023 nodes are involved, their positions and, importantly, their interactions with the rest of the operations.

1024
 1025 • Adding a branching or routing module around certain nodes is disabled by deleting all nodes
 inside, and enabled by adding any other node inside.

1026

- Adding a branching or routing module and all nodes inside is disabled by itself, and enabled by adding any of the other inside nodes.

1027

- Deleting a nodes inside a branching or routing is disabled by deleting all nodes inside said branching or routing, and enabled by either adding another node inside or deleting the branching or routing itself.

1028

1029 Knowing which operations enable and disable each other is crucial to be able to generate valid
1030 architectures that follow the grammar rules.

1031

1032 The **SelectOperations** function takes in all possible operations we can perform to substitute one
1033 parent model into another. It first validates each combination of operations, using their sets of
1034 disabler and enabler operations to check that no incongruous model would be created. It then assigns
1035 each combination a distance from the first model given by the value of each operation within. We
1036 then generate a truncated Gaussian probability distribution—optionally presenting a *skewness*
1037 parameter—that accommodates only values ranging from 0 to the maximum possible distance given
1038 by our operations. The probability of each combination of operations will then be drawn from the
1039 defined distribution and used to sample one *ops_{selected}* at random out of all valid combinations.

1040

1041

1042 By default, the *skewness* parameter is set to zero, generating a truncated, non-skewed Gaussian
1043 probability distribution. It could however be defined based on, for instance, the relative performance of
1044 both parents. This *skewness* parameter will make the *offspring* produced by *ops_{selected}* resemble
1045 more closely the desired parent. Having a high skewness towards the best out of the two parents would
1046 enhance exploitation and reduce exploration, as the models generated would be closer to said parent. It
1047 might be interesting to increase this skewness as the search progresses and more promising regions
1048 in the space of architectures are found; however, considering that the exploitative RCSWX-based
1049 search strategies often underperformed when compared to exploration-focused approaches—see Figure
1050 2—having a high skewness at the beginning would bias the search too much towards the first decent
1051 architectures found, hindering overall search performance. In any case, having a high skewness towards
1052 the worst performing parent would not make much sense, as it would induce higher exploitation of
1053 the least promising regions in the architecture space, benefiting from neither exploration nor thorough
1054 exploitation. The influence of the skewness parameter should be less noticeable the closer the parent
1055 models are, as these would belong to the same region of the architecture space and not have novel
1056 architectures to explore in between the parents.

1057 **Algorithm 8:** SelectOperations

1058 **Input:** *ops_{valid}*, the set of possible operations
1059 *skewness*, the skewness of the operation sampling probability distribution

1060 **Output:** *ops_{selected}*, a chosen subset of *ops_{valid}*

1061 1 *combinations* $\leftarrow \emptyset$

1062 2 **for** *i* $\leftarrow 1$ **to** (length of *ops_{valid}*)² **do**

1063 3 *combo_{str}* \leftarrow binary representation of *i* with as many digits as operations in *ops_{valid}*

1064 4 *ops* \leftarrow a subset of *ops_{valid}* given by *combo_{str}*

1065 5 **if** *ops* is a valid set of operations **then**

1066 6 *combinations*{*combo_{str}*} $\leftarrow \sum \text{ops}_j\{\text{value}\}$

1067

1068 7 *distr* \leftarrow a distribution with given *skewness*, truncated to 0 and $\max(\text{combinations})$

1069 8 *probs* \leftarrow probability of each combination’s value given by *distr*

1070 9 *probs* $\leftarrow \text{probs} / \sum \text{probs}$

1071 10 *combo_{selected}* \leftarrow an operation subset from *combinations* sampled with probability *probs*

1072 11 *ops_{selected}* \leftarrow a subset of *ops_{valid}* given by *combo_{selected}*

1073

1074

1075 **D SENSITIVITY TO THE MUTATION COSTS**

1076

1077 The distance metric—and thus, the subsequent search and loss landscape analysis—is completely
1078 dependent on the cost assigned to adding, removing or substituting layers in the input sequences.
1079 In order to better assess the influence of these costs, we have analysed the distance obtained when
comparing 50 pairs of randomly generated models with the scoring matrices defined in Table 3.

