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ABSTRACT

Machine learning systems increasingly face requirements to remove entire do-
mains of information—such as toxic language or biases—rather than individual
user data. This task presents a dilemma: full removal of the unwanted domain data
is computationally expensive, while random partial removal is statistically ineffi-
cient. We find that a domain’s statistical influence is often concentrated in a small
subset of its data samples, suggesting a path between ineffective partial removal
and unnecessary complete removal. We formalize this as distributional unlearn-
ing: a framework to select a small subset that balances forgetting an unwanted
distribution while preserving a desired one. Using Kullback-Leibler divergence
constraints, we derive the exact removal-preservation Pareto frontier for Gaussian
distributions and prove that models trained on the edited data achieve correspond-
ing log-loss bounds. We propose a distance-based selection algorithm and show
it is quadratically more sample-efficient than random removal in the challenging
low-divergence regime. Experiments across synthetic, text, and image datasets
(Jigsaw, CIFAR-10, SMS spam) show our method requires 15-82% less deletion
than full removal for strong unlearning effects, e.g., halving initial forget set accu-
racy. Ultimately, by showing a small forget set often suffices, our framework lays
the foundations for more scalable and rigorous subpopulation unlearning.

1 INTRODUCTION

As machine learning models persist in production, the data on which they were trained often be-
comes legally or ethically objectionable, requiring deletion. The nature of these requests is now
scaling beyond individual user data towards erasing entire subpopulations, which can represent
unwanted domains, concepts, or any data-defined construct, e.g., harmful biases or toxic lan-
guage (Kurmanji et al., [2024). This new scale of unlearning presents a dilemma. On one hand,
removing the full set of domain data involves a prohibitive cost, since the computational cost of
efficient removal methods typically scales with the size of the forget set (Guo et al., [2020). This
challenge is highlighted in efforts to unlearn creative works like the Harry Potter book series (Eldan
& Russinovich, [2023)), where the sheer size of the identified text and the trained model make the sub-
sequent unlearning action computationally expensive. On the other hand, removing a random small
subset can be statistically inefficient because the statistical footprint of the domain persists. For
instance, large language models can still verbatim reproduce training sequences even if the specific
source text is removed (Liu et al., [2025)), due to overlapping context with the remaining data. This
dilemma, between the expensive cost of full removal and the ineffectiveness of naive partial removal,
leaves a methodological gap for a more targeted and efficient approach to domain unlearning.

To address this methodological gap, we start with a key observation: a domain’s statistical influ-
ence is often concentrated in a small, high-impact subset of its samples. This suggests an optimal
strategy exists between the two extremes: a targeted removal of only this impactful subset, which
can be both computationally efficient and statistically effective. To formalize this, we model do-
mains as unknown probability distributions, a well-precedented abstraction in both statistical learn-
ing (Shalev-Shwartz & Ben-David, [2014) and natural language processing (Blei et al., 2003}, [Sri-
vastava & Sutton, [2017). This statistical framing allows us to pose a precise research question:
what is the minimal set of data points to remove to make the data distribution far from an un-
wanted domain, yet simultaneously close to a retained one? We introduce distributional unlearning,
an information-theoretic framework that quantitatively addresses this question. This data-centric,
statistical framing is complementary to the rich literature on what we term sample-level unlearn-
ing: methods that efficiently approximate retraining without a pre-defined set of individual records.
While prior work on sample-level methods, based on influence functions (Guo et al., 2020) or data
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sharding (Bourtoule et al.| |2021), have made important progress on the computational problem, they
do not address the statistical question of which samples should constitute that set for maximal im-
pact. Similarly, while class-level unlearning (Tarun et al.| [2023; |Kodge et al., |2024) and concept
erasure (Ravfogel et al.| 2020; Belrose et al. [2023)) methods also operate on certain domains, they
either act on a model’s internal representations—making the changes potentially reversible—or lack
a formal method for finding a small subset to remove. This leaves our foundational question unan-
swered: which samples to remove in the first place?

Contributions. We summarize our contributions in tackling the above question as follows:

* Framework: We formalize distributional unlearning, a data-centric framework that uses
Kullback-Leibler divergence constraints to balance removal and preservation guarantees.

* Fareto frontier & downstream guarantees: We derive the closed-form Pareto frontier of
achievable removal-preservation levels for exponential families. We further prove our
framework provides log-loss shift guarantees for downstream models.

» Algorithm & sample efficiency: We study the sample complexity of distributional unlearn-
ing with both random and selective removal mechanisms. We propose a distance-based
selection algorithm and prove that it achieves a quadratic improvement in sample efficiency
over random removal in low-divergence Gaussian regimes.

» Empirical validation: We validate our framework on synthetic, text, and image data (Jig-
saw, CIFAR-10, SMS spam). While our synthetic analysis suggests high potential data
efficiency gains up to 82%, real-world data complexity reduces these to a still-significant
15-50% in deletion budget savings. We show these data savings to hold in combination
with various downstream sample-level unlearning methods.

1.1 RELATED WORK

Sample-level unlearning. Sample-level unlearning has made impressive strides in fast model up-
dates and formal deletion guarantees (Neel et al., [2021; Zhang et al., 2024a; (Chien et al.| 2024;
Allouah et al.| [2025; [Koloskova et al., 2025)). [Izzo et al.| (2021) use influence-function updates to
approximate the effect of deleting a single point without full retraining; |Guo et al.| (2020) provide
certified bounds on how close the post-deletion model is to a scratch-retrained one; |Bourtoule et al.
(2021) employ data sharding to efficiently erase small batches. However, this class of methods does
not address which or how many samples must be removed to eliminate a domain’s overall statistical
footprint. Our work complements these techniques by asking not just how to update a model once
samples are flagged, but which samples to flag in the first place, and in what quantity.

Concept erasure. Concept erasure methods tackle unwanted attributes in learned features.
INLP (Ravfogel et al., [2020) repeatedly projects out directions predictive of a protected attribute;
counterfactual augmentation (Kaushik et al.| [2020) synthesizes targeted data to sever causal links;
adversarial training (Elazar & Goldberg, [2018)) trains encoders to remove specific signals. These
operate post-hoc on a fixed model’s representations—ideal for fairness use-cases such as removing
gender—but they rely on white-box access and tailor to one model at a time. Where concept erasure
edits model representations, we edit the data, guaranteeing forgetting for downstream models.

Coresets & domain adaptation. Domain adaptation theory (Ben-David et al.,2010) seeks to mini-
mize the impact of divergence between domains; we flip this paradigm by intentionally increasing di-
vergence from an unwanted source while controlling proximity to a desired one. Similarly, our work
inverts the goal of coresets, which approximate a single distribution for efficient training (Mirza-
soleiman et al., |2020; |Gentile et al.| [2024). Coreset methods are designed for a one-distribution
problem, whereas we select samples from an unwanted distribution based on their relationship to a
separate, retained distribution. This two-distribution approach is critical; our experiments show that
a coreset-based baseline is inefficient for unlearning because it ignores the retain data.

2 DISTRIBUTIONAL UNLEARNING: DEFINITION AND IMPLICATIONS

The predominant paradigm in machine unlearning, which we call sample-level unlearning, addresses
the computational challenge of fully removing a known finite set of data points. This work addresses
a complementary scenario, which we call distributional unlearning, where the goal is to erase the sta-
tistical influence of a subpopulation. In this section, we formalize this task, establish its fundamental
trade-offs, and prove its consequences for downstream predictors.
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Problem Statement. To make the abstract concept of the unwanted domain tractable, we first model
it as an underlying probability distribution p;. This abstraction, common in statistical machine
learning, allows us to set a mathematical objective: to construct a new data distribution p that is
statistically distant from p; yet remains close to a retained distribution p,. In practice, these true

distributions are unknown. We instead work with finite sets of samples: S; = {xgl)}?:ll drawn

i.i.d. from unwanted distribution p;, and Sy = {x )} from retained distribution po. Crucially,
we assume these sets are obtained via some upstream process such as keyword filtering (as in our
Jigsaw experiments), the output of a pre-trained classifier, or human annotation. Our contribution is
to solve the subsequent statistical problem: given these identified samples, which subset should be
removed to most efficiently achieve our objective defined at the distribution level?

To formalize our objective, we choose Kullback-Leibler (KL) divergence because it enables con-
trol over the expected log-loss of downstream models, hence connecting data-level edits to pre-
dictive outcomes. We recall for two absolutely-continuous distributions ¢, p on data space X’ that

(2)
KL(qllp):= [ a(=) log 135 da.

Definition 1 ((«, ¢)-Distributional Unlearning). For tolerances o, > 0, a distribution p € P
satisfies (v, €)-distributional unlearning with respect to (p1, p2) if:

KL(py || p) > a (removal), KL(p2 || p) <& (preservation). €))

The first inequality forces the edited data to be information-theoretically distant from the popula-
tion we wish to forget. The second inequality upper bounds collateral damage to the population
we preserve. While we focus on KL divergence for its analytical tractability and its direct control
of expected log-loss, we note that different tasks may favor different divergences, and our frame-
work can in principle accommodate alternative or task-weighted notions of discrepancy. In the
remainder of this section, we analyze the properties of this definition at the population level, captur-
ing the fundamental trade-offs and downstream learning-theoretic guarantees. In Section |3} we turn
to the practical finite-sample setting and provide high-probability guarantees for specific removal
algorithms. Throughout, we defer all proofs to Appendix [A]

Removal-Preservation Trade-off. The pair (a,¢) captures a trade-off: how far we can move
from p; while remaining close to ps. To understand which (o, €) pairs are jointly achievable, we
characterize the feasible region and its boundary. Formally, the Pareto frontier PF(p1, p2; P) con-
sists of those pairs («, ¢) for which no strictly better trade-off exists: there is no p’ € P satisfying
KL(p1|lp’) > o and KL(p2||p') < &’ with @’ > o and €’ < e. That is, every point on the frontier
is optimal in the sense that one objective cannot be improved without worsening the other. To build
intuition, we first derive this frontier for the analytically tractable case of Gaussian distributions.

Proposition 1 (Pareto Frontier). Let p1, ps be two distributions in P, the class of Gaussian distri-
butions with shared positive covariance. The Pareto frontier of («, e) values achievable in P is:

PF(pl,pQ;m{ o, (Va — VRE@lpa)) :azKL<p1||p2>}

This frontier quantifies a natural, fundamental cost of distributional unlearning: a minimal preser-
vation loss is incurred for any given removal level, a trade-off governed by the initial divergence
KL(p1||p2). The result also highlights the suboptimality of a common default: keeping only the
retained data p». While this strategy achieves perfect preservation, the frontier shows it is possible
to attain a significantly higher level of removal by accepting a potentially small preservation loss.
While shown here for Gaussians for simplicity, this trade-off holds more generally for regular expo-
nential families (Appendix [A] Theorem[4)) and is validated by our synthetic experiments (Fig. [I).

