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ABSTRACT

Neural architecture search (NAS) in expressive search spaces is a computationally
hard problem, but it also holds the potential to automatically discover completely
novel and performant architectures. To achieve this we need effective search
algorithms that can identify powerful components and reuse them in new
candidate architectures. In this paper, we introduce two adapted variants of the
Smith-Waterman algorithm for local sequence alignment and use them to compute
the edit distance in a grammar-based evolutionary architecture search. These
algorithms enable us to efficiently calculate a distance metric for neural architectures
and to generate a set of hybrid offspring from two parent models. This facilitates the
deployment of crossover-based search heuristics, allows us to perform a thorough
analysis on the architectural loss landscape, and track population diversity during
search. We highlight how our method vastly improves computational complexity
over previous work and enables us to efficiently compute shortest paths between
architectures. When instantiating the crossover in evolutionary searches, we achieve
competitive results, outperforming competing methods. Future work can build upon
this new tool, discovering novel components that can be used more broadly across
neural architecture design, and broadening its applications beyond NAS.

1 INTRODUCTION

Neural architecture search (NAS) (Elsken et al., 2019) has traditionally operated in constrained
search spaces, defined by limited operations and fixed topologies. Popular benchmarks such as
NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang, 2020) restrict exploration
to cell-based architectures built from only a handful of primitives. While these constraints simplify
optimisation, they confine the search to narrow structural templates that cannot lead to fundamentally
better architectures but rather incremental improvements of existing ones.

Recently, more expressive NAS search spaces have been proposed to enable broader architectural
discovery. For example, Hierarchical NAS (Schrodi et al., 2023) expands cell-based spaces by
including high-level macro design choices such as network topology. Similarly, Ericsson et al. (2024)
introduce einspace, a parameterised context-free grammar (PCFG) that spans architectures of varying
depth, branching patterns, and operation types. Unlike earlier spaces that only fine-tuned existing
templates, these approaches unlock the potential to discover fundamentally new architectures.

However, this expressiveness comes at the cost of scalability. The vast size and complexity of
grammar-based spaces make exploration difficult. Evolutionary operators such as mutation and
crossover, while effective in small DAG-based spaces (Real et al., 2019), do not easily transfer to
these flexible representations. Moreover, the lack of tractable distance metrics for large graphs or
trees hinders the ability to control diversity or measure smoothness within the search. Advancing NAS
therefore requires efficient metrics and recombination operators tailored to expressive spaces.

Prior work on shortest edit path crossover (SEPX) demonstrated a theoretically principled method by
finding the minimal sequence of graph edits needed to transform one parent into the other (Qiu and Mi-
ikkulainen, 2023). This approach addresses the permutation problem where different graph encodings
represent equivalent networks. While SEPX can yield high-quality offspring in smaller spaces, it does
not scale well to the larger, more complex architectures of modern NAS. Computing the true shortest
edit path essentially requires solving a graph edit distance problem, which is NP-hard (Bougleux et al.,
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2017). As the number of nodes and connections increases, graph matching becomes computationally
intractable (as we show in Figure 3), limiting SEPX’s applicability in expressive NAS spaces.

In this work, we propose a scalable alternative: a novel evolutionary crossover operator inspired
by local sequence alignment. By leveraging the context-free grammar representation introduced
in einspace (Ericsson et al., 2024), our method represents each architecture as a sequence of tokens
and employs a constrained variant of the Smith-Waterman algorithm (Smith and Waterman, 1981) to
identify high-scoring local alignments between parent sequences. These alignments serve as a shortest
edit path between architectures and can be used to guide recombination, ensuring that offspring inherit
coherent and functionally analogous substructures. Furthermore, the edit distance we get is a metric on
space of functional architectures and can be used to aid the search itself, controlling diversity, as well
as to perform extensive analysis on the architectural loss landscape. Crucially, these benefits can be
attained due to the efficient computation that offers orders of magnitude speed-ups compared to SEPX.

• We introduce an efficient grammar-based sequence-alignment algorithm for computing edit
paths and distances between neural architectures in expressive search spaces, guaranteeing
syntactic validity. We show that this reduces computation time by orders of magnitude
compared to previous methods.

• Our algorithm enables powerful new applications: (a) crossover along the shortest edit path
in grammar-based NAS, and (b) diversity measurement and architectural loss landscape
analysis through its use as a distance metric.

• We demonstrate these applications in one of the most expressive search space to date,
establishing new tools for both search and interpretability in NAS. Our analysis reveals the
loss landscape at unprecedented scale, quantifying its smoothness and clustered structure.

2 BACKGROUND

Neural architecture search. NAS is commonly described in terms of three components: a search
space, which defines the set of candidate architectures; a search strategy, which explores that space;
and a performance estimator, which evaluates candidate models (Elsken et al., 2019). This work
focuses on methods that enrich search strategies and enable more effective exploration and analysis
of expressive search spaces.

Grammar-based search spaces. Context-free grammars (CFGs) provide a compact and expressive
way to encode architectures through a set of production rules. The einspace framework (Ericsson et al.,
2024) builds on this idea by constructing a grammar that allows for complex architecture topologies
while keeping a simple set of rules. In particular, the rule

M → B M M A1, (1)

specifies a branching(2) module where two independent submodules (M) are combined via a
branching operator (B) followed by an aggregation operator (A). The resulting component allows for
branching structures in the network, and thus break the sequential nature of the architectural encodings.
In addition to Branching modules, other production rules of the grammar describe Sequential
and Routing modules, and terminal nodes can be grouped into types—Branching, Aggregation,
Pre-Routing, Post-Routing and Computation. For more details, see Ericsson et al. (2024).

Evolutionary search. Evolutionary algorithms search by maintaining a population of candidate
architectures and iteratively applying selection and variation operators (Liu et al., 2023). Variation
is typically achieved through mutation, which introduces small random edits, and crossover, which
recombines substructures from two parents into new offspring. While mutation drives local exploration,
effective crossover can accelerate search by sharing and recombining high-performing architectural
motifs across the population.

1We specifically refer to the branching obtained with two submodules (branching factor of 2), as these are
sampled independently from the grammar. For branching factors of 4 or 8, a single submodule is repeated, which
does not introduce permutation invariance problems.
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3 RELATED WORK

Recent NAS methods use context-free grammars (CFGs) to create more expressive architectural
search spaces. Hierarchical NAS (Schrodi et al., 2023) uses grammars to compose diverse macro-
and micro-structures, expanding significantly beyond traditional cell-based spaces. Ericsson et al.
(2024) employs probabilistic CFGs with recursive rules, enabling novel architectures with varied
depth, width, and operations, encompassing varied known performant models. Grammar-based NAS
significantly enhances architectural expressiveness, enabling diverse structures such as CNNs and
Transformer variants in the same space. However, the resulting vast search spaces require specialised
strategies—e.g., Bayesian optimisation (Ru et al., 2021) or seeded evolutionary methods (Ericsson
et al., 2024)—to effectively navigate them.

The natural encoding for architectures in these spaces is the derivation tree, formed by following the
production rules of the grammar to the architecture string sequence. The fastest and simplest way
of crossing over such an encoding is subtree crossover (STX), which simply swaps two non-terminal
nodes from the parent architectures (Nordin et al., 1998). This facilitates the sharing of well-performing
blocks, but its simplicity hinders its ability to discover hybrid blocks. Consequently, the population
diversity can stagnate, and both the exploration and exploitation of the architectural space become
mainly driven by mutation operators rather than the crossover itself.

Moreover, evolutionary NAS crossover faces the permutation problem, where different representations
can encode the same functional architecture.

Traditional methods for ordered tree edit distance, as proposed for example by Zhang and Shasha
(1989), fail to address this issue. SEPX (Qiu and Miikkulainen, 2023), on the other hand, addresses
the permutation problem by recombining parent architectures via minimal graph edit operations,
preserving maximal common structures and ensuring permutation invariance. SEPX outperforms
standard evolutionary methods theoretically and empirically (Qiu and Miikkulainen, 2023), but
computing exact graph edit distances is NP-hard, restricting its practical use to small-scale graphs
(e.g., NAS-Bench-101’s 7-node cells). This computational limitation hampers its scalability to larger,
more complex architectures. In general, none of the methods proposed in the literature make use of
the inherit structures found in the functional neural architectures represented by the corresponding
trees and graphs, and thus tend to compute unnecessary alignment options.

An alternative approach to calculate edit paths and distances is to treat the architecture graph as
a linearised sequence and apply sequence alignment methods, such as the Needleman-Wunsch
(NW) (Needleman and Wunsch, 1970) and Smith-Waterman (SW) algorithms (Smith and Waterman,
1981). This has been studied in the context of NAS by Mateo Avila Pava (2024), who use NW to
compute distances between architectures and thus study and control population diversity during search.
The main restriction of this approach, however, is that it only works for sequential representations of
architectures, often known as chain-structured spaces. This means it cannot be used for more complex
network topologies including components like skip connections and multi-head branching. Moreover,
the authors do not integrate the edit path into a crossover operator but rather use a simple one-point
crossover, which again limits the exploration to sequential architectures.

