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ABSTRACT

We propose a novel, flexible, and efficient framework for designing Concept Bot-
tleneck Models (CBMs) that enables practitioners to explicitly encode any of their
prior knowledge and beliefs about the concept-concept (C-C) and concept-task
(C→Y) relationships into the model reasoning. The resulting Concept REAsoning
Models (CREAMs) architecturally encode potentially sparse C→Y relationships, as
well as various types of C-C relationships such as mutual exclusivity, hierarchical
associations, and/or correlations. Moreover, CREAM can include a regularized side-
channel to complement the potentially incomplete concept sets, achieving competi-
tive task performance while encouraging predictions to be concept-grounded. Our
experiments show that, without additional computational overhead, the CREAM
designs: (i) allow for efficient and accurate interventions by avoiding leakage; and
(ii) achieve task performance on par with black-box models.

1 INTRODUCTION

Deep neural networks (DNNs) have become ubiquitous in various aspects of our daily lives but
their opaque decision-making limits transparency, user understanding, and trust. Interpretability is
essential for reliable AI, especially in finance (Doshi-Velez & Kim, 2017), healthcare (Rudin, 2019),
autonomous systems (Samek et al., 2019) (Doshi-Velez & Kim, 2017; Lipton, 2018), and so forth.

Interpretable models have therefore gained attention (Molnar, 2025; Rudin et al., 2022), particularly
concept-based approaches that explain predictions through human-understandable concepts (Barbiero
et al., 2023; Chen et al., 2020; Koh et al., 2020; Oikarinen et al., 2023; Poeta et al., 2023; Yeh et al.,
2020; Yuksekgonul et al., 2023). Concept Bottleneck Models (CBMs) (Koh et al., 2020) exemplify
this by introducing an intermediate concept layer, where concepts are explicitly learned and predicted
prior to the task, enabling transparent reasoning and human intervention. CBMs have been applied on
various fields, including medical diagnosis (Daneshjou et al., 2022), predictive maintenance (Forest
et al., 2024), and vision-language tasks (Yang et al., 2023).

Standard CBMs assume conditional independence among concepts, limiting their ability to model
intra-concept or concept–task relationships (Dominici et al., 2025), a property we call structured
model reasoning. They also assume the concept set is complete and sufficient for prediction. Ex-
tensions have relaxed these assumptions (Dominici et al., 2025), but typically in problem-specific
ways that trade one limitation for another. Real-world datasets often exhibit concept incompleteness,
which reduces accuracy (Grivas et al., 2024; Yeh et al., 2020). Moreover, even with correct concept
predictions, models may exploit unintended information, called concept leakage, to bypass intended
reasoning pathways (Mahinpei et al., 2021; Margeloiu et al., 2021), undermining interpretability and
encouraging misplaced trust (Marconato et al., 2023a).

We propose Concept REAsoning Models (CREAM), a framework for CBMs that encodes prior
knowledge of C-C and C→Y relations through a reasoning graph. The graph combines hard constraints
(e.g., blocking irrelevant edges, enforcing exclusivity) with probabilistic dependencies learned from
data. By embedding these relations into CREAM, predictions are grounded in a user-specified
reasoning graph. Each concept influences only a sparse subset of predictions and any given out-
put can be traced back to a limited set of candidate concepts, ensuring tractability and enhancing
interpretability and intervenability while mitigating leakage. A regularized side-channel captures sup-
plementary task-relevant information without compromising concept-based predictions, unlike prior
work (Dominici et al., 2025). Importantly, the C-C, C→Y blocks, and side-channel are independent
modular components that can each be modified, included, or excluded separately, depending on the
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Figure 1: Reasoning graph for FMNIST from (Seo & Shin, 2019). We show the incomplete concept
set used in iFMNIST as well as the additional season-related concepts from cFMNIST . Concepts
and classes within the boxes are mutually exclusive.

available knowledge and assumptions. CREAM accommodates alternative approaches under different
assumptions about the reasoning graph, supporting modular designs aligned with available knowledge.
Overall, it provides an interpretable, modular and adaptable framework balancing predictive accuracy
with controlled reasoning.

2 RELATED WORK

Connection to Neurosymbolic approaches. CBMs are complementary to Neurosymbolic (NeSy)
approaches (Badreddine et al., 2022; Bortolotti et al., 2024; Manhaeve et al., 2018; Marconato et al.,
2023a); the former require supervision solely on the concepts while the latter require knowledge
in the form of logical programs. In our case, we require knowledge about (directed) statistical
(in)dependencies between interpretable variables, to constrain the relationships between them. In
App. H we provide a logic-based viewpoint to CREAM.

Concept and Task Relationships. Standard CBMs assume that concepts are independent and that
all of them directly contribute to the task, thus forming a bipartite graph (G). To address this, several
works have incorporated concept interdependencies. Relational CBMs (Barbiero et al., 2024) use
graph-structured data and message-passing algorithms to propagate relational dependencies, while
Stochastic CBMs (SCBMs) (Vandenhirtz et al., 2024) model concepts using a learnable covariance
matrix. Similarly, Autoregressive CBMs (ACBMs) (Havasi et al., 2022) introduce an autoregressive
structure to learn sequential dependencies between concepts. These methods do not explicitly model
expert-desired C-C and C→Y relationships. The closest to our work is Causal CGMs (Dominici et al.,
2025), while concurrent work is C2BMs (De Felice et al., 2025). The core differences lie in modeling
and implementing G . The former learns relationships between endogenous variables and their copies,
and embeds the concept representations in a higher-dimensional space. While the latter requires G
to be acyclic and assumes each relationship to be linear. Lastly, none of the prior works explicitly
handle mutually exclusive concepts.

Concept Incompleteness. CBMs rely on predefined concept sets, causing lower accuracy when
the concept set is incomplete (i.e., not a sufficient statistic for the target) (Mahinpei et al., 2021;
Yeh et al., 2020; Zarlenga et al., 2022). For instance, in Fig. 1, a garment labeled as “Tops” may
correspond to multiple classes, making exact classification impossible. Such cases arise when (i)
concept annotation is costly, (ii) sparse explanations are preferred, or (iii) domain knowledge is
limited. To address this issue, CBMs have been extended to incorporate side-channels. These hybrid
CBMs have a lower upper bound of generalization error (Hayashi & Sawada, 2024) and capture
unsupervised concepts (Sawada & Nakamura, 2022), residuals (Yuksekgonul et al., 2023; Zabounidis
et al., 2023), or other auxiliary information (Dominici et al., 2025; Havasi et al., 2022). In contrast,
we regularize the side-channel to prioritize concept importance.

Concept Leakage. Furthermore, CBMs suffer from concept leakage, a phenomenon tied to
reasoning shortcuts (Bortolotti et al., 2024; 2025; Geirhos et al., 2020; Marconato et al., 2023b),
where extra unintended information is encoded into concepts (Mahinpei et al., 2021; Makonnen et al.,
2025; Marconato et al., 2023a; Margeloiu et al., 2021; Ragkousis & Parbhoo, 2024), leading to high
accuracy even with irrelevant concepts and thus unreliable reasoning. Leakage has been suggested to
be inherent in concept-based models that rely on concept embeddings (e.g., (De Felice et al., 2025;
Dominici et al., 2025; Zarlenga et al., 2022)) challenging their interpretability (Parisini et al., 2025).
Existing methods to mitigate leakage include using binary concept representations (Havasi et al.,
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Pattern (3) Color (6) Pattern (3) Color (6) Shape (1) Shape (1) Pattern (3) Color (11)

Back Wing Tail

Figure 2: Partial illustration of CUB’s reasoning graph. Concepts are represented as nodes, with
numbers in parentheses indicating the cardinality for each concept. Nodes within the same group
are mutually exclusive and disconnected, while edges are one-to-one between nodes from different
groups. Bidirected edges indicate statistical dependencies between concepts.

2022; Lockhart et al., 2022; Sun et al., 2024; Vandenhirtz et al., 2024), training a CBM model in an
independent manner (Margeloiu et al., 2021), using orthogonality losses (Sheth & Ebrahimi Kahou,
2023) or disentanglement techniques (Marconato et al., 2022; Sinha et al., 2024). Meanwhile, the
reasoning structure of CREAM allows only for intended information flows, thus mitigating leakage
by design, without needing hard concepts or introducing regularization.

3 CONCEPT REASONING MODEL

Bags Under Eyes High Cheekbones
Mouth Slightly Open Rosy Cheeks

Double Chin Arched Eyebrows
Narrow Eyes

Smiling

Figure 3: Reasoning graph for predicting
“Smiling” in CelebA (Liu et al., 2015), show-
ing the most correlated facial concepts (C )
that directly influence the prediction (Y ).

In this work, we propose reasonable concept bottle-
neck models that are guided, but not strictly limited,
by the designer-picked or automatically discovered
C-C and C→Y relationships. Unlike standard CBMs,
which typically follow a bipartite concept-to-task ar-
chitecture, we introduce CREAM as a framework
that supports flexible, interpretable model reasoning
while maintaining high performance.

At the core of CREAM is the model reasoning graph
G = (V,E ), which encodes the specified C-C and
C→Y relationships. Formally, the node set is V =
C ∪ Y , and the edge set E ⊆ V × V captures plausible (un)directed relationships, representing
information flow within the model.