Downstream Performance. We now connect our data-level objective to predictive performance in
supervised learning. Consider a predictor h : X — A()), where X is the input space and A())
the probability simplex over label space ), trained on a distribution p over X x Y that satisfies
(o, €)-distributional unlearning with respect to (p1,p2). We study how h performs under the true
data-generating distributions p; and ps.

Let {(y,q) = —logq(y), fory € Y, q € A(Y), denote the log-loss. Define the expected loss under
pas L(h;p) = E y)~pll(y, h(z))]. Then, for any class of distributions P, we have:

Proposition 2. Let h minimize L(h;p), and let hy, ho be optimal predictors under p1,py € P,
respectively. If p satisfies («, €)-distributional unlearning with respect to (p1, p2), then:

L(h;p1) — L(h1;p1) > o — 61, L(h;p2) — L(ha;p2) < € — 02, (2)
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Removal Method Sample Complexity

Removal Preservation
Random (Prop. n (1-v1-a) ny (1 —+/¢)
Selective (Thm. ny (1 —(1- a)1/4) ny (1 — 51/4)

Table 1: Summary of simplified sample complexity bounds, showing the number of p; samples (out
of n; > 1) to remove to achieve («, €)-distributional unlearning with high probability. We assume
ny is large, KL(p1 [|p2) is small, and 2 is constant; see Corollaryfor details. The key insight is
the quadratic improvement is sample efficiency of selective removal over random in this regime.

where 61 := KL(p1 x ||px), 02 := KL(p2, x ||px ) denote the marginal KL divergence over inputs.

These bounds show that distributional unlearning guarantees increased loss under the forgotten dis-
tribution and bounded degradation under the preserved one. In this sense, our framework provides
meaningful control over downstream predictive behavior. Regarding the extra marginal KL term in
the first inequality, which quantifies divergence on input distributions, the data-processing inequal-
ity gives KL(p1 x [|px) < KL(p1||p), hence this extra term is always bounded by the same o we
already control. A similar term appears in the second inequality, but can only improve the preser-
vation bound. Finally, these bounds provide a practical rule for calibrating the («, <) parameters.
For instance, if a practitioner decides they can tolerate at most a 0.1 nat increase in log-loss on the
retained test set, they can set their preservation budget to ¢ = 0.1. Then, the Pareto frontier (Prop.[I))
indicates the maximum achievable removal for this budget, in the Gaussian case. In a scenario where
the initial distributions have divergence KL (p1 ||p2) = 2, this choice of & corresponds to the removal
target of v = 3. These values match our findings in controlled experiments (Fig.[2} 2nd column).

3 ALGORITHMS AND SAMPLE COMPLEXITY

The previous section defined our framework at the population level. We now turn to the practical
finite-sample setting, where we must achieve («, €)-distributional unlearning using only the drawn
data samples introduced in Section 2] To build an analytical understanding of the finite-sample be-
havior, we analyze the problem in an idealized but foundational setting: univariate Gaussian distribu-
tions with known variance. This tractable setting allows us to derive closed-form sample complexity
bounds, providing crucial intuition about the relative efficiency of different removal strategies. We
then validate that these insights generalize empirically to more complex settings in Section

In the following, we introduce and analyze two deletion strategies: a random baseline and a selective,
distance-based method. We focus on the class of distributions P := {N (n,0%): p e R}, with
known o > 0. Given n; i.i.d. samples from the unwanted distribution p; € P and ny from the
retained distribution py € P, and a deletion budget 0 < f < nj, we derive high-probability bounds
on the resulting (o, €)-distributional unlearning guarantees. We defer all proofs to Appendix

3.1 RANDOM REMOVAL

We begin with a baseline deletion strategy that treats every sample equally, deleting f points chosen
uniformly at random from the n; samples of p;. The formal procedure is as follows:

Algorithm (Random Removal).

1. Randomly select f out of the n; samples of p; without replacement.
2. Remove those f samples.
3. Re-fit N'(j1, %) by MLE (maximum likelihood estimation) on the remaining data.

The following theorem provides a finite-sample guarantee for achieving («, €)-distributional un-
learning using random removal with a deletion budget f.

Proposition 3 (Random Removal). Let p1,ps € P and § € (0,1). We observe ny samples from p;
and nsy samples from po, and randomly remove f samples from py before fitting. With probability
1 — 6, the resulting MLE distribution satisfies (., €)-distributional unlearning with:

B 2 In(4/6 -
o> (i -9 <n1n2 f) ) Kk ez = : 2(Ti/ : (1 * nlm f) 7

2
<3 (nl — f) KL(p1 || p2) + 3In(4/9) (1 + - f) :
no n2

N2

4
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This result shows that the effectiveness of random removal is driven by the ratio of remaining un-
wanted samples to retained samples ”;—;f An interesting aspect of these bounds is the quadratic
dependence on this ratio, which indicates diminishing returns: each subsequent random deletion
provides progressively less of an unlearning effect. This quadratic relationship stems from the con-
centration of the empirical mean, whose variance scales inversely with the sample size. While
conceptually simple, this method’s inefficiency arises because it treats all samples equally, failing to
prioritize those that contribute most to the unwanted statistical patterns.

3.2 SELECTIVE REMOVAL

We hypothesize that a more effective strategy than random removal should prioritize which samples
to delete, using p, as reference. Since our goal is to shift the dataset’s empirical mean away from
the unwanted center p; and towards the retained center uo, the most impactful samples to remove
are those from p; that are furthest from p5. This intuition leads to our proposed selective removal
strategy, which uses the empirical mean of the retained data jis as a reference point for selection.

Algorithm (Selective Removal).

1. Compute the mean fiz of the ne samples from po.

2. For each of the n; samples z; from p;, compute the score s; = |x; — fia].
3. Delete the f samples with the largest scores s;.

4. Re-fit N'(fi,0?) by MLE on the remaining data.

The following theorem provides a finite-sample guarantee for achieving («, €)-distributional un-
learning using selective removal with a deletion budget f.

Theorem 1 (Selective Removal). Let py,ps € P and 6 € (0,1). Let f samples from py be re-
moved according to Selective Removal. With probability 1 — 0, the resulting estimate satisfies
(o, €)-distributional unlearning with:

1 1 —£\? In(4/8 2 In(4/6
2
e< (n1 — f) g ! (1 — i + 1n(4/5);KL(p1 I p2)>2 + M’
n2 ni 2nq N

where g(u; k) = ®(u—v2k) + P(u+V2k) — 1, for u,k > 0, and P is the standard normal CDF.

While the above expression is more complex than that of Prop.[3] it reveals a significant improvement
in efficiency, materialized in the term involving the inverse CDF g~ (- ; k). Intuitively, this term
represents a quantile of a folded normal distribution, shifted by x = KL(p1||p2), and arises because
we are truncating the distribution of scores by removing those in the tail. Specifically, this term
strictly amplifies the quadratic decrease in f, which was the best we could previously obtain with
random removal. This amplification is greatest when the distributions are close (the low-divergence
regime), as the “outlier” samples are more distinct and their removal provides a greater and more
targeted shift in the empirical mean. As we summarize in Table[T|and derive formally in Corollary [I0]
(Appendix [A), this improved leverage translates directly into a quadratic improvement in sample
efficiency over the random baseline in low-divergence regimes. This theoretical advantage is a core
finding of our work and is empirically validated in our experiments (Fig. 2).

4 EMPIRICAL VALIDATION

We now empirically evaluate our distributional unlearning framework across several case studies,
moving from synthetic to more complex real-world data. These experiments are designed to validate
the qualitative trends predicted by our theory—notably, the superior sample efficiency of selective
removal—rather than to directly apply Theorem [I] and Proposition [3] which assume Gaussianity.
To this end, we operationalize abstract domains using well-defined proxies, e.g., keyword-based
subsets, image classes. This allows for a reproducible evaluation of our selection algorithms, while
acknowledging that the upstream task of identifying such domains in the wild is a separate challenge.

Our validation begins with synthetic Gaussians to directly verify our theoretical predictions in a
controlled environment. We then move to high-dimensional real-world data, starting with the case
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Domain Separability Targetonp; Random Selective Savings
Gaussians Low KL(p1]p) 65 18 82 %
Gaussians High KL(p1]p) 65 50 50 %
Jigsaw toxic comments Low Recall 100 85 15 %
SMS Spam Medium Recall 90 75 25 %
CIFAR-10 High Accuracy 80 50 50 %

Table 2: Deletion budget (%) needed to reach half of the initial value of the removal metric (no
deletion) on each dataset. “Selective”=best-performing selective removal score; “Saving”=relative
size reduction versus full removal, i.e. retrain on ps samples only. Gaussians (low) and (high) are the
scenarios of the top leftmost and rightmost plots of Fig. [J] respectively. “Separability”’=summarizes
how distinguishable the domains are; the observed savings follow this difficulty.

of well-separated distributions (CIFAR-10), showing our framework generalizes standard class un-
learning. We then test our framework in the more challenging scenario of intertwined distribu-
tions (Jigsaw toxic comments), where the unwanted domain is semantically linked to the main
task. Finally, we demonstrate the broad applicability of our data-centric approach by using it as
an efficiency-boosting front-end for existing sample-level unlearning algorithms. We defer results
on an additional text dataset (SMS Spam) and full experimental details to Appendix [B]

Results overview. We summarize our main empirical findings in Table 2] Our synthetic experi-
ments directly validate our theory, showing data savings of up to 82% in the low-divergence Gaus-
sian regime, where our analysis predicts the greatest advantage. Crucially, this insight generalizes
to high-dimensional non-Gaussian text and image data, where selective methods still provide signif-
icant 15-50% data savings. As expected, the magnitude of these gains is more modest than in the
idealized theoretical setting, reflecting the increased complexity of real-world distributions. Across
all experiments, these removal gains are achieved with negligible impact on performance on the re-
tained domains, confirming the downstream performance guarantees predicted by Proposition [2] In
particular, the intertwined distribution case study on Jigsaw confirms that simply deleting all p; is
suboptimal, as discussed after Proposition[I} Finally, we show in Table[5]that our selection methods
combine effectively with various sample-level unlearning methods, not just retraining from scratch.

4.1 SYNTHETIC GAUSSIANS: PARETO FRONTIER AND SAMPLE EFFICIENCY

We first validate our theoretical framework in a controlled setting, designed to directly verify the
analytical predictions made in Sections[2]and[3} the Pareto frontier shape and the superior sample ef-
ficiency of selective removal. We set p; = N (0,1) and po = N (u, 1) for varying 1 € {0.5,2.5,5},
which allows controlling the initial divergence KL(p1||p2), i.e., intertwinement level. For each con-
figuration, we draw n; = ne = 1000 samples from p; and po, respectively. We implement the two
mechanisms from Section |3} random and selective removal. After deleting f samples, we re-fit a
Gaussian p = N (i, 1) on the retained p; and ps samples. We then compute forward KL divergences
a = KL(p1||lp) and ¢ = KL(p2||p) to quantify forgetting and preservation, respectively.