Our approach achieves the crossover and distance metric abilities of SEPX (Qiu and Miikkulainen,
2023) but at a vastly improved speed due to our treatment of the encoding in a hybrid tree/sequential
way. We use fast dynamic programming to deal with the purely sequential part of the architectures,
while recursively applying the method on any branching components to tackle permutation invariance.
This effectively combines Smith-Waterman with the ordered and constrained unordered tree edit
distance algorithms into an efficient method for our setting (Smith and Waterman, 1981; Zhang and
Shasha, 1989; Zhang, 1996).

4 PROPOSED METHOD

Given a well-defined grammar, any model can be expressed as a sequential set of tokens by serialising
the derivation tree. Building on the work by Mateo Avila Pava (2024), we propose two variants of the
Smith-Waterman algorithm (Smith and Waterman, 1981) to be used as a computationally efficient edit
distance metric and crossover operator. The addition of constraints within the scoring system extends
the validity of this method from sequence alignment to ordered trees, yielding our proposed constrained

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Smith-Waterman crossover (CSWX) algorithm. CSWX works on a sequential representation of
the architectures, presents a high flexibility and computational efficiency, and provides a thorough
component-level comparison of the two parent models, alongside the produced offspring.

We further modify CSWX to recursively compute and collapse submatrices corresponding to
permuted subsections of the alignment matrix, achieving invariance to permutation, producing the
recursive constrained Smith-Waterman crossover (RCSWX) algorithm. This allows the calculation
of shortest edit paths and distances between complex graph and semi-ordered tree topologies through
grammar-based search space definitions. For further explanation of the subtree crossover (STX) and
shortest edit path crossover (SEPX), which will be used to compare the proposed methods with, please
refer to Appendix A.

4.1 CONSTRAINED SMITH-WATERMAN CROSSOVER

We introduce CSWX in Algorithm 1. Using Serialise, we convert each parent model into a simplified
sequence. Nodes implied by structure, e.g. Sequential, Grouping, Aggregation, are omitted. To delimit
branches and routing nodes, we insert separator tokens. To satisfy Smith-Waterman, we prefix each
sequence with a start token and place the two sequences on perpendicular axes (see Figure 1).

Figure 1: Example dists and paths matrices
overlaid. Lighter coloured cells denote a higher
distance from the first parent model, shown on
top. Moving towards the right entails deleting a
node from the first model, moving downwards
represents the addition of a node from the sec-
ond model, and moving diagonally corresponds
to a node substitution. Dashed lines signal the
closure of branching and routing nodes. The
optimal mutation path is traced back in thicker
lines, whose brightness reflects the weight of
each operation, being brightest intensities a
cost of 1, and darker ones reaching a cost of 0.

Then, we compute the minimum-cost path that
transforms the first parent into the second via
additions, deletions, and substitutions. For each
operation considered, we check its validity through
the ValidPath function. This ensures that we only
substitute nodes of the same type (e.g., a branching
node cannot be replaced by a terminal node).
Moreover, if we try to add, delete, or substitute a
separator node, it checks that we performed the
same operation to the corresponding Routing or
Branching node, and that all Routing and Branching
nodes we may have added, deleted, or substituted
within that path are properly closed by their
corresponding separator, avoiding incongruous
models. We sequentially fill all positions within the
dist and paths matrices, starting from the top left,
selecting the path that presents the smallest cost to
reach each one. Once the bottom right corner of
the matrix is reached, the best path is traced back
and transformed into a series of operations through
the TraceBack function. Following said path from
Figure 1 would yield the following offspring.

remove Cpe

add R

mutate Cpe→Crelu

add B(4)

mutate Cpe→Cl64

Cpe,B(2){Cpe,Cpe}

B(2){Cpe,Cpe}

B(2){R[Cpe],Cpe}

B(2){R[Crelu],Cpe}

B(2){R[Crelu],B(4){Cpe}}

B(2){R[Crelu],B(4){Cl64}}

If we performed all these operations, we would sim-
ply obtain the second model; as we are interested
in creating a hybrid offspring, we sample a subset
of operations through the SelectOperations function.

Lastly, these operations are applied within the GenerateOffspring function, which produces the
desired offspring as the same tree-based format used for the parent models. For visualisations of
the architectures that can be constructed along the shortest path in Figure 1, see Appendix B. Further
details and pseudocode for all described functions is provided in Appendix C.
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Algorithm 1: Constrained Smith-Waterman Crossover
Input: model1, the derivation tree for the first architecture to cross over

model2, the derivation tree for the second architecture to cross over
1 skewness, the skewness of the operation sampling probability distribution

Output: offspring, the derivation tree for the resulting hybrid architecture

2 model1seq← Serialise(model1)
3 model2seq← Serialise(model2)
4 dist← empty array of dimensions length of model1seq × length of model2seq
5 paths← empty array of dimensions length of model1seq × length of model2seq
6 for i←1 to length of model1seq do
7 for j←1 to length of model2seq do
8 mut, add, rem←∞
9 if ValidPath(paths, model1seq, model2seq, i, j, ”sub”) then

10 mut←dist[i−1,j−1]+ SubstitutionCost(model1seq[i], model2seq[j])

11 if ValidPath(paths, model1seq, model2seq, i, j, ”add”) then
12 add←dist[i−1,j]+1−(model1seq[i] is a separator node)
13 if ValidPath(paths, model1seq, model2seq, i, j, ”rem”) then
14 rem←dist[i,j−1]+1−(model2seq[j] is a separator node)
15 dist[i,j]←min(mut, add, rem)
16 path[i,j]←(”sub”, ”add”, ”rem”)[argmin(mut,add,rem)]

17 opsvalid←TraceBack(model1seq, model2seq, dist, paths)
18 opsselected← SelectOperations(opsvalid, skewness)
19 offspring←GenerateOffspring(model1seq, model2seq, opsselected)

4.2 RECURSIVE CONSTRAINED SMITH-WATERMAN CROSSOVER

Collapsing each architecture to a serialised sequence that is fed to CSWX introduces a branch-order
permutation problem. As an example, a skip connection around a linear layer (B(2){Cl64,Cid})
is functionally identical regardless of the order of the linear layer and the identity operation in the
encoding. The straight-forward approach to handling this is to compute the complete alignment
matrix for every combination of branch swaps in either parent architecture. However, this method
risks becoming intractable as the number of permutations increases for longer models. We therefore
propose a recursive version of CSWX: RCSWX, which reuses all possible pre-computed information
in the alignment matrix, and only recalculates the cells that would be affected by the swapping of
the branches. RCSWX scales much better on bigger architectures while identifying the same set of
operations for generating hybrid offspring as the brute force approach.

RCSWX separates the alignment matrix into submatrices delimited by branching nodes. The number
of nested branching nodes for a certain submatrix is referred to as its depth d. For each submatrix, we
enumerate the 2d possible branch-order permutations as auxiliary submatrices and compute them as in
CSWX. At each separator token that closes a branching node, RCSWX collapses the corresponding
submatrices into one by retaining, for every cell, the minimum-cost path across all permutations. Note
that the collapse does not imply selecting a singular submatrix, but rather combining them by selecting
the best path to reach each individual cell in the alignment matrix. Collapsing at the separator tokens
enforces the constraints and preserves global optimality, yielding permutation invariance while keeping
computation feasible.

4.3 PROPERTIES OF CSWX AND RCSWX

4.3.1 ASYMPTOTIC SCALING

The SEPX algorithm (Qiu and Miikkulainen, 2023) requires the computation of the Graph Edit
Distance (GED) between the two parent architectures, which finds the node correspondence that
minimises the total edit cost. The search is combinatorial, thus the number of possible mappings
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between two graphs of size n1 and n2 is nn2
1 . This O(nn2

1 ) scaling makes this approach practically
intractable for crossover of longer architectures.

In contrast, by treating the architectures as serialised trees instead of graphs we can use dynamic
programming through the Smith–Waterman algorithm, which gives us CSWX that scales with

TCSWX =O(n1n2). (2)

Making CSWX permutation invariant by enumerating all permutations of b branching nodes introduces
an exponential factor 2b, yielding a total scaling of O

(
n1n22

b
)

for this brute-force approach.
Considering that each branching block is composed of 5 tokens (opening, first branch, separator,
second branch, closing), then in the worst case every branch can itself be a branching block. This
yields a maximum of b=(n1+n2)/4 branch nodes, giving worst-case scaling

TBF−CSWX =O
(
n1n22

n1+n2
4

)
. (3)

RCSWX reduces this exponential factor by reusing partial results within each alignment cell. Instead
of a global cost of 2p (with p the maximum nesting depth), the cost locally at a cell (i,j) is only
2dij , where dij is the number of simultaneously open branches. The total runtime is therefore∑n1

i=1

∑n2

j=12
dij . The worst case scenario, where both parent models are composed of maximally

nested branching blocks along a single branch—which is similar to what may happen in U-Net style
networks (Ronneberger et al., 2015)—yields a scaling of

TRCSWX =O
(
m22m

)
(4)

for m= n1

4 −1 assuming n1=n2. RCSWX is faster than SEPX and brute-force CSWX in all cases.

