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ABSTRACT

Supervised machine learning (ML) has fueled major advances in several domains
such as health, education and governance. However, most modern ML methods
rely on vast quantities of point-by-point hand-labeled training data. In domains
such as clinical research, where data collection and its careful characterization is
particularly expensive and tedious, this reliance on pointillistically labeled data
is one of the biggest roadblocks to the adoption of modern data-hungry ML al-
gorithms. Data programming, a framework for learning from weak supervision,
attempts to overcome this bottleneck by generating probabilistic training labels
from simple yet imperfect heuristics (or labelling functions) obtained a priori
from domain experts. We present WARM, Active Refinement of Weakly Super-
vised Models, a principled approach to iterative and interactive improvement of
weakly supervised models via active learning. WARM directs domain experts’ at-
tention on a few selected data points that, when annotated, would most improve
the label model’s probabilistic accuracy. Gradient updates are then backpropa-
gated to iteratively update the parameters of the individual expert labelling func-
tions in the weak supervision model. Experiments on multiple real-world medical
classification datasets reveal that WARM can substantially improve the accuracy of
probabilistic labels used to train downstream classifiers, with as few as 30 queries
to experts. Additional experiments with domain shift and artificial noise demon-
strate WARM’s ability to adapt to changing population characteristics as well as
noisy initial labelling functions from the experts. These capabilities make WARM a
potentially useful tool for deploying, maintaining, and auditing weakly supervised
systems in practice.

1 INTRODUCTION

Machine learning (ML) has seen widespread adoption in several domains such as health, education
and public policy. In the clinical context, supervised ML algorithms have been shown to be effective
solutions to a gamut of problems, ranging from detecting abnormal heart rhythms in electrocar-
diogram (Goswami et al., 2022; Hannun et al., 2019), prognosticating neurological recovery using
continuous electroencephalogram (Elmer et al., 2016; 2020) to detecting lung cancer in CT scans
(Gao et al., 2019). However, most modern ML algorithms, especially large deep neural networks,
rely on vast quantities of pointillistically labeled training data. In our experience, while raw clinical
data is abundant, its careful annotation is not. Manually labeling large quantities of clinical data is
often tedious, prohibitively expensive, prone to error, and acutely unscalable.

Recently, many studies have explored the use of cheap, potentially noisy sources of supervision to
noisily annotate large training sets (Goswami et al., 2022; Fries et al., 2019; Saab et al., 2020) using
weak supervision. These methods combine these sources to create noisy labels on unseen data,
which can then be used to learn powerful discriminative end models. In principle, these methods
resemble other repeated-labeling techniques such as crowd-sourcing (Li et al., 2013), or distant
supervision relying on external knowledge bases (De Sa et al., 2016). In this paper, we leverage
data programming (Ratner et al., 2016) which uses a generative model to integrate expert knowledge
expressed in the form of noisy heuristics (labeling functions or LFs) to probabilistically label training
data. Since the quality of the training labels is strongly correlated with that of labeling functions,
unrefined weak supervision may not always yield optimal performance. Hence, in practice, experts
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using data programming often spend several hours iteratively designing new heuristics or refining
existing ones (Varma & Ré, 2018). Our work aims to streamline and reduce this effort.

Another closely related issue is that of domain shift (also referred to as knowledge shift). Imbalance
in characteristics of source and target populations may render ML models trained on one domain
perform poorly on another. This domain shift, especially in the form of population characteristics
like gender or race, is prevalent in clinical settings (Thiagarajan et al., 2018). In the context of
weak supervision, we are interested in the related problem of knowledge shift. Specifically, we want
to train effective ML classifiers while tailoring knowledge of the source population to the target
population (e.g. heart disease in young and old patients) via small changes in the LFs.

To this end, we propose WARM (Active Refinement of Weakly Supervised Models), a principled
approach towards quick, iterative, and interactive refinement of weakly supervised models1. WARM
directs expert attention to specific data points in the training set, which if labeled, would improve
the labeling functions and the resulting label model the most. Specifically, at each iteration WARM
directs an expert to label the most uncertain data point, and then updates decision parameters of the
labeling functions to reduce the uncertainty.