Pareto Frontier

Pareto frontier. Figure |1| confirms that the empirical (a, €) 25 e ——r—
trade-off closely matches the theoretical Pareto frontier de- Feile
rived in Proposition [I| To plot feasible empirical trade-offs,

we set p = NM(p,1) and vary pp € R, while p; = N(0,1) /

and po = N(2,1) so that KL(p1|[p2) = 2. The latter quantity

£ (preservation)
T
w o

o

°
&

is the threshold predicted by the theory, and validated by Fig-
ure[I] Indeed, feasible trade-offs whose removal divergence «

e
°

is below this threshold are pareto-suboptimal. They are domi- o lremovel
nated by the trade-off (o« = KL(p1[p2),e = 0), which canbe Figure 1: Synthetic Gaussians.
achieved with the choice of distribution p = ps. The empirical frontier aligns with

Sample efficiency. We next compare the sample efficiency of ~the theoretical prediction.

the two removal strategies analyzed in Section |3} In Figure [2| we plot removal « as a function of
the number of p; samples removed. Selective removal reaches higher forgetting levels with fewer
deletions than random removal, especially in the low-divergence regime (2 = 0.5, top left plot).
For example, to reach 0.06 nats of removal divergence, i.e., half of that obtained by removing all
samples, selective removal requires 5 x less samples than random removal, i.e., 10x reduction in size
from full removal. Analogous trends hold for preservation (bottom left plot): selective removal more
effectively preserves the reference distribution ps throughout. The remaining plots show similar
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Figure 2: Synthetic Gaussians. Selective removal consistently requires fewer deletions, especially
when KL(p1||p2) is small (left), for the same removal and preservation target as random removal.
In high-divergence regimes (right), the gap between methods shrinks, as predicted by the theory.

trends when increasing the divergence KL (p ||p2) by increasing uo. As in theory, selective removal
offers the greatest savings when p; and p, are close and diminishes as the distributions diverge.

4.2 CASE STUDIES IN REAL-WORLD DATA

Having validated our theoretical predictions in a controlled setting, we now test our framework’s
applicability on high-dimensional non-Gaussian data. We present two case studies representing
distinct unlearning scenarios. We first analyze the CIFAR-10 dataset (Krizhevsky et al., [2014)) to
test our framework on well-separated distributions, showing it generalizes standard class unlearning.
We then turn to the Jigsaw toxic comments dataselrﬂ for the more challenging scenario of intertwined
distributions, where the unwanted domain is semantically linked to the main task.

Removal methods. Across both case studies, we evaluate several scoring heuristics designed to rank
samples in the unwanted distribution p; for selective removal. These heuristics are high-dimensional
analogues inspired by the principles developed in our theoretical analysis. The choice of distance
metric is adapted to the data modality: for the sparse, high-dimensional TF-IDF text embeddings,
we use Cosine distance; for the dense CNN image features, where feature covariance is meaningful,
we use Mahalanobis distanceﬂ Our main selective removal strategies are: (1) distance to retained
(COS-MU2 / MAHA-MU?2): this heuristic is a direct analogue of the distance-based method formally
analyzed in Section[3] It scores samples based only on their distance to the mean of the retained
distribution p-, in cosine and Mahalanobis distance respectively; (2) likelihood-ratio (LR-COS / LR~
MAHA): this is an extension that scores samples based on a margin between their distance to the po
mean versus their distance to the p; mean, aiming to remove samples that are both distinguishable
from ps and representative of p1, in cosine and Mahalanobis distance respectively; (3) Local Density
Ratio (KNN-RATIO): This heuristic estimates the local density ratio around a sample using its k-
nearest neighbors (k = 10). It aims to remove samples that are much more “typical” of the unwanted
distribution p; than the retained distribution ps in their immediate feature neighborhood; (4) Feature
Norm (TFIDF-NORM): This simpler baseline scores samples based on the ¢5-norm of their feature
vector. It serves as a proxy for a sample’s “informativeness” or extremity in the feature space.
We further discuss their computational complexity in Remark [T2] While our selection rules follow
directly from the Gaussian analysis, we note that real-world distributions can be multimodal, in
which case more expressive criteria, e.g., incorporating local density or cluster structure, may further
improve performance.

Our scoring functions compute similarity between forget and retain samples using finite-sample es-
timates, e.g., empirical means or embeddings. When only a small or proxy retain subset is available,
as may occur in large-scale settings, these estimates become noisier but still supply a meaningful
signal, and the distributional unlearning framework applies without modification. Extending these

"https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
>The Mahalanobis distance of vector z to probability distribution p, of mean g and covariance ¥, is:
d(z,p) = /(xz — n) TS L(z — p). We estimate y and ¥ empirically on the retained distribution po.
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(a) Accuracy on cat images (p1, forgotten). (b) Accuracy on non-cat images (p2, retained).

Figure 3: CIFAR-10 images. Removing cat images suppresses accuracy on that class (left) while
leaving accuracy on the retained nine classes essentially unchanged (right, <0.03 variation). No
substantial removal is observed until 50% deletion, before selective removal strategies LR-MAHA
and MAHA-MU?2 outperform random removal. Error bars: +1 standard error over thirty seeds.

ideas to settings such as large language models, where the retain distribution may be approximated
by a general-capabilities corpus, is a natural direction for future work.

Remark 2 (Selection Budget Choice). In practical deployments, the deletion budget can be chosen
in two complementary ways. First, budget may be constrained by the computational cost of a down-
stream sample-level unlearning method, in which case one simply targets the largest forget-set size
that satisfies this constraint. Second, one may inspect the cumulative distribution of selection scores
and choose the smallest subset of samples that accounts for a desired fraction of the total influence
(e.g., 80%), analogous to coverage thresholds used in data pruning.

4.2.1 CIFAR-10: VALIDATION ON WELL-SEPARATED DISTRIBUTIONS

We first validate our framework on well-separated distributions using the CIFAR-10 dataset, treating
the ‘cat’ class as the unwanted domain to simulate common class-level unlearning tasks. This allows
us to test a key hypothesis: that even within a single, well-defined class, the statistical influence
distinguishing it from other classes is not uniformly distributed among its members. To test this,
we rank all ‘cat’ images based on distance scores computed in the feature space of a CNN model,
aiming to find the subset whose removal most efficiently erases the class’s statistical footprint. We
delete the top score-ranked samples for each deletion budget, re-train a convolutional neural network
for ten epochs, and report accuracy on the cat test set and accuracy on the other nine classes test set.

Findings. The results in Figure[3|confirm our hypothesis. The superior sample efficiency of selective
methods shows that even within a single class, statistical influence is concentrated. For instance, the
LR-MAHA strategy halves the initial accuracy on the ‘cat’ class by deleting only 50% of the images,
making it 1.6 x more data-efficient than random removal. By removing the most statistically distinct
cats first, our data-centric approach accelerates the unlearning process while leaving performance on
the other nine classes stable (Fig.[3b). This demonstrates our framework’s value in class unlearning
scenarios, offering a more targeted and efficient alternative to naive or complete removals.

4.2.2 JIGSAW ToxiC COMMENTS: INTERTWINED DISTRIBUTION CHALLENGE

We now test our framework on intertwined distributions using the Jigsaw toxic comments dataset.
Here, the unwanted domain—comments containing specific profanities (8.6% of the corpus, cho-
sen keywords in Appendix [B)—contains strong predictive signals for the main task of identifying
toxicity in the retained, non-profane comments. This creates a high-stakes trade-off where simply
removing the entire unwanted p; samples harms utility, a fact demonstrated by the sharp drop in
performance at full deletion in our experiments (Figuredb). The objective is therefore to remove the
influence of explicit profanity while preserving the shared predictive features.

Findings. Our results validate the need for a targeted strategy in this setting. Figure fa] shows
that recall on profane comments remains high until large deletion budgets are reached, confirming
the hardness of the task and suggesting that naively removing random profane comments—which
may be statistically similar to non-profane text—is ineffective. A significant unlearning effect is
only achieved by selective strategies like LR-COS, which prioritize removing outlier, distinguishable
comments. For example, to reduce recall on the profane set to 0.70, the LR-COS strategy achieves
this same effect by deleting 80%, a 15% reduction in the required deletion budget compared to ran-
dom removal, while relatively maintaining performance on the retained set unlike complete removal.
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Figure 4: Jigsaw Toxic Comments. Impact of removing profane comments on Jigsaw Toxic. Left:
recall on the to-be-forgotten set p;; right: F; on the retained set p,. Utility is almost unchanged up
to 60% deletion; marked forgetting appears only around 80% deletion, with LR-COS showing the
steepest drop. Error bars: £1 standard error over five randomness seeds.

4.3 SYNERGY WITH SAMPLE-LEVEL UNLEARNING

A key application of our data-centric framework is to serve as an efficiency-boosting front-end for
various sample-level unlearning algorithms, as their computational cost typically scales with the
size of the flagged forget set (e.g., fewer gradients on forget data, see Remark [TT)). First, on Gaus-
sian data, we pair our selection method with full retraining and a standard influence function-based
approximation using the log-likelihood Hessian. Second, on our more complex CIFAR-10 class
unlearning task, we pair with recent methods, including finetuning and advanced, gradient-based
techniques like NegGrad+ (Kurmanji et al, 2024) and SalUn (Fan et al) [2024) (App.[B:2.2). The
results, summarized in Table [5| show a consistent and significant improvement in sample efficiency.
This advantage is most pronounced in the synthetic, low-divergence setting where our method is
up to 5x more sample-efficient, and it qualitatively generalizes to the CIFAR-10 task, where our
method uses a deletion budget up to 2x smaller than full removal, while achieving a strong unlearn-
ing effect, i.e., 20% test accuracy on forget data, with original ~86% test accuracy on the retained
data. Savings vary following the quality of sample-level unlearning, which is poor for naive fine-
tuning, and much more interesting for SalUn, which approximates the retraining standard well.

We compare against a centroid-based coreset baseline that removes the samples most representa-
tive of p; (those closest to its mean); we also evaluated k-center greedy (recalled in App. [B2.1)
which performs near-identically. This strategy performs poorly because, in low-divergence settings,
it removes exactly the samples that are least distinguishable from ps—the opposite of our selec-
tive method. While more sophisticated coreset methods exist, they are designed to preserve the
properties of a single distribution. Our dual-distribution objective—to maximize divergence from
p1 while minimizing divergence with respect to po—is fundamentally different. We hypothesize
that any method optimizing for within-distribution representativeness will underperform our cross-
distributional approach, and leave a deeper adaptation of coreset methods to future work. Indeed,
our experiments in Section with two strong gradient-based coresets (CRAIG (Mirzasoleiman
et al.;, 2020), GradMatch (Killamsetty et al.,|2021)) illustrate this limitation empirically, as both out-
perform random deletion yet fall substantially short of our distributional selection under matched
budgets. Similarly, recent pruning methods such as TDDS (Zhang et al., [2024b), CCS (Zheng et al.}
2023)), and UNSEEN (Xu et al., |2025)) further advance data-efficiency for training, but they remain
single-distribution methods: their scoring functions are defined entirely on the training distribution.
As such, they cannot exploit the contrast between the forget and retain distributions that drives dis-
tributional unlearning.

