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Abstract

Paucity of medical data severely limits the generalizability of diagnostic ML mod-
els, as the full spectrum of disease variability can not be represented by a small
clinical dataset. To address this, diffusion models (DMs) have been considered as
a promising avenue for synthetic image generation and augmentation. However,
they frequently produce medically inaccurate images, deteriorating the model
performance. Expert domain knowledge is critical for synthesizing images that
correctly encode clinical information, especially when data is scarce and quality
outweighs quantity. Existing approaches for incorporating human feedback, such
as reinforcement learning (RL) and Direct Preference Optimization (DPO), rely
on robust reward functions or demand labor-intensive expert evaluations. Recent
progress in Multimodal Large Language Models (MLLMs) reveals their strong
visual reasoning capabilities, making them adept candidates as evaluators. In
this work, we propose a novel framework, coined MAGIC (Medically Accurate
Generation of Images through AI-Expert Collaboration), that synthesizes clini-
cally accurate skin disease images for data augmentation. Our method creatively
translates expert-defined criteria into actionable feedback for image synthesis of
DM, significantly improving clinical accuracy while reducing the direct human
workload. Experiments demonstrate that our method greatly improves the clinical
quality of synthesized skin disease images, with outputs aligning with dermatolo-
gist assessments. Additionally, augmenting training data with these synthesized
images improves diagnostic accuracy by +9.02% on a challenging 20-condition
skin disease classification task, and by +13.89% in the few-shot setting. Beyond
image synthesis, MAGIC illustrates a task-centric alignment paradigm: instead of
adapting MLLMs to niche medical tasks, it adapts tasks to the evaluative strengths
of general-purpose MLLMs by decomposing domain knowledge into attribute-level
checklists. This design offers a scalable and reliable path for leveraging foundation
models in specialized domains. Our implementation detail and code is available at
https://github.com/janet-sw/MAGIC.git.

1 Introduction

Recent advances in deep learning have made dermatological diagnosis increasingly accessible,
offering significant potential for teledermatology in rural regions [6, 13, 34, 49]. However, privacy
constraints and proprietary rights over skin images often lead to data scarcity, especially for rare
conditions, making it difficult to capture the full complexity and variability of skin diseases for
training robust diagnostic models. In response, various data augmentation strategies have been
proposed—most straightforwardly, by aggregating open-source dermatological images [1, 56]. Yet,
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this approach does not guarantee access to high-quality samples of the precise clinical presentations
needed, such as specific combinations of skin tones, body sites, and other lesion characteristics.

Image synthesis by Text-to-Image (T2I) Diffusion Models (DMs) [11] has emerged as a promis-
ing solution to enrich datasets under the guidance of prompts. Such controlled generation helps
mitigate long-tail distributions, reduce biases against underrepresented groups, and improve model
generalization—essential aspects of building reliable diagnostic systems [29, 45, 55]. While the
effectiveness of diffusion-based synthetic augmentation for common objects is debatable compared to
retrieval-based methods, their value in the medical domain remains significant due to the proprietary
nature of medical data and the general infeasibility of retrieval [20]. T2I DMs have been employed to
augment medical datasets across various imaging modalities [3, 26, 28, 39, 59]. Previous works have
also attempted to fine-tune DMs on skin disease images to enhance subsequent diagnostic model
performance. However, these approaches typically involved end-to-end generation without expert
participation during the training process, relegating expert assessment or filtering to a post-generation
stage, rather than actively guiding the model to create clinically accurate images. [2, 42, 43, 55].

Aligning DMs via Reinforcement Learning from Human Feedback (RLHF) has been explored to
adapt these models and generate images that meet human preferences. In particular, [31] proposes
reward-weighted likelihood maximization to achieve alignment. Building on this, [50] engages
expert pathologists to assess sampled bone marrow images against a clinical plausibility checklist
and train a reward function on binary feedback to emulate clinician assessments when fine-tuning a
class-conditional DM. More recently, [4, 15] considers the denoising process as a multi-step Markov
Decision Process (MDP) and adopts policy gradient optimization to fine-tune DMs based on human
feedback. However, such methods still require reliable reward functions, whose training demands
substantial computational resources and vast amounts of human-labeled feedback. To address these
limitations, [62] proposes using Direct Preference Optimization (DPO) [40], which enables DM
fine-tuning directly on preference data, bypassing the need for an explicit reward model and allowing
iterative parameter updates based on human feedback at each timestep of the denoising process.

Inspired by recent advances in Reinforcement Learning from Al Feedback (RLAIF) [30] and the
strong visual reasoning capabilities of MLLMs, we propose MAGIC (Medically Accurate Generation
of Images through AI-Expert Collaboration), a semi-automated framework that utilizes MLLMs for
visual evaluation. In this framework, human experts are primarily required to: (1) craft, from credible
sources, checklists that are easily verifiable by a MLLM, and (2) oversee the MLLM’s feedback on
synthetic images during the training of T2I DMs. By iteratively learning from the feedback enhanced
with expert knowledge, MAGIC steers the T2I DMs toward more medically consistent generations.
This approach highlights the potential of Al-expert collaboration, as MAGIC effectively leverages
existing domain knowledge without labor-intensive annotation. Moreover, MAGIC incorporates
an Image-to-Image (I2I) module within its training pipeline to initiate denoising from intermediate
timesteps rather than pure Gaussian noise. This accelerates the sampling stage while ensuring
factorized lesion transformations that do not deviate excessively from the real data distribution.

Through rigorous experiments, we demonstrate that our MAGIC framework performs effectively
with both reward-based fine-tuning (RFT) and DPO, exhibiting particular strength with DPO. The
MAGIC-DPO pipeline optimizes DMs to generate synthetic data that accurately represent each
condition’s unique visual features, with improvements observed as training progresses and more
image-feedback pairs are used (Fig. 2). This is also validated by increasing dermatologist evaluation
scores (Fig. 4d) and decreasing Fréchet Inception Distance (FID) scores (Fig. 4c), indicating improved
clinical accuracy and fidelity. As a result, we also observe significant improvements in classification
performance over baseline, highlighting MAGIC’s potential to advance Al dermatology. Overall,
our main contributions are: (i) We propose MAGIC, a novel fine-tuning framework that integrates
expert knowledge into DMs, enabling their subsequent fine-tuning with both DPO and RFT. The
framework incorporates an 121 module to efficiently align the model for producing medically accurate
images. (ii) Our framework employs an AI-Expert collaboration paradigm that offloads the work
of visual evaluation to a powerful MLLM under minimal expert supervision, significantly reducing
time and labor required from medical experts. (iii) MAGIC, particularly when combined with DPO
(MAGIC-DPO), generates high-quality, clinically accurate images, achieving notable improvements
in FID scores and classification performance. It yields a +9.02% boost in accuracy on a challenging
20-condition classification task and a +13.89% improvement in few-shot scenarios.
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Figure 1: Illustration of our proposed MAGIC: (a) A preliminary fine-tuned diffusion model (DM)
transforms a source image (e.g., sarcoidosis) to a target condition (e.g., lupus erythematosus); an
MLLM then provides expert checklist-based feedback scores on the generated image pair. (b) This
feedback guides the subsequent fine-tuning (e.g., RFT or DPO) of the DM. (c) The feedback-enhanced
DM synthesizes medically accurate dermatological images for robust classifier training.

2 Related Works

DM-based Augmentation for Skin Disease Classification. Existing studies have explored diffusion
models (DMs) to generate synthetic dermatological images for augmenting the training data of
diagnostic models. Along this line, [43] implemented a seed-based approach, sampling a small
set of real images from the Fitzpatrick17k dataset [21] and generating synthetic data using the
inpainting feature of OpenAI’s DALL-E 2. Subsequently, [42] leveraged Stable Diffusion’s T2I
pipeline, fine-tuned with Dreambooth, to produce images of specific disease conditions. Other related
works [2, 29] have similarly employed DM-based augmentation to enhance diagnostic accuracy and
generalization on their internal skin disease datasets. Building on these advances, [55] proposed
a diffusion augmentation framework specifically targeting minority skin types. Their approach
involved Textual Inversion [17] and Low-Rank Adaptation (LoRA) [24] for fine-tuning, coupled
with image-to-image generation for inference. This method enabled the creation of images depicting
novel lesion concepts previously unseen by the DM. Their study revealed that images synthesized
using this dual-guidance strategy improved the diagnostic performance of subsequent classifiers for
minority skin types, even when reference data from these groups was absent from the training set.
However, expert involvement in these previously proposed methods, if any, is typically confined to
post-generation assessment or filtering, rather than actively guiding the image creation process.