Experiments on multiple real-world medical classification datasets of varying sizes and complexity,
reveal that with as few as 30 queries to an expert, WARM can significantly improve label model ac-
curacy resulting in higher quality training labels. Moreover, WARM outperforms existing approaches
to active weak supervision (Biegel et al., 2021; Nashaat et al., 2018) and supports interpretability
by allowing experts to track changes in LFs. Moreover, auxiliary experiments on a subset of our
datasets show that WARM can not only combat knowledge shift but also de-noise LFs. For example,
we found that WARM could adapt LFs to detect the presence of heart disease defined on a young
population of patients, to an older population, resulting in a significant 1− 3% increase in label and
end model performance. We also found that WARM was able to easily refine noisy LFs to achieve
label and end model performance on par with no noise.

2 RELATED WORK

There is a small but growing body of work on active strategies for weak supervision. A few studies
combine data programming with active learning on data points. For instance, Nashaat et al. (2018)
proposed a method which actively obtained expert-labeled data via uncertainty sampling and cor-
rected LF votes on individual data points to reflect the true labels. While their method improved
the probabilistic predictions, it did not change the label model per se. Biegel et al. (2021) recently
proposed Active WeaSuL which uses experts labels to learn how to best combine LFs. Specifi-
cally, they add a penalty term to the data programming loss function to nudge its optimal parameters
to a configuration where the label model predictions agree with the expert labels. They also pro-
posed a novel active sampling strategy tailored to the problem, which splits the data into buckets
and measures the KL-divergence between the expert and estimated probabilistic labels to query new
labels.

Some other studies have instead used labeled data to inspire ideas for new labeling functions (Cohen-
Wang et al., 2019), and yet others have used them to automatically come up with new one (Awasthi
et al., 2020; Boecking et al., 2020). Cohen-Wang et al. (2019) for instance proposed two simple
strategies (i.e. data points where LFs abstain or disagree the most) to iteratively select subsets
of data to inspire domain experts to create new LFs. On the other hand, Boecking et al. (2020)
introduced an interactive weak supervision method that automatically improves a set of LFs based
on feedback from users.

Alternatively, to reduce human effort to an absolute minimum, some studies have attempted to auto-
mate weak supervision by automatically generating heuristics based on a small labeled subset of the
data (Varma & Ré, 2018; Nashaat et al., 2020). For instance, Varma & Ré (2018) proposed Snuba
which automatically trains decision trees, logistic regression models and k-nearest neighbor classi-
fiers as LFs, tuned for accuracy and coverage (amount of data that the LF predicts a class as oppose
to abstaining from predicting any class), and later pruned to ensure sufficient dissimilarity. Finally,
Nashaat et al. (2020) proposed Asterisk, extending their prior work on active weak supervision

1We will release the source code for WARM at www.github.com/anonymized_for_review after
peer-review.
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by now automatically generating heuristics from a small labeled dataset. In our experience, these
methods are highly dependent on the quality and size of the labeled validation set. Furthermore,
they may require large diverse labeled datasets for complex prediction tasks as evidenced by our
experiments on the diabetes dataset. Additionally, Asterisk needs a large amount (up to ∼ 7%
of training data) of actively labeled data points for good performance.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND MODELING ASSUMPTIONS

Let (x, y) ∼ D denote the data generating distribution, where each data point x ∈ Rd is as-
sociated with a latent class label y ∈ {1, . . . , k}. Users provide an unlabeled training dataset
Su = {(xi, yi)}ni=1, where yi is unobserved, and m soft unipolar labeling functions (LFs) Γ which
we define as follows.

Since we only consider LFs that predict a single class, let pol(f) ∈ {1, . . . , k} define the polarity (or
the single class that it predicts) of a LF f . We define Γ = {γτ,j}mj=1, γτ,j : Rd −→ [0, 1], such that
γτ,j(xi, c) , 1{c=pol(γτ,j)}p̂(yi = c | xi), where p̂ is any arbitrary scoring function differentiable
with respect to its parameters τ .

Specifically, each LF γτ,j depends on one or more parameters in the parameter vector τ and ex-
presses the likelihood that a data point xi belongs to a particular class as identified by the polarity
function pol(γτ,j). We drop the subscript τ in the rest of our discussion for the sake of brevity.