Remark 3 (Retain data assumption). When no retain distribution is available, our objective col-
lapses to selecting influential points within the forget distribution, which is more aligned with clas-
sical coreset construction. Our experiments indicate that such single-distribution methods are lim-
ited in low-divergence regimes: they emphasize representativeness within the forget distribution but
cannot leverage the crucial contrast with the retain distribution that drives effective data removal.
For this reason, we view acquiring or defining even a coarse proxy retain dataset (e.g., a general
capabilities corpus) as an important practical consideration for applying distributional unlearning.



Under review as a conference paper at ICLR 2026

Unlearning Selection Method . Savings Selection Unlearning Method
Method Random Coreset Selective Method  Retraining Influence Func.
Retraining 80 75 60 40% -

Finetuning 98 98 88 129, pelective > ;’1‘
NegGrad+ 88 85 70 30% Can OIt“ 03 03

SalUn 68 75 55 45% orese

Table 5: Synergy with Sample-Level Unlearning. Deletion budget (in %) required to reach: (left)
20% test accuracy on the CIFAR-10 forget class; (right) half the initial KL divergence in low-
divergence Gaussians (Fig. [2] top left scenario). Our Selective removal is benchmarked against
Random selection and a Coreset baseline across various sample-level unlearning methods. “Sav-
ings” indicates the relative reduction in size of selective removal from the full forget set.

5 CONCLUSION AND FUTURE WORK

Machine unlearning increasingly requires moving beyond individual record deletion to erase the
influence of entire subpopulations. We tackled the central dilemma of this task: that full removal
is computationally expensive, while naive partial removal is statistically inefficient. We find that a
domain’s statistical influence is often concentrated in a small high-impact subset of its samples. We
formalized this insight as distributional unlearning, a framework for selecting a small subset of data
that optimally balances forgetting an unwanted distribution while preserving a desired one. Our the-
oretical analysis provided provable guarantees connecting this data-centric approach to downstream
model performance, and our experiments validated that a selective, distance-based removal strategy
is often more data-efficient than random or full removals across a range of tasks. While our work
provides a foundation for selective data removal, we acknowledge its limitations, which point to
important directions for future research below.

Distributional assumptions. Our finite-sample analysis provides strong guarantees but assumes
Gaussian distributions; while our experiments show the core insights generalize qualitatively, bridg-
ing the gap between these theoretical bounds and the behavior on complex real-world data remains
an open question. This distributional mismatch also helps explain the gap between the 82% data
savings in our low-divergence synthetic setting and the still-significant 15-50% savings on real data.
More fundamentally, our framework operates on samples that have already been identified as be-
longing to an unwanted subpopulation. This leads to an exiciting extension of our work: because we
show that only a small subset is needed for effective unlearning, this creates the potential for active
identification systems that could help practitioners find these few, high-impact samples at a fraction
of the cost of exhaustive annotation.

Data- to model-level guarantees. Moreover, our evaluation of unlearning is based on model perfor-
mance degradation, which directly validates our theoretical log-loss guarantees. A privacy-centric
evaluation could employ methods like Membership Inference attacks (Shokri et al.l 2017) to for-
mally verify that the unlearned model is indistinguishable from one retrained from scratch, repre-
senting another crucial avenue for future work. Conceptually, one could make a formal link between
the (sample-level) certified (Guo et al.,[2020) and distributional unlearning frameworks.

LLM fine-tuning applications. Beyond the foundational discriminative settings studied here, there
is now a rapidly expanding line of work on data selection for large language model (LLM) in-
struction tuning. Classical instruction tuning (Wei et al.| 2022), demonstrates that finetuning on
curated instruction datasets can significantly improve generalization. More recent approaches focus
on selecting high-quality subsets from a single instruction distribution to improve supervised fine-
tuning (SFT) efficiency (Li et al.l [2024aib; |Wang et al., 2025); see also the survey of [Zhang et al.
(2025). These methods aim to upweight instructive or representative examples for SFT, whereas
our framework addresses a fundamentally different objective: distributional unlearning requires se-
lecting a deletion subset that shifts a model’s behavior between two distributions. In this sense, our
theory is model-agnostic and can serve as the selection layer for future (multimodal) LLM unlearn-
ing pipelines by operating directly on data representations (e.g., LLM embeddings) and respecting
forget/retain distributional structure.

10
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REPRODUCIBILITY STATEMENT

We provide experimental reproducibility details in Appendix [B] Moreover, we will release our code
publicly upon publication of the paper.

LARGE LANGUAGE MODEL USAGE

Large language models were used by the authors to aid or polish the writing of the paper. Authors
take full responsibility for the content.
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A PROOFS

A.1 PARETO FRONTIER

Proposition 1 (Pareto Frontier). Let pi, ps be two distributions in P, the class of Gaussian distri-
butions with shared positive covariance. The Pareto frontier of («,€) values achievable in P is:

PF(p1,p2; P) = {(a (f— KL(plllpz))z) Tz KL(plllpz)}-

Proof. For simplicity, we consider univariate Gaussians with shared variance. For d-dimensional
Gaussians with covariance ¥ € R?*9, the same result holds after replacing squared error by the
Mahalanobis distance ||z — 12[|%_, (see Proposition 4).

Let p = N(u,0%) € P. Since all distributions in 7 share the same variance, the KL divergence

from p; to p is:
2

KL(pilp) = 1 — Eoicie

Fix o > KL(p1||p2). We want to compute the minimal possible € achievable under the constraint
KL(p1|lp) > «. Define this minimum as:

. (p2 — p)?
€ = =
+(@) LER, (;AIPMIF)ZZQU% 202

This is a one-dimensional quadratic minimization problem subject to a quadratic inequality con-
straint. The feasible set is:

p € (—oo, u1 —ovV2a) U [p1 + ov2a, 00).

2 over this set. This yields two cases:

We minimize (pug — 1)
o If uo € [p1 — ov2a, g + 0/ 2al, then the closest feasible points are the endpoints. The
minimizing value of p is:
p= p1 +sign(pz — p1) - oV2a,

and the resulting divergence is:

(s — i — sign(s — ) - 03’
5*<a) = 2052 :

o If uy already lies in the feasible set, i.e., |u2 — 1| > 0v/2q, then we can choose p = po,
yielding &, () = 0.
Thus, for all o > 0:
2
(= = v
202 ’

where (z)4 = max{z,0}. Let A := |u2 — p1], and recall that KL(p ||p2) = %. Then:

A = o+/2KL(p1||p2)-

ex(a) =

Substituting into &, («):
2
e(0) = (Va— VEL(pllpa))  fora > KL(p p2).

Finally, note that any pair («, ) with o < KL(p;||p2) satisfies e, («) = 0, hence is dominated by
(KL(p1]|p2), 0). Therefore, the Pareto optimal points are exactly:

{(a, (va- KL(plpz))2> o> KL(p1|p2)} ,

as claimed. ]
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Next, we show that a qualitatively similar result holds more generally for any exponential-family
member.

Theorem 4 (Pareto Frontier—Exponential Families). Let (X, 1) be a measurable space and let

P = {po(z) = h(x) exp(0'T(z) — A(0) : O C Rd}
be a regular minimal exponential family (carrier h > 0, sufficient statistic T: X — R?,
log-partition A). Fix pi(z) = pe,(x), ¢ = 1,2, and o« > 0. Define v(a) =
infoee {KL(p2po) | KL(p1llpe) > a}, where KL(q||p) = [ qlog(q/p) du. Then:

(i) The Pareto frontier for points in P is
PE(p1,p2i P) = { (. v(@)) : @ > KL(pi |p2) }.

where v(a) = KL(p2||p1) + o + 25 (02 — 61) " (Ep, [T] — Ep, [T]), and A* is the unique

scalar in (0,1) such that the distribution p* € P of mean E,-[T| = w
satisfies KL(p1||p*) = e

(ii) (Gaussian case) If P = {N (11, %) : p € R4} with fixed X = 0, then for o > KL(p1 ||p2):
v(a) = (Va — VKL(pi[p2))"

Proof. In this proof, for a fixed a > 0, we study the optimal value
v(e) = inf {KL(p2[[po) | KL(p1[lpo) > o}

This enables characterzing the Pareto frontier of feasible («,¢) trade-offs. Below, we focus on
the non-trivial case a > KL(p;||p2). Indeed, in the case a@ < KL(p1||p2), the problem above’s
unconstrained minimizer p is a feasible solution, so that v(«) = 0 for all o < KL(p1||p2).

Reparametrization and KKT. First, we recall the expression of the KL divergence in exponential
families as a Bregman divergence. For any 6,6 € © one has
KL(per[lp) = A(8) — A(6") — (6 — 0')TVA(®).
We let
f(0) =KL(p2llpo), 9(0) = KL(p1lIps)-

Both are continuously differentiable on the open set ©. The feasible set {g(#) > «} is nonconvex,
so we check linear independence constraint qualification (LICQ, [Bertsekas|(1997)) at any minimizer
6*. To do so, we recall (see|Wainwright et al. (2008)) that for exponential families VA(0) = E,, [T]]
for any 6 € ©, so that

Vg(0) = -VAb,)+ VA@O) = —E, [T+ E,, [T].

Minimality of the exponential family ensures E,,[T] is injective [Wainwright et al| (2008). This
together with the fact that p; # pg for any feasible 6, since o > 0, implies that Vg(6*) # 0 and
LICQ holds.

Next, we form the Lagrangian
L) =f()—A(g(0) —a), X=>0.
Since LICQ holds, KKT conditions are necessary Bertsekas (1997) for any minimizer 6*. Hence,
stationarity (VoL = 0) gives
VF(0") = AVg(6").
Given that we had derived VoKL (p;||ps) = — E,, [T] + E,, [T], we obtain
—Ep, [T] + Ep: [T] = A (= Ep, [T] + E,- [T1),
hence (1 — A\)E,.[T] = E,,[T] — AE,, [T]. Observe that we must have A # 1, as otherwise
E,,[T] = E,, [T], but this contradicts the fact that p; # p; given that E,, [T] is injective for
minimal exponential families [Wainwright et al.|(2008). Therefore, we have the following:
_ B, (7]~ Eyy[T)

E,e (7] e
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Now, we observe that the inequality constraint must be active. Otherwise, the minimizer lies in the
interior of the feasible set and is thus a local minimum of the unconstrained problem. The latter
admits p, as a unique minimizer, so the minimizer at hand must be py but this is not feasible since
we assume KL(p; ||p2) < «. Therefore, the minimizer must lie at the boundary of the feasible set,
and the inequality constraint is active. That is, we have g(6*) = a.

Optimal value. We are now ready to derive the expression of the optimal value:
v(@) = f(6") = KL(p2|lp")-

We use the following classical Pythagorean-type identity for Bregman divergences (see, e.g., Baner-
jee et al. Banerjee et al.|(2005))):

KL(pallp*) = KL(p2lp1) + KL(p1|[p*) + (62 — 61) T (VA(61) — VA(6*)).