To operationalize this structure, we partition G into two subgraphs: the concept graph1 GC :=
G [C ] ≜ (C , EGC

) containing the C-C relationships, and the task graph GY := G [Cdirect ∪Y ] ≜
(Cdirect ∪ Y , EGY ) for C→Y reasoning. Here, Cdirect := {v ∈ C | ∃y ∈ Y : (v, y) ∈ E} denotes
the subset of concepts directly connected to Y .

3.1 CONCEPT-CONCEPT REASONING

Although CREAM is not restricted to categorical concepts, we assume them in this context and
represent them as one-hot encoded vectors of length equal to number of categories. For example, in
the concept graph GC of Fig. 2, the concept “Tail Color” has cardinality 11 and is thus represented
as a vector of 11 mutually exclusive binary variables. Henceforth, we assume the concept set C is in
this binarized form, with K := |C | total concepts.

The concept graph’s GC adjacency matrix, AC ∈ {0, 1}K×K is defined as follows:

AC(i, j) =

{
1 if i = j ∨ (ci, cj) ∈ EGC

, for ci, cj ∈ C ;

0 otherwise, i.e. undesired information flows
. (1)

Types of C-C Relationships. AC allows us to capture both hierarchical relationships and correla-
tions between them, represented as asymmetric (AC(i, j) ̸= AC(j, i)) and symmetric (AC(i, j) =
AC(j, i)) entries respectively. For instance, in the graph of Fig. 3, all concept relationships are

1The graph can be disconnected, as seen in the seasonality concepts of cFMNIST, shown in Fig. 1.
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Figure 4: Sketch of CREAM’s framework. The backbone’s output is split into concept (zC) and
side-channel (zY ) representations for concept and task prediction, respectively. The Concept-Concept
block models relationships between concepts, while the Concept-Task block uses both ẑY and the
concepts to predict the task label based on embedded relationships.

hierarchical (e.g., “High Cheekbones” lead to “Narrow Eyes” but not vice versa). In contrast, Fig. 2,
includes bidirected edges accounting for concepts that are correlated (such as wing colors). By
combining the above, AC can also represent a Partially Directed Acyclic Graph (PDAG). An example
of this is shown in App. E.5. Lastly, in Table 1 we show how the different concept-based models and
the relationships they encode, can be implemented within CREAM’s framework.

3.2 CONCEPT-TASK REASONING

Let L := |Y | be the cardinality of the target variable Y . Following Section 3.1, in multiclass
settings we assume the target variable has been binarized. We assume all C→Y edges are directed
from concepts to task classes, reflecting experts reasoning “downwards” toward the targets.

Table 1: Implementation of prior ap-
proaches’ C-C relationships in CREAM.
For CGM we leave it at AC , as it best
describes a PDAG.

Model Relationships AC

CBM Independent IK

ACBM Autoregressive (1i<j)
K
i,j=1

SCBM Correlations AC = AT
C

C2BM DAG sparse (1i<j)
K
i,j=1

CGM Causal graph AC

Unlike prior CBMs, CREAM does not require all con-
cepts to connect directly to the task. Indirect concepts,
Cindirect := C \Cdirect help predict other concepts within
GC , enhancing interpretability and enabling the interme-
diate steps of reasoning to be traced and verified. For
instance, in Fig. 1, “Clothes” influences the final predic-
tion indirectly through “Tops”, which links to the target
classes “T-Shirt”, “Pullover”, and “Shirt”.

As before, we encode the C→Y relationships in GY using
a task adjacency matrix2 AY ∈ {0, 1}K×L

AY (i, j) =

{
1 if (ci, yj) ∈ EGY

, for ci ∈ Cdirect, yj ∈ Y ;

0 otherwise
. (2)

Ease of Interventions. Given a known G , users can identify errors and correct them via inter-
ventions easier. Since only Cdirect is used for predictions, the number of effective interventions is
lowered from K to |Cdirect|. Also, humans can identify which concept predictions led to incorrect
task predictions by tracing the edges (GY ) and prioritize interventions on those specific concepts.
Hence, GY reduces human effort and complements existing concept selection criteria (Shin et al.,
2023). Moreover, GC highlights relationships among concepts, such as mutually exclusive groups,
facilitating grouped interventions rather than individual ones (Koh et al., 2020; Shin et al., 2023).

3.3 CONCEPT LEAKAGE

CBMs sometimes surpass the theoretical upper bound of concept-based task performance. This phe-
nomenon, called concept leakage, is attributed to (i) concept representations inadvertently encoding
extra information beyond their symbolic counterparts (Havasi et al., 2022; Mahinpei et al., 2021;
Marconato et al., 2022; 2023a; Margeloiu et al., 2021; Sun et al., 2024; Parisini et al., 2025), and
(ii) task predictions exploiting irrelevant concepts (Mahinpei et al., 2021; Sun et al., 2024). As a
result, task predictions do not rely on learned concepts as intended, leading to erratic behavior under

2Although adjacency matrices are conventionally square, we refer to this K×L binary matrix as an adjacency
matrix for notational consistency.
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interventions and reduced interpretability. We define concept leakage as the surplus task accuracy of
a model f when using predicted concepts relative to the Bayes optimal predictor with true concepts:
Λ = max(ACCf −ACCOptimal, 0) (Marconato et al., 2023a).3 An exception occurs when models
exploit side channels, since these can legitimately exceed the theoretical concept-based accuracy.
Interventions on models with leakage may further reduce task accuracy, since human edits inject
the exact intended information into the concepts (Margeloiu et al., 2021; Parisini et al., 2025). Our
empirically validated hypothesis is that enforcing a structured reasoning process through AC and
AY constrains spurious or semantically invalid pathways, compelling the model to use intended
relationships, thereby reducing leakage and improving interpretability.

4 DESIGNING CREAM

The CREAM framework, shown in Fig. 4, affords any CBM variant to be reformulated by embedding
them with the following plug-and-play components: i) a representation splitter which decomposes the
backbone feature representation (z) into a concept representation (zC) and an optional side-channel
representation (zY ); ii) a concept-concept block that enforces the C-C relationships via AC ; iii) a
regularized side-channel; and iv) a concept-task block that encodes the C→Y reasoning via AY , and
leverages the side-channel. We showcase their modularity and effects in Section 5.2 and App. E.2, E.4.

4.1 REPRESENTATION SPLITTER

CREAM builds atop a frozen pre-trained or fine-tuned backbone, which given an input image X ex-
tracts a feature vector z serving as the initial information bottleneck. Then, a learnable representation
splitter linearly partitions z, into two disjoint latent representations:

1. Concept exogenous variables zC ∈ RdCK that serve as input to the concept-concept block, which
enforces the C-C relationships. We assume a uniform latent capacity per concept for simplicity.

2. Side-channel information zY ∈ R|z|−dCK capturing information beyond the predefined concepts.

The dimensionalities of both zC and zY , are hyperparameters that influence the model’s performance.
To incorporate the reasoning structure encoded by G and the functional (in)dependence constraints
it implies, we draw inspiration from Structural Causal Models (SCMs) (Pearl, 2009). In an SCM,
each endogenous variable Xi (here, Xi ∈ X = C ∪ Y ) is modelled as a function of its causal
parents pa (Xi) (given by C-C and C→Y) and an exogenous noise variable zi ∈ zC ∪ ẑY , i.e.,
Xi = fi(pa (Xi) , zi). Note that we do not aim to be causally consistent (i.e., we do not impose any
causal assumptions, nor explicitly define the equations f ), but use causality as a guiding analogy.

Structured Neural Networks. Structured Neural Networks (StrNNs) (Chen et al., 2024) enforce
the functional (in)dependence constraints implied by G , meaning a variable Xi must not be influenced
by the exogenous noise of a Xj that is not its parent (∂Xi

∂zj = 0, {∀j | Xj /∈ pa (Xi)}). Given the
number of hidden layers d, layer widths (h1, h2, . . . , hd), and an adjacency matrix A ∈ {0, 1}p×q

as hyperparameters, StrNN constructs a series of binary masks M1, . . . ,Md which zero out non-
permitted connections, ensuring the desired independencies are encoded while preserving maximal
expressivity within those constraints. A detailed explanation of StrNNs can be found in App. A.

4.2 CONCEPT-CONCEPT BLOCK

This block enforces the C-C relationships encoded in AC . To improve predictive performance,
w.l.o.g., we assume each concept is associated with a dC -dimensional exogenous embedding, yielding
an input representation zC ∈ RdCK , dC ∈ N. To enforce the concept graph GC , we generate binary
masks using StrNNs: MC := AT

C ⊗ 11×dC
, where ⊗ denotes the Kronecker product. This ensures

that each concept receives input only from the appropriate parents’ exogenous vectors. The resulting
concept-concept block g : RdCK → RK receives as input zC and relies on the concept mask MC to
compute the concept logits, l̂C ∈ RK as :

l̂Ci
= g(zCi

, pa (zC)), where pa (Ci) = {v ∈ V |A[v, Ci] = 1}. (3)

3We adapt the definition in (Marconato et al., 2023a) from classification loss to accuracy.
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This formulation follows a compacted SCM principle (Javaloy et al., 2024), whereby each concept
depends only on its parents and its corresponding exogenous variables. Standard CBM lacks this
structure and connects all zC to every concept allowing for entangled and unwanted reasoning paths.