3.2 MOST COMMON CLASSES OF LABELING FUNCTIONS ARE DIFFERENTIABLE

(i)

(ii)

Figure 1: Examples of (i) crisp and (ii) soft equiv-
alents of a labeling function to characterize nor-
mal clinical findings in EEG data. While both ver-
sions make identical predictions, the latter is dif-
ferentiable with respect to its decision parameter,
high baseline.

Fig. 1(ii) is an example of an expert-defined LF
to characterize normal clinical findings in elec-
troencephalogram (EEG) recordings2 which
depends on the high baseline parameter.

Our methods assume that all the LFs in
the label model are differentiable with re-
spect to their decision parameters. Many
frequently used classes of LFs are intrinsi-
cally differentiable with respect to their pa-
rameters, such as multi-layer perceptrons, con-
volutional neural networks, log-linear mod-
els, neural language models (Hooper et al.,
2020; Varma & Ré, 2018). Other com-
mon classes of LFs can be easily transformed
into their soft counterparts. One example is
decision stumps (IF <CONDITION> THEN
CLASS <I> ELSE CLASS <J>) (Varma &
Ré, 2018). More generally, a AND or OR could
also be made differentiable by fuzzy logic. To
transform crisp decision stumps into their soft
equivalents, we can follow prior work on de-
cision trees (Suárez & Lutsko, 1999). Specif-
ically, consider a heuristic of the form: λ ,
dᵀx > a, where dᵀx defines a new compos-
ite variable and a ∈ τ is a decision param-
eter. Then we define its fuzzy equivalent as
γ , sigmoid(dᵀx − a), where sigmoid(x) =

1
1+exp (−x) . Intuitively, while λ indicates which side of the hyperplane dᵀx = a a point lies, γ
encapsulates a probabilistic notion of distance from the decision boundary. Using the corresponding

2Specifically, the LF is developed to work with amplitude-integrated EEG, which is a widely used quantita-
tive summary of raw multi-channel EEG data.
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Zadeh operators, conjunctions are converted via (AND(x, y) → MIN(x, y)), disjunctions are con-
verted via (OR(x, y) → MAX(x, y)) and negations are converted via (NOT(x) → (1 − x)) (Zadeh,
1996). There are still other ways to obtain soft equivalents of crisp LFs, for instance by training
feed-forward neural networks to approximate classes of functions under reasonable assumptions on
their continuity and topology.

This extension of crisp LFs into their soft counterparts not only enables them to express confidence
on their predictions, but also better capture fuzzy decision boundaries, common in most practical
settings. Additionally, restricting LFs to be unipolar can be done without any loss of generality,
since complex LFs can be easily broken down into their unipolar components. Moreover, in our
experience, several simple unipolar LFs tend to perform better than a few complex multipolar LFs
in practice. Each soft LF γj can be converted to its hard equivalent λj : Rd −→ {0, pol(λj)} using a
threshold function, where 0 means that the LF abstained from voting for class pol(λj). In particular,
we have that

λj =

{
c, if γτ,j(x, c) ≥ 0.5

0, otherwise

3.3 PROBABILISTIC LABEL ESTIMATION

Given the unlabeled training dataset Su and an initial set of LFs denoted by Γ(1), our goal is to
efficiently improve the accuracy of LFs by refining their parameters τ based on expert feedback, and
ultimately assign probabilistic labels p̂(y | Γ(t),x) to the training data. Here Γ(t) denotes the set
of LFs after tth iteration of WARM. The probabilistic labels are used to further train a downstream
classifier f : X −→ Y . We refine the LFs automatically by asking domain experts to provide labels
for a few highly uncertain data points, and back propagating LF errors to update their parameters τ .

In order to estimate probabilistic labels p(y | Γ(t),x), we propose the following weighted majority-
vote label model:

p̂il =
bl +

∑m
j=1 γ

(t)
j (xi, l)θ̂

(t)
j∑k

c=1(bc +
∑m
j=1 γ

(t)
j (xi, c)θ̂

(t)
j )

(1)

such that p̂il = p(yi = l | Γ(t),xi) is the estimated probability that xi belongs to class l, while
bl = p(y = l) denotes its prevalence. γ(t)

j (xi) is the probabilistic vote of jth LF and θ̂(t)
j is its

unobserved accuracy, estimated using the data programming (DP) label model as defined in Eq. 2
(Ratner et al., 2016).