Fine-tune Diffusion Models (DMs) with Feedback. Approaches to fine-tuning DMs with human
feedback broadly fall into two categories: reward-based and preference-based. Reward-based
methods [5, 14, 16, 32, 61] depend on robust reward models, the training of which typically requires
substantial datasets and extensive human evaluations. In the medical domain, for instance, [50]
leveraged reward-weighted maximization to synthesize plausible bone marrow images, by fine-tuning
a class-conditional DM with a pathologist’s feedback on synthetic images. In contrast, preference-
based approaches aim to derive policies directly from preference data, thereby bypassing the need for
explicit reward functions [9, 12, 30]. A key development in this area is Direct Preference Optimization
(DPO) [40], originally proposed for fine-tuning language models directly using preferences. While
DPO adaptations for diffusion models have primarily been tested for image-feedback alignment
[54, 62], their application to medical image generation remains largely unexplored, especially for
clinical images of skin diseases, which exhibit high complexity and variations.

MLLMs-as-a-Judge. Collecting high-quality feedback has traditionally relied on human labelers,
an approach that is both costly and difficult to scale. Recent research demonstrates that powerful
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Figure 2: Evolution of synthetic skin conditions generated by MAGIC-DPO, illustrating its ability to
learn unique visual features from feedback across training iterations. The Top Row demonstrates the
model transforming Sarcoidosis (SAR) into Erythema Multiforme (ERY), learning features like target
(bull’s-eye) lesions with concentric rings. The Middle Row demonstrates the model transforming
Allergic Contact Dermatitis (ALL) into Lupus Erythematosus (LUP), progressively developing a
butterfly rash covering the cheeks. The Bottom Row demonstrates the model transforming Granuloma
Annulare (GRA) into Vitiligo (VIT), evolving to show characteristic depigmented patches.

proprietary MLLMs, such as GPT-4V and GPT-40 [37], can serve as effective generalist evaluators for
vision-language tasks [8, 19, 65]. These models have proven particularly valuable in complex tasks
requiring human-like judgment, including visual conversations and detailed image captioning, where
MLLMs are often incorporated into evaluation benchmarks to assess model responses [51, 64, 67].
More recently, these models have shown capabilities in encoding clinical knowledge and acting
as evaluators in medical reasoning [48]. Although employing MLLMs as collaborators in Al
dermatology holds great potential to enhance the reliability of diagnostic models, the optimal
paradigm for their collaboration with medical experts still remains underexplored.

3 Method

3.1 Preliminaries

Diffusion Models (DMs). DMs are designed to learn the probability distribution p(z) by reversing
a Markovian forward process, denoted as g(x; | €;—1 ), which incrementally introduces noise into
the images. The reversal, a denoising process, is implemented through a neural network tasked with
predicting either the mean of x;_1 or the noise €;_; from the forward process. In our approach, we
utilize a network pg(;;t) to predict the mean of x;_1, rather than the added noise. We employ the
Mean Squared Error (MSE) as a performance metric, defining the objective function of our network
as follows:

Lom = Ei[1, 1,20 ~p(@o) @i ~a(as o) |H(T0, Tt) — Me(wt,t)ﬂ ; (1

where fig(x, 2) represents the posterior mean of the forward process.

In conditional generative modeling, diffusion models are adapted to learn the conditional distribution
p(z|c), where ¢ represents conditioning information, such as image categories or captions. This adap-
tation involves augmenting the denoising network with additional input, ¢, resulting in (¢, t; c).
To generate a sample from the learned distribution py(z|c), we initiate the process by drawing a
sample 1 ~ AN(0,T), which is then progressively denoised through iterative application of &g,
based on specific samplers adopted [23]. The reverse process is modeled as:

po(@i—1 | @i, ¢) = N (@415 po(@, ¢, 1), 071) . 2



In our skin disease image generation framework, we leverage the 121 pipeline of Stable Diffusion
[41] to transform lesion features while preserving body part information in the image. This strategy
effectively reduces semantic distortion during generation and ensures factorized translation of lesions,
thereby enhancing medical plausibility. Specifically, we start with a real input dermatological image
x (e.g., sarcoidosis), add partial noise to it, and transform it into a different target skin condition
(e.g., lupus erythematosus), by denoising this partily noised images. And the denoising process is
governed by gy and denoise strength parameter .

Multi-Step MDP Formulation. We formulate the diffusion model’s denoising process as a multi-step
Markov Decision Process (MDP), following [5, 52]. In our model, the state s € S includes the
current denoising time step, denoised image data and prompt. The action space A includes possible
image transformations at each time step. The state transition function P(s’|s, a) describes the image
evolution, and the reward function r (s, ) assigns values based on the image quality at each time step,

aiming to maximize cumulative returns J (1) = E. [Zth_Ol r (8¢, at)]. The MDP is formulated as
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where ¢, represents the Dirac delta distribution, and 7" denotes the maximize denoising timesteps.

3.2 Preliminary Diffusion Models Fine-tuning

Previous studies have shown that off-the-shelf diffusion models struggle to represent skin lesion concepts,
making preliminary fine-tuning necessary before aligning with expert feedback [55]. Following [55], we employ
Latent Diffusion Models (LDMs) [41], which operate in autoencoder latent space to reduce computational
demands while maintaining generation quality. For simplicity, we abuse notation and use « to represent the
latent input to the diffusion process rather than the original image. Our framework utilizes Textual Inversion
[18] to derive unique embeddings that capture the semantics of each condition extracted from training data.
Each image is paired with a descriptive string containing placeholders (e.g., ‘an image of {.S.}’) as input. The
optimal embedding v., encapsulating the lesion concept S., is then obtained by minimizing reconstruction loss
while keeping the LDM fixed. To enhance the efficiency of the LDM fine-tuning process, we employ LoRA [24],
adapting the model with the discovered tokens from Textual Inversion. This approach maintains the pre-trained
model weights while introducing only two compact matrices A and B (where A € R"*", B € R™*"™). These
matrices are embedded within the attention layers, enabling the detailed capture of skin lesion characteristics
previously unrepresented in the initial model, aligned with the learned target embedding ..

3.3 Expert Feedback Curation

While diffusion models can synthesize visually realistic medical images, their clinical validity often remains
questionable [50]. Incorporating medical expertise is therefore crucial for guiding these models to generate
medically accurate images. To provide this clinical guidance, our framework leverages structured feedback
derived from checklists that are designed by an experienced dermatologist. These checklists evaluates five distinct
aspects of each condition: [Location, Lesion Type, Shape/Size, Color, Texture] (see
Appendix B for complete details). Assessment against these aspects yields a binary outcome (e.g., satisfied/not
satisfied) for each criterion. To automate this evaluation, we instructed an MLLM to analyze each synthesized
image based on the target condition’s checklist and return a 5-dimensional binary score list, where each dimension
corresponds to a criterion’s satisfaction (see Appendix C for instruction details). To accommodate both reward-
based and preference-based alignment strategies, we generate a pair of images from each text prompt and
submit each single image to the MLLM for this assessment. Thus, the MLLM’s score list for each image in
a pair individually stands as a sample for RFT, while the pair of score lists can be used for DPO. Examples
of this MLLM assessment using OpenAI’s GPT-4o are illustrated in Fig. 3, showing yielded score lists such
as [1,0,0,1,0] and [1,1,1,1,1] for a given pair. Ultimately, each 5-dimensional MLLM-generated
score list is aggregated into an overall binary score (e.g., O for negative example, 1 for positive example) using
a predefined algorithm (detailed in Appendix A.2). This semi-automated pipeline allows us to significantly
accelerate the curation of expert feedback. Notably, only synthetic images are sent to GPT-40 API services and
no real patient images are processed by the MLLM, to preserve privacy.

3.4 Finetuning with Expert Feedback

After collecting pairwise preferences, we explore two complementary ways to integrate them into optimizing the
diffusion model parameters 6.
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* Location: face v v

« Lesion feature: swelling or rashes X v

+ Shape/size: symmetric butterfly rash across cheeks X v
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« Color: white or pale, loss of skin color X v
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Figure 3: Illustration of the image assessment process by OpenAI’s GPT-40 using condition-specific
checklists for target skin conditions such as lupus erythematosus, granuloma annulare, and vitiligo.
Each generated image in a pair is evaluated against five clinical criteria. The image with more satisfied
criteria is considered the preferred sample in a comparison. Additional examples are in Appendix 7.