Table 3: Scoring matrices defined

Name	Addition/deletion cost	Mutation cost
Scoring matrix 0	Always 1	0 if nodes are the same, 0.25 if nodes' children's hyperparameters differ, 0.5 if nodes' children's type of node differ and ∞ if parents type of node differ
S. M. 1	Always 1	0 if nodes' children's are exactly the same, 0.5 if not, ∞ if parent's type of node differ
S. M. 2	Always 1	∞ if parent's type of node differ, 0.5 otherwise
S. M. 3	Number of branches for branching nodes, 1 otherwise	Difference in number of branches for branching nodes, same as default scoring matrix otherwise

All models were sampled from *einspace*, having a length ranging from 4 to 104 layers, sampled uniformly. Each architecture was paired with another one with the same length. The results are depicted in the Figure 7.

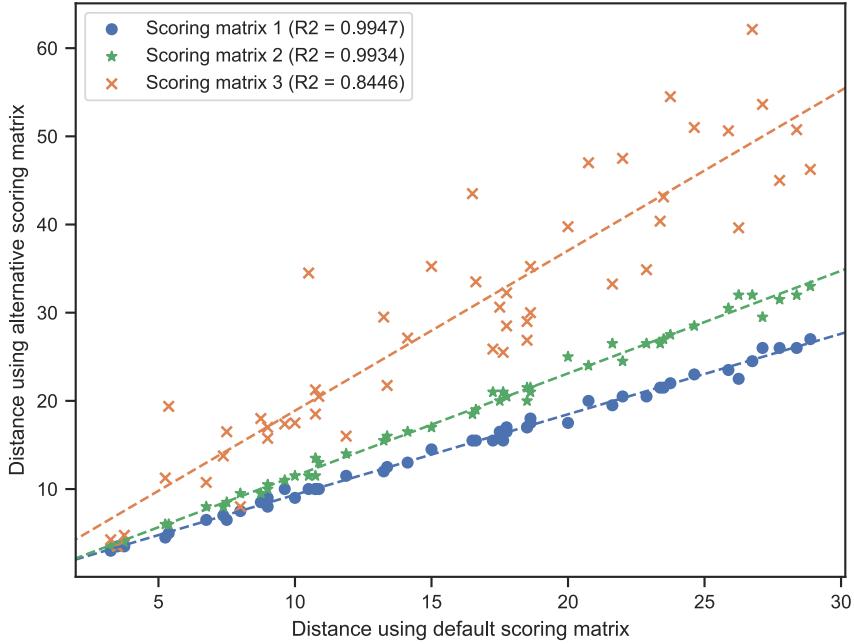


Figure 7: Distance calculated for randomly sampled pairs of models employing scoring matrices 0 (x axis) and 1 through 3 (y axis) with RCSWX, along with their linear fits and R^2 .

It becomes clear that the scoring matrix changes the behaviour of the (R)CSWX because the relationship between the attained distances is not perfectly linear. The bigger the change in scoring matrix—in this case, weighting branching mutations by their number of branches, which can add a cost of 8 for a single operation rather than the maximum of 1 in the other scoring matrices—the higher the observed non-linearity. However, we can clearly see the correlation across the distances achieved, and thus we hypothesise that neither the loss landscape analysis nor the search results would be significantly changed by the choice of scoring matrix. Even if the loss landscape is warped, the clusters of architectures would remain close together, while distant architectures would remain distant. These differences would be the most noticeable for small-grain analysis and thorough exploitation of the space but, in those scenarios, the inherent randomness in the training—weight initialisation, data sampling, etc—would likely have a higher influence than a perturbation in the distance between models.