We ensure that p̂ik is a probability by passing p̂i through a softmax function, and note that our
model is differentiable with respect to all LF parameters τ . The DP label model is not differentiable
with respect to LF parameters, and therefore cannot be directly used to estimate probabilistic labels
while still having the ability to update LF parameters. However, data programming has been shown
to perform well in several weak supervision applications and has some theoretical guarantees for
estimating the latent accuracy of LFs by optionally modeling dependencies between them. Thus,
in order to iteratively improve the accuracy of LFs and estimate probabilistic labels, we alternate
between two objectives at the tth time step:

Estimate the accuracy of LFs keeping their parameters τ fixed. Let [Λ(t)]n×m =
{0, 1, . . . , k}n×m denote the observed matrix of crisp LF outputs at the tth time step, such that
[Λ(t)]ij = λ

(t)
j (xi) is the thresholded output of LF γj on xi. We define factors for LF accuracy and

propensity as φAcc([Λ(t)]ij , yi) , 1{[Λ(t)]ij=yi} and φLab([Λ(t)]ij , yi) , 1{[Λ(t)]ij 6=0}, respectively.
We then follow Ratner et al. (2016) to define the joint distribution of the latent class label y and
[Λ(t)] as:

pθ(y, [Λ
(t)]) ,

1

Zθ
exp

 m∑
j=1

n∑
i=1

(θjφ
Acc([Λ(t)]ij , yi) + θj+mφ

Lab([Λ(t)]ij , yi)) + byi

 (2)
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We use Snorkel (Ratner et al., 2017) to learn θ by minimizing the negative log marginal likelihood
given the observed [Λ(t)]:

θ̂(t) = arg min
θ

n∑
i=1

− log

∑
y∈Y

pθ(y, [Λ
(t)]i)

 (3)

We then set the accuracy weights of the LFs to be equal to θ̂(t)
j .

Update LF parameters τ keeping their accuracy weights fixed. In this step, we use our label
model (Eq. 1) to probabilistically label the training dataset, gather expert labels for the most uncer-
tain data points, and finally update the LF parameters by minimizing the cross-entropy between the
observed expert labels and probabilistic label predictions of the data points. In particular, we update
the LF parameters τ via gradient back propagation, so as to minimize the negative log likelihood of
all the expert labels observed so far:

LCE =
∑

(xi,yi)∈Sl

k∑
l=1

−1{l=yi} log p̂il (4)

where Sl is the set of expert labeled data points. While in our experiments, at each time step t,
we gather an expert label for the data point with the highest entropy, our methods are generic and
can seamlessly incorporate other active learning acquisition functions. Our algorithm is briefly
summarised in Algorithm 1.

Algorithm 1 WARM: The proposed active weak supervision algorithm.

1: procedure WARM([Γ(1)],Su = {(xi, yi)}ni=1,b)
2: for t ∈ 1 to T do
3: [Λ(t)]← c([Γ(t)]) . Convert to crisp votes

4: θ̂(t) ← arg min
θ

− log

( ∑
Y ∈Y

pθ(Y, [Λ
(t)])

)
5: for i← 1 to |Su| do
6: p̂il ← bl +

∑m
j=1 γ

(t)
j (xi, c)θ̂

(t)
j ,∀l ∈ {1, . . . , k} . Aggregate weighted LF votes

7: p̂i ← softmax(p̂i)

8: Ei ← −
∑k
l=1 p̂il log(p̂il) . Compute entropies

9: end for
10: yq ← query user({xq|q ← arg max

i∈Su
E}) . Query user for label

11: Sl ← Sl ∪ (xq, yq); Su ← Su/(xq, yq)
12: LCE ←

∑
(xi,yi)∈Sl

∑k
l=1−1{l=yi} log p̂il

13: Γ(t+1) ← backprop errors(Γ(t),LCE) . Update LF parameters
14: end for
15: end procedure