Reward-model guided fine-tuning (RFT) Let R : R7*W>3 5 ¢ 3R> be a learned scalar that predicts the
likelihood an image x conditioned on class c satisfies every checklist item. We follow [31, 50] and mix real and
synthetic images when training R, with an MSE loss. Formally, with feedback labels y € {0, 1} we minimize
Lrm(P) =32 (4,0, (¥ — Ro(w, c))?. After fitting ¢, we refine 6 by maximising the expected reward-weighted

log-probability of the action sequence generated along each denoising trajectory o = {(s¢, at) 3:01:

Larr(0) = By, [~ R (@, ) 1 Vog o (@ | 50)| + v Baerom, [-S1 2 og mo(a | s0)], @)

where Ds and D, denote synthetic and real image pools, respectively, and (3, balances fidelity to expert feedback
against faithfulness to the original data distribution.

Direct Preference Optimization (DPO) Given a pair of trajectories (o, o) that yield a winner image =* and
a loser image x! under expert comparison, DPO increases the likelihood of every action a¥ on the winning
branch while decreasing the likelihood of the corresponding a' on the losing branch. Similar to reinforcement
learning methods [7, 46, 47], rewards are assigned by Vs¢, a; € o,7(st,a:) = 1 for winning the game and
Vt € o,7(st,ar) = —1 for losing the game. Following [62], we also assume that if the final image is preferred,
then any state-action pair in its generation path is superior to the corresponding pair in the non-preferred path.
To maximize learning from each generation process under this assumption, we construct t' = yT" sub-segments
that allow the model to learn from intermediate states
. w | w Lol
Lhro(0) = ~E(s; .00) 108 p(Blog T2TmT0y — flog T2ARE )], (5)

Tref

where i € [0,¢" — 1], effectively increasing data utilization by a factor of ¢'.

3.5 Synthetic Augmentation for Classifier Training

After fine-tuning a diffusion model with expert-enhanced feedback, we leverage the model to synthesize images
for dataset augmentation, primarily through an image-to-image translation approach. For any given real sample
x with label y, we first randomly select a different target label 4/’ from the label set. We then use the text prompt
“an image of {y’}”—incorporating the specific text embedding for 3’ learned via Textual Inversion—to guide
the DM in generating a new image z'. This process is designed so that =" preserves most of the anatomical
context of the original sample x while primarily displaying the lesion semantics of the target label ', thereby
achieving a factorized transformation. This I2] generation strategy offers a key benefit: it helps mitigate the
risk of the classifier learning spurious correlations by preventing it from associating lesions with specific body
locations, encouraging a focus on the intrinsic characteristics of the skin lesions. During the subsequent classifier
training phase, we intentionally control the influence of synthetic data using a ratio parameter p € (0, 1),



which determines the percentage of synthetic images added to each training batch. While our method aims to
generate medically accurate images, potential domain shifts between real and synthetic data remain an important
consideration. Indeed, our experiments indicate that varying the proportion of synthetic data can significantly
affect classifier performance on real test data (see Fig. 4a).

4 Experiments

Dataset. Following prior work [55], we use the Fitzpatrick17k dataset to evaluate our synthetic augmentation
pipeline [21]. Fitzpatrick17k contains clinical photos of 114 skin conditions, each annotated with a condition
label and a Fitzpatrick Skin Type (FST). Although there are other datasets of clinical photos (e.g., SCIN [58]
and DDI[10]), they are primarily collected within the United States and feature lighter skin tones. Fitzpatrick17k
encompasses a wider range of skin types, making it particularly suitable for evaluating generalizable diagnostic
approaches. For our experiments, we focus on a subset of the Fitzpatrick17k dataset consisting of 20 skin
conditions. We chose these based on two criteria: (1) they present the largest class sizes in the dataset, and (2)
they have well-established descriptions available from reputable clinical sources (e.g., Mayo Clinic, Cleveland
Clinic), which allowed dermatologists to craft reliable diagnostic checklists of key visual features for these
diseases. These checklists, verified by clinicians, distill essential visual cues for each condition, detailed in the
Appendix B. The distribution of the selected classes is provided in the Appendix A.

Models and Baselines. We utilize Stable Diffusion v2-1 [41] for image generation. For classification tasks, we
employ ResNet18 [22] and DINOv2 [38] as backbone architectures. For medical image generation, we evaluate
four different methods: (1) diffusion model fine-tuned with Textual Inversion and LoRA, generating images
via text-to-image (+ T2I); (2) the same fine-tuned model but generating via image-to-image (+ 121); and (3/4)
our proposed MAGIC (RFT/DPO) with expert feedback. We assess synthetic image quality using both FID
score and human evaluation. For classification experiments, we first establish a baseline by training a classifier
solely on real data. We then generate an equivalent number of synthetic images using each generation method
(excluding the off-the-shelf DM due to its lack of domain-specific knowledge [55]), and train classifiers on
combined real and synthetic datasets. Implementation details are provided in Appendix A.

Implementation Details. To adapt the model to skin lesion concepts, our preliminary fine-tuning process
proceeds in two stages: (i) We learn unique disease-related tokens by updating the text encoder via Textual
Inversion [17], thereby introducing new vocabulary specific to each condition; and (ii) we tie the newly learned
tokens to fine-grained visual cues within the images by updating the UNet parameters via LoRA [24]. Further
details on prompts and hyperparameters can be found in the Appendix A.

For training with expert feedback, all experiments share a unified sampling-feedback pipeline. For each mini-
batch of image-prompt pairs drawn from the real set, the current diffusion model generates two synthetic variants
via the Stable-Diffusion image-to-image path, intentionally targeting skin-disease classes that differ from the
originals to maximise diversity. Each synthetic image is then scored with the condition-specific checklists
(Appendix B), which we submit to GPT-40 [37]. The API returns binary vectors indicating whether each criterion
is met; if the lesion is deemed invalid, an all-zero vector is assigned. From every pair of vectors we derive a
winner-loser label and store the associated latents, timesteps, and prompt embeddings. We subsequently branch
into two finetuning regimes: (i) in the reward-model route we fit a scalar network R4 to these binary outcomes
and update @ by the reward-weighted likelihood of Eq. (4); (ii) in the DPO route we treat each preference tuple
as in [62] and optimize the multi-segment loss of Eq. (5). Both routes draw from the same pool of feedback pairs,
subsequent comparisons isolate the effect of the finetuning algorithm itself. Examples are visualised in Fig. 3.

For classifier training, we randomly split the dataset into training and hold-out sets at a 50/50 ratio, resulting
in 3,100 training and 3,100 test images. The baseline classifier is trained exclusively on this 3,100-image
training set. During inference, we apply the same hyperparameters used in the DPO sampling stage when
generating synthetic images with the DPO fine-tuned model. We generate one synthetic image for each real
image, intentionally assigning a target label that differs from the real image’s original label while corresponding
to the same body region. Following established practices, we combine synthetic and real images to optimize
performance, maintaining a fixed ratio of synthetic to real examples in each training batch. All experiments are
conducted five rounds on RTX 6000 Ada GPUs. Our experimental evaluation encompasses both CNN-based and
Transformer-based classifier architectures, fine-tuned according to protocols outlined in previous work [55].

5 Analysis

5.1 Experimental Results

Classification results. We comprehensively evaluate synthetic image quality by its impact on downstream
classification using ResNet18 and DINOv2 architectures (Tables 1 and 2). Our MAGIC framework markedly
enhances performance across both models compared to baselines. Standard fine-tuned Text-to-Image (T2I)
generation degrades ResNet18 accuracy by —3.74% and DINOv2 by —2.16%, while the fine-tuned Image-to-



Table 1: Performance of ResNet18-based classi- Table 2: Performance of DINOv2-based classi-

fiers trained on real and synthetic data. fiers trained on real and synthetic data.

Method Acc F1  Prec Rec Method Acc F1  Prec Rec
Real 29.31 28.73 28.61 29.13 Real 49.89 4943 50.03 49.31
+ T2I 25.57 24.63 2444 25.16 + T2I 4773 4726 4751 4743
-3.74 -4.11 -4.17 -3.97 -2.16 -2.17 -2.52 -1.88

+ 121 3145 31.09 31.03 31.49 + 121 50.71 50.17 51.04 49.89
+2.14 +2.35 +2.42 +2.36 +0.82 +0.74 +1.01 +0.58

+ MAGIC 3349 3040 29.12 29.67 + MAGIC 51.16 52.66 52.17 52.69
(RFT) +4.18 +1.67 +0.51 +0.54 (RFT) +1.27 +3.23 +2.14 +3.38

+ MAGIC 38.33 37.01 38.41 36.06 + MAGIC 55.01 54.05 5496 53.70
(DPO) +9.02 +8.28 +9.80 +6.94 (DPO) +5.12  +4.62 +4.93 +4.39
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Figure 4: Experimental results showing (a) the impact of ratio p, (b) feedback volume on accuracy,
(c) FID score comparison across different methods, and (d) evaluation results on synthetic data
showing the percentage of criteria met. Our method consistently outperforms baseline methods in
most metrics, achieving lower FID scores and higher criteria satisfaction rates.