Now, consider the aforementioned KKT multiplier A > 0, A # 1 such that VA(6*) = E,«[T] =

AEp, [fLZEPQ [T] — AVA(Ol)\):1VA(02) as well as KL(pl Hp*) = g(e*) = «. We thus get

v(a) = KL(p2|lp*) = KL(p2lp1) + KL(p1[[p*) + (62 — 61) " (VA(61) — VA(6"))

= KL(p2llp1) + KL(p1p*) + ﬁ(% —61) " (VA(62) — VA(6)))

= KL(pallpr) + -+ 5 (6 — 1) (VA@B:) ~ VA@))

We now again use that VA(0) = E,, [T] for all § € ©. We then obtain:

o(@) = KL(pallpr) + -+ 5 (6 = 0)T (B, [T] ~ B, 7)) ®

Uniqueness of \. We now show that there is a unique KKT multiplier A for the optimal solution.

We recall that A > 0 is such that A # 1 and:

_ A EPI [T] — Epz [T]
A—1

Above, the first equation uniquely defines the distribution p*, by minimality of the family, and we
now show that there is only a unique A of interest such that the second equations above holds.

Ep-[T] 9(0*) = KL(p1|p*) = o

Let 6*(\) be the unique (by minimality) parameter such that E,- [T'] = w. We define
H(A) = KL(p1[|p*) = A(6%) — A(61) — (6" — 6:) "VA®)
Taking the derivative above, we get
dH N + do*
a@\) = (VA(0") — VA(61)) Y (A)-
We again use that
x AE,, [T]-E,,[T] _ AVA(0;) — VA(0:)
VA®O) = B, [T) = 22 En 0] - .
First, replacing in the previous derivative equation, we obtain:
dH .. . -+ do* 1 + do*
Second, taking the derivative with respect to A in the expression of VA(#*) yields:
do* 1
ZA0%)  ——(\) = —— (VA(01) — VA(62)).

We observe that the Fisher information matrix V2A(6*) is positive definite since the family is reg-
ular. Multiplying by the inverse of the latter then yields:

D) = g VPAW) " (VAW@) — VAW))

X T (A= 1)2 ! 2
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Plugging the above in the latest expression of the derivative of H yields:

dH 1 do*

—(\) = ——(VA(#,) — VA(B)) "

oA = 57 (VA(01) = VA(62)) =)

1
= W(VA(%) — VA(0:))TV2A(0") " (VA(61) — VA(02)).

Since the matrix V2 A(6*) is positive definite by regularity of the family, the corresponding quadratic
form above is positive (recall §; # 65), and the sign of the derivative is that of A — 1. Therefore,
H is decreasing on (0, 1) and increasing on (1, +0c). It is straighforward to check that H(0") =
KL(p1||p2), H(17) = H(1") = +o0, and H(400) = 0. Since KL(p1||p2) < « by assumption,
there exists a unique A* € (0, 1) such that H(\*) = « and a unique A} > 1 such that H(\}) = a.

We now discard A} thanks to the expression of the optimal value expression (3). Indeed, the second
term in () is positive for A} since \; > 1and (02 —01) " (Ep, [T]—E,,[T]) = (62—01) T (VA(f2) —
V A(67)) > 0 by strict convexity of A and the fact that p; # py. On the other hand, this same second
term is negative for \, since A, < 1. Therefore, the optimal value is smaller for the choice of A*, so
that:

1
v(a) = KL(pallp1) + o + ﬁ(% —01)" (Ep, [T] — Ep, [T), “4)
where A* is the unique scalar in (0, 1) such that:
_ A Epl [T] — Epz [T]
A —1

Ep-[T] 9(6") = KL(p1lp*) = a.

Finally, we note that v(«) is non-decreasing by definition; increasing « shrinks the feasible set. Also,
we recall that v(«) = 0 forall @« < KL(p1]||p2), i.e., all trade-offs («, €) with « < KL(p1||p2),e >0
are dominated by (KL(p1||p2), 0). Therefore, we conclude that the pareto frontier is given by:

PF(p1.p2i P) = { (o, v(@)) : @ = KL(p p2) }.

Gaussian case. For p, = N (u,X) one has T'(x) = z, E, [T] = y, and
KL(pillpa) = 5 — 1) "5 (i — ).
By the conditions on A* we have

o AT — po
b= _7 KL(p1|[pp) = c.

Using the KL divergence expression for Gaussians N (u, ) (recall KL(N (u1, X), N (u2, X)) =
31— p2) TS (a — p2)), we get
. _H2—n _ KL(p1llp2)

Solving for \* € (0,1) yields \* = 1 — \/KL(p1||p2)/c« and

Y
14 H1 KL(p]HpQ) H2 M)

Thus, direct computations yield

@) = 4 (lInz = s+ — V32) = (VREGiTa) - va)*

with v(a) = 0 if & < KL(p1||p2). This concludes the proof. O

Discussion. In Proposition[dwe show that, in any regular exponential family, the trade-off between
removal («) and preservation (¢) can be quantified. This yields a removal-preservation trade-off
curve that faithfully reproduces the shared-covariance Gaussian Pareto frontier—namely the familiar
(v/a—+/D)? parabola—while in other families it gives an explicit but generally non-algebraic trade-
off curve.
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A.2 PREDICTIVE PERFORMANCE

Proposition 2. Ler h minimize L(h;p), and let hq, ho be optimal predictors under p1,ps € P,
respectively. If p satisfies («, €)-distributional unlearning with respect to (p1, p2), then:

L(h;p1) — L(h1;p1) > a — 61, L(h;p2) — L(ha;p2) < € — 02, 2
where 01 := KL(pLX llpx), o2 := KL(pg,X llpx) denote the marginal KL divergence over inputs.
Proof. Let h(y | «) := h(x)(y) denote the conditional distribution defined by the hypothesis A, and

suppose i minimizes the expected log-loss under p. Since ¢(y,q) = —logq(y) is a strictly proper
scoring rule, the unique minimizer of L£(h;p) is the true conditional distribution h(z) = p(- | z),

where p(z,y) = p* (z)p(y | ©).

We begin by analyzing the expected log-loss of this hypothesis under an arbitrary distribution g over
X x V.

L(h; q) = E(z,y)ng[—10g h(y | 2)] = BzngxEyng(jo)[—logp(y | )],
where ¢ denotes the marginal distribution of z under g, and ¢(- | ) the corresponding conditional.

Now recall the standard identity for any two conditional distributions ¢(- | ) and p(- | ):

Eyq|)[—logp(y | 2)] = KL(q(y | =) | p(y | z)) + H(q(y | x)),

where H(q(y | z)) = Ey~q(.|x)[—logq(y | z)] is the Shannon entropy of the label distribution
under q for fixed x.

Taking the expectation over z ~ ¢X, we get:

L(h;q) = Epngx [KL(g(y | 2) || py | 2)) + H(q(y | 2))]
=EongxKL(q(y | 2) | p(y | 7)) + Epgx H(q(y | 7).

The second term is the expected entropy, which corresponds to the Bayes-optimal risk under q:

L(hg; ) = inf L(h;q) = Eqgx Hg(y | ). )

Next, we relate the expected conditional KL term to the total KL divergence between the joint
distributions. Using the chain rule for KL divergence, we have:

KL(q | p) = KL(¢™ || p*) + Epqx KL(q(y | 2) || p(y | 2)). (6)

This decomposition holds generally for joint distributions with conditional factorizations. Solving
for the conditional KL term, we obtain:

E.oxKL(q(y | ) || p(y | 2)) = KL(q || p) — KL(¢™ || p¥). (7)

Substituting the above into the expression for £(h; q) and using (3)), we get:

L(h;q) = KL(q || p) — KL(¢™ || p*) + L(h%;q). (8)

We now apply this to ¢ = p; and ¢ = p2, noting that p satisfies («, €)-distributional unlearning, i.e.,
KL(p1 || p) > cand KL(p2 || p) < e.

For p;, we define 6, := KL(py || p*) and compute:

ﬁ(h;pl) - E(hl;pl) = KL(pl || p) - KL(Z’{( || pX) = KL(Pl || p) — 61> a—0;.

For po, define 0, := KL(p5 || p*) and similarly compute:

E(h;Pz) - E(hQ;pz) = KL(pz H P) - KL(Pg( || pX) = KL(p2 H P) — 0y <e—do.

This completes the proof. O

18



Under review as a conference paper at ICLR 2026

A.3 RANDOM REMOVAL

Lemma 5 (Finite-sample concentration). Let i be the empirical mean of n samples drawn from
N (u, 0?). Forany § € (0,1), with probability at least 1 — §, we have

R 21n(2/4
-yl <o M
n
Proof. This follows directly from Hoeffding’s inequality for sub-Gaussian variables. O

Proposition 3 (Random Removal). Let p1,pes € P and § € (0,1). We observe ny samples from p;
and no samples from po, and randomly remove f samples from p, before fitting. With probability
1 — 0, the resulting MLE distribution satisfies («, €)-distributional unlearning with:

B 2 In(4/6 -
o> (i -3 <n17l2 f) ) Kk e = : 2(:2/ : (1 * nan f> 7

2
no N2

UP)

Proof. We recall that p; = N (u1,02), p2 = N (ue,0?) € Pand p := N (p,0%) € P are univariate

N

Gaussian distributions. We are given n; i.i.d. samples x .. x(nl) from p; and ny i.i.d. samples
1

xé1)7 . ,;vé "2) from p.

Upon removing f < ny randomly chosen samples x( ) . ,xgm_f ) from the target distribution p,

we set the center p of the unlearned distribution p to be
(n1 — f)in + nafio

r= *ernQ ’ ©)

where fi; = — f Sy f gi) and fig == nlz > m2 We also observe that a standard Hoeffding
bound (Lemma3)) yields that:

|ﬂ1—m|<a,/2lngf“/§>, |ﬂ2—u2\§a,/%§/5)7 (10)

each with probability 1 — g, so that both hold with probability 1 — § thanks to a union bound. We
also recall that )
(11— )

N2
sl (p2 u)' (11

KL(p2 || p) = 552

KL(p1 || p) =

Preservation bound. First, we upper bound the KL divergence of ps from p. To do so, we first
use the triangle inequality to get

(n1 — )i +najio ‘ ny— f . ng N
—_ = — = |- — +7 —
i — po . _f+n2(#1 fi2) nl—f—i—ng(M? f12)
ny— f ni— f A 12 A
= | —— (1 — pi2) + ————— (1 — p1) + —————— (1o —
—f+n2(“1 He) + - T m (A = ) + - —— (f12 — pi2)
ny— f /
< - +7 +7
= =+ |1 — pal f+ i1 — “ftn |fiz — o] .