(Mutex) Concept Representations. The concept-concept block supports hard, soft, logit, and
embedding representations. For mutually exclusive (mutex) concepts in GC , we apply a softmax
over the logits within each group. For non-mutex concepts, we apply the respective activations
independently. In the main paper we focus on soft concepts, i.e., Ĉ := σ(l̂C), while an analysis of
hard concepts in CREAM is provided in App. G.

4.3 SIDE-CHANNEL

The optional side-channel information zY is projected by an MLP to ẑY ∈ RL and serves as the
exogenous input to the tasks, assigning each class its own exogenous variable. W.l.o.g., we assume
each class needs exactly one exogenous variable for prediction. Increasing the dimensionality of ẑY
may improve performance but reduces concept importance. We empirically show in App. E.4.1 that
the side-channel in CREAM primarily supports classes that cannot be predicted from concepts alone.

Regularization of side-channel. Adding a black-box side-channel to CBMs boosts task perfor-
mance, but may reduce interpretability, since task predictions can use non-interpretable predictors. To
control this, we apply a dropout-based regularization (Huang et al., 2016), dropping the entire side-
channel with probability p. This encourages the model to favor concepts, using the side-channel only
when needed. At inference, the side-channel can be dropped for purely concept-based predictions.

4.4 CONCEPT-TASK CLASSIFIER

The final stage of CREAM maps concept predictions to task logits while incorporating side-channel in
a controlled manner. Similar to the concept-concept block, we use StrNN to enforce C→Y relationships
expressed by AY . To incorporate the side-channel representation zY , we parameterize the concept-
task StrNN using the binary mask MY := [AT

Y ; IL], where IL denotes the identity matrix of size L
that connects each element in the side-channel representation zY with only one of the tasks classes.
This ensures each class is dependent only on its parent concepts (Eq. 3) and, the optional class-specific
latent features from the side-channel, leading to sparser explanations. Formally, the task prediction
for class j, using a classifier f , usually a single layer MLP for interpretability, is computed as:

ŷj = f([ĉPaj , zYj ]) where f : RK+L → RL, ĉPaj ⊆ Cdirect. (4)

4.5 TRAINING

To train CREAM, we adopt the joint bottleneck training scheme (Koh et al., 2020), which optimizes
both the task loss (LY ) and the concept loss (LC) simultaneously, through linear scalarization.
The optimization objective is to minimize the weighted sum of these losses (L), for the observed
training samples {(x(n), y(n), c(n))}Nn=1, where x ∈ R|z| is image embedding, c ∈ RK are concepts,
y ∈ {0, 1}L is the target class, and λ > 0 is the weight of concept compared to task performance:

L =
∑
n

LY (ŷ
(n); y(n)) + λ

∑
n

∑
k

LCk
(ĉ(n); c(n)). (5)

5 EXPERIMENTS

We evaluate our framework across standard datasets, demonstrating its ability to achieve the following
desiderata. Our experiments assess: (i) concept and task accuracies, (ii) computational efficiency, (iii)
intervenability, (iv) mitigation of concept leakage, and (v) the effect of the dropout regularization.

5.1 SETUP

Datasets. We evaluate CREAM on three image datasets selected for their distinct relational struc-
tures. FashionMNIST (Xiao et al., 2017) exhibits hierarchical and mutex relations with concept

6
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Table 2: Task and concept accuracy(%). Reported values are mean and standard deviation. CREAM
achieves a better balance between performance and interpretability. The best method is bold and the
second-best is underlined. Relative training speed and peak memory are averaged across all datasets.

Model iFMNIST cFMNIST CUB CelebA All Datasets
ACCY ACCC ACCY ACCC ACCY ACCC ACCY ACCC Time Peak Memory

Black-box 92.700.07 - 92.700.07 - 74.850.12 - 78.470.30 - - -
Ctrue→Y 60.00 - 100.00 - 100.00 - 84.51 - - -
CBM 91.190.40 96.740.36 92.000.17 97.330.06 73.760.32 80.900.08 79.280.39 79.770.17 x1.000.00 x1.000.00
ACBM 52.255.18 98.940.01 90.680.09 98.030.02 66.980.43 94.150.01 81.400.46 80.570.53 x7.654.08 x1.100.09
SCBM 57.680.63 98.860.02 90.800.17 97.540.06 70.550.19 90.280.04 76.630.47 80.540.11 x17.0010.96 x1.120.11
CGMCD 68.8114.65 90.055.28 67.927.37 90.481.20 - - 81.700.83 82.170.42 x10.537.42 x527.89447.06
CGMprior 90.670.21 98.770.04 90.330.19 97.720.08 - - 81.511.36 81.990.13 x6.392.94 x31.809.49
C2BM 91.960.18 98.960.02 92.040.23 98.070.02 - - 76.191.17 78.930.58 x10.065.24 x1.320.44
CREAM 92.430.23 99.070.03 92.380.16 98.080.06 72.900.28 86.830.04 80.920.55 79.910.22 x1.810.52 x1.000.00

incompleteness. We use two variants: iFMNIST with K = 8 hierarchical categories (Seo & Shin,
2019), and cFMNIST with K = 11 by adding seasonal attributes (Fig. 1). CUB (Wah et al., 2011)
provides 112 correlated and mutex concepts describing fine-grained attributes such as tail color and
wing pattern (Koh et al., 2020). CelebA (Liu et al., 2015) involves a DAG structure over seven facial
attributes used to predict smiling (Fig. 3). Full dataset details are described in App. C.

Model Baselines. To establish references for task performance, we train a black-box model and
models trained from the ground-truth concepts (Ctrue→Y ). For hard concept representations, we
include ACBM,4 and SCBM, using only the Amortized SCBM since it consistently outperforms the
Global SCBM. We also evaluate embedding-based models: namely C2BM, CGMCD that discovers a
graph and its version that embeds a given graph (CGMprior). Finally, we include a standard CBM,
and tried including ECBM butwere unable to reproduce satisfactory results with our backbone.

Implementation Details. All models are initialized from a shared backbone network, which is fine-
tuned for a few epochs on the respective datasets and then frozen to ensure consistent feature extraction.
For each dataset, we perform hyperparameter tuning; detailed hyperparameter configurations are
provided in App. D.5 The construction of masking pathways in StrNNs follows the algorithm found
in Zuko (Rozet et al., 2022). For all baseline models we adopt their proposed experimental settings.

5.2 KEY FINDINGS

Bridging the gap between interpretability and performance. Our results in Table 2 show
that CREAM achieves competitive task and concept performance, even in incomplete settings,
outperforming concept-based baselines and black-box models. Although CREAM’s concept accuracy
drops in CUB, its task performance remains competitive. Notably, CGM models are too slow for large
graphs like CUB, due to their graph operations, and C2BM is incompatible with CUB’s reasoning.
The two main components of CREAM offer orthogonal benefits: structured reasoning promotes
interpretability, while the side-channel addresses limitations of incomplete or noisy concepts. We
also report the training computational efficiency of all models, including their relative slowdown and
memory requirements compared to the standard CBM model, across all datasets and runs. Note that
both CGMs can only run on CPU; thus, we compare them to CBM on CPU. Our results show that,
among all models, CREAM achieves the best computational efficiency, being both the fastest and
requiring the least memory. Detailed per-dataset results can be found in App. E.1. In App. F, we
study the effect of different hyperparameters on CREAM’s performance.

Intervenability. We also assess task accuracy after intervening. For models with hard concepts,
interventions are straightforward: the true concept values are directly inserted. However, for soft
concept models, we set the concept activations to the 5th and 95th percentiles proposed in (Koh et al.,
2020). For all models, we follow a random concept selection policy (Shin et al., 2023). However,
causal models differ in that they avoid intervening on both parent and child concepts in the graph. For
CREAM we randomly select from Cdirect, the only concepts used for prediction. This sets an upper
bound on the number of interventions (6 for iFMNIST, 9 for cFMNIST), reaching peak accuracy
faster. For comparison, we also show the interventions on Cindirect for CREAM. In CUB and CelebA,
all concepts are direct, thus the number of effective interventions is 112 and 7, respectively.

4We use the implementation available in SCBM’s repository.
5We will release our code publicly upon acceptance to ensure full reproducibility.
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Figure 5: Impact of individual interventions on task accuracy. The baseline model is Ctrue→ Y .
CREAM’s accuracy improves with increasing number of interventions up to the number of Cdirect.
For cFMNIST, the inset axes show a zoomed-out view, to account for CGMCD.
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mean ± standard deviation across 5 seeds. Increased p leads to marginal drops in task accuracy.