Image (I21) approach offers modest gains, increasing ResNet18 accuracy by +2.14% and DINOv2 by +0.82%.
The feedback integrated via our MAGIC framework proves beneficial for both Reward-model guided Fine-Tuning
(RFT) and Direct Preference Optimization (DPO) strategies. Specifically, MAGIC-RFT improved accuracy over
the real data baseline by +4.18% for ResNet18 and +2.21% for DINOv2. MAGIC-DPO demonstrated even
more substantial gains, boosting accuracy by +9.02% for ResNet18 (from 29.31% to 38.33%) and by +5.12%
for DINOV2 (from 49.89% to 55.01%), with similar improvements in F1, precision, and recall. We further
validate the MAGIC framework on additional datasets, SCIN and PAD-UFES-20, with results in Appendix D.3.

The DPO approach within the MAGIC framework (MAGIC-DPO) shows particular strength. Its advantage may
stem from directly optimizing for preference alignment without an intermediate reward model. This can be more
robust and generalize better, proving especially advantageous when the number of feedback pairs is limited, as
is common in specialized medical domains, thus sidestepping potential instabilities in reward modeling. The
quality of expert guidance remains crucial for generating synthetic images that are not only visually plausible but
also encode clinically relevant diagnostic features. This enhanced alignment is reflected across our evaluations,
including improved qualitative outputs (Fig. 2), FID scores (Fig. 4c), and expert preference measures (Fig. 4d).
We also evaluate MAGIC-DPO with other classifier backbones (see Appendix D.5 for details).

Expert evaluation on generated images. To further assess the quality and medical plausibility of images
generated by our methods, we engaged medical experts to evaluate the synthetic data based on our specific
checklist criteria. For each method, we sampled 10 images per skin condition, resulting in 200 images per
method. Each image was evaluated against 5 criteria, with binary outcomes (satisfied/not satisfied). Fig. 4d
summarizes these evaluation results, displaying the percentage of images meeting different numbers of criteria
(with details in Appendix B). The results show that images from the pretrained diffusion model rarely satisfied
more than one criterion, and none met more than three. Standard Text-to-Image (T2I) generation showed
minimal improvement, with only 2.0% of images meeting 3 or more criteria and only a single image meeting 4
criteria overall. Fine-tuned Image-to-Image (12I) generation yielded better outputs, with 18.5% of its images
meeting 3 or more criteria, underscoring I2I’s greater suitability for medical tasks. Our MAGIC framework
significantly builds on this; MAGIC-RFT (Ours RFT) further increased the proportion of high-quality images,
with 38.9% meeting 3 or more criteria. Notably, MAGIC-DPO (Ours DPO) demonstrated the best performance,
with 55.5% of its images satisfying 3 or more criteria. This substantial improvement over both fine-tuned 121
and MAGIC-RFT correlates directly with the observed enhancements in classifier performance.



Table 3: Performance of DINOv2-based clas- Table 4: Performance of classifiers across different

sifiers in few-shot setting. backbones and Coarse/Structured checklists.
Method Acc F1 Prec Rec Model Method Acc F1 Prec Rec
Real 29.31 28.73 28.61 29.13
Real (310) 2645 1950  21.86  20.19 + MAGIC 3283  30.58 29.75 31.18
217 +008 099  -0.92 +MAGIC 3833 37.01 3841 36.06
+ 121 30.10 27.26 28.07 27.00 Structured  +9.02  +8.28 +9.80 +6.94
+3.65 4776 +621  +6.81 Real 49.890 4943  50.03 49.31
+ MAGIC 37.39 36.90 37.95 36.94 + MAGIC 51.16 52.66 52.17 52.69
(DPO) +10.94 +17.40 +16.09 +16.75 DINO Coarse +1.27 4323  +2.14 +3.38
+ MAGIC-A 40.34 39.43 42.20 38.77 + MAGIC 55.01 54.05 5496 53.70
(DPO) +13.89 +19.93 +20.34 +18.58 Structured +5.12  +4.62 +4.93 +4.39

Few-shot Setting. We further evaluate our framework in a few-shot setting where only a small number of labeled
data are available. This scenario better reflects real-world conditions, as collecting and labeling medical data is
both challenging and expensive. We simulate this setting by randomly selecting 10% of the DINOv?2 training set
(310 images) while keeping the test set fixed. We fine-tuned the diffusion model on these 310 real images using
our DPO-based approach (MAGIC-DPO) and other baselines. As shown in Table 3, MAGIC-DPO improves
classifier accuracy by +10.94% (from 26.45% to 37.39%) compared to training with only the limited real data,
significantly outperforming standard T2I and 121 augmentation baselines in this data-scarce context. Moreover,
in practical scenarios, unlabeled medical data from the same distribution may be available even when expert
labeling is cost-prohibitive. Our MAGIC framework can effectively utilize such unlabeled data; specifically,
during the DPO fine-tuning stage, unlabeled data is processed by the diffusion model with randomly selected skin
conditions, and feedback is evaluated solely based on the target condition. This makes our framework well-suited
for leveraging unlabeled data. This augmented approach, termed MAGIC-A (also DPO-based), demonstrates
that by incorporating an equal number of unlabeled samples (310), we can further improve accuracy by an
additional 2.95% over MAGIC-DPO, reaching 40.34% accuracy.

Hallucination-Resistant by Design. The MAGIC framework is explicitly designed to minimize the risk
of MLLM hallucination through our Al-Expert collaboration paradigm. The
MLLM is not asked to perform open-ended reasoning. Instead, its role
is constrained to evaluating an image against a predefined clinical check-
list. These checklists, designed by dermatologists, decompose complex
medical concepts into simple, visually verifiable features. For instance,
while an MLLM may not intrinsically understand "Lupus Erythematosus,"
it can effectively verify "symmetric butterfly rash across the cheeks". This
approach transforms a complex diagnostic reasoning task into a series of
closed-question evaluations, which are far less susceptible to unconstrained
hallucination. Even so, an analysis of GPT-40’s hallucination is important.
To that end, we have GPT-40 evaluate 100 real images from an internal
dataset with clinical records confirmed by in-person visits. The MLLM is
tasked with describing each image based on the five criteria and a dermatolo-
gist assess these descriptions. As shown in Fig. 5, the dermatologist assigned
an alignment score of 3 or greater (on a 5-point scale) to approximately 86%
of the image-description pairs. Notably, many of the lower-scoring examples
were also identified by the dermatologist as being visually ambiguous and
challenging for a human to assess from an image alone.
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Figure 5: Distribution of align-
ment scores indicating the
number of checklist criteria
met in the description.

5.2 Abaltion Study

Effect of Checklist Quality. We investigate the impact of checklist detail level on the MAGIC framework’s
efficacy in DPO training, by comparing two types of expert-designed checklists: a “Coarse” version using
single-sentence descriptions for each condition, and a more detailed, “Structured” version (as used throughout
the main paper and detailed in Appendix B). Table 4 shows that the quality of the checklist is crucial to feedback
quality. For the ResNet18 (RN18), augmenting with MAGIC-DPO using Coarse checklists improved accuracy
by +3.52% over the real data baseline (from 29.31% to 32.83%), whereas Structured checklists led to a much
larger gain of +9.02% (to 38.33%). A similar trend was observed with the DINOv2 (DINO): Coarse checklists
yielded a +1.27% accuracy improvement (from 49.89% to 51.16%), while Structured checklists achieved a
+5.12% boost (to 55.01%). These results underscore that more detailed and well-structured expert guidance
in the checklists significantly enhances the quality of synthetic images and subsequent classifier performance.
To explore the upper bounds of this effect, we have a dermatologist craft even more fine-grained checklists
with nine criteria (Location, Distribution, Lesion Type, Shape/Size, Border, Elevation, Texture, Color, and



Translucency/Content). We then use these 9-criteria checklists in our MAGIC framework. We observed a small,
additional improvement over our original 5-criteria structured checklist, as detailed in the Appendix D.6.