4.3.2 CSWX AND RCSWX AS DISTANCE METRICS

The edit path computed by (R)CSWX naturally yields an edit distance between two architectures.
We consider this distance on two related domains. Let A denote the set of neural architectures,
where two architectures are considered identical if they are functionally equivalent (e.g., differing
only by functionally inconsequential permutations of operations). Let B denote the set of syntactic
representations of these architectures in the einspace grammar (sequences or trees, where branch order
is explicit). We now show that the edit distances defined by CSWX and RCSWX satisfy the axioms
of a metric on their respective domains.

Non-negativity. Each edit operation has a cost ci,j ∈ [0,1], so summing over them yields nonnegative
edit distances.

Identity of Indiscernibles. If two input architectures are identical, the shortest edit path follows
the diagonal of the alignment matrix with all mutation costs ci,j =0, giving dCSWX(x,x)=0 for any
x ∈ B. For non-identical syntactic representations, CSWX may assign a positive cost even when
the architectures are functionally equivalent (e.g., differing only by branch permutations). RCSWX
resolves this by mapping syntactic forms in B to their functional counterparts inA, ensuring that

dRCSWX(x,y)=0 ⇐⇒ fB→A(x)=fB→A(y), x,y∈B. (5)

Symmetry. Swapping the two input architectures simply transposes the alignment matrix. All node
additions will become node deletions and vice-versa, and the final distance will be identical.

Triangle Inequality. The edit distance between two architectures is defined as the cost of the
optimal alignment path between them. Consider three architectures x,y,z. The path from x to z can
be decomposed by first aligning x to y, and then y to z. Concatenating these two valid edit paths
yields a feasible (though not necessarily optimal) path from x to z with cost d(x,y)+d(y,z). Since
Smith–Waterman always finds the minimal-cost valid alignment under the grammar constraints, the
optimal cost from x to z cannot exceed this concatenated cost. Therefore,

d(x,z)≤ d(x,y)+d(y,z). (6)

By satisfying all axioms, dCSWX : B × B → R≥0 is a metric in the syntactic space, while
dRCSWX :A×A→R≥0 is a metric in the semantic space of architectures.
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5 EXPERIMENTS

This section lays out the experiments performed to check the capabilities of the (R)CSWX algorithm,
both in terms of exploration capabilities and computational expense. We use a subset of datasets from
the Unseen NAS benchmark (Geada et al., 2024). Population sizes, running times and other similar hy-
perparameters were based off of previous experience on the datasets and explored search spaces (Geada
et al., 2024; Ericsson et al., 2024). Experiments at scale ran on JUWELS (Kesselheim et al., 2021) and
code is made available online at https://redacted/for/review under the MIT license.

5.1 SEARCH PERFORMANCE ANALYSIS

We compare the results yielded by (R)CSWX with those obtained using Subtree Crossover (STX)
and with no crossover across five different random seeds. We set both the crossover and mutation
probabilities to 1.0, while the no crossover method uses only mutation. All (R)CSWX hyperparameters
such as substitution weights and operation sampling skewness are left as default—see Appendix C
for details. We start with a randomly sampled initial population of 100 architectures, and run the search
for 900 more iterations to a total of 1000 architecture evaluations. Each update works in a steady-state
fashion—that is, we generate a new offspring model and remove the oldest one. The parent models
for offspring generation are chosen by tournament selection.

Figure 2 demonstrates the attained validation performances throughout the search and Table 1 shows
the final test scores. They highlight the importance of choosing an appropriate search strategy to
explore each individual space: some datasets make good use of the information sharing enabled
by crossover—e.g., using CSWX on AddNIST or STX on Chesseract—while others benefit from
a less constrained exploration—e.g., mutation-only searches on Isabella. In some cases, relying on
RCSWX’s permutation invariant interpolation underperformed compared to the ones using CSWX,
which inject some noise into the shortest path in the form of unnecessary mutation operations. All
methods achieved similar validation behaviour on average, but mutation-based approaches show
higher overfitting as their test scores are lowest.
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Figure 2: Search results comparing STX, CSWX and RCSWX-based evolutionary search with
mutation-only searches. The plots show the mean across five seeds and the standard error of the mean.
To assess the average performance, we normalise the results based on the lowest and highest attained
performance within each dataset and combine them into a single plot by averaging (bottom right).

Table 1: Test performances of the best models found on the validation set during search, reporting
the mean and standard deviation across five seeds. Significance testing can be found in Appendix G.

Dataset AddNIST Chesseract GeoClassing Gutenberg Isabella Language MultNIST Avg.

No Crossover 82.13 ± 11.46 60.10 ± 0.78 79.05 ± 2.44 43.35 ± 1.49 48.79 ± 2.25 93.59 ± 1.06 87.99 ± 3.29 70.71 ± 1.79
STX 97.07 ± 0.30 60.91 ± 0.49 86.27 ± 2.03 42.77 ± 1.07 49.94 ± 3.81 96.16 ± 0.61 91.68 ± 2.41 74.97 ± 0.73
CSWX 90.64 ± 4.12 58.80 ± 0.82 82.80 ± 3.29 45.75 ± 1.37 53.25 ± 1.83 95.95 ± 0.41 88.94 ± 2.89 73.73 ± 0.93
RCSWX 95.82 ± 0.36 59.94 ± 0.52 85.90 ± 2.58 44.84 ± 0.41 47.27 ± 3.48 95.41 ± 0.55 91.87 ± 1.22 74.44 ± 0.66
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5.2 SCALABILITY OF CONSTRAINED SMITH-WATERMAN CROSSOVER

To prove the computational tractability of the proposed (R)CSWX, the architectures generated in
Experiment 5.1 were sorted according to their number of nodes. Then, crossovers were generated using
SEPX, CSWX and RCSWX algorithms, whose runtimes are shown in Figure 3. Note that SEPX and
RCSWX are guaranteed to produce the same edit paths as they are applied to the same graphs—that is,
the einspace decision trees—given that they employ the same scoring matrix for the addition, deletion
and mutation of layers. We have confirmed this empirically, as all edit paths resulting from SEPX
in Figure 3 are identical to those calculated using RCSWX. Maintaining the same operation sampling
strategy would also yield the same offspring and, thus, equivalent search results when applied to NAS.

Figure 3: Runtime (s, log scale) against node count for RCSWX, CSWX and SEPX. Scatter markers
show raw measurements. Solid lines are global fits: power-law for (R)CSWX and exponential for
SEPX, with shaded regions showing adaptive error bounds from local log-residual standard deviations.
Extrapolated fits suggest increasing runtime with model complexity. Bottom plot shows the realistic
distribution of node counts we see in our searches, highlighting the unfeasibility of SEPX in this setting.

We can see that SEPX quickly becomes intractable at around 20 nodes, while CSWX and RCSWX can
be efficiently computed in less than a second for many input architecture pairs. RCSWX even gets to
71 nodes before any computation takes longer than one second. We also see that while the asymptotic
scaling of RCSWX as shown above is exponential in the number of nested branching structures, this
is not a bottleneck in practice.

5.3 SMOOTHNESS OF THE SEARCH SPACE

As shown above, RCSWX acts as an efficiently computable metric on the search space of architectures.
To highlight the benefits of this we use it to analyse the structure, and in particular smoothness, of
the architectural loss landscape. We calculate the distance between every pair of the 1000 architectures
generated for a single seeded search run on the CIFAR10 dataset, which is a relatively simple and
well studied dataset, and on the Isabella dataset, that contains fewer, more complex data samples. The
1000×1000 matrices of distances, along with the precomputed performances of said models, have
been used to generate the following plots.

Figures 4a and 4d show two-dimensional UMAP projections based on the edit-distance matrix. The
projections reveal that the explored search spaces are highly fragmented: architectures cluster into
a small number of well-separated islands. Within each cluster, models are close in edit distance and
tend to exhibit somewhat similar performance, but there is less evidence of continuity across clusters.
This suggests that while local neighbourhoods may be smooth, the global search space is disconnected.
Some noise can be observed within clusters in both UMAPs, which may correlate to destructive
mutations—e.g., disruption of functional blocks, excessive feature condensation, etc—that yield low
performing models even within promising regions of the architecture spaces.
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(a) UMAP projection of architec-
tures generated for the CIFAR10
dataset showing clustered structure.
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(c) Diversity of the population
generated for the CIFAR10 dataset
during the search.
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dataset showing clustered structure.
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(f) Diversity of the population
generated for the Isabella dataset
during the search.