Therefore, using (I0) we have with probablhty 1-

| < | |+ ny — 21In( 4/(5 21In( 4/(5
= f2 f+n M1 — M2 f+n2 n1 f+n2 T

Taking squares, using Jensen’s 1nequa11ty, and simplifying further since f > 0, yields:

— £\’ —f\? ,2In(4/s 61n(4/5
u—u2|2<3<mn2f> Im—u2|2+3<"1n2f> 2 2I0/0) | 2 6If0) gy

nl—f %)
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Dividing both sides by 202 and then using (28) yields with probability 1 — §:
2
ny — 31In(4/6 ny —
Kps 1) <3 (ML) a1+ 220D (122 0) g
N9 N9 )

Removal bound. Second, we lower bound the KL divergence of p; from p. To do so, we use
Jensen’s inequality and (T2) to obtain that, with probability 1 — §, we have

w1 — pal® = | — 4 i — p2l® < 2| — pl® + 2| — pof?

2
ny — 6021n(4/6 ny —
§2|u1—u2+6<1f> |M1—M2|2+¢ <1+1f)
N2 n2

n2

Rearranging terms and dividing by 402 along with (28) yields that with probability 1 — § we have
S S T e T2 3 (m - f)2 i — pal® 31In(4/9) (1 LM —f)

20’2 - 40’2 %) 20’2 2TL2 U»)
1 ni— f\° 31n(4/0 ny —
(23<1 f>>KL(p1||P2) (/><1+ - f>~
N9 2n3 ng
Conclusion. With probability 1 — ¢, we have («, £)-distributional unlearning with
1 ni— f\° 31In(4/0 ny —
o (L os(M ) ) ki gy - 2B (3 T,
2 N9 2’112 U»)

2
es3("1f) KL(p1 | po) + 24/0) (H”lf)-
N9 n2 n2

KL(p1 || p) =

A.4 SELECTIVE REMOVAL

Lemma 6 (Dvoretzky—Kiefer—Wolfowitz Inequality). Lef x1, o, ..., x, be independent and iden-
tically distributed random variables with cumulative distribution function F. Define the empirical

distribution function by
n

F(t) = %Z 1{z; < t}.

i=1
Then, for any § € (0, 1), with probability at least 1 — § we have
In(2/6)

su ﬁt—Ft‘g .
up (1) - P(o)] < (/25

Lemma 7. Let pq, pu2 € R, 0 > 0. Consider ny i.i.d. samples ;Egl), . 7aJ"gnl)from N (p1,0?%) and
ng i.i.d. samples acél), ey ;vg”) from N (ua,02). We define fi5 the average of the samples from
N (p2,02), ji1 the average of the ny — f < ny closest samples from 3351), cey a;§"1) to 1. We define

F:teRw @(%ﬂ”‘) — @(w) where @ is the standard normal CDF.
Forany ¢ € (0,1), we have with probability 1 — §,

-l <Pt (1oL In(2/0) ) | (14)
ny 277,1

Proof. Recall from Equation (23) that /i, is the average of the ny — f samples, out of n; i.i.d. from
p1, with the closest distance to jis, the empirical mean of no samples from po.

20



Under review as a conference paper at ICLR 2026

Denote by 7 == |2 /") _ i,| the (ny — f)-th largest distance of ji, to p; samples. It is then

immediate from the triangle inequality that

ni—f ni—f
1 . (im1) 1 (i)
i — po] = xy = g < Y = | < 7y (15)
[ — pel |n1—f ;:1 1 12| p— ;:1 |2y pz| < 75

Besides, denoting by ﬁl the empirical CDF of the empirical distribution over
{\x(ll) — el i€ [nl]} we have for all ¢ € R:

~ 1 &
R@)zﬁzg;qmp_mg4. (16)
Yet, we recall that with probability 1 — g, we have

2In(4/6
\m—mgag%%l. (17)

Therefore, the triangle inequality gives for i € [n4], |x§l) — pe| < |m§z) — fia] + |p2 — p| <

|$gi) — fio| + g\/@, and we deduce

ni ni

~ 1 1
= — . < — .
Rt = ;1{‘m§1>,#2|§t} < ; H{AM_MS_U %} (18)
In particular, by definition of 7y, we have
o 2In(4/8), 1 & ni —f f
F < — 1 i N R = =1-=. 19
(T +o o ) < - ; {|$§)*N2‘§Tf} - - (19)

Now, observe that |x§l) — po| follows a folded normal distribution of location 17 — po and
scale o2, since xil) follows p; = N (,u1,02). Denote by Fj its CDF. Thanks to the Dvoret-
zky—Kiefer—Wolfowitz inequality (Lemma @) we have with probability 1 — g that for all ¢ € R,

|Fi(t) — Fi(t)] < 2%?- (20)

Plugging the above in the previous inequality, and using a union bound, we get with probability
1-46,

Fihs 40 2111(4/5))Sﬁ1<%f+a\/2ln(4/5))+\/111(4/6) S A UL .

No -

2’111 ny 2’111

By taking the inverse Ffl of the CDF F} and rearranging terms, we obtain with probability 1 — §

that
f < PO 1_i+ In(4/6) Y /2111(4/5)' 22)
ni 2711 no

Finally, going back to (T3], we obtain with probability 1 — ¢ that

In(4 21In(4
Im—MS@SE*l—i+ In(4/9) —qkﬂlﬁ (23)
ny 2711 Up)
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Lemma 8. Let i1, 12 € R and suppose that x ~ N (u1,0?). Define the random variable z =
|x — p2|, with cumulative distribution function

F(t) =Pz <] = @(M) —@(w>7 t>0,

o o -

where ® denotes the standard normal CDF. Then, for any p € (0, 1) the inverse CDF satisfies

)

— V2R) + B(u + V2R) — 1, and g~ (p; )

(u
p. In particular, when p1 = s (so that k = 0)
()

5 )

Proof. Since x ~ N(u1,0?), we have that z = |z — po| has CDF

t— |1 — —t — | —
Fo(t):¢)<M)_¢)(M>7 £ 0.

g g

_ _ | — po?
F'(p)=o0yg 1( oo

where the function g(u; k) is defined by g(u; k) =
denotes the inverse function in u satisfying g( U K)
) =

we have g(u;0) = 2®(u) — 1 and thus Fy L(p

)

Introduce the change of variable u = 5 so that ¢ = o u. Then,

Folow) = ®(u - M) ~o(-u- M)
o o

Using the symmetry ®(—2z) = 1 — ®(x), this becomes
Fo(ou) = ®(u— M) +o(u+ M) 1
g o

[p1— Mz\

Defining k = “~5_5*~ and setting

g(u; &) = ®(u — V2r) + B(u+ V2r) - 1,
we have F,, (0 u) = g(u; k). Thus, if ©* is the unique solution of g(u*; k) = p, then
Fo(ou®) =p,
so that
Fol(p)=ou" =097 (pik).
In the special case 111 = s (so that £ = 0), we obtain g(u;0) = 2®(u) — 1, whose inverse is given

by u =@ '((p+1)/2). Hence, F; ' (p) = @' ((p + 1)/2), as required. O

Theorem 1 (Selective Removal). Let p1,ps € P and § € (0,1). Let [ samples from p; be re-
moved according to Selective Removal. With probability 1 — 0, the resulting estimate satisfies
(o, €)-distributional unlearning with:

02 kL0 p - 3 (ML) o (1= Lo R i ) - LD,

2 ni 2n4 N9

e< (M)le (1 _ L + 1n(4/5);KL(p1 [ p2)>2 + 2In(4/0)

N9 ny 2’17/1 %)

7

where g(u; k) = ®(u—V2k) + P(u+V2k) — 1, for u,k > 0, and P is the standard normal CDF.

Proof. We recall that p; = N (u1,02),p2 = N(p2,0%) € P and p := N (u1,0%) € P are univariate

Gaussian distributions. We are given ny i.i.d. samples mgl), e ,x§”l) from p; and ny i.i.d. samples

xél), . ,:z:g”) from ps.

The distance-based selection removes f < n1 selected samples from the target distribution p; with

the f largest distances to jiy = nlz > x2 ) the empirical estimator of the mean of p,. That is,
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denoting by "™ ... 2{"*"™) the original n, samples from p; reordered by increasing distance

to fio:
) — o] < < ™ < ), (24)

with ties broken arbitrarily, then distance-based selection retains only mgl:"l), o ,xgnl_f o

obtain
ni—f

= DI 25)
i=1
Subsequently, we set the center p of the unlearned distribution p to be:

(n1 — f)fin + nafio

_ , 26
z = T (26)
where fi; = -1 sl ) and iy = D] 2%, We also observe that a standard Hoeffd-
ing bound (Lemma 3)) yields that:
. 21n(4/d
iz — p2| <o #’ 27
2

with probability 1 — g. We also recall that

(1 — M)2

2
i (p2 —p)” 28)

KL(p1 || p) = 552

KL(p2 || p) =

Preservation bound. First, we upper bound the KL divergence of ps from p. To do so, we first
use the triangle inequality to get

= o] = [P Dt el f Sy e ()
n1— f+mn2 ny — f+mn n1 — f+n2
_mol | — piz| + 2 |jiz — puo]
T — f+ne ny — f+mn '
Therefore, using we have with probability 1 — g:
= ny 21n(4/6)
— < —F — + o .
Iz M2|7n1_f+n2|/~01 H2| P s

Moreover, we know from Lemmathat with probabilty 1 — g

In(4/6
i — po| < 7 1fi+ In(4/9)
n1 277/1

Using the above in the previous inequality with a union bound, yields that with probability 1 — §

ny— f [ I n In(4/4) n no - 21n(4/96)
ny — f+na ny 2n, ny — f+ny ng

I — po| <

We can further simplify the above using Lemma@ which implies that for all p > 0
2
Flip) — 71< B — po )
) =09 (P53 )

where the function g is defined by g(u; k) = ®(u—v2k)+P(u++v2k)—1, for u, k > 0. Plugging
this in the previous bound yields

ni —f JgA(lfiJr 111(4/5).|N1*M2|2>Jr ne _ [2In(4/9)

ny — f +na ny ony = 202 ny — f +no No

I — po| <

(29)
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Dividing both sides by ov/2 and then using (Z8) yields with probability 1 — §:

ny— f » f In(4/9) n log(4/9)
KL ) < g (T KL )+ 2 20
(30)

The above directly implies, by taking squares and using Jensen’s inequality and that f > 0, that
with probability 1 — 4:

ni—f\> _ f In(4/6) 2 2In(4/6)
KL(ps || p) < <m> g 1(1—n—1+ o KL ||p2)) 6D

Removal bound. Second, we lower bound the KL divergence of p; from p. To do so, we use
Jensen’s inequality and (29) to obtain that, with probability 1 — §, we have

1 — pol® = |1 — 4 = paf® <201 — pl? + 2l — pof?

n — f )2 b1 Ly 1n(4/5),\u1—u2|2)2

§2|u1—u2+2<

ny —f+n2 79 ny 2%1 k 20’2
2
. na 24In(4/3)
ny— f+n2 N2

Rearranging terms, using that f > 0, and dividing by 402 along with (28)) yields that with probability
1 — 6 we have

i p? b=l L= SN Ly OO b - palty? n(4/))
U») g

> —_
(pl H p) 20_2 - 402 2 ny 2111 ’ 20.2 )

n1 f>2g1(1 _ L (/o) lm *#2|2>2 _ In(4/9)

1 1
- 7KL(p1 H pg) 2 < Up) ny 2?’L1 ’ 20’2 na

2 2
Now, using we get

2 2 n
KL |9) 2 gKEGn ) = 5 (ML) o7t (1= Lo (R0 kcn o )= 2002

2 ni1 2n1 %)

Conclusion. With probability 1 — &, we have («, )-distributional unlearning with

2
> kL )~ 5 (ML) ot (1= Lo PRk ) R,
2
sg(nln;f) 1—+\/; p1||p2 2 M
O

A.5 SIMPLIFIED SAMPLE COMPLEXITY FOR SELECTIVE REMOVAL

In this section, we can simplify the result of Theorem [I] on selective removal by simplifying cum-
bersome terms. This leads to Corollary which then yields to the sample complexity results in
Table[l

We first prove an upper bound on the inverse CDF of a folded Normal for small quantiles.