Fig. 5 shows task accuracy across models after interventions. In iFMNIST, all models but CBM
improve with more interventions, while CBM drops to the Ctrue→Y model’s performance, indicating
a leaky model (Margeloiu et al., 2021). Even after full interventions, no model reaches 100% In
cFMNIST, accuracy generally rises with interventions, except for C2BM, which declines after 5
interventions. Similarly, in CUB, most models improve, but soft CBM and SCBM drop under certain
interventions. Also, almost no model reaches Ctrue→Y , likely due to noisy concepts. As noted,
C2BM and CGM do not work in CUB. Lastly, in CelebA, CREAM matches the baseline after full
interventions. CGM again surpasses the Ctrue→Y performance, at the cost of interpretability, while
C2BM initially maintains the same accuracy, but improves after multiple interventions. App. E.3,
studies group intervention efficiency on mutex concepts for CREAM.

Interpretability in the presence of a side-channel. Since CREAM incorporates a black-box
side-channel, verifying that predictions rely mainly on concepts is crucial. We introduce Concept
Channel Importance (CCI), adapted from SAGE values (Covert et al., 2020) to quantify this. They
measure global feature importance (Molnar, 2025) and conditional mutual information when used
with an optimal model. CCI is defined as the normalized importance of the concept channel relative
to total predictive capacity: CCI = ϕc

ϕc+ϕy
, where ϕc and ϕy denote the SAGE values of the whole

concept and side channels, respectively. Values near 1 indicate more substantial reliance on concepts,
and thus higher interpretability. An analysis of CCI and permutation feature importance (Breiman,
2001; Fisher et al., 2019) can be found in App. B. We show that CCI > 0.5 is enough for our
desiderata to hold.

Effect of Dropout Fig. 6 shows that increasing the dropout rate p raises CCI, promoting concept-
based reasoning. Also, the need for side-channel regularization decreases when using complete
concept sets. Importantly, models that use almost zero regularization fall below the CCI threshold,
highlighting the importance of side-channel regularization that prior works ignored. These findings
lead to a key conclusion: dropout rate controls interpretability. We also observe that increasing p
slightly reduces task performance in complete cases. Surprisingly, even with an extreme dropout rate
of p ≈ 1, CREAM maintains black-box level accuracy in incomplete datasets.
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Table 3: CREAM’s performance on iFMNIST without
the side-channel. Leakage is avoided when using the C→Y
relationships, while C-C relationships help mitigate it.

Mutex Reasoning ACCY ACCC Λ

C-C 90.284.2 96.380.8 30.284.2
No C→Y 57.310.3 99.060.0 0

C-C, C→Y 57.410.6 99.040.0 0

C-C 67.607.8 98.531.1 7.607.8
Yes C→Y 57.320.2 99.050.0 0

C-C, C→Y 57.100.1 99.070.0 0

Figure 7: Correlation matrix of the ex-
ogenous variables z. The enforced rea-
soning is mirrored in CREAM.
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Concept Leakage. We evaluate whether CREAM suffers from concept leakage. In Section 3.3
we defined concept leakage as Λ = max(ACCf − ACCOptimal, 0), i.e., the model should not
outperform the Ctrue→Y baseline when using only concepts. We focus on iFMNIST because it is
the only dataset where the Ctrue→Y baseline is outperformed; and soft-concept models are prone to
leakage in incomplete concept settings (Mahinpei et al., 2021; Parisini et al., 2025). For instance,
CBM is leaking in iFMNIST: as shown in Table 2, since it exceeds the Ctrue→Y model.

By stripping away CREAM’s plug-and-play components, we empirically show that its structured
reasoning helps mitigate leakage. To isolate the mechanisms responsible, we remove the side-channel
and then: (i) remove C-C reasoning (ii) remove C→Y reasoning, and (iii) replace softmax with sigmoid
to treat concepts as independent. Table 3 shows that CREAM avoids leakage despite being a soft
model. Specifically, C→Y reasoning entirely prevents it, while C-C relationships help mitigate it.
Notably, softmax enforces mutual exclusivity, reducing leakage, whereas sigmoid allows for more.
Fig. 7 confirms that correlations among exogenous variables reflect the imposed relationships, e.g.,
{“Goods”,“Accessories”,“Shoes”} belong to the same sub-tree, are highly correlated. Also, the zC vari-
ables of a concept are highly correlated with each other. A detailed analysis can be found in App. E.4.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced CREAM, a computationally efficient and flexible CBM framework that
enables experts to encode prior knowledge about C-C and C→Y relationships into model reasoning.
Its modular design supports diverse C-C relationships and concept representations. It narrows the
interpretability-performance gap, especially in concept-incomplete settings, through a regularized
side-channel, and facilitates interventions and interpretability via sparser C→Y reasoning. Importantly,
we showed that proper regularization of the side-channel (e.g., via dropout) is crucial to maintaining
interpretability. To further evaluate models in this setting, we introduced CCI , a new metric for
quantifying interpretability when predictions rely on auxiliary channels beyond the concept channel.
Empirically, we demonstrated that CREAM’s structured reasoning effectively avoids concept leakage,
making it, to the best of our knowledge, the first CBM framework that is leakage-free while operating
with soft concepts.

Future Work and Limitations. CREAM requires prior domain knowledge to encode concept-
concept and concept-task relationships. Future work could explore automated structure learn-
ing (Zanga et al., 2022) to infer these dependencies, as shown in App. E.5. Additionally, implementing
adaptive dropout strategies, where the side-channel is dynamically leveraged based on concept pre-
diction uncertainty, could improve robustness and interpretability while reducing the effort required
for hyperparameter tuning. The side-channel can also be used to discover new concepts (Sawada &
Nakamura, 2022) that are not present in the concept bottleneck.

7 REPRODUCIBILITY STATEMENT

We ensure reproducibility of our work by properly crediting and respecting the licenses of all
datasets and assets used, with full citations and links provided in Section 5.1 and Appendix D.
The experimental setup, including training and testing details such as data splits, hyperparameters,
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and optimizers, is explicitly described in Section 5.1 and Appendices C and D. We provide open
access to our code in the supplementary materials, along with instructions to reproduce the main
results, and will make both code and data publicly available upon acceptance. To facilitate faithful
replication, we disclose the hyperparameters of all methods and detail the computational resources
used in Appendix D. In addition, we report the type of compute workers, memory, and execution
time required for our experiments in Appendix D and E.1. Together, these measures ensure that all
main experimental results and conclusions of the paper can be independently verified.
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A STRUCTURED NEURAL NETWORKS FOR CONCEPT-CONCEPT AND
CONCEPT-TASK RELATIONSHIPS

Structured Neural Networks (StrNN) (Chen et al., 2024) enforce functional independence between
inputs and outputs using masking pathways that preserve the structural constraints dictated by an
adjacency matrix. Given a function f : Rm → Rn, where z ∈ Rm is the input and ẑ ∈ Rn is the
predicted output, StrNN ensures that dependencies between inputs and outputs adhere to a given
adjacency matrix A ∈ {0, 1}m×n. This is enforced through the condition:

Aij = 0 =⇒ ∂ẑj
∂zi

= 0. (6)

This means that if Aij = 0, the output ẑj remains independent of input zi, maintaining the prescribed
reasoning structure of the G .

Masks in Structured Neural Networks For both concept and task prediction networks, layer-wise
masking pathways are applied to enforce structured reasoning Am×n. Given a network with d hidden
layers, each with widths h1, h2, . . . , hd, we define binary masks:

M1 ∈ {0, 1}h1×m, M2 ∈ {0, 1}h2×h1 , . . . , Md ∈ {0, 1}n×hd , (7)

such that:
M ′ = Md · . . . ·M2 ·M1 ≈M, (8)

where M ′ ∈ {0, 1}n×m maintains the same sparsity pattern as AT , ensuring structured dependencies
are preserved. The structured neural network function StrNNM is defined as:

ẑ = StrNNM (z) = fd+1 (. . . f1 ((WC ⊙M1) z + bC)) , (9)

where each layer transformation follows:

fi(z) = a
((
WC(i) ⊙Mi

)
z + bi

)
, ∀i ∈ {1, . . . , d}, (10)

where: WC(i) ∈ Rhi×hi−1 is the learnable weight matrix at layer i, Mi ∈ {0, 1}hi×hi−1 is the binary
mask ensuring structured dependencies, bi ∈ Rhi is the bias term and a(·) is the activation function.

For the concept-concept learning block StrNNMC
:

m = dCK, n = K, hi≥1 = dCK. (11)

For the classifier StrNNMY
:

m = K + L, n = L, hi≥1 = K + L. (12)

The depth d is treated as a hyperparameter. By enforcing structured dependencies, StrNN ensures
that both concept and task predictions follow expert-defined reasoning pathways, enhancing inter-
pretability without sacrificing predictive performance.