Figure 4: Smoothness and diversity analysis of the architectural search space and search population. (a)
and (d) UMAP projections show fragmented global structure but local continuity with some very low
performing architectures sprinkled across the biggest clusters. (b) Semivariogram indicates that smooth-
ness in the CIFAR10 space extends to a range of∼25 edits, beyond which fitness correlation is no longer
observable, while (e) semivariogram shows that the distance between two architectures in the Isabella
space does not seem to affect how their fitness correlate. (c) Scatter plots of the diversity of the popu-
lation across the search iterations, measured by the average distance between all pairs of architectures.

To quantify smoothness more formally, we compute semivariograms in Figures 4b and 4e, which mea-
sure how performance similarity decays with increasing edit distance. A semivariogram characterises
this relationship through three parameters: the nugget, capturing variation at zero distance (often due
to noise); the sill, corresponding to the maximal variance reached; and the range, the distance beyond
which no correlation remains. In the case of architectures generated to deal with the CIFAR10 dataset,
for small edit distances (h≤5), the semivariance γ(h) is very low, indicating that close neighbours
differ little in performance. As the distance increases, semivariance rises steadily before starting to
plateau around h≈15. Fitting a spherical model yields a small nugget (consistent with low evaluation
noise), a sill matching the maximal performance variance, and a range of roughly 25 edits. This implies
that performance correlation is maintained within a neighbourhood of this size, but disappears beyond
it. Regarding the Isabella dataset, the correlation appears to be maintained throughout the generated
population, indicating that very distinct architectures are expected to attain similar accuracies.

Finally, we use the RCSWX distance metric to measure the continual change in diversity of the
population as the search progresses. Figures 4c and 4f indicates that there are significant fluctuations in
diversity, with alternating phases of exploration—broadening the search and increasing diversity—and
exploitation—converging the population on promising regions of the space. Being able to measure and
control this dynamic diversity can be a powerful tool for future search algorithms in these large spaces.

6 DISCUSSION AND CONCLUSION

We introduced an efficient algorithm for computing distances and performing crossover in grammar-
based NAS search spaces. Our approach is based on a constrained version of the Smith-Waterman
algorithm and enables these computations in vastly larger and more complex spaces than previously
possible. Our method can be applied to any search space that can be represented as a sequential set
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of tokens, and shows very promising results, both in terms of exploration/exploitation capabilities
(cf. Figure 2) and computational expense (cf. Figure 3).

Regarding empirical compute times, Figure 3 shows that CSWX can be slower than RCSWX. This may
partly stem from implementation overhead, but also from the fact that RCSWX enforces constraints
that reduce the number of valid paths, yielding more consistent runtimes. In contrast, CSWX often
tracks many longer alignment paths, leading to higher variance and worse scaling. Nonetheless, both
methods remain well within acceptable compute times even for large architectures.

CSWX enables crossover-based optimisers to be applied to grammar-based encodings such as
einspace (Ericsson et al., 2024), while RCSWX adds permutation invariance, making it a valuable
distance metric between different architectures and components and, thus, enable the future possibility
of controlling diversity during search. Prior work argues that small architectural changes rarely
lead to large performance shifts (Yang et al., 2019; Wan et al., 2021), implying that the simpler, less
computationally expensive CSWX might be enough to produce near-optimal results. Interestingly,
the noise introduced by imperfect model alignment can even be beneficial during architecture searches.
Figure 2 shows CSWX sometimes outperforming RCSWX, which may be explained precisely by a
higher exploration of the space induced by the absence of permutation invariance, forcing the addition
and removal of whole branches during crossover that would otherwise simply be swapped and mutated.
With a larger amount of additions and deletions, CSWX may select a very unbalanced set of operations
that changes the size (and thus complexity) of the models considerably. This, in turn, broadens the
search and is especially advantageous when the initial population is weak or when the search space
contains difficult local minima. Imperfect alignment may also result in the addition and deletion of
whole functional blocks—mimicking the behaviour of STX—acting like structured mutations that
successfully guide exploration given a diverse and performant enough initial population.

RCSWX, by contrast, encourages steadier exploitation by keeping the search focused near the
best individuals in the initial population, which may hinder the exploration of novel regions of the
architectural space. However, although our initial assessment shows varying performance of the
RCSWX-driven genetic algorithm, this crossover tool could be employed to construct better search
strategies. For instance, the reuse of functional blocks, which seems to be a very performant strategy,
could be mimicked and even improved by (R)CSWX: the alignment matrices provide element-wise
addition, deletion and substitution costs, which enable the identification of highly performing sequences
that can be preserved during offspring generation or even added to the grammar for subsequent
mutation steps. Further research is needed to study how these crossover mechanisms interact with more
sophisticated optimisation strategies—such as those described in Appendix F—especially given the
exploration–exploitation challenges and the differing behaviour across the loss landscapes examined
here. Regardless, our focus in this work is to introduce a theoretically motivated, computationally effi-
cient crossover operator for grammar-based NAS, intended as a tool for further research, rather than as
a benchmark for state-of-the-art performance for any given search strategy or exploration-exploitation
balance. Although spanning around 140 000 architecture evaluations, our results from seven datasets
and five seeds provide only an initial assessment of (R)CSWX-driven searches, showing their potential.

When used as a distance metric, RCSWX allows us to analyse the smoothness of the search space in an
unprecedented way. The plots in Figure 4 support the claim that, while sharing common characteristics,
architectural search spaces are indeed quite unique. The two datasets analysed in this work, CIFAR10
and Isabella, are both locally smooth, in the sense that small mutations tend to produce architectures of
similar quality. However, CIFAR10 is much more globally rugged and fragmented than Isabella, with
clusters separated by large distances and little performance correlation across them, while the Isabella
search space appears to be much flatter, with little performance difference among clusters. This has
direct implications for search: local methods such as crossover-based evolution or hill-climbing can
effectively exploit neighbourhoods, but escaping to distant high-performing clusters may require
restarts or more exploratory strategies. Indeed, the pure mutation-based strategy yields the fastest
convergence on the Isabella loss landscape, presumably because the crossover-based approaches tend
to exploit the flat space instead of freely exploring outwards.

Future work can focus on explicitly controlling the exploration-exploitation trade-off by means of the
introduced distance metric, implementing and analysing methods like the ones described in Appendix
F. We also believe that the shortest paths generated from the crossover method can be used to assign
component-level merit within architectures, aiming towards the discovery and reuse of performant
architectural blocks and opening up a whole new dimension to explore in the grammar-based NAS field.
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A ALTERNATIVE CROSSOVER METHODS

In this section, the two methods used to compare against throughout the paper are explained in detail.
Both methods succesfully generate hybrid offspring, although they differ significantly in complexity
and scope.

A.1 SUBTREE CROSSOVER

Subtree crossover is a classical genetic programming operator that exchanges entire subtrees between
parent derivation trees. Koza (1994) demonstrated that this approach preserves coherent functional
units, which are essential for maintaining effective computational building blocks. Transferring whole
subtrees encourages the reuse of well-performing substructures and supports modular, hierarchical
problem solving. Furthermore, its ability to handle variable-length representations allows for a more
scalable exploration of complex search spaces. In grammar-based NAS, it is crucial that the exchange
subtrees produce syntactically valid architectures. This is achieved by restricting the crossover
operation to subtrees rooted at identical non-terminal symbols.

P1 P2

C1 C2

Figure 5: Illustration of subtree crossover.
Parent architectures P1 and P2 swap selected
subtrees (highlighted), generating two off-
spring architectures C1 and C2.

Figure 5 on the left provides a visual illus-
tration of subtree crossover. Two parent
architectures, P1 and P2, exchange selected
subtrees to yield offspring C1 and C2. This
procedure swaps portions of the derivation
trees while maintaining grammatical validity.
Algorithm 2 formalises the process. It begins
by extracting node types from each parent and
identifying common non-terminal symbols as
potential crossover points. If no common non-
terminal exists, the crossover is not performed.
Otherwise, a random common node is selected
from each parent, and the corresponding
subtree from one parent replaces that of the
other. This approach preserves key structural
components and ensures that the resulting ar-
chitecture adheres to the prescribed grammar.

Algorithm 2: Subtree Crossover
Input: model1, the derivation tree for the first architecture to cross over

model2, the derivation tree for the second architecture to cross over
Output: offspring, the derivation tree for the resulting hybrid architecture

1 model1types← the type of each node in (model1)
2 model2types← the type of each node in (model2)
3 commontypes←{nodet |nodet∈model1seq∩model2seq,nodetis a non-terminal symbol}
4 if commontypes=∅ then
5 return failure (no common non-terminals)
6 Randomly select nodet∈commontypes

7 pos1← the position of a random occurrence of nodet in model1types
8 pos2← the position of a random occurrence of nodet in model2types
9 node1←ExtractSubtree(model1, pos1)

10 node2←ExtractSubtree(model2, pos2)
11 offspring←ReplaceSubtree(model1, pos1, node2)
12 return offspring

13
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A.2 SHORTEST EDIT PATH CROSSOVER

Shortest edit path crossover (SEPX) (Qiu and Miikkulainen, 2023) is designed to overcome the
permutation problem in evolutionary NAS. Both parent architectures, model1 and model2, are
represented as graphs, where a graph edit operation modifies the graph by inserting, deleting, or
substituting a node or an edge. The graph edit distance (GED) is defined as the minimum total cost
(with unit cost per operation) required to transform one graph into an isomorphic copy of the other,
so that GED equals the length of the shortest edit path between the two graphs.