Lemma9. Let i1, 12 € R, 0 > 0, and x ~ N (1, 02). Define the random variable z = |z — ps),
which follows a folded normal distribution whose cumulative distribution function (CDF) is given
by

F(t) =Pz < 1] :@(M) —q>(w), t>0, (32)

g g
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where ® denotes the standard normal CDF. Then, for any p > 0 such that F~1(p) < |u1 — pa|, it
holds that:

P s T
<P< 221 0#2 )
where p(x) = \/% exp (—%) , & € R, is the standard normal density.

Proof. Since F, defined in (32), is continuously differentiable and strictly increasing on [0, |p1 —pz]
(with F(0) = 0) and by the assumption F~!(p) < |u1 — pal, the Mean Value Theorem guarantees
that there exists some & € [0, F~1(p)] such that

F(F7H(p) = F(0) + F(€)(F~'(p) = 0):

Since F'(0) = 0 and F is strictly increasing, one may directly write, via the Mean Value Theorem,
that there exists £ € [0, F~1(p)] with

F(F7' () = F/( F~(0).

By definition of the inverse CDF, F’ (Ffl (p)) = p; hence,

p="F'(&)F ().
It remains to lower-bound F”(€) for £ € [0, |p1 — u2|]. We recall that for ¢t > 0,

Ft) = q)(t— |1 —M2|) —<1>(_t_ |1 —uzl)

g g

Taking the derivative with respect to ¢ yields

1 t—|p — 1 /=t —|py —
F’(t):—go( 12! M2|)+7@( 12! ,u2|)

g g g g

Lot — 1y — po 1 o t+lm—p
(il ly Lt el

g g g g

where we used that the standard normal density ¢ is symmetric.

For t € [0, |41 — p2l], observe that ¢ — |u; — pe| < 0. Because the standard normal density is
symmetric and nonincreasing on [0, c0), we have

t=lp = pal\ _ ol el =t O — o
12 = Z ¢ .
g g g

t+|p1 —po|
o

Also, the second term cp( is nonnegative. Hence, for all ¢t € [0, |1 — p2|] we have

1 —
F/(t) > *W(M)'
o o
In particular, at ¢ = £ we obtain
1 —
F’(g) > ,¢<M).
o o

Substituting this lower bound into the equation p = F'(£) F~1(p) yields

F~'(p) (p(|li1 —M2|).

g

p >
Rearranging the inequality gives the desired upper bound:

This completes the proof. O
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We are now ready to prove the corollary below. Note that retaining dependences on ¢, € only in this
corollary leads to the result of Table

Corollary 10. Let p1,p2 € P and § € (0,1). Let f samples from py be removed according to our
distance-based scoring rule or at random before MLE. Then in each case, with probability at least
1 — 0, the resulting estimate satisfies («, €)-distributional unlearning if:

1. Random removal: ny > 220410 4ng KL(p1 || p2) > 8c, and

= min {e,a}

2KL(p1 || p2) — o . { ﬁ}
>ny—n , >ng—nomin<l, [ ————— 7.
fzm 2¢ 12KL(p; | p2) fzm—n 6KL(p1 | p2)

2. Selective removal: ny > 21n(4/0) max{1 %,i,\/KL(m | p2) —404}, KL(p1 |

Pl
) 2 0 and 1 2 m (3 4P — 0l BRLG 7)) and

e \1/4
=) exp(—KL(p1 | p2),
167

KL(p1 || p2
81

£ 2= v (

2 m = i ( )4‘“)1/4exp<KL<p1 I 2)).

Proof. We treat random and selective removal separately below.

Random Removal. Consider removing f samples using the random removal mechanism, before
maximum likelihood estimation. From Theorem |3, with probability 1 — &, we achieve («,¢)-
unlearning with:

2
o> (1 -3 (nl — f) ) KL(p1 || p2) — 3In(4/¢) (1 + -t f) (removal),
2 n9 2”2 n2
2
e<3 (nl_f> KL(py || p2) + 31n(4/9) (1 L f> (preservation).
N9 n2 n2

Therefore, assuming that ny > :fhljn{(g/j }? and KL(p; || p2) > 8, direct calculations show that it is
sufficient to set:

2KL —
f>n — ng\/ (p1 [ p2) — @ (removal),

12KL(py || p2)

€
>ny —ngmins 1,/ ——— (preservation).
1z namin {1 o P

Selective Removal. For selective removal, Theorem [I] shows that, with probability 1 — §, we
achieve (o, €)-unlearning with:

1 1 -\’ In(4/6 2 In(4/6
a = KL(p1 [l p2) = 5 (nlnz f) 9‘1(1 - nil + n;n/l >;KL(;01 | p2)) - n(n2/ ) (removal),
2
e< <n1 — f) g ! (1 _ L + In(4/9) ; KL(p1 || pz))2 + M (preservation).
N9 ni 2nq n2

We can simplify these bounds using Lemma [9] Indeed, thanks to the latter and using the same
notation and a simple change of variable, we have for all p, x > 0 such that p < F'(|u1 — pal)

9—1(p; fi) < ¢(\Z/jﬂ) Zp\/ﬂexp(m). (33)
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SMS Spam - Recall on spam (forgotten) vs. deletion SMS Spam - F1 on ham (kept) vs. deletion
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% spam messages removed % spam messages removed

(a) Recall on spam (p1, forgotten). (b) Macro-F1 on ham (p2, kept).

Figure 5: SMS Spam. The likelihood-ratio score (LR-COS) pushes spam recall below 0.6 after
deleting 70% of spam, whereas random deletion needs nearly 90% removal to reach the same point.
Ham performance remains almost flat (<0.004 absolute change) until the final 100 % budget, af-
firming the tight preservation guarantee. Error bars: £1 standard error over ten seeds.

Now, we plug in p = 1 - L4 In(4/9) Assuming f >

ni 2ny =

ny (-@(2 2KL(p1 || po)) + 2 + lngf/f)), which directly implies that p < F(|puy — po|) as

required, we then obtain

KL ) < (1= L4\ [0 Voo (KL | 2).

+
2’111

ni 2nq

i1 Ly )

Plugging the above back in the first bounds due to Theorem [I] we obtain:

-\’ In(4/6)\2 In(4/6
0z KL 10— 3 (L) (1= Lo DY o e arct o |y - RE2

€< (M)Q (1 -Ly M)Q%GXP (2KL(p1 || p2)) + 2In(4/9)

ny 2711 %)

Therefore, assuming that no > 21n(4/0) max{%, %, L V/KL(p: | p2) — 4a} and KL(p; ||

p2) > 4a, and recalling we had assumed f > n; (@(2 2KL(py || p2)) + 2 + ln(4/6)>, di-

2'!’L1

rect calculations show that it is sufficient to set:

e \1/4
fzm = v (=) ep(~KL( | p2) (removal)
KL 4o\ V*
fzm—mn?( 1]l p2) ‘“) exp(—KL(p1 || p2)  (preservation)
Y8

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 SMS SPAM: A CONTENT-MODERATION UNLEARNING TASK

We revisit the UCI SMS Spam Collection (Almeida et al., [2011)), treating the spam class (p1) as
information to forget and the ham class (p2) as information to preserve. Messages are vectorised with
TF-IDF features. Deletion budgets again span 5% to 100% of the spam slice in 5-point increments.
We compare the same five scoring rules as before (COS-MU2, LR-COS, KNN-RATIO, TFIDF-NORM,
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Figure 6: Synthetic Gaussians. Comparison of all strategies considered in the real-world datasets,
using the low-divergence scenario of synthetic Gaussians (left plot, Fig. ). Likelihood-ratio sur-
passes the distance-based strategy for lower deletion budgets. However, for larger budgets, it sacri-
fices utility for excessive removal. This is likely because it deletes samples representative of p; but
close to ps since p; and po are similar here.

RANDOM) and average results over ten random seeds. Metrics reported are recall on p; and macro-
F1 on ps.

Findings. We report our main findings on our SMS Spam task in Figure[5] We observe that spam re-
call decays gradually until 75-80% deletion, after which all methods converge to zero as p; vanishes.
LR-COS consistently dominates: it reaches a recall of 0.60 at the 70% deletion budget, whereas ran-
dom deletion does not cross that threshold until 90% deletion. Throughout, ham macro-F3 increases
slightly (see Fig.[5b), an artefact of class-imbalance—removing spam reduces false positives in the
ham slice—yet the difference across methods never exceeds 0.002. These results strengthen the ev-
idence that selective deletion offers a 1.3—1.5x sample-efficiency gain over random removal while
preserving downstream utility almost perfectly.

Remark 11 (Sample vs. Computational Efficiency in Unlearning). The computational cost of
sample-level unlearning typically scales with the size of the forget set. For instance, influence-
function-based approaches, such as the one proposed by |Guo et al.|(2020), require computing gra-
dients and Hessian-vector products for forget samples to approximate a second-order update. Other
methods, like SalUn (Fan et al.| 2024), identify and modify salient model parameters by backprop-
agating through the network for each forget sample. Reducing the size of the forget set implies less
gradient computations and hence time savings. This forget size scaling observation also holds for
the large class certified unlearning methods based on noise addition (Chourasia & Shah, 2023}
Allouah et al.| 2025 |Waerebeke et al.}|2025).

B.2 EXPERIMENTAL DETAILS
B.2.1 HEURISTIC DELETION STRATEGIES

Across all datasets, we evaluate five scoring strategies for ranking samples in the forget distribution
p1 for removal. These scores approximate statistical dissimilarity from the retained distribution po
and correspond to different operational interpretations of divergence:

* LR-COS / LR-MAHA (likelihood-ratio inspired): A proxy for the log-likelihood ratio of z
under po versus py:

s(x) = d(x, pg) — d(x, )

where d(-, 1) denotes cosine distance in TF-IDF space (text) or Mahalanobis distance in
CNN feature space (images). Points are scored high when they are far from p5 and close to

P1-
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* COS-MU2 / MAHA-MU?2 (dissimilarity to p2): Measures the distance from each x € p; to
the empirical mean of po:
s(z) = d(z, p2)

This approximates the contribution of each point to the KL divergence KL (p2||p) when p
is modeled as a Gaussian.