1134 **E CROSSING OVER PREDESIGNED MODELS**
11351136
1137 In this section, we explore the capabilities of RCSWX to compare and cross over relatively big
1138 predesigned models. We have constructed members of the ResNet and MLP-Mixer families in the
1139 *einspace* grammar and compared them, obtaining the following results.
11401141 Table 4: RCSWX results on the predefined architectures
1142

Architectures	number of nodes	compute time	distance
ResNet18, MLP-Mixer d8	267, 264	39.054 seconds	60.38
ResNet18, MLP-Mixer d12	267, 392	342.383 seconds	95.38
ResNet34, MLP-Mixer d8	499, 264	86.633 seconds	119.62
ResNet34, MLP-Mixer d12	499, 392	741.57 minutes	115.62

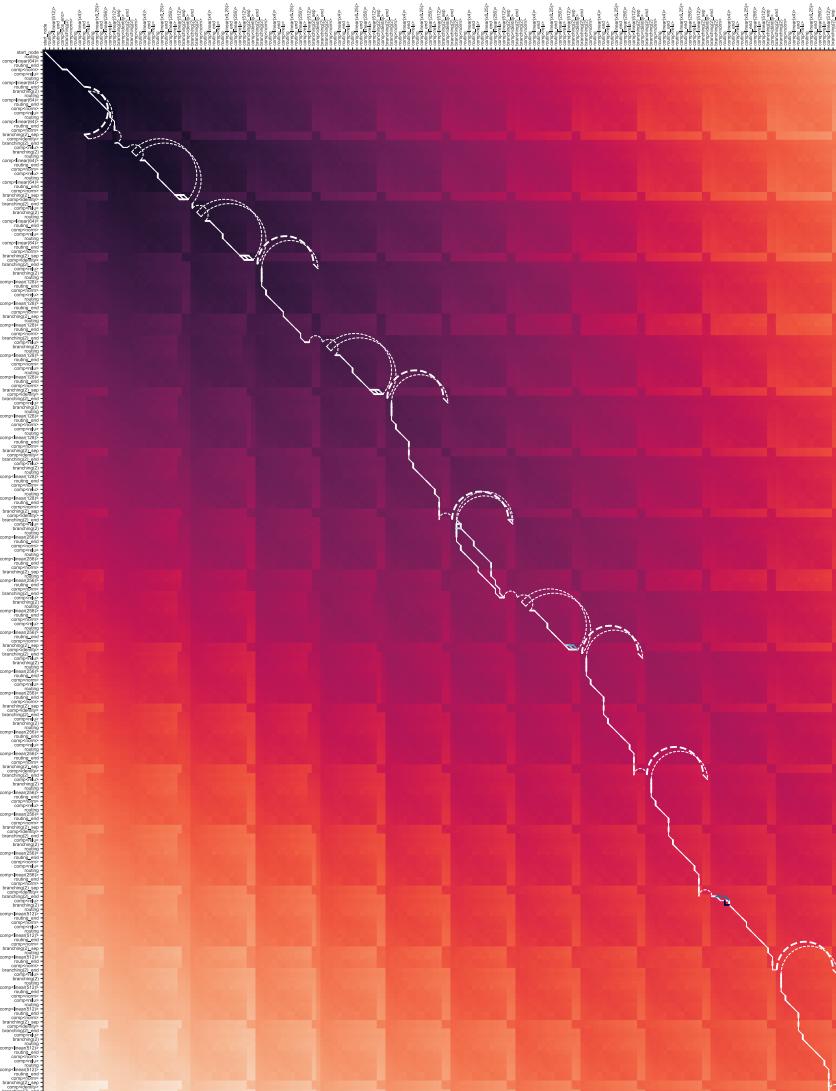
1143
1144 The resulting alignment matrices are depicted in the following figures.
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 8: Alignment matrix for ResNet34 and MLP-Mixer d12