Formally, let

ops∗=argmin
opsi∈ops

|opsi|∑
j=1

cost(opsi,j),

be the shortest edit path from model1 to model2, which contains d∗ unique edit operations. SEPX
generates an offspring graph offspring by applying half of these edits to model1, sampled at random
out of ops∗. That is,

offspring=ops∗πr(⌈d∗/2⌉)◦ops
∗
πr(⌈d∗/2⌉−1)◦···◦ops

∗
πr(1)

(model1),

Here, πr denotes a random permutation of the edit operation indices, and the composition ◦ indicates
sequential application of the edit operations.

SEPX first computes the GED between the two parent graphs, determining the minimal sequence
of edit operations needed to convert one parent into the other. About half of these operations are then
randomly chosen and applied to one parent, producing an offspring. By aligning the parent graphs
before recombination, the method overcomes the permutation problem-where different genotypes
encode the same phenotypes-and preserves shared structural components.

Algorithm 3: SEPX
Input: model1, the graph representation of the first architecture to cross over

model2, the graph representation of the second architecture to cross over
Output: offspring, the graph representation of the resulting hybrid architecture

1 ops∗←ComputeShortestEditPath(model1,model2);
2 opsselected← a random subset of half of the mutations in ops∗

3 offspring←GenerateOffspring(model1seq, model2seq, opsselected)
4 return offspring

In summary, the key steps are to ComputeShortestEditPath to determine the minimal edit sequence,
then perform operation selection by randomly sampling half of these operations, and finally Gener-
ateOffspring by applying the selected edits. Standard crossover is often disrupted by the permutation
problem because different orderings of identical substructures can lead to destructive recombination.
By aligning parent graphs using GED, SEPX preserves coherent functional units, making it both a
theoretically principled and practically effective method for combining neural architectures.

A.3 COMPARISON TO OTHER DISTANCE/(DIS)SIMILARITY AND CROSSOVER OPERATORS

Figure 2 compares (R)CSWX to various other methods in the literature that have been applied in the
context of NAS.

Table 2: Comparison with other methods for computing distances between architectures and using
them as crossover operators.

Method Distance Metric Crossover Operator Encoding Spaces Scaling

WL kernel (Weisfeiler–Lehman) ✗ ✗ Graph Any O(h(n1+m1+n2+m2))
NWNAS (Needleman–Wunsch) ✓ ✗ Sequence Chain-based O(n1n2)
GED/SEPX (Graph Edit Distance) ✓ ✓ Graph Cell-based / general DAGs O(nn2

1 )

CSWX ✓ ✓ Ordered Tree Grammar-based O(n1n2)

RCSWX ✓ ✓ Semi-ordered Tree Grammar-based O
(∑n1

i=1

∑n2

j=12
dij

)
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B EXAMPLE INTERMEDIATE OFFSPRING

In this section, we show the two original models and four offspring architectures—as represented
by their derivation trees—that could be generated from the CSWX example in Figure 1.

1
sequential

[1, 3, 28, 28]
[1, 3, 28, 56]

2
computation
[1, 3, 28, 28]
[1, 3, 28, 28]

4
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]

3
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 56]

5
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

6
computation
[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

9
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

7
computation
[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

10
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

8
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 56]
[1, 3, 28, 28]

(a) Parent 1

1
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 56]

2
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

3
computation
[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

6
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

4
computation
[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

7
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

5
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 56]
[1, 3, 28, 28]

(b) Offspring 1

1
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 56]

2
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

3
routing

[1, 3, 28, 28]
[1, 3, 28, 28]

6
perm(0,3,2,1)
[1, 3, 28, 28]
[1, 28, 28, 3]

7
computation
[1, 28, 28, 3]
[1, 28, 28, 3]

9
pos_enc

[1, 28, 28, 3]
[1, 28, 28, 3]

8
perm(0,3,1,2)
[1, 28, 28, 3]
[1, 3, 28, 28]

4
computation
[1, 3, 28, 28]
[1, 3, 28, 28]

10
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]

5
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 56]
[1, 3, 28, 28]

(c) Offspring 2

1
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 56]

2
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

3
routing

[1, 3, 28, 28]
[1, 3, 28, 28]

6
perm(0,3,2,1)
[1, 3, 28, 28]
[1, 28, 28, 3]

7
computation
[1, 28, 28, 3]
[1, 28, 28, 3]

9
relu

[1, 28, 28, 3]
[1, 28, 28, 3]

8
perm(0,3,1,2)
[1, 28, 28, 3]
[1, 3, 28, 28]

4
computation
[1, 3, 28, 28]
[1, 3, 28, 28]

10
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]

5
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 56]
[1, 3, 28, 28]

(d) Offspring 3

1
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 56]

2
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

3
routing

[1, 3, 28, 28]
[1, 3, 28, 28]

6
perm(0,3,2,1)
[1, 3, 28, 28]
[1, 28, 28, 3]

7
computation
[1, 28, 28, 3]
[1, 28, 28, 3]

9
relu

[1, 28, 28, 3]
[1, 28, 28, 3]

8
perm(0,3,1,2)
[1, 28, 28, 3]
[1, 3, 28, 28]

4
branching(4)
[1, 3, 28, 28]
[1, 3, 28, 28]

10
clone(4)

[1, 3, 28, 28]
[1, 3, 28, 28]

11
computation
[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

13
pos_enc

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

12
add(4)

[1, 3, 28, 28]
[1, 3, 28, 28]
[1, 3, 28, 28]

5
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 56]
[1, 3, 28, 28]

(e) Offspring 4

1
branching(2)
[1, 3, 28, 28]
[1, 3, 28, 92]

2
clone(2)

[1, 3, 28, 28]
[1, 3, 28, 28]

3
routing

[1, 3, 28, 28]
[1, 3, 28, 28]

6
perm(0,3,2,1)
[1, 3, 28, 28]
[1, 28, 28, 3]

7
computation
[1, 28, 28, 3]
[1, 28, 28, 3]

9
relu

[1, 28, 28, 3]
[1, 28, 28, 3]

8
perm(0,3,1,2)
[1, 28, 28, 3]
[1, 3, 28, 28]

4
branching(4)
[1, 3, 28, 28]
[1, 3, 28, 64]

10
clone(4)

[1, 3, 28, 28]
[1, 3, 28, 28]

11
computation
[1, 3, 28, 28]
[1, 3, 28, 64]

13
linear(64)

[1, 3, 28, 28]
[1, 3, 28, 64]

12
add(4)

[1, 3, 28, 64]
[1, 3, 28, 64]
[1, 3, 28, 64]

5
cat(2,3)

[1, 3, 28, 28]
[1, 3, 28, 92]
[1, 3, 28, 64]

(f) Parent 2

Figure 6: From left to right, top to down: original model 1 (a), and offspring models resulting from
the removal of the leftmost Computation node (b), the addition of a Routing node (c), the mutation
of a positional encoding into a ReLU terminal node (d), the addition of a Branching(4) node (e) and
mutation of a positional encoding into a linear terminal node (f), resulting in original model 2.
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C CONSTRAINED SMITH-WATERMAN CROSSOVER FUNCTIONS

In this section, a more detailed description of the functions referenced in 1 is laid out.

The Serialise function ensures that the resulting list of nodes required to perform CSWX contains the
minimal information required while ensuring that the rules of the grammar are preserved. Commencing
with a nodestart, it will recursively add the nodes to a list, ignoring Sequential and terminal nodes
that can be inferred from the context, and add a nodesep after every branch and routing module to
signal where it ends. These separator nodes will contain information about the node they are closing
and about whether it signals the separation between two branches or the end of the last branch.

There is almost a one-to-one conversion between the tree and the list representation of the models,
save for the order in which the Sequential nodes are nested (which makes no difference in the actual
architecture of the represented models).

Algorithm 4: Serialise
Input: node, the model or node we want to serialise
Output: nodeseq , a serialised representation of node

1 if node is the root node then
2 nodeseq←nodestart
3 else
4 nodeseq←∅
5 if node is not a terminal node then
6 if node is not a sequential node then
7 nodeseq←nodeseq∪node
8 for child∈ children of node do
9 nodeseq←nodeseq∪ Serialise(child)

10 if child is not a terminal node and node is a branching or routing node then
11 nodeseq←nodeseq∪nodesep

The SubstitutionCost function is really straightforward, comparing two nodes to assign a cost of
substituting one into the other.