* KNN-RATIO (local density ratio): Estimates the ratio of k-NN densities:

_ A
P(a)

where p; () = exp(—|lz—NN (z)[|2 /o) is a local Gaussian kernel density using k = 10
nearest neighbors. This captures how typical x is under p; versus ps.

* TFIDF-NORM / L2-NORM: Uses the /5 norm of the raw input (TF-IDF or real-valued) as
a proxy for informativeness or deviation from the origin:

s(z) = ||z
* CORESET (centroid-based): Selects samples closest to the centroid of the forget set p;:
s(x) = |z — pallz,

where (1 is the empirical mean of p;. This strategy prioritizes representative samples that
are central to the forget distribution, potentially capturing the most characteristic patterns.

* K-CENTER (k-center greedy): Greedy selection to maximize minimum distance coverage
of the forget set:
s(x) = max ||z — z;
() = max o — w2,

where S is the set of already selected points. This strategy iteratively selects points that
maximize the minimum distance to previously selected points, ensuring diverse coverage
of the forget distribution.

* RANDOM: Samples points uniformly at random from p; as a baseline.

The first two sets of heuristics are direct extensions of our Gaussian selective removal method. When
reporting results under “Selective removal” in tables, we report the best-performing heuristic among
these.

Remark 12 (Computational complexity of selection). The selection methods evaluated present a
spectrum of computational complexities, which is a key practical consideration for their use. At
the most efficient end, methods like Random Removal, L2-Norm scoring, and the centroid-based
Coreset are computationally inexpensive. Their complexity scales roughly linearly with the number
of forget samples (n1) and feature dimensions (d), making their cost approximately O(n1d) plus
sorting time. Our primary selective algorithms, based on distance to the retained set’s mean, are
moderately more complex. The Cosine distance variant remains efficient at O((n1 + na)d), but
the Mahalanobis distance version is more demanding. Its need to compute an inverse covariance
matrix introduces a term that scales with the cube of the dimensions (O(d®)), making it potentially
prohibitive for high-dimensional data.

On the other hand, some heuristics are computationally intensive. The KNN-RATIO method is par-
ticularly costly because it requires performing a k-nearest neighbor search for every sample in the
forget set, which scales poorly with large datasets. Similarly, the iterative nature of the K-CENTER
greedy algorithm makes it much slower than single-pass scoring approaches. This highlights a
fundamental trade-off: while more complex methods like KNN-RATIO aim to capture nuanced dis-
tributional information, their computational overhead might be impractical. Simpler, faster methods
like calculating the distance to the retained mean often provide a strong, practical balance between
the effectiveness of the selection and its computational feasibility.

B.2.2 TABLE[3t SAMPLE-LEVEL UNLEARNING METHODS

We evaluate five sample-level unlearning strategies that represent different approaches to machine
unlearning:
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¢ RETRAINING (oracle baseline):

— Description: Complete retraining from scratch on the retained data only. It trains a
new model from random initialization using only samples from p,. It provides the
theoretical upper bound for sample-level unlearning performance, representing the
gold standard but with highest computational cost.

- Hyperparameters: Adam optimizer, learning rate 1 x 1072, 10 epochs, batch size
128.

* FINE-TUNING (naive baseline):

— Description: Continues training the pre-trained model on retained data only. We
initialize with pre-trained weights, then train for additional epochs on non-removed
samples.

— Hyperparameters: Adam optimizer, learning rate 5 x 10~4, 2 epochs, batch size 128.
* SALUN (saliency-based unlearning (Fan et al. 2024)):

— Description: This method resets parameters with highest saliency for forget samples,
then finetunes on retained data: (1) Compute saliency scores for forget samples, (2)
Reset top-k% most salient parameters to initial values, (3) Finetune on retained data.
It leverages parameter importance to selectively reset the most forget-relevant param-
eters while preserving general knowledge.

- Hyperparameters: Adam optimizer, learning rate 5 x 10~%, 3 epochs, batch size 128,
topk_percent=0.2.

* NEGGRAD+ (stochastic gradient descent ascent (Kurmanji et al., 2024)):

— Description: This method simultaneously maximizes loss on forget samples while
minimizing loss on retained samples with loss 3 x retain_loss+ (1 — 3) x forget_loss.
This is essentially SGDA to balance retention of ps knowledge against forgetting of
p1 samples through opposing gradient directions.

— Hyperparameters: SGD optimizer, learning rate 1 x 10~3, momentum 0.99, weight
decay 0.1, 3 epochs, 8 = 0.9, batch size 128.

* INFLUENCE FUNC. (influence function-based approximation):

— Description: Approximates the effect of removing forget samples using influence
functions, then applies parameter updates without retraining: (1) Compute influence
scores for forget samples using Hessian-vector products, (2) Apply parameter updates
based on influence estimates. This is computationally expensive for larger models, so
we only use it for the Gaussian experiment.

— Hyperparameters: Adam optimizer, learning rate 1 x 1074,2 epochs, batch size 128,
damping factor 0.01.

B.2.3 SYNTHETIC GAUSSIANS

We draw n; = ne = 1,000 samples from p; = A(0,1) and ps = N (ug, 1) for us € {0.5,2.5,5.0},
with 20 seeds. After computing scores using each strategy, we remove the top- f fraction of p; points,
fit a Gaussian N (fi, 1) to the retained data, and compute:

a=KL(p[p),  &=KL(p:lp)

These metrics match the forward-KL objectives of removal and preservation. No predictive model
is trained; results reflect pure distributional divergence. For completeness, in Figure [6] we plot a
comparison of all strategies considered in the real-world datasets, using the low-divergence scenario
of synthetic Gaussians (left plot, Fig.[2). Likelihood-ratio surpasses the distance-based strategy for
lower deletion budgets. However, for larger budgets, it sacrifices utility for excessive removal. This
is likely because it deletes samples representative of p; but close to py since p; and p, are similar
here. This indicates that no removal strategy strictly dominates all others across all divergence
(between p; and ps) scenarios.
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B.2.4 JiGsaw Toxic COMMENTS

We use the Jigsaw Toxic Comment Classification dataset, with 140K examples filtered to length
5-200 tokens. We define p; as all training comments containing any of the keywords: “f*ck”,
“s*it”, “d*mn”, “b*tch”, “a*s”, and p, as the remaining comments. For each of 5 random seeds,
we:

. Stratified-split py, ps into 70/30 train/val.

. Compute TF-IDF embeddings (40K max features, 1-2 grams, sublinear TF, min_df=5).

. Score and remove f of p; training points using each heuristic.

. Downsample p2 to 5x the remaining p; size.

. Train an ¢5-regularized logistic regression on the edited data.

AN L AW N =

. Evaluate Recall@p, and F1@p5 on the validation sets.

B.2.5 SMS SpaM COLLECTION

We use the UCI SMS Spam dataset (5574 examples, 13.4% spam). We apply:
1. TF-IDF vectorization (20K features, 1-2 grams, stopword removal).
2. Scoring of spam (p;) messages using each heuristic.
3. Removal of top- f fraction of spam for each strategy.

4. Retrain a logistic regression classifier.

5. Evaluate Recall@spam and F1@ham on a held-out 20% test split.

We run 10 seeds and report mean =+ standard error.

B.2.6 CIFAR-10 CLASS REMOVAL

We treat the “cat” class as p; and the other 9 classes as p,. We use the standard CIFAR-10 split
(50K train, 10K test), and proceed as follows:

1. Train a 3-block CNN (Conv—-BN-ReLU x2 + MaxPool, widths 32-64—128, global avg pool
+ linear head) for 10 epochs on the full training set.

2. Extract features for all training images using the penultimate layer.

3. Compute Mahalanobis distance scores for each cat image (p;) using:

smava(2) = /(& = ) TE (@ = p)

where p and ¥ are estimated from ps.

4. Delete the top- f fraction of cat images under each scoring method.
5. Retrain the same CNN architecture on the edited training set.

6. Evaluate:
Accuracy,, Accuracy, . .

on the test set. Results are averaged over 30 random seeds.

B.2.7 COMPUTING ENVIRONMENT

All experiments were run on a HPE DL380 Gen10 equipped with two Intel(R) Xeon(R) Platinum
8358P CPUs running at 2.60GHz, 128 GB of RAM, a 740 GB SSD, and two NVIDIA A10 GPUs.
Training for vision experiments was implemented in PyTorch, while text-based experiments used
Scikit-learn. All experiments were conducted using a single GPU.
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B.3 ABLATION: SENSITIVITY TO FEATURE REPRESENTATIONS

To assess how sensitive our selective deletion procedure is to the choice of feature representation,
we conducted an ablation study on CIFAR-10 where we varied only the feature extractor and kept
the selection algorithm and training setup fixed. We compare five representations: the default CNN
features used in the main paper, ResNet—18 features (both pretrained and trained from scratch), and
raw pixel features. For each setting, we measure forget-set accuracy at a deletion budget of 60%
(lower is better forgetting). The results are shown in Table [6]

Two main observations emerge. First, across standard learned representations (CNN, ResNet—
18 scratch, ResNet—18 pretrained), the forgetting performance is very similar, suggesting that the
method is robust once the feature extractor provides a reasonably expressive embedding space. Sec-
ond, using raw pixels significantly weakens forgetting, confirming that feature quality matters, but
not in a way that makes the method brittle to the specific backbone.

Feature Extractor Forget Set Accuracy (%)
Random (baseline) 40.5 £ 2.5
CNN (default) 21.6£1.9
ResNet—18 (trained from scratch) 20.4 £ 2.1
ResNet—18 (pretrained) 27.3+1.8
Raw pixels 31.8£2.0

Table 6: Forget set accuracy (mean =+ s.e.m.) at 60% deletion for different feature extractors on
CIFAR-10. Lower is better forgetting.

B.4 ADDITIONAL CORESET BASELINES ON CIFAR-10

To further investigate the behavior of retain-agnostic coreset methods in our unlearning setting, we
compared our selective removal strategy against two strong data subset selection baselines, CRAIG,
GradMatch, and CCS, on CIFAR-10. All methods operate at a fixed deletion budget of 60% from
the forget class, and we report the resulting forget-set accuracy (lower is better forgetting). While
CRAIG and GradMatch slightly, though not significantly, improve over random deletion, they still
operate purely on the forget distribution and cannot exploit contrast with the retain distribution. As
shown in Table[7] our distributional selection substantially outperforms these baselines.

Selection Method Forget Set Accuracy (%)
Random 39.2+1.9
CRAIG (Mirzasoleiman et al., 2020 36.3+2.7
GradMatch (Killamsetty et al., 35.5£4.2
CCS (Zheng et al.[[2023) 409+4.1
Selective (ours) 245+ 1.4

Table 7: Forget set accuracy (mean =+ s.e.m.) on CIFAR-10 at a 60% deletion budget from the forget
class. Lower values indicate stronger unlearning. Our selective removal method, which leverages the
retain distribution, outperforms all strong coreset baselines (CRAIG, GradMatch, CCS) and random
deletion.
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