A.1 CONCEPT-CONCEPT MASKING

The adjacency matrix for concept relationships is given by AC ∈ {0, 1}K×K , as defined in Section 3.1.
The input to the Concept-Concept block is obtained from the representation splitter and is denoted as:

zC = (z1, z2, . . . , zdCK) ∈ RdCK . (13)

Note that each dimension in zC is a result of an expansion; each exogenous variable was duplicated
from dimensionality of 1 to dimensionality of dC . This operation is represented by the Kronecker
product (⊗). These extra dimensions must still follow the independencies of the original variable.
Thus, we construct the concept mask MC ∈ {0, 1}K×dCK by:

MC = AT
C ⊗ 11×dC

, (14)

where 11×dC
is a row vector of ones that replicates AT

C column-wise, ensuring structured reasoning
of concept-concept relationships across all feature dimensions.
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A.2 CONCEPT-TASK MASKING

For the concept-task classifier (Section 4.4), the input combines both concept predictions and the
side-channel information. Thus, its input is the concatenated Ĉ and ẑY , and thus it is of size RK+L.
The C→Y relationships are described in the adjacency matrix AY ∈ {0, 1}K×L. Meanwhile, since we
assign one dimension of side-channel variables (ẑY ) to each task, we will need to expand the adjacency
matrix used in StrNN, using an identity matrix IL. From this, we can define the concept-task mask
as:

MY =
[
AT

Y ; IL
]
. (15)

This ensures that each class prediction depends only on the relevant parent concepts and its assigned
side-channel node.

B FEATURE IMPORTANCE METRICS

Given that CREAM integrates a side-channel that can contribute to task predictions, it is crucial to
assess the relative importance of the concept set C compared to it. To quantify this, we employ two
model-agnostic metrics: Concept Channel Importance (CCI) and Permutation Feature Importance
(PFI). These two metrics collectively provide an assessment of whether CREAM effectively
balances interpretability and performance by ensuring that predictions remain grounded in human-
understandable concepts rather than being dominated by the side-channel. In Table 4, we report the
values of these importance metrics, for the models used in Section 5.

B.1 CONCEPT CHANNEL IMPORTANCE

Concept Channel Importance (CCI) is based on Shapley Additive Global Explanations
(SAGE) (Covert et al., 2020), which provide model-agnostic feature importance scores. Specif-
ically, the SAGE value ϕi(vf ) of feature i, represents the Shapley values (Shapley et al., 1953) for
the cooperative game vf (S). The cooperative game vf represents the expectation of the per-instance
reduction in risk when using a subset of features S ⊆ D:

vf (S) = E[L(f∅(X∅), Y )]− E[L(fS(XS), Y )],

where f∅(x∅) is the model prediction without using any features, (i.e., the mean model prediction
E[f(X)]), and fS(XS) the prediction using only the subset of features S of all features D (S ⊆ D).
In our case, L is given by Equation 5, f is the concept-task classifier and D = [Ĉ , zY ]. Given vf (S),
SAGE is then calculated by:

ϕi(vf ) =
1

|D|
∑

S⊆D\{i}

(
|D| − 1

|S|

)−1(
vf (S ∪ {i})− vf (S)

)
.

SAGE values provide global interpretability (Molnar, 2025) instead of explanations for individual
predictions. The features that the model deems most useful will have positive SAGE values, non
informative features have values close to zero, and harmful for the prediction features have negative
values. Lastly, SAGE values can also measure a weighted average of conditional mutual information
when they are used with an optimal model trained with the cross entropy or MSE loss. Specifically,
the SAGE value of a feature i used in optimal model f∗, is equal to:

ϕi(vf∗) =
1

|D|
∑

S⊆D\{i}

(
|D| − 1

|S|

)−1

I(Y ;Xi|XS).

We also briefly mention some of the properties that SAGE satisfies:

• Efficiency: SAGE values sum up to the total predictive power of all of the features (SAGE
value using all the features D):.

∑K
i=1 ϕi(vf ) = vf (D).

• Dummy: If a feature makes zero contribution, i.e., if it is an uninformative feature, then
ϕi(vf ) = 0.
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Table 4: Interpretability metrics: CREAM variants (S-CREAM for soft concepts, H-CREAM for hard
concepts) show higher concept-channel importance relative to the side-channel’s across all datasets.
Also, S-CREAM exhibits larger CCI values compared to H-CREAM in FMNIST.

Dataset Model CCI ↑ PCI ↑ PSI ↓
iFMNIST H-CREAM 0.800.01 0.660.06 0.350.00

S-CREAM 0.800.02 0.590.06 0.350.00

cFMNIST H-CREAM 0.880.02 0.660.03 0.070.04
S-CREAM 0.940.02 0.720.03 0.030.01

CUB S-CREAM 0.960.00 0.720.00 0.010.00

CelebA S-CREAM 0.920.11 0.300.02 0.010.01

Interestingly, SAGE values can be generalized to group of features. Since our objective is to measure
the overall contribution of the concept channel, we treat all of the concepts as one coalition. The
SAGE value of a coalition represents how much this group of features improves the model’s predictive
ability.

Concept channel importance (CCI) can also be expressed is terms of total predictive power vf (D):

CCI =
ϕc(vf )

ϕc(vf ) + ϕy(vf )

Efficiency
=

ϕc(vf )

vf (D)

where ϕc(vf ), ϕy(vf ) denote the SAGE value of the whole concept-channel and side-channel respec-
tively.

B.1.1 DERIVING THE DESIRED IMPORTANCE THRESHOLD

We desire the importance of the concept channel to be greater or equal to the importance of the side
channel, i.e., ϕc(vf ) > ϕy(vf ). Assuming that both channels are informative (i.e., ϕc(vf ), ϕy(vf ) >
0), we derive a desired lower threshold for the concept channel importance:

ϕc(vf ) ≥ ϕy(vf ) add ϕc(vf ) to both sides
⇐⇒ 2ϕc(vf ) ≥ ϕy(vf ) + ϕc(vf ) assuming ϕc(vf ), ϕy(vf ) > 0

⇐⇒ 1

2ϕc(vf )
≤ 1

ϕy(vf ) + ϕc(vf )
multiply both sides with ϕc(vf )

⇐⇒ ���ϕc(vf )

2���ϕc(vf )
≤ ϕc(vf )

ϕy(vf ) + ϕc(vf )

⇐⇒ 1

2
≤ CCI

Meanwhile, if the side channel is uninformative, then due to the dummy property ϕy(vf ) = 0, then
CCI = 1. For the sake of completion, in the edge case where the side-channel makes the prediction
less accurate, i.e., ϕy(vf ) < 0, then CCI ∈ (−∞, 0) ∪ (1,+∞). Note that we do not notice such
cases in our experiments. Lastly, CCI = 0, if the concepts are not used by the Concept-Task Block.

In conclusion, assuming that both SAGE values are positive, CCI is bounded between CCI ∈ [0, 1].
A CCI value close to 1 indicates that the model relies primarily on the concept channel, reinforcing
interpretability. When CCI ≈ 0.5, it suggests that both the concept and side-channels contribute
equally to the predictions. To compute CCI, we evaluate the trained model on the entire test set,
storing the classifier’s inputs to estimate feature attributions.
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B.2 PERMUTATION FEATURE IMPORTANCE

Permutation Feature Importance (PFI) (Breiman, 2001; Fisher et al., 2019) measures the significance
of a feature by evaluating how much the model’s accuracy deteriorates when its values are randomly
shuffled. A feature is considered important if permuting its values leads to a significant drop in
accuracy, whereas an unimportant feature results in little to no change. The PFI score for a feature j
is computed as:

PFIj = ACCY −
1

K

K∑
k=1

ACCYj,k
(16)

where ACCY is the test accuracy of the model, and ACCYj,k
is the accuracy after randomly

permuting the values of feature j for the k-th iteration. In our case, we focus on evaluating the
importance of entire channels (i.e., groups of features). Thus we permute all values within each
channel (concept channel and side-channel) simultaneously. We denote concepts’ feature importance
as Permutation Concept Importance (PCI) and the side-channel’s as Permutation Side-Channel
Importance (PSI). We measure PFI on the test dataset (Molnar, 2025), and we permute for 100
iterations. Lastly, as mentioned, we desire the concept-channel to be more important than the
side-channel, i.e., PCI > PSI . This inequality plays the same role as the importance threshold
CCI > 0.5 derived in B.1.1. As seen in Table 4, the PFI-based metrics also indicate that CREAM
prioritizes the concept-channel instead of the side-channel.

B.3 DROPOUT RATE AND PFI

In Fig. 8, we present the Permutation Feature Importance curves for all datasets and models , when
trained with different dropout rates (p). For each p, we train a model with it, and then we plot
its PCI and PFI , showing how much does the test accuracy drop if we randomly permute the
concept-concept and side-channel, respectively. As expected, the findings are consistent with the
observed trends in Section 5.2. Increasing the dropout rate p leads to increased PCI and decreased
PSI. Also, the need for side-channel regularization decreases when using complete concept sets.
The point where PCI > PSI , in iFMNIST, is around p = 0.75, but when moving to the complete
FMNIST case it drops to around p = 0.3. One difference between the PFI metrics and CCI, is the
lowest required dropout rate p such that the side-channel stops dominating the concept-concept block
(i.e., CCI > 0.5 or PCI > PSI). Across all datasets, the PFI-based approach suggests that we
should regularize the side-channel more than CCI suggests.
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Figure 8: Mean values ± standard deviation of the permutation feature importance of both channels,
in all datasets for CREAM, averaged over 5 seeds. Increasing p leads to an increase in PCI and
decreases PSI.
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Table 5: Summary of each dataset. A concept group consists of a mutually exclusive group of
concepts. Cdirect refers to the number of concepts directly connected to any task, which coincides
with the upper bound of interventions. The reported number of effective group interventions refers to
the number of directly connected groups of concepts instead.