4 EXPERIMENTS

4.1 DATASETS AND WEAK SUPERVISION SOURCES

Like most prior work on active and automated weak supervision, we primarily focus on the bi-
nary classification setting for consistency (Varma & Ré, 2018; Biegel et al., 2021; Nashaat et al.,
2018). Specifically, we carry out experiments on various real-world clinical classification datasets
of varying complexity and sizes. See Table 1 for a summary of all the datasets used. All of the
above datasets were taken from the UCI Machine Learning Repository (Dua & Graff, 2017). Refer
Appendix A.1 for dataset details.

Since we did not have the requisite clinical expertise to define good weak supervision sources,
we trained a Random Forest (RF) classifier of decision stumps (depth-one decision trees) to auto-
matically to simulate expert heuristics for simple LFs. Specifically, we trained a Random Forest
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Dataset Classification task # Train # Test # Features # LFs # Classes # +ve class (%)
Wisconsin Breast Cancer Benign / malignant cancer 559 140 9 10 2 34

Wisconsin Diagnostic Breast Cancer Benign / malignant cancer 455 114 30 10 2 37
Heart Disease Absence / Presence of heart disease 736 184 13 5 2 55

Diabetes Patient was re-admitted or not 81412 20354 47 10 2 46
EEG Clinical findings in EEG 4228 1058 26 17 4 (37, 25, 27, 11)

Synthetic Gaussian clusters 10000 3000 2 3 2 50

Table 1: Summary of the six classification datasets used for evaluation.

classifier with 5 or 10 decision stumps on a 50% sub-sample of the training set, such that each
decision stump served as a LF. We used the Random Forest Classifier implementation from the
Scikit-Learn (Pedregosa et al., 2011) Python library for the same. For all datasets, we acquired
a set of 10 LFs, with the exception of the diabetes dataset for which we used a set of 5 LFs only.
Appendix A.6 contains examples of LFs for the Heart Disease dataset.

As in Biegel et al. (2021), we also benchmark WARM on a synthetic dataset comprising of two classes
modeled by 2-dimensional isotropic Gaussians, with a training and testing set of 10,000 and 3,000
data points, respectively. We use the same set of 3 LFs as Biegel et al. (2021) for our experiments.

Finally, to subject WARM to even more realistic settings, we used it to iteratively refine expert-defined
heuristics to classify clinical findings in electroencephalogram (EEG) recordings. The dataset com-
prised of continuous 6-hour amplitude-integrated EEG (aEEG)3 recordings from 1310 comatose
patients resuscitated after suffering from cardiac arrest, and admitted to the Intensive Care Unit
of a large tertiary care hospital between February 2010 and April 2019. The dataset was jointly
annotated by two experts in cardiac arrest care and clinical EEG interpretation, using a simplified
multinomial labeling convention to summarize EEG findings that occur commonly post cardiac ar-
rest. Specifically, each raw EEG record was broken into six disjoint 1-hour windows and classified
as generalized suppression; burst suppression with epileptiform activity (including burst suppression
with identical bursts); burst suppression without epileptiform activity; and, near-continuous or con-
tinuous background activity (Elmer et al., 2016; 2020). We also developed a total of 17 LFs tailored
to the prediction problem with help from one of the expert clinicians.

4.2 COMPARISON OF METHODS

We compared WARM with the two existing active weak supervision approaches, namely Active
WeaSuL (Biegel et al., 2021) and the method proposed by Nashaat et al. (2018). All the methods
had access to the same set of initial LFs and were run for 30 active learning iterations, where they
were allowed to query one ground truth label from the training set at each iteration. We also bench-
marked WARM against Snuba (Varma & Ré, 2018), a popular weak supervision approach which
automatically synthesizes weak supervision sources from a small subset of labeled examples incor-
porates them with the data programming label model to probabilistically label data. We ran Snuba
with a random labeled subset of 10, 20 and 30 data points with decision tree stumps as heuristics. To
report test set performance, we trained downstream logistic regression models on the crisp versions
of the probabilistic labels assigned by each method. We also compared these methods against a lo-
gistic regression (LR) model trained using a vanilla active learning sampling strategy based
on the distance from the decision boundary as in Biegel et al. (2021), and a fully-supervised
one trained using the entire labeled training set. The fully supervised LR model serves as a proxy
for the maximum achievable performance with the given features, train-test split and downstream
classifier.