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

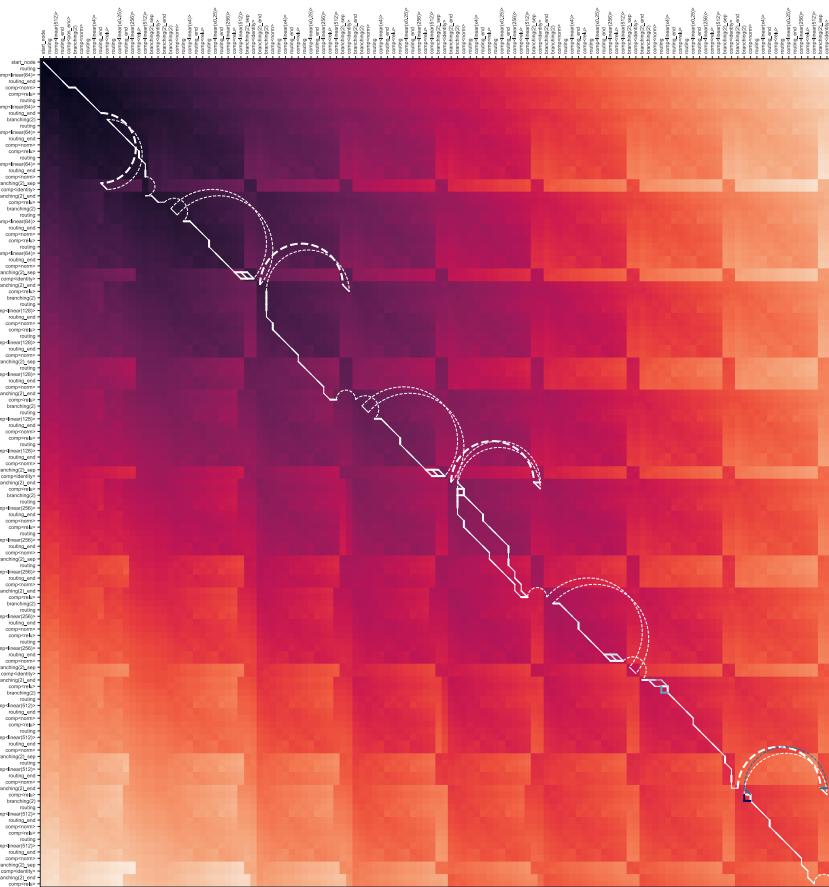


Figure 9: Alignment matrix for ResNet18 and MLP-Mixer d8

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

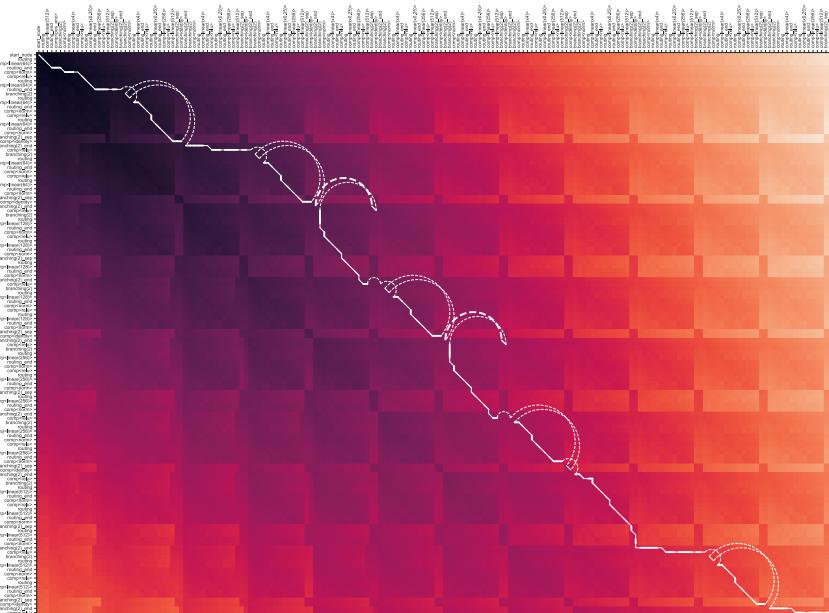


Figure 10: Alignment matrix for ResNet18 and MLP-Mixer d12

1296 The repetitive block-based nature of the architectures becomes apparent when compared, with cyclical
 1297 patterns—whose actual shapes and cycle lengths are defined by the alignment of the first and final
 1298 layers of the architectures—spread throughout the shortest edit paths.