Dataset Number of
Classes (L)

Number of
Concepts (K) Cdirect

Mutex
Groups

Effective Group
Interventions

iFMNIST 10 8 6 2 1
cFMNIST 10 11 9 3 2
CUB 200 112 112 27 27
CelebA 2 7 7 7 7

C DATASET DETAILS

A summary of the datasets used in our experiments is provided in Table 5.

C.1 DATASET DESCRIPTION

Apparel Classification (FashionMNIST) The FashionMNIST (FMNIST) 6 dataset (Xiao et al.,
2017) consists of 70,000 grayscale images of clothing items across 10 classes. However, FMNIST
does not provide predefined concept annotations or a dependency graph. To define concepts, we
use high-level apparel categories derived from the hierarchical structure in (Seo & Shin, 2019). The
resulting dependency graph G forms a hierarchical tree, as shown in Figure 1.

We call this dataset Incomplete FMNIST. Since in hierarchical classification the classes at each
level are mutually exclusive, the concepts of the same depth of the tree are also mutually exclusive.
This means that the mutex concepts are grouped as such: {Clothes, Goods} and {Tops, Bottoms,
Dresses, Outers, Accessories, Shoes}, leading to two groups of concepts. Note that, in the hierarchical
classification setting the second group would be split into: {Tops, Bottoms, Dresses, Outers} and
{Accessories, Shoes}. However, if we applied that logic to our case, both concept groups can be
active at any time, thus being one mutex group. Lastly, these concepts cannot fully predict the classes.
For instance, the same "active" concept vector c = {Clothes, Tops} is used to predict these three
classes y ={T-shirt, Pullover, Shirt} with no way of distinguishing between them. The same problem
applies for c ={Goods, Shoes} and the classes y = {Sandal, Sneaker, Ankle Boot}. This is where the
side-channel shines; with the extra information from it, we can now successfully predict all classes.

For the Complete FMNIST dataset, we add a few more concepts to the hierarchical tree to make it a
complete set. These concepts represent seasonality and are: {Summer, Winter, Mild Seasons}. We
consider them to be mutually exclusive. The updated dependency graph is shown in Fig. 1.

Bird identification (CUB) The Caltech-UCSD Birds-200-2011 (CUB) 7 dataset Wah et al. (2011)
consists of 11,788 natural images spanning 200 bird species. Each image is annotated with 312
binary concepts describing visual characteristics such as color, shape, length, pattern, and size.
Following (Koh et al., 2020), we process concept labels via majority voting across instance-level
annotations and remove excessively sparse concepts, resulting in K = 112 concepts. These binary
concepts originate from categorical attributes, leading to 27 mutually exclusive groups, similar to
one-hot encoded features. To define concept relationships in GC , we assume that concepts related to
the same type of attribute (e.g., all colors, all patterns) are interconnected via bidirected edges i.e.
the concepts that pertain to the same "type" of feature are related, but we do not know its direction.
These types of features are: {Shape, Color, Length, Pattern, Size}. Thus, the colors, patterns, etc. of
all body parts are related. This structured representation embeds reasoning by enforcing relationships
among semantically related features. Furthermore, we assume that all concepts directly influence all
classes, ensuring that the model can fully leverage fine-grained feature representations.

Smile Detection (CelebA) The CelebA 8 dataset (Liu et al., 2015) comprises over 200.000 celebrity
face images annotated with 40 facial attributes. We select K = 7 facial attributes as concepts:

6https://github.com/zalandoresearch/fashion-mnist, MIT License
7https://www.vision.caltech.edu/datasets/cub_200_2011/
8https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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({Arched Eyebrows, Bags Under Eyes, Double Chin, Mouth Slightly Open, Narrow Eyes, High
Cheekbones, Rosy Cheeks}), and use "Smiling" as the target label, making it a binary classification
problem. The corresponding reasoning graph (G) is illustrated in Figure 3.

D IMPLEMENTATION DETAILS

This section provides additional details on the implementation of our experiments. A more detailed
version of CREAM’s illustration is shown in Fig. 9. For datasets containing mutually exclusive
concepts, we apply a softmax activation as described in Section 4. Our framework is implemented in
PyTorch (v2.4.0) (Paszke et al., 2019) and PyTorch Lightning (v2.3.0). We use 20% of the stored
activation values to perform the missing value imputation in CCI, and set SAGE’s convergence
threshold to 5× 10−2. The Permutation Feature Importance (PFI) metric is computed by permuting
the channel values 100 times. All reported experiments use five different seeds. Lastly, for all ablation
studies including the dropout rate, we use these p values: {0.0001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.99}.

Details per Dataset Our experiments utilize three datasets, each with tailored architectures and
preprocessing steps. We use the Adam optimizer (Kingma, 2014) for all models. For FashionMNIST
(FMNIST), we employ a lightweight CNN backbone with two convolutional layers, ReLU activations,
Max Pooling, dropout, and a final linear layer. The dataset is split into 50k − 5k − 10k for training,
validation, and testing, respectively. The backbone is trained for 50 epochs, using a learning rate of
10−3 and a batch size of 256. Standard normalization is applied to the dataset. In the experiments of
the main text, the number of epochs was also set to 50. Lastly, the standard model was trained from
scratch for the same number of epochs.

For CUB and CelebA, we use ImageNet ResNet-18 (He et al., 2016) as the backbone. CUB follows
the same train-test splits, concept processing, and image preprocessing as in (Koh et al., 2020). The
backbone is fine-tuned for 50 epochs, with a learning rate of 10−4 and a batch size of 64. For CelebA,
we fine-tune ImageNet ResNet-18 on a 5K image subset for 90 epochs, using a learning rate of 10−4

and a batch size of 256, following (Yang et al., 2022). Both datasets undergo identical preprocessing:
color jittering, random resized cropping, horizontal flipping, and normalization. In the experiments
of the main text, the number of epochs for CUB was 300, while in CelebA the maximum number of
epochs was 200.

Model Selection In all cases, the side-channel consists of a Linear layer with a ReLU activation.
We perform grid search over hyperparameters (Table 6). The Masked MLP depth refers to the
number of hidden layers in the masked algorithm from Zuko (Rozet et al., 2022); a depth of zero
means the Masked MLP is equivalent to a Masked Linear layer. Given that CBMs require multiple
selection criteria, we adopt a ranking-based approach that averages performance across task and
concept accuracies on the validation set, as in (Sanchez-Martin et al., 2024). Table 7 reports the best
hyperparameter configurations for each dataset. Note that we eventually selected the models with the
highest dropout rate in each case. Here, dCK + dY represents the total latent space dimension, while
dY refers to the side-channel input size. The depth (number of hidden layers) of the masked MLP is
d. For the CBM model, in both iFMNIST and cFMNIST we used a learning rate of 10−2. For the
Ctrue→Y model we trained linear classifiers for all datasets. Specifically, for iFMNIST and CelebA
we tried a MLP with ReLUs and in total 3 layers, to try to improve the upper bound in task accuracy.

Table 6: Hyperparameter search space explored for each dataset.

Dataset iFMNIST cFMNIST CUB CelebA
Dropout (p) {0.2, 0.5, 0.8, 0.9} {0.2, 0.5, 0.8} {0.1, 0.2, 0.5, 0.8} {0.2, 0.5, 0.8}
dCK + dY {8, 18, 76, 78, 128} {11, 21, 22, 32, 43, 128} {424, 512, 648, 848} {7, 8, 10, 36, 70, 75, 256, 512}

dY {0, 10, 20, 30, 64} {0, 10, 40, 62} {64, 176, 200, 400} {0, 1, 3, 5, 123, 162}
λ 1 1 1 0.25,0.75,1
d {0, 2} {0, 2} {0, 3} {0, 5}

Minimum Hardware Requirements All experiments were conducted on a high-performance
computing cluster with automatic job scheduling, ensuring efficient resource allocation. We list the
minimum hardware requirements we used. For FMNIST (both iFMNIST and cFMNIST), we utilized
2 CPU workers, 8GB RAM, and a GPU with at least 4GB of VRAM. For CUB, the setup included
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Table 7: Configurations for the best-performing models in each dataset. Note that dCK + dY
represents the dimensionality of latent space that is split, and dY the dimensionality of the input
to the side-channel. H-CREAM and S-CREAM refers to the models with hard and soft concept
representations respectively. The best models have d = 0 number of hidden layers in the Concept-
Concept Block.

Dataset Model λ lr p dCK + dY dY

iFMNIST H-CREAM 1 1e-3 0.9 78 30
S-CREAM 1 1e-3 0.9 76 20

cFMNIST H-CREAM 1 1e-3 0.8 43 10
S-CREAM 1 1e-3 0.8 128 40

CUB S-CREAM 1 1e-4 0.8 648 200

CelebA S-CREAM 1 1e-3 0.1 75 5

 

Figure 9: Expanded version of the illustration of CREAM found in the main text, providing additional
details for clarity and completeness.

8 CPU workers, 16GB RAM, and a GPU with at least 4GB of VRAM. The CelebA experiments
were more resource-intensive, requiring 12 CPU workers, 32GB RAM, and a GPU with at least 8GB
of VRAM. The aforementioned resources refer to CBM and CREAM. A computational efficiency
comparison can be found in App. E.1.