Effect of feedback volume. In addition to feedback quality, we also investigate how the quantity of feedback
influences image quality and classifier performance. As DPO training progresses, more image pairs are used,
providing additional feedback to guide the diffusion model. We visually demonstrate the evolution of generated
images across epochs in Fig. 2. Additionally, we also train classifiers using synthetic data that is generated
from different training stages. Results in Fig. 4b show that accuracy consistently improves as DPO training
accumulates more feedback, with performance stabilizing after receiving feedback from approximately 512
image pairs. Based on these findings, we fix the feedback volume at 1024 image pairs for all our experiments.

Effect of the ratio p of synthetic data. We investigate how the ratio p of synthetic data affects classifier
performance. Initial experiments with purely synthetic data failed to achieve performance comparable to real
data-trained classifiers. It’s expected that, without the guidance of real data, classifiers tend to overfit to the
synthetic data distribution. We therefore systematically controlled the percentage of synthetic data used in each
training batch across different values of p, while keeping the total volume of synthetic data constant. As shown
in Fig. 4a, performance improves when p is less than 0.5 (when synthetic data constitutes less than half of the
training data). The performance remains stable when p € [0.1,0.3]. We adopt p = 0.2 for all our experiments.

Choice of MLLM. The MAGIC framework is designed to be model-agnostic, al-
lowing for the flexibility to wuse the most suitable MLLM for a given task.
Therefore, we also test our MAGIC frame-
work with an open-source MLLM, Google
DeepMind’s MedGemma-4B [44], a foundation
model for medical text and image comprehen-
sion. We used MedGemma as an evaluator to
assess the same set of 1,024 pairs of synthe-

Table 5: Performance of linear classifiers trained on
synthetic data from the MAGIC pipeline, aligned using
feedback from different MLLMs.

sized images that GPT-40 had assessed. As MLLM Model Acc F1  Prec  Rec
shown in Table 5, we observed that MedGemma MedGemma-4p ~ ResNet-18 3697 3555 37.12 36.32
is comparable to GPT-40 as an evaluator in DINOv2  54.19 5308 5478  53.53
aligning the DM using the MAGIC framework. GPT4o ResNet-18  38.33  37.01 3841  36.06
This demonstrates the flexibility of our MAGIC DINOv2 55.01 5405 5496  53.70

framework, which is adaptive to both large,

closed-source, generalist models and smaller,

open-source, domain-specific alternatives. Notably, we observe a small performance gap between the pipelines
integrated with the two MLLMSs. We believe this gap stems from the specific nature of our evaluation task, which
is not open-ended medical reasoning but rather a constrained, visual instruction-following evaluation. While
MedGemma possesses specialized medical knowledge, GPT-40’s massive scale and training on vastly diverse
datasets have endowed it with powerful general visual reasoning and instruction-following capabilities.

Specifically, we hypothesize that GPT-40’s edge comes from its superior ability to parse the descriptive, often
non-clinical language of the checklists (e.g., "bull’s-eye lesions," "butterfly rash") and precisely map these
concepts to visual features. In contrast, while MedGemma is fine-tuned on medical data, its smaller scale may
slightly limit its raw visual-language alignment and nuanced instruction-following abilities. Most importantly,
we see the comparable performance of MedGemma as a validation of our framework’s flexibility, demonstrating
that MAGIC is not dependent on a single, closed-source model and can be adapted using accessible alternatives.

6 Conclusion

In this work, we introduced MAGIC, a novel semi-automated framework designed to refine Diffusion Models
by effectively integrating expert-enhanced clinical knowledge. Our approach uniquely leverages the visual
reasoning capabilities of MLLMs to interpret and apply expert-defined checklists, thereby guiding DMs to
produce images with high clinical fidelity while significantly reducing the burden on human experts. Our
experiments demonstrate that MAGIC, substantially improves the clinical quality of synthesized skin disease
images, as validated by both quantitative metrics like FID scores and qualitative assessments by dermatologists.
Furthermore, augmenting training data with images generated by MAGIC led to significant enhancements in
downstream classification accuracy for skin diseases, even in few-shot scenarios. These results underscore
the efficacy of our AI-Expert collaboration paradigm in translating nuanced clinical criteria into actionable
feedback for generative models. We acknowledge that our framework’s performance is linked to the capabilities
of the MLLM used. However, MAGIC is designed to be model-agnostic and flexible. This flexibility is also an
advantage, as the framework’s performance will naturally improve with the continually advancing interpretive
capabilities of MLLMs. Beyond image synthesis, MAGIC demonstrates a task-centric alignment paradigm:
instead of adapting MLLMs to niche medical tasks, it adapts tasks to the strengths of general-purpose MLLMs
by decomposing domain knowledge into attribute-level checklists. This task-centric alignment is particularly
valuable given that the most powerful MLLMs are often proprietary, and training domain-specific MLLMs is
costly. This design offers a scalable and reliable path for leveraging foundation models in specialized domains.
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Appendix

A Additional Implementation Details

In this section, we present additional implementation details of our proposed method.

A.1 Pre-Feedback Fine-tuning

For textual inversion, we learn the text embedding for each skin condition through various prompts. These
prompts are used to ensure robust learning of the text embedding across different phrasings and contexts:

skin_disease_prompt = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a close-up photo of a {}",
"a cropped photo of a {}",
"a photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a rendition of a {}" ]

The text embeddings are learned don’t the entire training set. The AdamW optimizer is used with a learning rate
of 5 x 107

For LoRA, the rank r is set to 32, and the learning rate is 5 x 10~° for AdamW optimizer.

A.2 MLLM Score Processing for Preference Pairs

To translate 5-dimensional binary MLLM scores into preference signals for DPO, pairs of generated images
are processed. For each image in a pair, its 5 binary scores are summed to get S and Sz. If max(S1, S2) < 2,
both images are deemed low quality (outcome e.g., [0, 0]). If min(S1,S2) = 5, orif S1 = Sz > 2, the pair is
marked "both win" (e.g., [1, 1]). Otherwise, if S1 > S, the first image is the "winner" (e.g., [1,0]); if S2 > S1,

the second wins (e.g., [0, 1]). This determines preferred/non-preferred samples for DPO loss computation. The
distribution of these outcomes is in Table 6.

A.3 DPO fine-tuning
We conduct DPO fine-tuning for 128 iterations and for each iteration, 8 pairs (16 images) will be sampled. The

denoise strength -y is set to 0.3. The DPO loss will be computed with the feedback. We utilize AdamW optimizer
with a learning rate of 0.0001.

A4 Classifier Training

We utilize the Adam optimizer with a learning rate of 0.01 and a step learning rate scheduler that reduces the
learning rate to 0.1 of its previous value every 50 epochs. The classifier is trained for 200 epochs to ensure stable
results. Each result reported in the table represents the average of five runs with different random seeds.

B Expert Designed Checklist

We enclose the checklist we used in the experiment in this section. For each skin condition, we design
5 checklist evaluations from the perspective of [Location, Lesion Type, Shape/Size, Color,
Texture] to capture the visual concept from the synthetic data. The details are shown in Table 14.

C Automate Evaluation via MLLMs

For each pair of data, we use the following prompt to collect feedback from ChatGPT-40:

prompt = f’’’Evaluate images against the
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following checklist:
{condition_checklist}

Return a list indicating whether

it satisfies each checklist

item (1 for satisfied, 0 otherwise).
Only the 1list of results should

be returned. Expected format:

[, o, 1, o, oy

D Addtional Results

D.1 Distribution of Feedback

For each pair of data, our approach categorizes feedback into three types: both win (Jw = 0, w = 1]), both lose
([I = 0,1 = 1]), and one better than the other (fw = 0,1 = 1] or [l = 0, w = 1]). We present the distribution of
feedback received during DPO training in Table 6.

D.2 More examples of image pairs

We provide two more image pairs in Fig. 7

D.3 Results on SCIN and PAD-UFES-20

The SCIN dataset [58], collected via a voluntary image donation platform from Google Search users in the
United States, typically includes up to three images per case, each evaluated by up to three dermatologists. This
diagnostic process yields a weighted skin condition label for each case. To ensure label accuracy for our study,
we selected the condition with the highest weight as the definitive label, discarding ambiguous cases where
multiple conditions had equal probabilities. Our analysis concentrated on the 10 most prevalent classes in the
real world. Given that the SCIN dataset exhibits an imbalanced class distribution, we first sampled a uniformly
distributed test set, following methodologies similar to ImageNet-LT [35]. Furthermore, guided by approaches
like that of [45], we employed our MAGIC-DPO framework to generate additional synthetic images for each
condition, aiming to augment the test set towards a more uniform distribution. Further details on the dataset
distribution are provided in Table 8. However, experiments conducted with this augmented SCIN dataset yielded
suboptimal results, potentially attributable to inherent noise within the dataset, a challenge noted in works such
as [25].