1299 Also note that compute times are relatively low considering the large number of nodes for the alignment
 1300 of ResNet18 and MLP-Mixer d8. This can be explained by the low depth throughout the matrix. There
 1301 are no nested branches in either of the models, which lowers the amount of recursive computing—which
 1302 translates into reduced computations, but also reduced overhead as well. However, compute times are
 1303 relatively high for the alignment of ResNet34 and MLP-Mixer d12. This is due to redundant, irrelevant
 1304 paths, mostly in the lower left and upper right corners, as checked empirically after the computations
 1305 were performed. While alignments surrounding the shortest edit path are relatively constrained, there
 1306 are a lot of equally low-performing paths further away towards the corners—e.g., it is as costly to mutate
 1307 the first ResNet block into the first MLP-Mixer block and then add the second MLP-Mixer block than it
 1308 is to add the first MLP-Mixer block and then mutate the first ResNet block into the second MLP-Mixer
 1309 block. These paths are redundant in the sense that they achieve the same final distance and obey the same
 1310 constraints. Keeping track of all these paths is not only memory intensive but compute intensive as well,
 1311 as every possible path needs to be checked for constraints to continue forwards with the next operation.

1312 The phenomena discussed above highlight the deviation in compute time from theory to practice
 1313 and suggest that, for real applications with warm initialisations, RCSWX might be way faster than
 1314 what is observed in Figure 3, given that the redundant and unpromising paths are collapsed or ignored.
 1315 This collapse can either be cell-wise—each time we compute a cell, we collapse all redundant paths
 1316 into one—or matrix-wise—considering how unlikely it is to find a best path very far away from the
 1317 main diagonal of the alignment matrix, we can restrict the maximum number of path calculations at
 1318 the corners by employing techniques akin to constraining with the Sakoe-Chiba band or the Itakura
 1319 parallelogram (Geler et al., 2019).

1320 F BROADER APPLICABILITY

1321 In this work we have exemplified the use of (R)CSWX with the implementation of a simple genetic
 1322 evolution optimiser to explore models expressed in the *einspace* grammar. However, our goal is to
 1323 provide an efficient tool that enables researchers and NAS practitioners to deploy any crossover-based
 1324 algorithm on their own search spaces, and even apply (R)CSWX to sequence alignment outside of the
 1325 Deep Learning field. In this section, we suggest how to use (R)CSWX to construct different optimisers—
 1326 using two or more parent architectures to generate offspring based both on model performance or
 1327 relative distances—and work with complex search spaces to demonstrate its wide applicability.

1332 F.1 (R)CSWX ON COMPLEX SEARCH SPACES

1334 F.1.1 MULTI INPUT-OUTPUT SPACES

1335 Allowing multiple input and output nodes in an architecture can be achieved by paying with the
 1336 constraints in the grammar—that is, by modifying the mutation costs. For spaces where all architectures
 1337 present the same number of inputs and outputs, which is the most common case, it is enough to give
 1338 the addition/deletion of input and output nodes—as well as the their substitution from or into any other
 1339 type of node—a cost of ∞ . This would force (R)CSWX to hinge around these nodes, aligning the
 1340 intermediate segments. For cases with varying number of input and output nodes, input and output nodes
 1341 can be treated as any other type of node as there should not be any actual constraints on their position
 1342 within the architectures. If we want the best paths to align as many of these nodes as possible, though, it
 1343 would be sufficient to set the cost of adding/deleting these nodes to a high enough number—for instance,
 1344 if adding or removing any other node has a cost of 1, the cost of adding or removing an input/output
 1345 node can simply be the length of the biggest parent—and the cost of substituting from or into any other
 1346 type to ∞ . An example alignment matrix calculated in this fashion is shown in Figure 12 below.