E ADDITIONAL RESULTS

E.1 EFFICIENCY

All experiments were conducted on a high-performance computing cluster with automatic job
scheduling, ensuring efficient resource allocation. For the efficiency results we set specific hardware
to ensure fair comparisons. For models using a GPU we set the hardware requirements to: 96GBs
RAM, 8 cores out of an AMD EPYC 7662 64-Core Processor CPU, NVIDIA A100-PCIE-40GB
GPU. For the CPU entries we set the hardware requirements to: 256GBs of RAM and we used all
cores of a AMD EPYC 9654 96-Core Processor CPU. To ensure a correct comparison by avoiding
cache speedup, we used 5 burn-in iterations, and then for each model we report the mean values
across 20 iterations. We also used 1 dataloader worker. We ensured correct timings and memory were
recorded via using CUDA events, and tracemalloc in the CPU case. We also manually controlled the
garbage collector.

We observe that across all datasets and devices, CREAM is relatively more computationally efficient
than the rest of the models. Also, we notice that adding the side-channel to CBM (CBM+SC) only
slightly decreases efficiency, supporting our claims about its efficiency.
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Table 8: Comparison of Training Time and GPU Peak Memory Usage relative to CBM. Values
indicate the factor difference for models (e.g., CREAM takes 1.8× longer to train than the baseline).

Model iFMNIST cFMNIST CUB CelebA
Time Peak Memory Time Peak Memory Time Peak Memory Time Peak Memory

CBM x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000
CBM+SC x1.4960.137 x1.0010.000 x1.6310.208 x1.0010.000 x1.0170.026 x1.0040.000 x1.0040.003 x1.0010.000
ACBM x5.3040.535 x1.0440.000 x7.8960.900 x1.0440.000 x14.1250.140 x1.2480.000 x3.2690.050 x1.0720.000
SCBM x27.5352.817 x1.0500.000 x27.9853.721 x1.0530.000 x9.2100.258 x1.3030.000 x3.2690.050 x1.0720.000
C2BM x12.1940.182 x1.0030.000 x15.1431.430 x1.0050.000 - - x2.8460.092 x1.9380.000
CREAM x1.8160.159 x1.0000.000 x1.9400.048 x1.0010.000 x2.4610.212 x1.0040.000 x1.0040.006 x1.0010.000

Table 9: Comparison of Training Time (CPU) and overall system Peak Memory Usage relative to
CBM. Values indicate the factor difference for models (e.g., CREAM takes 1.8× longer to train than
the baseline).

Model iFMNIST cFMNIST CelebA
Time Peak Memory Time Peak Memory Time Peak Memory

CBM x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000 x1.0000.000
CGMCD x9.1501.033 x361.8742.061 x20.2383.084 x1139.2243.005 x2.2090.070 x82.5712.607
CGMprior x8.4713.195 x36.1380.405 x8.4650.969 x40.6270.351 x2.2270.035 x18.6351.404
CREAM x5.3871.437 x1.2590.009 x6.6092.438 x1.2590.042 x1.9630.021 x1.1220.003

E.2 PERFORMANCE WITH AND WITHOUT SIDE-CHANNEL

In this section we showcase the modularity of the side channel. Specifically, we remove it from
CREAM and add it a CBM. From the hyperparameter search performed in Section D, we pick the
best models without a side channel (dY = 0 values from Table 6) for CREAM. The hyperparameters
of these models are seen in Table 10.

Table 10: Hyperparameter configurations for the best-performing models (without a side-channel) in
each dataset. The best models have d = 0 number of hidden layers in the Concept-Concept Block.

Dataset Model λ lr dCK + dY

iFMNIST CREAM 1 1e-3 128
cFMNIST CREAM 1 1e-3 22
CUB CREAM 1 1e-4 112
CelebA CREAM 0.75 1e-3 7

We report the concept and task accuracies of CBM and CBM with a side-channel (CBM+SC), and
CREAM without a side-channel and with the side-channel (CREAM+SC). The results are reported in
Table 11. According to Table 11, CREAM outperforms both CBMs. Also we notice that, including
the side-channel almost always leads to increased task and concept accuracy, in both CBM and
CREAM. The former verifies our claims about the side-channel, while the latter is an added bonus.
We believe it originates from ease of optimization.

Table 11: Task and concept accuracy(%). Reported values represent the mean and standard deviation.
CREAM consistently achieves a better balance between performance and interpretability. The best-
performing method is highlighted in bold and the second-best is underlined.

Model iFMNIST cFMNIST CUB CelebA
ACCY ACCC ACCY ACCC ACCY ACCC ACCY ACCC

Black-box 92.700.07 - 92.700.07 - 74.850.12 - 78.470.30 -
Ctrue→Y 60.00 - 100.00 - 100.00 - 84.51 -
CBM 91.190.40 96.740.36 92.000.17 97.330.06 73.760.32 80.900.08 79.280.39 79.770.17
CBM+SC 91.020.20 96.130.20 92.180.11 97.380.08 74.360.10 82.790.11 79.550.24 79.970.21

CREAM 57.100.05 99.070.02 92.310.15 97.520.25 71.130.22 85.660.09 80.691.13 78.461.50
CREAM+ SC 92.430.23 99.070.03 92.380.16 98.080.06 72.900.28 86.830.04 80.920.55 79.910.22

We also study their intervenability. The results, visualized in Fig. 10 are similar to the ones in the
main paper. However, we also notice that including a side-channel seems to alleviate the drop in
accuracy by intervening in CUB.
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Figure 10: Impact of individual interventions on task accuracy. We reach similar conclusions as the
ones in the main text.

E.3 GROUP INTERVENTIONS

In this section we examine the benefits of the C-C mutually exclusive relationships, on the efficiency
of interventions. Specifically, we investigate group interventions, where contrary to individual
interventions, the human expert intervenes on a group of mutually exclusive concepts simultaneously.
For instance, in cFMNIST, a human expert would change the value of all concepts belonging in
Mutex 3 (“Summer”, “Winter” and “Mild Seasons”) with just one intervention, by "activating" the
concept “Summer” and the rest being deactivated automatically, since they are mutually exclusive.
Note that, in the case of group interventions the upper bound of interventions drops even lower, down
to the number of directly connected concept mutex groups. As visualized in Fig. 11, in FMNIST,
we observe that task performance peaks after one group intervention in the incomplete setting and
two group interventions in the complete setting. For both cases, the one remaining intervention, does
not improve accuracy since those are the indirect mutex concepts (“Clothes” and “Goods”). Similar
conclusions are seen in CUB; with about 20 group interventions we achieve performance gains of
almost 90 individual interventions. Lastly, group interventions lead to the same performance gains as
individual interventions, but with less human effort. These findings indicate that group interventions
on mutually exclusive concepts, identified through C-C relationships, can help scale the intervention
procedure.
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Figure 11: Impact of group interventions compared to individual ones, on task accuracy. Group
interventions lead to the same performance gains with lower number of interventions. The number of
relevant group interventions in CREAM for each dataset are, from left to right, 1, 2 and 27. Note the
baseline’s performance is not visualized in iFMNIST, as it is comparatively too low.

E.4 CORRELATION OF VARIABLES

In an effort to investigate the effect of different types of relationships on the model representations,
we investigate their statistical relationships. Specifically, we visualize the correlations between the
concept exogenous variables and the input to the side-channel. As seen in Fig. 12, in the FMNIST
cases, where the C-C relationships create a DAG, the exogenous variables of the concepts form
blocks in the correlation matrix. Each of the dC dimensions seem to be strongly correlated with
the rest of the dimensions of the exogenous variable they belong to. Furthermore, we can observe
the hierarchical structure of the concepts. For example, the exogenous of “Goods” is also strongly
correlated to “Accessories” and “Shoes”. Meanwhile, in CUB, where the C-C relationships create
cycles in GC , we do not observe any particular structure. In addition, CelebA exhibits a lot of
variables with zero variance; they represent “dead” neurons. Lastly, in all cases, the side-channel also
does not show a particular structure.
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Figure 12: Correlation matrix for the CREAM models reported in Table 3. For each concept we draw
a box around its assigned dC dimensions. Note that CUB’s exogenous are too small to plot. We
notice that C-C reasoning leads block-like correlations, both within the exogenous of each concepts,
and between their exogenous, revealing the hierarchical structure.

Clothes

Tops

Bottoms

Dresses

Outers

Goods

Accessories

Shoes

iFMNIST only C-C iFMNIST only C→Y

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Correlation matrix for the CREAM models reported in Table 3. For each concept we draw
a box around its assigned dC dimensions. We notice that C-C reasoning leads block-like correlations,
both within the exogenous of each concepts, and between their exogenous, revealing the hierarchical
structure.

Further investigating the block-diagonal structure We will now focus on identifying the cause
of the near block-diagonal structure in the correlation matrices. Following the leakage experiments
from Table 3, we visualize the correlations when the model reasoning is removed. According to
Fig. 13, we identify C-C as the architectural choice leading to the near block-diagonal structure of
the correlation matrix.