Our MAGIC framework’s effectiveness is further validated on the SCIN dataset, with detailed performance for
both ResNet18 and DINOV? classifiers presented in Table 9 and Table 10. For the ResNet18 classifier on SCIN,
models trained on real data achieved an accuracy of 23.13%. Standard T2I augmentation slightly decreased this
to 22.60% (—0.5%), while 121 augmentation offered a modest improvement to 24.13% (+1.0%). In contrast,
our MAGIC framework demonstrated more substantial gains: MAGIC-RFT increased accuracy to 26.58%
(+3.5%), and MAGIC-DPO further improved it to 29.43% (+6.3%). A similar trend was observed with the
DINOV?2 classifier, which had a baseline accuracy of 30.61% on real SCIN data. T2I augmentation reduced
accuracy to 28.18% (—2.4%), and 121 provided a small increase to 32.15% (+1.5%). Both MAGIC strategies
again outperformed these: MAGIC-RFT achieved 33.82% accuracy (+3.2%), while MAGIC-DPO led with
35.65% (+5.0%). These results on the SCIN dataset consistently show the advantages of leveraging MAGIC,
with both RFT and DPO components enhancing performance over standard augmentation techniques, and DPO
often yielding the highest accuracy.

To quickly evaluate the cross-dataset generalizability of our method, we identified four overlapping classes
between the hospital-grade PAD-UFES-20 dataset and Fitzpatrick17k subset (ACK, BCC, MEL, and SCC), and
ran the MAGIC-DPO pipeline. The results, presented in the Table 11, demonstrate that the MAGIC framework
is generalizable to hospital-grade datasets.

D.4 Score change during training

Figure 6 illustrates how the clinical quality of generated images, assessed by the number of satisfied expert-
defined criteria, evolves throughout the feedback-guided training phase of our MAGIC framework. Initially,
images from the Pre-trained model and the fine-tuned Text-to-Image (T2I) model satisfy very few criteria, with
average scores of 0.3 and 0.5, respectively. Even the fine-tuned Image-to-Image (I2I) model, at the beginning of
feedback training (Iteration 0), achieves an average of only 1.4 criteria met. As the model receives more feedback
and training progresses (Iterations 32 through 128), a significant improvement is observed. The distribution of
scores progressively shifts towards satisfying a higher number of clinical criteria, with the average number of
criteria met increasing steadily from 1.4 to 3.0 by Iteration 128. This trend clearly demonstrates the diffusion
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model’s ability to learn from and adapt to the expert-derived feedback over time, resulting in generated images
that are increasingly more aligned with clinical requirements for medical accuracy.

D.5 Evaluation with Other Backbones

A stronger backbone such as DINOv?2 starts with a clear advantage: it has a complex transformer architecture
and is pre-trained on a massive dataset, enabling it to extract robust image features from the start. In contrast, a
smaller model like ResNet-18 struggles with the limited and challenging real data. The differing gains (+9.02%
for ResNet18 vs. +5.12% for DINOv2) therefore highlight a key finding: our augmentation framework provides
the most significant benefit in data-scarce or model-constrained scenarios.

However, the fact that MAGIC still substantially boosts the performance of a powerful model like DINOv2
is a strong testament to the quality of our synthetic data. It demonstrates that MAGIC generates images with
clinically accurate features that even a strong classifier cannot extract from the limited real dataset alone. This
conclusion is supported by our few-shot experiments in Table 3. When the training set was reduced to just
10% (310 images), MAGIC-DPO provided a sizable +10.94% accuracy improvement for the DINOV?2 classifier.
This shows that as data becomes more scarce, the value of our synthetic augmentation becomes even more
pronounced. To further explore this interesting effect, we have run additional experiments with other classifier
backbones of various sizes. The results, presented in the Table 12, are consistent with our observations.

D.6 Effect of Checklist Granularity

As shown in Table 13, this analysis leads to two key insights: (1) A detailed, structured checklist is critical for
the framework’s success, as shown by the significant performance jump from the "Coarse" to the "Structured"
checklist. (2) There may be diminishing returns after a certain level of detail is achieved, as shown by the smaller
gain when moving from the 5-criteria to the 9-criteria checklist. This suggests our original 5-criteria checklist
was already capturing the most essential features for high-quality generation.

D.7 Discussion about Diversity
There are two distinct and important aspects of diversity:

* Inter-Site Diversity: Can the model generate the same condition with clinically appropriate, site-
specific features (e.g., does Lupus on the scalp look different from Lupus on the face)?

* Intra-Site Diversity: Can the model generate multiple, varied appearances of the same condition at the
same site (e.g., 100 different-looking examples of "Lupus on the face")?

The MAGIC framework is designed to address both of these challenges, as elaborated below.

1. Inter-Site Diversity: The model’s ability to render a condition with site-specific features is driven by the
synergy between our 121 pipeline and the structured checklists. The I2I pipeline grounds the generation process
in a specific anatomical context by starting with a real source image (e.g., a scalp with hair). Guided by
the feedback loop, the model is then tasked with generating features that satisfy the clinical checklist within
the visual and anatomical constraints of that source image. While many of the selected conditions do not
exhibit strong site-specificity, our expert-designed checklists are nuanced enough to include these manifestations
wherever applicable. For example, the checklist for "Lupus Erythematosus" explicitly guides the model toward a
"symmetric butterfly rash across the cheeks" when the target is the face, and a "discoid or coin-shaped lesion"
otherwise. Over time, the MLLM-driven feedback rewards the model for plausibly blending the target lesion
features with the source anatomical context.

2. Intra-Site Diversity: As noted in our initial rebuttal, our framework enhances diversity primarily through
variation in the source images. To generate 100 diverse images of "Lupus Erythematosus on the face," we
begin with 100 different real source images of faces, which naturally contain diversity in skin tone, age, gender,
and so on. Our 121 process transforms the lesion on each unique face into lupus while preserving the source’s
individual characteristics. The resulting synthetic images are therefore as diverse as the original source images.
Furthermore, this potential is not limited to the labeled training set, as our framework can effectively use
unlabeled images as a source for generation, dramatically expanding the pool of available image contexts.
Additionally, the model generates diverse outputs even when starting from the exact same source image. The
denoising diffusion process is inherently stochastic, beginning with a randomly noised vector and denoising
it into a different final image. Our DPO fine-tuning ensures that these random variations remain within the
manifold of what is clinically plausible, resulting in meaningful variations in lesion presentations.

Here, we qualitatively confirm that images generated by our MAGIC framework exhibit both types of diversity,
as shown by Fig. 8
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E Discussions

While our MAGIC framework demonstrates significant promise, several exciting avenues for future work
could enhance its efficiency and adaptability in clinical settings. The current approach relies on LoRA for
efficient fine-tuning, but exploring alternative Parameter-Efficient Fine-Tuning (PEFT) methods, such as Visual
Prompt Tuning (VPT) [27, 60, 53, 63, 57, 33], could offer different trade-offs in performance and computational
cost, especially when adapting to new visual concepts. Furthermore, our few-shot experiments highlight the
framework’s potential to leverage unlabeled data, which could be formalized into a robust semi-supervised
learning paradigm to further mitigate data scarcity. In a real-world scenario, diagnostic models must evolve as
new disease data becomes available. Integrating principles from continual learning [66, 36] would enable the
generative model to learn new skin conditions incrementally without suffering from catastrophic forgetting of
previously learned ones.

F Limitations

The efficacy of our MAGIC framework, like similar feedback-driven approaches, is naturally guided by the
detail within the expert-crafted checklists and the continually advancing interpretive capabilities of Multimodal
Large Language Models (MLLMs). The scope of conditions and populations within the dermatology datasets
utilized (Fitzpatrick17k and SCIN) provides the foundation for the current findings, and extending this work
to even broader and more varied datasets presents an exciting avenue for future research. While MAGIC
demonstrates considerable potential in dermatology, its promising AI-Expert collaboration paradigm also invites
future exploration and adaptation to enhance synthetic data generation in other medical imaging fields, each with
its unique visual characteristics and clinical requirements.

G Failure Analysis of GPT-40

Based on a qualitative review of the MLLM’s evaluations, we identify several recurring challenges and potential
failure modes, which are detailed below. A systematic analysis of these failure modes is a valuable direction for
future research:

* Subtle Textural and Morphological Details: The MLLM can struggle with very fine surface textures or
lesions that are not well-defined. For example, small papules or pustules can be difficult for the model
to assess, especially when their color is indistinguishable from the surrounding skin.