1347 Note that the case with aligned input and output nodes can be treated as a specific, fortuitous, instance
 1348 of the unaligned multi-input and -output; however, setting the addition/deletion costs to ∞ instead of
 1349 a large value allows to directly flag and ignore all positions in the alignment matrix outside the regions
 defined by these hinge points, speeding up computations considerably for large models.

	START		B		INPUT		A		A		INPUT		A		OUTPUT	
START	0			∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
		0+1	1	1+8	9	9+1	10	10+1	11	11+8	19	19+1	20	20+1	21	
A	∞	0+1	0+0.5	1+1	∞	9+1	9+0	10+1	10+0	11+1	∞	19+1	19+0	20+1	20+0.5	21+1
	∞	1	1+1	0.5	0.5+8	8.5	8.5+1	9	9+1	10	10+8	18	18+1	19	19+1	20
A	∞	1+1	1+0.5	0.5+1	∞	8.5+1	8.5+0	9+1	9+0	10+1	∞	18+1	18+0	19+1	19+0.5	20+1
	∞	2	2+1	1.5	1.5+8	9.5	9.5+1	8.5	8.5+1	9	9+8	17	17+1	18	18+1	19
INPUT	∞	2+8	∞	1.5+8	1.5+0	9.5+8	∞	8.5+8	∞	9+8	9+0	17+8	∞	18+8	∞	19+8
	∞	10	10+1	9.5	9.5+8	1.5	1.5+1	2.5	2.5+1	3.5	3.5+8	9	9+1	10	10+1	11
B	∞	10+1	10+0	9.5+1	∞	1.5+1	1.5+0.5	2.5+1	2.5+0.5	3.5+1	∞	9+1	9+0.5	10+1	10+0	11+1
	∞	11	11+1	10	10+8	2.5	2.5+1	2	2+1	3	3+8	10	10+1	9.5	9.5+1	10
A	∞	11+1	11+0.5	10+1	∞	2.5+1	2.5+0	2+1	2+0	3+1	∞	10+1	10+0	9.5+1	9.5+0.5	10+1
	∞	12	12+1	11	11+8	3.5	3.5+1	2.5	2.5+1	2	2+8	10	10+1	10	10+1	10
OUTPUT	∞	12+8	∞	11+8	∞	3.5+8	∞	2.5+8	∞	2+8	∞	10+8	∞	10+8	10+0	10+8
	∞	20	20+1	19	19+8	11.5	11.5+1	10.5	10.5+1	10	10+8	18	18+1	18	18+8	10

Figure 12: Alignment matrix for two sequences with a differing number of input nodes (addition/deletion cost of 1; mutation cost of 0 if nodes are the same, 0.5 if they are interchangeable). Each matrix cell is subdivided into substitution, deletion, addition and selected costs. Selected operations are shown in a light colour, and deprecated operations are shown in grey. The shortest edit path is shown in green.

F.1.2 RECURSIVE GRAPHS

Aligning recursive architectures using the (R)CSWX is not a trivial task. The best way to approach this is to make sure that the sequential representation of the graph is representative, reversible and unique—or, at least, limited in such a way that we can calculate all possible alignments recursively in a reasonable amount of time—and, then, define the mutation costs appropriately to make sure that the constraints of the grammar are respected. Using the input and output nodes as anchor points, we can define the sequence of nodes employing simple graph traversal algorithms, like breadth-first search, depth-first search, or encoder-based approaches, like (Xu et al., 2018; Liu and Ji, 2022; Chen et al., 2025). Special separator tokens can be introduced during the definition of the sequences. By carefully defining the addition, deletion and substitution costs for these separator tokens, we can force the shortest edit paths to respect the rules of the space we are exploring—similarly to what has been accomplished with the constraints imposed to the Branching (2) layers in the *einspace* grammar—and/or weight the alignment of the architecture loops according to our needs.