Algorithm 5: SubstitutionCost
Input: node1, the first node to compare

node2, the second node to compare
Output: cost, the dissimilarity between node1 and node2

1 if node1 and node2 are the same type of node then
2 if The first and last children of node1 and node2 are the same type of node then
3 if The first and last children of node1 and node2 have the same hyperparameters then
4 cost←0
5 else
6 cost←0.25

7 else
8 cost←0.5

9 else
10 cost← inf

If the nodes to compare are Computation nodes, the first and last child will be the same—the type of Com-
putation operation—, while for Branching and Routing nodes the first and last children will define the
kind of operations performed. For instance, thenode1Branching(4)group(1,4), M, cat(1,4) would have:

• SubstitutionCost(node1, Branching(4)group(1,4), M, cat(1,4)) =0

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• SubstitutionCost(node1, Branching(8)group(1,8), M, cat(1,8)) =0.25

• SubstitutionCost(node1, Branching(4)clone(4), M, add(4)) =0.5

• SubstitutionCost(node1, Computation(identity) =inf

As of now, the substitution costs are arbitrarily fixed, but in the future they could be modulated by
factors such as the probabilities of sampling each type of node from the grammar, the observed
impact of substituting one layer into another throughout the search or any given a-priori information,
among others. One way of making the mutation cost of performing a mutation that swaps a derivation
tree node y for another node x depend solely on the sampling probabilities would be defining it
as C(x,y) =

∑N
i=1

(∏Mi

j=1

(
1−P

(
xj
i

)))(
1−1xj

i

(
yji

))
, where N is the maximum depth of the

sampling of the hyperparameters of a node (for instance, Computation→ linear→ 64 would have
N=2),Mi is the number of options for the currect depth (Computation→ linear | act function | identity
would have M1=3), and 1xj

i

(
yji

)
is the indicator function signaling whether yji is the same as xj

i .

A brief analysis of the sensitivity of the distance calculation to the actual mutation costs has been
carried out in Appendix D.

The ValidPath function is where the ”Constrained” in ”Constrained Smith-Waterman Crossover”
comes from, discarding paths that would result in models that do not follow the grammar rules.

Algorithm 6: ValidPath
Input: path, which holds the direction to reach each intermediate model

model1seq , the serialised representation of model1
model2seq , the serialised representation of model2
i, the starting first index in the matrix
j, the starting second index in the matrix
direction, the direction we attempt to move towards from the starting position

Output: valid, which signals whether the direction would be a valid operation

1 node1←model1seq[i]
2 node2←model2seq[j]
3 if direction= ”sub” then
4 if node1 and node2 are the same type of node then
5 if node1 and node2 are separators then
6 condition1← True
7 condition2← True
8 i← i−1
9 j←j−1

10 while condition1 or condition2 do
11 if path[i,j]= “add” then
12 i← i−1
13 else if path[i,j]= “rem” then
14 j←j−1
15 else if path[i,j]= “mut” then
16 i← i−1
17 j←j−1
18 if not condition1 then
19 condition1←node1 is a separator that closes model1seq[i]

20 if not condition2 then
21 condition2←node2 is a separator that closes model2seq[j]

22 if path[i,j]= “mut” then valid← True;
23 else valid← False;
24 else valid← True;
25 else valid← False;

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

26 else if direction= ”add” then
27 if node1 is a separator then
28 depth← 0
29 i← i−1
30 while node1 does not close model1seq[i] do
31 if model2seq[j−i] is the start of a branching or a routing node then
32 depthchange←1
33 else if model2seq[j−i] closes a branch or a routing node then
34 depthchange←−1
35 else
36 depthchange←0

37 if path[i,j]= “add” then
38 i← i−1
39 else if path[i,j]= “rem” then
40 depth←depthchange
41 j←j−1
42 else if path[i,j]= “mut” then
43 depth←depthchange
44 i← i−1
45 j←j−1

46 if depth=0 then valid← True;
47 else valid← False;
48 else valid← True;
49 else if direction= ”rem” then
50 if node2 is a separator then
51 depth← 0
52 j←j−1
53 while node2 does not close model2seq[j] do
54 if model1seq[i−j] is the start of a branching or a routing node then
55 depthchange←1
56 else if model1seq[i−j] closes a branch or a routing node then
57 depthchange←−1
58 else
59 depthchange←0

60 if path[i,j]= “add” then
61 depth←depthchange
62 i← i−1
63 else if path[i,j]= “rem” then
64 j←j−1
65 else if path[i,j]= “mut” then
66 depth←depthchange
67 i← i−1
68 j←j−1

69 if depth=0 then valid← True;
70 else valid← False;
71 else valid← True;
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In the case of attempting the substitution of one node into another, we first check that they are inter-
changeable. Substituting a Branching by a Computation, for instance, would result in an incongruous
model, as the Computation node would not be suitable for holding the Branching node’s children;
thus, we only allow substitution between nodes of the same type, regardless of their hyperparameters.
Note that Branching(2) is different from all other Branching nodes, as it holds four children instead
of three, and thus are not interchangeable. If the nodes we want to substitute are both instances of the
nodesep class, we trace the path back to make sure that we substituted their associated opening nodes.

If we try to add or delete a module, we only have to be careful when dealing with a nodesep instance.
If that were the case, we ned to trace back the operations to ensure that (1) the associated opening
node was dealt with with the same operation and (2) that we are not adding or deleting any non-closed
Branching nor Routing nodes, nor any non-opened separator ones.

The TraceBack function is used to transform the dists and paths matrices into an actual set of
operations that we can perform to transform model1seq into model2seq .

Algorithm 7: TraceBack
Input: model1seq , the serialised representation of model1

model2seq , the serialised representation of model2
dists, which holds the distance from model1 to every intermediate model
paths, which holds the steps to reach each intermediate model from model1

Output: opsvalid, the list of operations to transform model1 into model2

1 opsvalid←∅
2 i← length of model1seq
3 j← length of model2seq
4 while i>0 or j>j do
5 opnew←{
6 id← length of opsvalid, serving as the operation identifier
7 type← the kind of operation (”addnode”,”parallelise”,”substitute”...)
8 value← the cost of performing the operation
9 i← the first index where the node starts

10 j← the second index where the node starts
11 ii←, the first index where the node’s separators start, if any
12 jj←, the second index where the node’s separators start, if any
13 opsdisabler←opsdisabler, the operations that forbid performing opnew
14 opsenabler←opsenabler, the operations that allow performing opnew
15 }
16 if opnew{value}>0 then
17 opsvalid←opsvalid∪opnew
18 if a branching or routing module has been added or deleted then
19 for all operations dealing with nodes contained within do
20 Update their disabler and enabler operations

21 if path[i,j]= “add” then
22 i← i−1
23 else if path[i,j]= “rem” then
24 j←j−1
25 else if path[i,j]= “mut” then
26 i← i−1
27 j←j−1

Starting from the bottom right corner of the matrices, we follow the path until we reach the top left corner
and save all the operations that have a cost, along with all the information required to perform them: what
nodes are involved, their positions and, importantly, their interactions with the rest of the operations.

• Adding a branching or routing module around certain nodes is disabled by deleting all nodes
inside, and enabled by adding any other node inside.
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• Adding a branching or routing module and all nodes inside is disabled by itself, and enabled
by adding any of the other inside nodes.

• Deleting a nodes inside a branching or routing is disabled by deleting all nodes inside said
branching or routing, and enabled by either adding another node inside or deleting the
branching or routing itself.

Knowing which operations enable and disable each other is crucial to be able to generate valid
architectures that follow the grammar rules.

The SelectOperations function takes in all possible operations we can perform to substitute one
parent model into another. It first validates each combination of operations, using their sets of
disabler and enabler operations to check that no incongruous model would be created. It then assigns
each combination a distance from the first model given by the value of each operation within. We
then generate a truncated Gaussian probability distribution—optionally presenting a skewness
parameter—that accommodates only values ranging from 0 to the maximum possible distance given
by our operations. The probability of each combination of operations will then be drawn from the
defined distribution and used to sample one opsselected at random out of all valid combinations.

By default, the skewness parameter is set to zero, generating a truncated, non-skewed Gaussian
probability distribution. It could however be defined based on, for instance, the relative performance of
both parents. This skewness parameter will make the offspring produced by opsselected resemble
more closely the desired parent. Having a high skewness towards the best out of the two parents would
enhance exploitation and reduce exploration, as the models generated would be closer to said parent. It
might be interesting to increase this skewness as the search progresses and more promising regions
in the space of architectures are found; however, considering that the exploitative RCSWX-based
search strategies often underperformed when compared to exploration-focused approaches—see Figure
2—having a high skewness at the beginning would bias the search too much towards the first decent
architectures found, hindering overall search performance. In any case, having a high skewness towards
the worst performing parent would not make much sense, as it would induce higher exploitation of
the least promising regions in the architecture space, benefiting from neither exploration nor thorough
exploitation. The influence of the skewness parameter should be less noticeable the closer the parent
models are, as these would belong to the same region of the architecture space and not have novel
architectures to explore in between the parents.