Complex Color Nuances: Differentiating between similar shades (e.g., pink vs. reddish) or accurately
interpreting colors on darker skin tones, such as the "purple/dark brown with grayish scales" described
for Psoriasis, can be difficult from a 2D image alone.

Inferring 3D Characteristics: Features that imply three-dimensionality, such as the "firm nodules" of
Prurigo Nodularis or the "pearly bump" of Basal Cell Carcinoma, are inherently challenging to assess
from a single 2D photograph.

¢ Ambiguity and Confounding Factors: For example, in one case, GPT-40 incorrectly identified medicine
powder on a patient’s skin as a white, hypopigmented scale. Without the accompanying clinical record,
a human dermatologist would likely find it difficult to distinguish this from the image alone. This
highlights that for both humans and Al, visual data can be ambiguous, and other factors like suboptimal
lighting or the lack of clinical metadata can impede a purely visual assessment.

H Ethical Considerations and Safeguards

Our MAGIC framework is designed with privacy in mind. This "factorized transformation" preserves only the
high-level anatomical context while overwriting the fine-grained lesion details. This dissociates the original
identity from the new condition, which both enhances privacy and reduces the risk of the classifier learning
spurious correlations. While this approach is designed to be privacy-conscious, we acknowledge that it does
not offer the formal guarantees of methods like Differential Privacy. Additionally, privacy risks can be further
minimized by running open-source or HIPAA-compliant MLLMs locally as evaluators. While a formal,
quantitative analysis guaranteeing the complete removal of all identifying features was beyond the scope of this
work, we agree that aligning diffusion models while removing identifying cues is an important future direction
for medical and other privacy-critical domains.
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Figure 6: Feedback distribution as training progresses.

Image 0 Image 1
Target condition: psoriasis Image 0 Image 1
! « Location: anywhere v v
» + Lesion feature: plaques or papules X v
+ Shape/size:round/oval or irregular X v
« Color: pink/red with silvery scales on light skin X v
+ Texture: dry, flaky, thick scales that can be peeled off X v
1 win & win
Target condition: prurigo nodularis Image 0 Image 1
« Location: arms or legs v v
« Lesion feature: multiple firm nodules v X
« Shape/size: round v v
« Color: pink/red/brown/ in-toned; | i v v
5 « Texture: thick, rough, crusted or scabbed v X
1& win 16 win

Figure 7: Two image pairs with the corresponding checklist.

Figure 8: First row: diverse images for “Lupus Erythematosus on the face". Second row: diverse
images of “Lupus Erythematosus" generated on different anatomical sites.
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Table 6: Distribution of feedback
both win only one win  both lose
count 295 397 332

Table 7: Skin Condition Distribution for Fitzpatrick17k

Skin Condition Real Training Real Test Synthetic
Acne 92 91 93
Actinic Keratosis 88 87 164
Allergic Contact Dermatitis 215 215 181
Basal Cell Carcinoma 234 234 154
Eczema 102 102 166
Erythema Multiforme 118 118 155
Folliculitis 171 171 114
Granuloma Annulare 106 105 148
Keloid 78 78 135
Lichen Planus 246 245 151
Lupus Erythematosus 205 205 172
Melanoma 130 131 155
Mycosis Fungoides 91 91 165
Pityriasis Rosea 96 97 156
Prurigo Nodularis 85 85 152
Psoriasis 326 327 165
Sarcoidosis 174 175 162
Scabies 170 169 176
Squamous Cell Carcinoma 290 291 175
Vitiligo 83 83 161
Total 3100 3100 3100

Table 8: Skin Condition Distribution for SCIN
Skin Condition Real Training Real Test Synthetic

Eczema 409 36 0
Urticaria 178 34 0
Folliculitis 104 35 33
Tinea 72 34 58
Psoriasis 57 39 70
Herpes Simplex 49 36 76
Acne 44 31 80
Herpes Zoster 41 29 82
Pityriasis rosea 41 32 82
Tinea Versicolor 27 34 93
Total 1022 340 574

Table 9: Performance of ResNetl18-based classi-  Table 10: Performance of DINOv2-based classi-
fiers trained on real and synthetic data for SCIN. fiers trained on real and synthetic data for SCIN.

Training data  Acc F1 Prec  Rec Training data  Acc F1 Prec  Rec

Real 23.13 1094 12.20 10.70 Real 30.61 18.37 21.23 17.45

+ T2I 22.60 10.44 12.43 10.96 + T2I 28.18 1748 20.23 16.15
-0.5 -0.5 +0.2 +0.3 2.4 -0.9 -1.0 -1.3

+ 121 24.13 1090 12.03 11.06 + 121 32.15 20.10 23.80 19.06
+1.0 0.0 -0.2 +0.4 +1.5 +1.7 +2.6 +1.6

+ MAGIC 26.58 11.69 15.79 11.89 + MAGIC 33.82 20.08 24.16 18.70
RFT +3.5 +0.7 +3.6 +1.2 RFT +3.2 +1.7 +2.9 +1.2

+ MAGIC 2943 12.16 18.18 11.47 + MAGIC 35.65 21.39 24.00 19.40
DPO +6.3 +1.2 +6.0 +0.8 DPO +5.0 +3.0 +2.8 +1.9
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Table 11: Performance (%) of MAGIC-DPO on PAD-UFES-20.

Model Setting  Accuracy (%) F1 (%) Precision (%) Recall (%)
ResNet-18 Real 63.02 51.97 61.07 48.34
MAGIC 70.65 58.48 62.40 51.65
Real 67.88 60.50 66.29 57.10
DINOv2 MAGIC 73.85 63.81 67.17 59.41

Table 12: Classifier accuracy (%) on real data vs. MAGIC-augmented training. Gain denotes absolute
improvement.

Model #Params (M) Pre-train Dataset Real Acc (%) MAGIC Acc (%) Gain (%)
ResNet-18 12 ImageNet-1k 29.31 38.33 +9.02
ResNet-50 26 ImageNet-1k 35.56 46.24 +10.68
ViT-B/16 86 ImageNet-21k 45.22 51.44 +6.22
DINOV2 87 LVD-142M 49.89 55.01 +5.12

Table 13: Effect of checklist granularity on performance (%).

Model Setting Acc (%) F1 (%) Prec(%) Rec (%)
w/ Coarse Checklist (1 sentence) 32.83 30.58 29.75 31.18
ResNet-18  w/ Fine-grained Checklist (7 criteria) 38.33 37.01 38.41 36.06
w/ Highly Fine-grained Checklist (9 criteria) 39.39 37.86 40.64 39.75
w/ Coarse Checklist (1 sentence) 51.16 52.66 52.17 52.69
DINO-v2 w/ Fine-grained Checklist (7 criteria) 55.01 54.05 54.96 53.70

w/ Highly Fine-grained Checklist (9 criteria) 55.88 55.60 56.56 55.51
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Table 14: Skin Conditions and Their Checklist Properties

Skin Condition

Checklist Details

Acne

Location: Face, forehead, chest, shoulders, upper back (
areas with many oil glands)

Lesion Type: Bumps including comedones (whiteheads,

blackheads) and inflamed pimples (papules, pustules,

nodules)

Shape/Size: Small clogged-pore bumps; larger tender nodules/
cysts in severe cases

Color: Red or skin-colored bumps (may appear purple/brown on
dark skin); blackheads have dark plug, whiteheads have

white tip

Texture: Oily or shiny skin with multiple bumps; some
lesions with pus or crust if ruptured

Actinic keratosis

Location: Sun-exposed areas (face, scalp, ears, neck,
forearms, backs of hands)

Lesion Type: Rough, scaly patch or small crusty bump
Shape/Size: Flat or slightly raised lesion, usually under
2.5 cm

Color: Pink, red, or brownish, possibly with a yellowish
crust; on darker skin can appear gray or dark

Texture: Dry, coarse, sandpaper—-like surface; may have a
hard or wart-like feel

Allergic contact
dermatitis

Location: Where allergen contacts skin (hands, face, eyelids
, neck, etc.)