F.2 (R)CSWX TO DEFINE SEARCH ALGORITHMS

F.2.1 PARTICLE SWARM OPTIMISATION

In particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995), each individual in the population calculates its new position in the space by moving in a direction defined by a vector, which is interpolated from the vector pointing towards the best position achieved by the individual so far and the vector pointing towards the best individual in the current population. These two components can be weighted by the fitness of their respective individuals, and the interpolated vector can be rescaled

1404 based on a given step size. This approach has already been successfully applied to NAS (Lankford
 1405 and Grimes, 2024; Turky et al., 2026), but its application is heavily hindered by the ability to perform
 1406 crossovers in the search space defined. We propose a method to perform multi-parent crossover by
 1407 pooling the mutation operations yielded by (R)CSWX into four sets from which to sample from,
 1408 allowing the deployment of any multi-parent interpolation-based algorithm, like PSO.

1409 First, the original model is aligned with both parents separately using (R)CSWX. Then, the two
 1410 resulting sets of operations are compared with one another. Those pairs of operations that are exactly the
 1411 same—e.g., removing a Computation (ReLU) node from the original individual that is not present
 1412 in either one of the other two parents—are bagged together in set A . Then, those pairs of operations that
 1413 are similar—e.g., mutating a Computation (ReLU) node into a Computation (linear64) in
 1414 one of the alignments and into a Computation (linear32) in another—are bagged together into
 1415 set B . The rest of the operations are bagged individually in sets C_1 and C_2 , according to the alignment
 1416 matrix they belong to.

1417 The number—or combine cost—of operations to be performed can be modulated by a step size
 1418 parameter. We sample operations at random from set A until needed. If we sample all operations
 1419 from set A , we continue sampling pairs of operations from set B . The actual operation to perform
 1420 out of the pair can be sampled according to the individuals’ fitness scores. If set B is depleted, we
 1421 select operations from the remaining sets C_1 and C_2 . Once again, the set from which to sample each
 1422 operation can be selected probabilistically based on the individuals’ respective fitness.

1423 After applying the selected operations, the generated offspring is guaranteed to be closer to both
 1424 parents simultaneously, given that they share some common nodes. This method can be expanded
 1425 to perform multi-crossover across any number of parents, but the probability of finding common
 1426 operations reduces drastically and the definition of further operation sets—e.g., operations shared by
 1427 all alignments, operations shared by all but one alignments, etc—might be necessary to avoid treating
 1428 all operations as unpaired.

1430 F.2.2 ESTIMATION OF DISTRIBUTION ALGORITHMS

1431 Using the distances across all models in the population, we can define a high dimensional space—
 1432 similarly to Section 5.3—and construct a probabilistic model that shifts the sampling of the new
 1433 offspring towards the most promising regions of the space. This sampling can be performed by either
 1434 (1) selecting parents for crossover that define lines that cross over said promising regions and using
 1435 the skewness parameter to control the sampling while remaining probabilistic or (2) performing
 1436 multi-parent interpolation similarly to the approach described to perform PSO.

1438 F.2.3 DIFFERENTIAL EVOLUTION

1439 Differential Evolution (DE) can be implemented by combining the sets of operations yielded by
 1440 (R)CSWX. A population size $NP \geq 4$ and a crossover probability $CR \in [0,1]$ need to be selected. Due
 1441 to the space to explore being combinatorial rather than numerical, the definition of a differential weight
 1442 $F \in [0,2]$ is not trivial and we opt to simply set it to 1.