Algorithm 8: SelectOperations
Input: opsvalid, the set of possible operations

skewness, the skewness of the operation sampling probability distribution
Output: opsselected, a chosen subset of opsvalid

1 combinations←∅
2 for i←1 to (length of opsvalid)2 do
3 combostr← binary representation of i with as many digits as operations in opsvalid
4 ops← a subset of opsvalid given by combostr
5 if ops is a valid set of operations then
6 combinations{combostr}←

∑
opsj{value}

7 distr← a distribution with given skewness, truncated to 0 and max(combinations)
8 probs← probability of each combination’s value given by distr
9 probs←probs/

∑
probs

10 comboselected← an operation subset from combinations sampled with probability probs
11 opsselected← a subset of opsvalid given by comboselected

D SENSITIVITY TO THE MUTATION COSTS

The distance metric—and thus, the subsequent search and loss landscape analysis—is completely
dependent on the cost assigned to adding, removing or substituting layers in the input sequences.
In order to better assess the influence of these costs, we have analysed the distance obtained when
comparing 50 pairs of randomly generated models with the scoring matrices defined in Table 3.
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Table 3: Scoring matrices defined

Name Addition/deletion cost Mutation cost

Scoring
matrix 0

Always 1 0 if nodes are the same, 0.25 if nodes’ children’s
hyperparameters differ, 0.5 if nodes’ children’s type
of node differ and∞ if parents type of node differ

S. M. 1 Always 1 0 if nodes’ children’s are exactly the same, 0.5 if not,
∞ if parent’s type of node differ

S. M. 2 Always 1 ∞ if parent’s type of node differ, 0.5 otherwise

S. M. 3 Number of branches for
branching nodes, 1 otherwise

Difference in number of branches for branching nodes,
same as default scoring matrix otherwise

All models were sampled from einspace, having a length ranging from 4 to 104 layers, sampled
uniformly. Each architecture was paired with another one with the same length. The results are
depicted in the Figure 7.

Figure 7: Distance calculated for randomly sampled pairs of models employing scoring matrices 0
(x axis) and 1 through 3 (y axis) with RCSWX, along with their linear fits and R2.

It becomes clear that the scoring matrix changes the behaviour of the (R)CSWX because the
relationship between the attained distances is not perfectly linear. The bigger the change in scoring
matrix—in this case, weighting branching mutations by their number of branches, which can add
a cost of 8 for a single operation rather than the maximum of 1 in the other scoring matrices—the
higher the observed non-linearity. However, we can clearly see the correlation across the distances
achieved, and thus we hypothesise that neither the loss landscape analysis nor the search results would
be significantly changed by the choice of scoring matrix. Even if the loss landscape is warped, the
clusters of architectures would remain close together, while distant architectures would remain distant.
These differences would be the most noticeable for small-grain analysis and thorough exploitation
of the space but, in those scenarios, the inherent randomness in the training—weight initialisation, data
sampling, etc—would likely have a higher influence than a perturbation in the distance between models.
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E CROSSING OVER PREDESIGNED MODELS

In this section, we explore the capabilities of RCSWX to compare and cross over relatively big
predesigned models. We have constructed members of the ResNet and MLP-Mixer families in the
einspace grammar and compared them, obtaining the following results.

Table 4: RCSWX results on the predefined architectures

Architectures number of nodes compute time distance

ResNet18, MLP-Mixer d8 267, 264 39.054 seconds 60.38
ResNet18, MLP-Mixer d12 267, 392 342.383 seconds 95.38
ResNet34, MLP-Mixer d8 499, 264 86.633 seconds 119.62
ResNet34, MLP-Mixer d12 499, 392 741.57 minutes 115.62

The resulting alignment matrices are depicted in the following figures.

Figure 8: Alignment matrix for ResNet34 and MLP-Mixer d12
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Figure 9: Alignment matrix for ResNet18 and MLP-Mixer d8

Figure 10: Alignment matrix for ResNet18 and MLP-Mixer d12
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Figure 11: Alignment matrix for ResNet34 and MLP-Mixer d8
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The repetitive block-based nature of the architectures becomes apparent when compared, with cyclical
patterns—whose actual shapes and cycle lengths are defined by the alignment of the first and final
layers of the architectures—spread throughout the shortest edit paths.

Also note that compute times are relatively low considering the large number of nodes for the aligment
of ResNet18 and MLP-Mixer d8. This can be explained by the low depth throughout the matrix. There
are no nested branches in either of the models, which lowers the amount of recursive computing—which
translates into reduced computations, but also reduced overhead as well. However, compute times are
relatively high for the alignment of ResNet34 and MLP-Mixer d12. This is due to redundant, irrelevant
paths, mostly in the lower left and upper right corners, as checked empirically after the computations
were performed. While alignments surrounding the shortest edit path are relatively constrained, there
are a lot of equally low-performing paths further away towards the corners—e.g., it is as costly to mutate
the first ResNet block into the first MLP-Mixer block and then add the second MLP-Mixer block than it
is to add the first MLP-Mixer block and then mutate the first ResNet block into the second MLP-Mixer
block. These paths are redundant in the sense that they achieve the same final distance and obey the same
constraints. Keeping track of all these paths is not only memory intensive but compute intensive as well,
as every possible path needs to be checked for constraints to continue forwards with the next operation.

The phenomena discussed above highlight the deviation in compute time from theory to practice
and suggest that, for real applications with warm initialisations, RCSWX might be way faster than
what is observed in Figure 3, given that the redundant and unpromising paths are collapsed or ignored.
This collapse can either be cell-wise—each time we compute a cell, we collapse all redundant paths
into one—or matrix-wise—considering how unlikely it is to find a best path very far away from the
main diagonal of the alignment matrix, we can restrict the maximum number of path calculations at
the corners by employing techniques akin to constraining with the Sakoe-Chiba band or the Itakura
parallelogram (Geler et al., 2019).

F BROADER APPLICABILITY

In this work we have exemplified the use of (R)CSWX with the implementation of a simple genetic
evolution optimiser to explore models expressed in the einspace grammar. However, our goal is to
provide an efficient tool that enables researchers and NAS practitioners to deploy any crossover-based
algorithm on their own search spaces, and even apply (R)CSWX to sequence alignment outside of the
Deep Learning field. In this section, we suggest how to use (R)CSWX to construct different optimisers—
using two or more parent architectures to generate offspring based both on model performance or
relative distances—and work with complex search spaces to demonstrate its wide applicability.

F.1 (R)CSWX ON COMPLEX SEARCH SPACES

F.1.1 MULTI INPUT-OUTPUT SPACES

Allowing multiple input and output nodes in an architecture can be achieved by paying with the
constraints in the grammar—that is, by modifying the mutation costs. For spaces where all architectures
present the same number of inputs and outputs, which is the most common case, it is enough to give
the addition/deletion of input and output nodes—as well as the their substitution from or into any other
type of node—a cost of∞. This would force (R)CSWX to hinge around these nodes, aligning the
intermediate segments. For cases with varying number of input and output nodes, input and output nodes
can be treated as any other type of node as there should not be any actual constraints on their position
within the architectures. If we want the best paths to align as many of these nodes as possible, though, it
would be sufficient to set the cost of adding/deleting these nodes to a high enough number—for instance,
if adding or removing any other node has a cost of 1, the cost of adding or removing an input/output
node can simply be the length of the biggest parent—and the cost of substituting from or into any other
type to∞. An example alignment matrix calculated in this fashion is shown in Figure 12 below.

Note that the case with aligned input and output nodes can be treated as a specific, fortuitous, instance
of the unaligned multi-input and -output; however, setting the addition/deletion costs to∞ instead of
a large value allows to directly flag and ignore all positions in the alignment matrix outside the regions
defined by these hinge points, speeding up computations considerably for large models.
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∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0+1 1 1+8 9 9+1 10 10+1 11 11+8 19 19+1 20 20+1 21

∞ 0+1 0+0.5 1+1 ∞ 9+1 9+0 10+1 10+0 11+1 ∞ 19+1 19+0 20+1 20+0.5 21+1

∞ 1 1+1 0.5 0.5+8 8.5 8.5+1 9 9+1 10 10+8 18 18+1 19 19+1 20

∞ 1+1 1+0.5 0.5+1 ∞ 8.5+1 8.5+0 9+1 9+0 10+1 ∞ 18+1 18+0 19+1 19+0.5 20+1

∞ 2 2+1 1.5 1.5+8 9.5 9.5+1 8.5 8.5+1 9 9+8 17 17+1 18 18+1 19

∞ 2+8 ∞ 1.5+8 1.5+0 9.5+8 ∞ 8.5+8 ∞ 9+8 9+0 17+8 ∞ 18+8 ∞ 19+8

∞ 10 10+1 9.5 9.5+8 1.5 1.5+1 2.5 2.5+1 3.5 3.5+8 9 9+1 10 10+1 11

∞ 10+1 10+0 9.5+1 ∞ 1.5+1 1.5+0.5 2.5+1 2.5+0.5 3.5+1 ∞ 9+1 9+0.5 10+1 10+0 11+1

∞ 11 11+1 10 10+8 2.5 2.5+1 2 2+1 3 3+8 10 10+1 9.5 9.5+1 10

∞ 11+1 11+0.5 10+1 ∞ 2.5+1 2.5+0 2+1 2+0 3+1 ∞ 10+1 10+0 9.5+1 9.5+0.5 10+1

∞ 12 12+1 11 11+8 3.5 3.5+1 2.5 2.5+1 2 2+8 10 10+1 10 10+1 10

∞ 12+8 ∞ 11+8 ∞ 3.5+8 ∞ 2.5+8 ∞ 2+8 ∞ 10+8 ∞ 10+8 10+0 10+8

∞ 20 20+1 19 19+8 11.5 11.5+1 10.5 10.5+1 10 10+8 18 18+1 18 18+8 10

AINPUT OUTPUT

0

A

A

A

INPUT

B

A

OUTPUT

START B INPUT A

START

Figure 12: Alignment matrix for two sequences with a differing number of input nodes (addi-
tion/deletion cost of 1; mutation cost of 0 if nodes are the same, 0.5 if they are interchangeable). Each
matrix cell is subdivided into substitution, deletion, addition and selected costs. Selected operations
are shown in a light colour, and deprecated operations are shown in grey. The shortest edit path is
shown in green.