Lesion Type: Red patches often with small blisters (vesicles
) or swelling

Shape/Size: Irregular shape following exposure pattern; size
depends on contact area

Color: Pink to red on light skin; can be darker, purple, or

brownish on dark skin

Texture: May be weepy, crusty, or scaly; inflamed and
swollen in acute cases

Basal cell carcinoma

Location: Sun-exposed areas (face, nose, ears, neck, scalp,
shoulders)

Lesion Type: Pearly or waxy bump/nodule, or flat scaly patch
with a raised edge

Shape/Size: Small, round/oval; can ulcerate or develop a
central depression

Color: Translucent or pearly on fair skin; brown/black or

glossy dark on darker skin

Texture: Smooth, shiny surface; can crust or scab with
central ulceration

Eczema

Location: Flexural areas (inner elbows, behind knees), hands

, ankles, neck, eyelids, cheeks

Lesion Type: Patches or plaques, sometimes with small

blisters or bumps

Shape/Size: Ill-defined patches varying in size; often

bilateral or symmetric

Color: Red or pink on lighter skin; purple, gray, or dark

brown on darker skin

Texture: Dry, flaky, or scaly; can become thick and leathery
(lichenification)

Continued on next page
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Table 14 continued from previous page

Skin Condition

Checklist Details

Erythema multiforme

Location: Hands, feet, arms, legs, can involve mucous
membranes (lips, mouth, eyes)

Lesion Type: Target (bull’s-eye) lesions with concentric
rings

Shape/Size: Round lesions (1-3 cm) with a dark center, pale
ring, and outer red ring

Color: Center is dark red/purple, ring is lighter or pink,
outer zone is red; on dark skin, may be grayish or
hyperpigmented center

Texture: Mostly flat but can have a blistered or raised
center

Folliculitis

Location: Hair-bearing areas prone to friction or shaving (
beard, scalp, underarms, legs, buttocks)

Lesion Type: Small pustules or red papules centered around
hair follicles

Shape/Size: Clusters of 2-5 mm bumps; each with a central
hair

Color: Red or pink on light skin; darker or hyperpigmented
on dark skin; pus may appear white/yellow

Texture: Dome-shaped, often with a fluid-filled top; can
crust if ruptured

Granuloma annulare

Location: Hands, feet, wrists, ankles (localized); can
appear on trunk/limbs if generalized

Lesion Type: Smooth, firm bumps (papules) forming rings;
typically non-scaly

Shape/Size: Annular (ring-shaped) up to a few cm wide;
papules are a few mm each

Color: Skin-colored, pink, or reddish; can appear purple on
darker skin

Texture: Generally smooth; little to no flaking or crust

Keloid

Location: Scars on chest, shoulders, earlobes, jawline, or
any site of skin injury

Lesion Type: Overgrown scar tissue extending beyond the
original wound

Shape/Size: Raised, irregularly shaped scar; can be small or
grow large over time

Color: Pink or red on lighter skin; darker, purple or brown
on darker skin

Texture: Smooth, hairless, firm/rubbery; shiny surface

Lichen planus

Location: Wrists, forearms, ankles, scalp, nails, mouth,
genitals

Lesion Type: Flat-topped papules; can form plaques or lines
from scratching

Shape/Size: Polygonal, 2-10 mm papules

Color: Violaceous (purple) on light skin; gray-brown or
hyperpigmented on dark skin

Texture: Shiny surface with fine white lines (Wickham’s
striae); can be scaly if scratched

Lupus erythematosus

Location: Face (butterfly rash across cheeks/nose); can
appear on scalp/ears; photosensitive areas

Lesion Type: Flat or slightly raised rash (malar/butterfly);
discoid lesions can be scaly and scarred

Shape/Size: Butterfly rash covers the bridge of nose and

both cheeks; discoid lesions are coin-shaped (1-3 cm)

Color: Pink-red on light skin; can be darker red or

hyperpigmented on darker skin

Texture: Malar rash smooth or slightly raised; discoid can

be rough/scaly with scarring

Continued on next page
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Table 14 continued from previous page

Skin Condition

Checklist Details

Melanoma

Location: Can appear anywhere (trunk, limbs, face, nails);
in darker skin, often on palms/soles or under nails

Lesion Type: Atypical mole or patch; irregular shape and
color

Shape/Size: Asymmetric, often >6 mm, with notched/bumpy
edges

Color: Multiple shades (brown, black, red, white, blue); on
dark skin, often very dark with variation

Texture: Smooth early; may become raised, crusted, or
ulcerated if advanced

Mycosis fungoides

Location: Usually non-sun-exposed areas (buttocks, lower
abdomen, thighs); can spread more widely later

Lesion Type: Patches (like eczema), plaques (thickened), or
tumor nodules (advanced)

Shape/Size: Irregular shapes, patches often a few cm wide;
plaques larger/thicker; nodules can be several cm

Color: Pink-red to reddish-brown; darker or hyperpigmented
on darker skin

Texture: Dry, scaly for patches; plaques thicker/scaly;
nodules can be smooth or ulcerated

Pityriasis rosea

Location: Trunk (back, chest, abdomen) primarily;
occasionally upper arms, thighs

Lesion Type: Herald patch (large oval) followed by multiple
smaller oval patches/papules

Shape/Size: Herald patch ~2-6 cm; daughter lesions ~1-2 cm;
often align in ’Christmas tree’ pattern

Color: Pink/salmon on light skin; gray, brown, or purplish
on dark skin

Texture: Fine collarette scale at inner edge; not typically
thick or crusty

Prurigo nodularis

Location: Arms, legs, upper back, shoulders, scalp, areas
easily reached for scratching

Lesion Type: Firm, itchy nodules, often with a crusted or
scabbed top

Shape/Size: Round nodules 1-3 cm; multiple lesions often
present

Color: May be pink, red, brown, black, or skin-toned; older
lesions can be hyperpigmented

Texture: Thick, rough; scabs from scratching; firm to touch

Psoriasis

Location: Elbows, knees, scalp, lower back; can affect nails
, palms, soles, or be widespread

Lesion Type: Well-demarcated plaques with thick, scaly
surface; can also be smaller papules

Shape/Size: Round/oval or irregular plaques; can range from
small patches to large areas

Color: On light skin, pink/red with silvery scales; on dark
skin, purple/dark brown with grayish scales

Texture: Dry, flaky scales that can be peeled off;
underlying skin may bleed (Auspitz sign)

Sarcoidosis

Location: Face (nose, cheeks - lupus pernio), shins (

erythema nodosum), scars/tattoos, can be widespread

Lesion Type: Firm plaques, nodules, or discolored patches;

red bumps on shins in erythema nodosum

Shape/Size: Plaques are broad and raised; nodules can be 1-5
cm; patchy discolorations vary

Color: Purplish or red-brown lumps; can be lighter/darker

patches on dark skin; scars can turn red

Texture: Smooth, firm or rubbery; some lesions (erythema

nodosum) are tender lumps under the skin

Continued on next page
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Table 14 continued from previous page

Skin Condition

Checklist Details

Scabies

Location: Finger webs, wrists, waist, buttocks, genitals,
armpits; in infants: palms, soles, scalp

Lesion Type: Tiny burrows (thin, wavy lines) plus small
itchy bumps or vesicles

Shape/Size: Burrows ~5-15 mm long; bumps ~1-2 mm in clusters
Color: Skin-toned to pink/red; on darker skin, may appear
darker or hyperpigmented

Texture: Scratch marks, crusted spots from itching; burrows
feel like slight ridges

Squamous cell

Location: Sun-exposed areas (face, ears, lips, hands),
chronic scars, or wounds; can appear on mucosal surfaces

carcinoma
Lesion Type: Crusty or scaly bump, ulcer, or plaque; can
have raised borders or a central depression
Shape/Size: Firm nodule or patch, >1 cm if untreated; may
grow rapidly
Color: Pink/red on lighter skin; brown or darker on brown/
Black skin; can show white/yellow keratin
Texture: Rough, thick, crusted surface; may bleed or
ulcerate; firm on palpation

Vitiligo Location: Face (around eyes, mouth), hands, feet, arms, legs

, genitals; can occur anywhere on body

Lesion Type: Depigmented patches with well-defined borders;
hair may turn white in affected area

Shape/Size: Irregular shapes; can start small and enlarge
over time, often symmetrical

Color: Completely white or pale compared to surrounding skin
; high contrast on darker skin

Texture: Normal skin texture (no scaling or thickening),
only color is lost
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction summarize the paper’s contributions.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

26



* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information needed to reproduce the main experimental results of the paper can be
found in the "Experiments" section.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
Justification: Code will be released upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the results in
the "Experiment” section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: All experiments have been repeated for 3 rounds.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The information needed to reproduce the main experimental results of the paper can be
found in the "Experiments" section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into

the paper).
Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethical concerns.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

» The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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12.

13.

14.

15.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly cited and credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses
for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]
Justification: The usage of LLM is described in the "Experiments" section.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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