1443 First, for each individual in the population x_n , we select three other individuals x_1 , x_2 and x_3 , and
 1444 define the set of operations that transform models x_a and x_b as $\Omega_{x_a, x_b} = x_a - x_b$. We can then calculate
 1445 a donor set of operations Ω_{donor} as $\Omega_{\text{donor}} = (x_1 - x_n) \cup ((x_2 - x_n) \not\in (x_3 - x_n))$. A single operation
 1446 is sampled out of Ω_{donor} to mimic the behaviour of the δ random variable in the DE algorithm. Then,
 1447 for each other operation in Ω_{donor} , we discard it with probability $p = 1 - CR$, generating the set Ω_{final} .
 1448 To generate the new individuals, we simply apply all operations in Ω_{final} to x_n .

1451 F.2.4 FIREFLY ALGORITHM

1452 In the firefly algorithm, for each search step t , each individual x_i in the population of size NP is
 1453 updated by moving towards each other individual x_j that presents a better fitness based on their
 1454 distance r_{ij} and a random permutation $\alpha_t \epsilon_t$ such that $x_i^{t+1} = x_i^t + \alpha_t \epsilon_t + \sum_{j=1}^{NP} \beta(x_j^t - x_i^t) e^{-\gamma r_{ij}^2}$. The
 1455 random permutation can be achieved with a simple mutation, while the term that moves each individual
 1456 towards the best ones in the population can be calculated using (R)CSWX.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511



Figure 13: Critical difference (CD) diagram comparing the average ranks of the four algorithms across all datasets. The Friedman test did not reveal a statistically significant difference among the methods ($p = 0.0997$), and none of the Wilcoxon–Holm post-hoc comparisons reached significance. All algorithms fall within a single cluster—indicated by the horizontal connection—showing that their rank differences do not exceed the critical threshold.

First, for each individual x_i we select every architecture x_j that presents better fitness and calculate the set of operations Ω_j that transforms x_i into x_j . Then, for each operation across all models that pertain to a certain node—e.g., one node in x_i is a Computation (linear 64) that is either removed or changed to a different type of Computation node in some of the alignments—we select the one pertaining to the alignment with individual x_j with a probability proportional to $e^{-\gamma r_{ij}^2}$, generating a set of operations Ω_{selected} . These distances r_{ij} are already known as it is given by (R)CSWX, which has already been used to generate the sets of mutation operations. Lastly, each operation in Ω_{selected} is either selected or discarded based off a probability β , generating Ω_{final} . By applying the operations in Ω_{final} , we produce an offspring architecture that is interpolated from the population based on both their relative fitnesses and distances.

F.2.5 CUSTOM DIVERSITY-DRIVEN ALGORITHMS

The distance metric provided by RCSWX can be employed to explicitly control the exploration–exploitation tradeoff, be it by regularising architecture scores with a diversity term or selecting a novel individual for training out of a batch of mutated ones. This allows for tweaking already existing optimisers or even proposing new ones. Explicitly controlling the diversity of the population is not only expected to further improve results by helping escape local minima, but is also crucial for deep ensemble learning and other scenarios where non-regularised NAS tends to underperform.

G SIGNIFICANCE TESTING

To assess whether the four algorithms—mutation-only, STX, CSWX and RCSWX-driven evolutionary algorithms—differ significantly in performance across datasets, we applied a non-parametric Friedman test to their accuracy ranks in the datasets’ test partitions. The statistical test did not reject the null hypothesis that all algorithms perform equivalently ($p = 0.0997$), indicating that the observed differences in average rank are not statistically meaningful. For completeness, we also conducted Wilcoxon signed-rank pairwise comparisons with Holm correction, with none of the pairwise comparisons recognised as significant. The corresponding critical difference (CD) diagram reflects this outcome: all algorithms fall within a single cluster, illustrating that their rank differences do not exceed the critical threshold. These results together indicate that we cannot conclude that any algorithm outperforms the others across the evaluated datasets.

LLM USAGE

Large language models were used only to aid and polish the writing of this paper, as well as auto-complete code fragments.