Since existing online implementations of Snuba, Active WeaSuL and the method proposed
by Nashaat et al. (2018) were designed exclusively for binary classification problems, we were
only able to compare WARM with active learning and fully supervised baselines on the EEG dataset
involving multi-class classification. For all our experiments, we used the logistic regression model
implementation from Scikit-Learn (Pedregosa et al., 2011), trained for a maximum of 500
iterations and optimized using LBFGS. WARM models were trained and built using PyTorch 1.8.1
Paszke et al. (2019) along with Python 3.8.1. All our experiments were carried out on a Linux
desktop with a typical machine having 8 Intel(R) Core(TM) i7-6700K CPUs and 16 GB of RAM.

3aEEG is a widely used quantitative summary of multi-channel EEG data.
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(i) (ii)

Figure 2: Knowledge shift experiments on the (i) heart disease and (ii) synthetic datasets. The
accuracy of end models increases with more active learning iterations as WARM adapts LFs and the
resulting label model to the target population.

4.3 EXPERIMENTAL DESIGN

We aim to answer the following research questions through our experiments.

Does WARM improve the quality of the training dataset and how does this improvement translate to
downstream classifier performance? We evaluate the quality of the training dataset by comparing
the crisp versions of the probabilistic labels assigned by all the weakly supervised approaches with
the ground truth training labels.

Can WARM combat the problem of knowledge shift and overcome noise in the initial LFs? To this end,
we carry out experiments on the synthetic and Heart Disease dataset. To simulate knowledge shift
in the synthetic dataset, we start with the three LFs tailored to the original (source) data distribution,
and introduce two other (target) gaussian clusters with different centroids. For the heart disease
dataset, we automatically acquire LFs from the young population i.e. all patients with less than
median age. We then train and evaluate WARM on disjoint subsets of old patient population. Since
weakly supervised models rely heavily on the quality of its weak supervision sources, we conduct
additional experiments on the Heart Disease dataset by adding varying levels of uniform random
noise, scaled by the range of the features, to the LF decision parameters initially obtained using the
random forest. I.e. 100% noise added could mean that the decision stump threshold is off by 100%.

5 RESULTS AND DISCUSSION

Table 2 summarizes the results of our experiments. The Train results represent the performance of
the weak label models in comparison to ground truth training labels, and hence are a direct measure
of label model quality. The Test results on the other hand, are from LR models trained on the crisp
equivalents of the probabilistic labels and evaluated on the held-out test set. The latter set of results
primarily reflect the quality of the downstream models trained using weak labels. We refer the

Methods Synthetic Heart Disease Diagnostic BC Wisconsin BC Diabetes EEG

Train

Active WeaSuL 91.05± 0.00 47.01± 0.54 67.69± 0.00 67.69± 0.00 53.94± 0.14 –
Nashaat et al. (2018) 90.70± 0.01 48.23± 1.17 65.36± 0.11 91.63± 0.21 53.98± 0.21 –

Snuba 95.83± 0.39 75.62± 2.34 92.53± 0.90 94.17± 1.69 52.06± 4.06 –
WARM 95.39± 0.22 78.78± 1.35 93.05± 0.90 94.10± 0.00 60.19± 0.24 71.16± 2.09

Test

Active WeaSuL 95.51± 0.52 50.43± 1.55 88.95± 1.53 93.57± 1.28 54.57± 0.41 –
Nashaat et al. (2018) 92.93± 0.28 53.59± 7.07 94.74± 1.57 92.29± 1.05 54.27± 0.32 –

Snuba 95.51± 0.37 71.30± 2.02 88.95± 0.43 92.86± 1.63 52.14± 4.28 –
WARM 95.77± 0.20 77.72± 0.34 91.23± 0.96 89.29± 0.00 60.14± 0.20 72.29± 1.48