F.1.2 RECURSIVE GRAPHS

Aligning recursive architectures using the (R)CSWX is not a trivial task. The best way to approach
this is to make sure that the sequential representation of the graph is representative, reversible and
unique—or, at least, limited in such a way that we can calculate all possible alignments recursively
in a reasonable amount of time—and, then, define the mutation costs appropriately to make sure
that the constraints of the grammar are respected. Using the input and output nodes as anchor points,
we can define the sequence of nodes employing simple graph traversal algorithms, like breadth-first
search, depth-first search, or encoder-based approaches, like (Xu et al., 2018; Liu and Ji, 2022; Chen
et al., 2025). Special separator tokens can be introduced during the definition of the sequences. By
carefully defining the addition, deletion and substitution costs for these separator tokens, we can
force the shortest edit paths to respect the rules of the space we are exploring—similarly to what
has been accomplished with the constrains imposed to the Branching(2) layers in the einspace
grammar—and/or weight the alignment of the architecture loops according to our needs.

F.2 (R)CSWX TO DEFINE SEARCH ALGORITHMS

F.2.1 PARTICLE SWARM OPTIMISATION

In particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995), each individual in the population
calculates its new position in the space by moving in a direction defined by a vector, which is
interpolated from the vector pointing towards the best position achieved by the individual so far and
the vector pointing towards the best individual in the current population. These two components can
be weighted by the fitness of their respective individuals, and the interpolated vector can be rescaled
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based on a given step size. This approach has already been successfully applied to NAS (Lankford
and Grimes, 2024; Turky et al., 2026), but its application is heavily hindered by the ability to perform
crossovers in the search space defined. We propose a method to perform multi-parent crossover by
pooling the mutation operations yielded by (R)CSWX into four sets from which to sample from,
allowing the deployment of any multi-parent interpolation-based algorithm, like PSO.

First, the original model is aligned with both parents separately using (R)CSWX. Then, the two
resulting sets of operations are compared with one another. Those pairs of operations that are exactly the
same—e.g., removing a Computation(ReLU) node from the original individual that is not present
in either one of the other two parents—are bagged together in setA. Then, those pairs of operations that
are similar—e.g., mutating a Computation(ReLU) node into a Computation(linear64) in
one of the alignments and into a Computation(linear32) in another—are bagged together into
set B. The rest of the operations are bagged individually in sets C1 and C2, according to the alignment
matrix they belong to.

The number—or combine cost—of operations to be performed can be modulated by a step size
parameter. We sample operations at random from set A until needed. If we sample all operations
from set A, we continue sampling pairs of operations from set B. The actual operation to perform
out of the pair can be sampled according to the individuals’ fitness scores. If set B is depleted, we
select operations from the remaining sets C1 and C2. Once again, the set from which to sample each
operation can be selected probabilistically based on the individuals’ respective fitness.

After applying the selected operations, the generated offspring is guaranteed to be closer to both
parents simultaneously, given that they share some common nodes. This method can be expanded
to perform multi-crossover across any number of parents, but the probability of finding common
operations reduces drastically and the definition of further operation sets—e.g., operations shared by
all alignments, operations shared by all but one alignments, etc—might be necessary to avoid treating
all operations as unpaired.

F.2.2 ESTIMATION OF DISTRIBUTION ALGORITHMS

Using the distances across all models in the population, we can define a high dimensional space—
similarly to Section 5.3—and construct a probabilistic model that shifts the sampling of the new
offspring towards the most promising regions of the space. This sampling can be performed by either
(1) selecting parents for crossover that define lines that cross over said promising regions and using
the skewness parameter to control the sampling while remaining probabilistic or (2) performing
multi-parent interpolation similarly to the approach described to perform PSO.

F.2.3 DIFFERENTIAL EVOLUTION

Differential Evolution (DE) can be implemented by combining the sets of operations yielded by
(R)CSWX. A population size NP ≥4 and a crossover probability CR∈ [0,1] need to be selected. Due
to the space to explore being combinatorial rather than numerical, the definition of a differential weight
F ∈ [0,2] is not trivial and we opt to simply set it to 1.

First, for each individual in the population xn, we select three other individuals x1, x2 and x3, and
define the set of operations that transform models xa and xb as Ωxa,xb

=xa−xb. We can then calculate
a donor set of operations Ωdonor as Ωdonor = (x1−xn)∪ ((x2−xn) ̸∈(x3−xn)). A single operation
is sampled out of Ωdonor to mimic the behaviour of the δ random variable in the DE algorithm. Then,
for each other operation in Ωdonor, we discard it with probability p=1−CR, generating the set Ωfinal.
To generate the new individuals, we simply apply all operations in Ωfinal to xn.

F.2.4 FIREFLY ALGORITHM

In the firefly algorithm, for each search step t, each individual xi in the population of size NP is
updated by moving towards each other individual xj that presents a better fitness based on their
distance rij and a random permutation αtϵt such that xt+1

i =xt
i+αtϵt+

∑NP
j=1β(x

t
j−xt

i)e
−γr2ij . The

random permutation can be achieved with a simple mutation, while the term that moves each individual
towards the best ones in the population can be calculated using (R)CSWX.
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Figure 13: Critical difference (CD) diagram comparing the average ranks of the four algorithms
across all datasets. The Friedman test did not reveal a statistically significant difference among the
methods (p = 0.0997), and none of the Wilcoxon–Holm post-hoc comparisons reached significance.
All algorithms fall within a single cluster—indicated by the horizontal connection—showing that
their rank differences do not exceed the critical threshold.

First, for each individual xi we select every architecture xj that presents better fitness and calculate the
set of operations Ωj that transforms xi into xj . Then, for each operation across all models that pertain
to a certain node—e.g., one node in xi is a Computation(linear64) that is either removed or
changed to a different type of Computation node in some of the alignments—we select the one
pertaining to the alignment with individual xj with a probability proportional to e−γr2ij , generating
a set of operations Ωselected. These distances rij are already known as it is given by (R)CSWX, which
has already been used to generate the sets of mutation operations. Lastly, each operation in Ωselected
is either selected or discarded based off a probability β, generating Ωfinal. By applying the operations
in Ωfinal, we produce an offspring architecture that is interpolated from the population based on both
their relative fitnesses and distances.

F.2.5 CUSTOM DIVERSITY-DRIVEN ALGORITHMS

The distance metric provided by RCSWX can be employed to explicitly control the explo-
ration–exploitation tradeoff, be it by regularising architecture scores with a diversity term or selecting
a novel individual for training out of a batch of mutated ones. This allows for tweaking already existing
optimisers or even proposing new ones. Explicitly controlling the diversity of the population is not
only expected to further improve results by helping escape local minima, but is also crucial for deep
ensemble learning and other scenarios where non-regularised NAS tends to underperform.

G SIGNIFICANCE TESTING

To assess whether the four algorithms—mutation-only, STX, CSWX and RCSWX-driven evolutionary
algorithms—differ significantly in performance across datasets, we applied a non-parametric Friedman
test to their accuracy ranks in the datasets’ test partitions. The statistical test did not reject the null
hypothesis that all algorithms perform equivalently (p = 0.0997), indicating that the observed differences
in average rank are not statistically meaningful. For completeness, we also conducted Wilcoxon signed-
rank pairwise comparisons with Holm correction, with none of the pairwise comparisons recognised as
significant. The corresponding critical difference (CD) diagram reflects this outcome: all algorithms
fall within a single cluster, illustrating that their rank differences do not exceed the critical threshold.
These results together indicate that we cannot conclude that any algorithm outperforms the others
across the evaluated datasets.

LLM USAGE

Large language models were used only to aid and polish the writing of this paper, as well as
auto-complete code fragments.
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