E.4.1 VARIANCE OF THE SIDE CHANNEL

Here, we will also check if some side-channel nodes have turned into constants, since we set the
output of the side-channel to be of dimension L, which leads to an excess of needed nodes. For
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Figure 14: Covariance matrix of the outputs of the side-channel for CREAM. On the left, we report
the corresponding class each node is assigned to. CUB has too many classes to clearly visualize.

instance, in the iFMNIST dataset, the classes: {Trouser, Dress, Coat, Bag} are fully distinguishable
from their assigned concepts, meaning that they do not need the side-channel. Thus, it would be
preferable if their assigned side-channel nodes had a constant output. To verify this, we visualize
the covariance matrix of the side-channel (ẑY ), and we inspect its main diagonal. Specifically, for
CelebA, L = 1 and thus there is only one side-channel node, we report here its variance: V arẑ = 0.0,
meaning that its a constant value. As seen in Fig. 14, some of the nodes in iFMNIST (e.g., for
“Trouser”) and cFMNIST (e.g., for “Bag”) have a low variance, meanwhile the classes that cannot be
predicted only via concepts (e.g.,“T-shirt”, “Shirt” , and “Ankle boot”) have high variance, suggesting
that CREAM primarily uses the side-channel information to predict only these classes.

E.5 CAUSAL DISCOVERY AND CREAM

One key distinction between CREAM and CGM Dominici et al. (2025) lies in how the reasoning
graph is obtained. As noted previously, CGMCD employs causal discovery algorithms to infer the
underlying causal (reasoning) structure from observational data. Thus, we will use one of these
discovered graphs from CGMCD to simulate a causal discovery scenario. The discovered PDAG is
visualized in Fig. 15. We will model, the undirected edges of the PDAG as symmetric entries in AC ,
as we mentioned in Section 3.1. Using the same hyperparameters as the ones in the main text, we
report: ACCY = 79.562.19, and ACCC = 79.550.83. Thus, CREAM exhibits similar performance
when using our DAG.

Bags Under Eyes High Cheekbones

Mouth Slightly Open Rosy Cheeks

Double Chin Arched Eyebrows
Narrow Eyes

Smiling Class Y

Concepts

Figure 15: Reasoning graph taken from one the CGMCD runs Dominici et al. (2025) for predicting
“Smiling” in CelebA (Liu et al., 2015).

F ABLATION STUDIES

In this section, we present additional experiments to offer a deeper understanding of CREAM’s
hyperparameters. We conduct ablation studies on multiple hyperparameters to illustrate their impact
on different aspects of model performance, supplementing the main text with further insights.
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F.1 EFFECT OF DIMENSIONALITY OF EXOGENOUS VARIABLES

As mentioned in Section 4.2 each exogenous variable zC is of dimension dC . Here we study the
effect of dC on model performance (as seen in Fig. 16), for dC ∈ {1, 2, 3, 7, 10}. Note that, we keep
every other hyperparameter to the same values as in Table 7. This means, we are increasing the
dimensionality of the output of the representation splitter, while keeping |zY | constant.
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Figure 16: Concept and Task accuracies across different dC values for the exogenous of the concepts.
Values are presented as mean ± standard deviation. Increasing zY , generally improves performance.

We observe a general trend across all datasets; increasing the dimensionality dC of the exogenous
variables of the concepts leads to same or slightly increased performance. That increase of perfor-
mance is sometimes in the form of increased concept accuracy, task accuracy, or both at the same
time.

F.2 EFFECT OF THE DEPTH OF CONCEPT-CONCEPT BLOCK

In Fig. 17 we study the effect of increasing the depth d of the Concept-Concept Block to model
performance. For each model we keep the same configuration as the main text, but now d ∈
{0, 1, 2, 3, 5}. We notice a trend across all models; increasing the depth leads to equal or worse
performance. These findings further support the notion that human-interpretable concepts are often
linearly encoded in the latent space of neural networks (Rajendran et al., 2024).

G HARD MODELS

In this section we will study CREAM with hard concept representations, i.e., Ĉ ∈ {0, 1}. To ensure
trainability in the hard case, we leverage the straight-through estimator (STE) (Bengio et al., 2013),
which approximates gradients during the backward pass. The representation of hard and soft concepts
is given as:

Ĉ :=

{
σ(l̂C) S-CREAM
round(σ(l̂C)) H-CREAM

(17)

where H-CREAM and S-CREAM are for hard and soft concepts respectively. We also handle mutually
exclusive concepts similarly. The hyperparameter configurations of H-CREAM, can be found in
Table 7. Hard CBM models are sometimes preferred due to them not suffering from leakage (Havasi
et al., 2022; Vandenhirtz et al., 2024) and being easier to intervene on.
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Figure 17: Concept and Task accuracies across different d values in the Concept-Concept block.
Values are presented as mean ± standard deviation. Increasing d of the C-C block degrades perfor-
mance.

G.1 CONCEPT AND TASK ACCURACY

S-CREAM consistently outperforms its hard variant across all datasets and evaluation metrics. This
suggests that soft concept representations provide greater flexibility and are easier optimize, allowing
the model to capture useful variations in concept values while maintaining structured reasoning.

Table 12: Performance comparison between CREAM variants. Reported values represent the
mean and standard deviation over five seeds. S-CREAM outperforms H-CREAM performance and
interpretability in both FMNIST variants. The best-performing model variant is highlighted in bold.

Dataset Model Test ACCY Test ACCC

iFMNIST S-CREAM 92.430.23 99.070.03

H-CREAM 92.150.17 98.980.01

cFMNIST S-CREAM 92.380.16 98.080.06

H-CREAM 91.290.73 96.700.17

G.2 IMPORTANCES

Table 4 demonstrates that, CCI remains consistently above the critical 0.5 threshold, and PCI exceeds
PSI, for the selected hyperparameter settings. This indicates that the hard variant can also fulfill our
concept importance desiderata. Furthermore, soft models report a higher CCI value compared to their
hard counterparts, indicating that their decisions are more strongly influenced by the concepts.

G.3 INTERVENTIONS

We compare task accuracy between the two CREAM variants, after individual concept interventions.
We follow the same process as the one mentioned in Section 5. For H-CREAM we do not have to
find the 5th and 95th percentiles, and we instead directly use the ground truth concepts. As seen in
Fig. 18, H-CREAM shows the same behavior as S-CREAM. However, the latter slightly outperforms
the former in both presented cases.

G.4 CORRELATIONS

We also investigate the correlations between the concept exogenous variables and the input to the
side-channel in the hard variant. As illustrated in Fig. 19, H-CREAM does not exhibit the block
correlations that the soft model does (Fig. 12). Also, in H-CREAM more concept exogenous variables
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Figure 18: Intervenability comparison of H-CREAM and S-CREAM. The latter slightly outperforms
the latter. Both models’ task accuracy peaks after 6 and 9 interventions in iFMNIST and cFMNIST
respectively.
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Figure 19: Correlation matrices of the output of the representation splitter (z) for H-CREAM. We
notice that more concept exogenous variables have lowered correlations compared to the soft models.

have become constants. This indicates that the hard variant requires a lower number of exogenous
variables, which is also in line with the best hyperparameters seen in Table 7.

H LOGIC VIEWPOINT OF CREAM

In this section we will express the relationships in G using description logic (Baader, 2003). Note
that in CREAM the concepts are calculated using the exogenous variables, and the tasks using the
concepts and their corresponding side-channel input. Table 13 shows some of the logic rules that
match CREAM’s calculations, with a slight abuse of notation. For instance, a mutex constraint is
described as: Clothes ⊓ Goods ⊑ ⊥, and concepts are calculated by: Tops← zClothes ⊓ zTops.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used a large language model (LLM) as a general-purpose writing assistant during the
preparation of this paper. Its application was exclusively for grammar, spelling, and word choice.
This work did not involve use of LLMs for core methodology, scientific rigorousness, or originality
of research.
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Table 13: Some logic rules based on description logic for CREAM. The z variables correspond to the
concept and side-channel, and ⊥ denotes the empty set.

Dataset

iFMNIST

Clothes← zClothes

Goods← zGoods

Clothes ⊓ Goods ⊑ ⊥
Tops ⊓ Bottoms ⊑ ⊥
Tops ⊓ Dresses ⊑ ⊥
...
Accessories ⊓ Shoes ⊑ ⊥
Tops← zClothes ⊓ zTops

...
Shoes← zGoods ⊓ zShoes

T-shirt ⊓ Pullover ⊑ ⊥
T-shirt ⊓ Shirt ⊑ ⊥
...
Sneaker ⊓ Ankle Boot ⊑ ⊥
T-shirt← Tops ⊓ zT−shirt

...
Ankle Boot← Shoes ⊓ zAnkleBoot

CelebA

Bags Under Eyes (BUE)← zBUE

High Cheekbones (HC) ← zHC

Mouth Slightly Open (MSO) ← zMSO

Rosy Cheeks (RC) ← zRC

Arched Eyebrows (AE) ← zAE

Double Chin (DC) ← zDC

Narrow Eyes (NE) ← zMSO ⊓ zBUE ⊓ zHC ⊓ zNE

Smiling← BUE ⊓HC ⊓MSO ⊓NE ⊓RC ⊓DC ⊓AE ⊓ zSmiling
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