Active Learning 97.33± 0.15 76.63± 1.33 97.19± 0.35 94.86± 0.70 52.21± 1.41 64.50± 1.80
Fully Sup. LR 97.50 77.72 99.12 95.71 62.38 73.25

Table 2: Final accuracy of models on all the datasets together with 95% confidence intervals com-
puted over 5 bootstrapping iterations. WARM improves the quality of training data as measured by
the accuracy of label model on the Train set. This improvement further translates into better down-
stream model performance on the Test set. Fully Sup. LR represents the performance of the
fully-supervised logistic regression (LR) model trained with full access to ground truth labels.
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interested reader to Appendix A.7 for supplementary results with additional metrics such as F1 and
percentage change in accuracy. Our primary findings from the experiments are summarized below.

WARM can improve the quality of training data. We found that on all the datasets, the probabilistic
labels assigned post active weak supervision via WARM are significantly more accurate than the
ones assigned by compared methods. However, we did observe some variance in accuracy and
its improvement across different datasets, primarily due to the nature of the data and the quality
of initial weak supervision sources. For instance on the breast cancer data, WARM improved the
accuracy of the label model by over 7% across 30 active learning iterations. On the other hand,
WARM could not improve the train generative performance on the heart disease data, but it also starts
from a better higher accuracy. We observed similar trends for downstream model performance, albeit
with smaller accuracy improvements. The smaller accuracy improvements can be attributed to the
generalization capabilities of the downstream model over the labels it is trained on. Nevertheless,
our findings underscore the importance of high quality labeled training sets. On the EEG dataset
(Table 2 and Fig. 6–7), WARM achieved a 4 − 5% increase in both label model and downstream
classifier performance. These results are significant since even the initial set of LFs were developed
by expert clinicians.

Moreover, we also found that traditional Active Learning strategy outperformed WARM on
simpler classification tasks such as breast cancer diagnosis. However, for more complex prediction
problems such as the predicting readmission on the Diabetes dataset and classifying clinical find-
ings on the EEG dataset, active weak supervision via WARM significantly outperformed end models
trained using active learning. Finally, experiment runtimes suggest that WARM is significantly faster
than existing active weak supervision techniques across datasets (Appendix A.5).

WARM can help combat knowledge shift and de-noise LFs. Results from knowledge shift exper-
iments on the heart disease and diabetes dataset in Fig. 2 and Table 4,5 reveal that WARM can help
both weak labelers and the downstream classifier adapt to different population characteristics. We
observed approximately a 1− 3% and 4− 6% increase in label and end model performance on the
heart disease and synthetic datasets, respectively. See Appendix A.6 for all LFs defined on the heart
disease dataset to detect the presence of heart disease in the young and old population.

Fig. 3(ii) and Tab. 6 summarizes the performance of WARM across 50 active learning iterations, when
varying levels of random noise is artificially added to LFs defined on the Wisconsin Diagnostic
Breast Cancer dataset. Our results clearly show that noisy LFs hurt both label and end model
performance. However, WARM can iteratively de-noise LFs by actively collecting a few more labeled
examples. Even with 75% noise initially, WARM can refine LFs such that the resulting label and end
model perform on par with those trained using LFs with no noise. Additionally, WARM consistently
outperforms the other active weak supervision baselines4.

Changes to LFs brought about by WARM are interpretable. If the LFs themselves are inherently
interpretable, WARM supports their interpretability by enabling domain experts to track changes in
their decision parameters. Fig. 3(ii) for instance shows LFs before and after refinement by WARM on
the synthetic dataset. We also draw the reader’s attention to the knowledge shift experiments on the
heart disease dataset for more examples of interpretable changes to LF parameters. Appendix A.6
lists all the LFs tailored to the young and old population. For example, the rule If exercise
induced angina <= 144.666(150.123) then ABSENCE else PRESENCE clearly
says that while exercise induced angina higher than 144.67 was indicative of heart disease in the
young population, older people tend to naturally have higher values resulting in a higher decision
threshold.

Ablation experiments on WARM shows that it benefits from both active learning and weak su-
pervision. We also perform ablation experiments to investigate if WARM is performing as expected.
In Appendix A.8, we see that WARM directly benefits from Uncertainty Sampling from its active
learning component, outperforming the random sampling in every case. From Appendix A.10,A.9
it is generally able to generally outperform Active Learning on complex or large datasets due
to its Weak Supervision component.

4Note that active learning results are not affected because we only add noise to LFs, which are only used by
weak supervision methods
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(i) (ii)

Figure 3: (i): End model testing accuracy on the Wisconsin Diagnostic Breast Cancer dataset as
a function of uniform random noise and active learning iterations. With a few expert-labeled data
points WARM can effectively de-noise LFs to eventually improve end model performance. (ii): Plot
of the synthetic dataset and its three LFs before and after 30 active refinement iterations. WARM
supports interpretability by allowing experts to track changes in LFs.

6 CONCLUSION

With more medical data being collected, methods that address the lack of labeled data in clinical
applications of machine learning are becoming increasingly vital. If the vast amounts of unlabeled
clinical data could be utilized to its full potential, the possibility of augmenting physicians with ML
to increase positive patient outcomes is substantial. In addition, a lot of of useful information can
be provided to ML systems from expert guidance, whether it be via heuristic design or via hand-
labeling individual data points; making such capabilities efficient and effective is greatly needed
in practice. WARM (Active Refinement of Weakly Supervised Models) is a fast active learning ad-
dition to data programming that substantially and inexpensively improves the empirical accuracy
of training labels and downstream classifiers. Our experiments show that WARM has the capability
to address the common problems of knowledge shift and rule denoising with minimal additional
labeled data. If ran on interpretable LFs, WARM is even able to reveal strategic, data-driven, inter-
pretable updates to the LF thresholds and parameters. Limitations of WARM include its reliance on
differentiable and reasonably accurate initial LFs, which may occasionally be more expensive to
acquire than pointillistic labels. However, we have shown that most frequently used classes of LFs
are intrinsically differentiable or can be made so. WARM is already a step towards more efficient and
effective algorithms to tackle labeled-data-scarce ML problems in healthcare and beyond.

Additional experiments would benefit precise assessment of properties and scoping of practical util-
ity of WARM in a wider range of its possible applications. Future work should also involve user
studies to gauge attainable efficiency gains and utility of interpretable adjustments to the LFs, and
whether they meaningfully boost perceived usability of the weak supervision process in practice.
Other future directions could include using meta-AL to learn query selection strategies based off of
previous AL outcomes as in (Konyushkova et al., 2017; Bachman et al., 2017) or AL with partial
feedback approaches as in (Hu et al., 2018). Another challenge to address is mitigating overfitting
to the active learning samples; we could perform early stopping, learning rate decay, gradient clip-
ping, or cross validation to better generalize our models. Furthermore, we would like to research the
connection between our framework and automated (Varma & Ré, 2018) or active (Boecking et al.,
2020) discovery of new LFs.
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Christopher De Sa, Alex Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen Wu, and Ce Zhang.
Deepdive: Declarative knowledge base construction. ACM SIGMOD Record, 45(1):60–67, 2016.

Robert Detrano, Andras Janosi, Walter Steinbrunn, Matthias Pfisterer, Johann-Jakob Schmid, Sar-
bjit Sandhu, Kern H Guppy, Stella Lee, and Victor Froelicher. International application of a
new probability algorithm for the diagnosis of coronary artery disease. The American journal of
cardiology, 64(5):304–310, 1989.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Jonathan Elmer, John J Gianakas, Jon C Rittenberger, Maria E Baldwin, John Faro, Cheryl Plum-
mer, Lori A Shutter, Christina L Wassel, Clifton W Callaway, and Anthony Fabio. Group-based
trajectory modeling of suppression ratio after cardiac arrest. Neurocritical care, 25(3):415–423,
2016.

Jonathan Elmer, Patrick J Coppler, Pawan Solanki, M Brandon Westover, Aaron F Struck, Maria E
Baldwin, Michael C Kurz, and Clifton W Callaway. Sensitivity of continuous electroencephalog-
raphy to detect ictal activity before cardiac arrest. JAMA network open, 3(4):e203751–e203751,
2020.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM, 24
(6):381–395, 1981.

Jason A Fries, Paroma Varma, Vincent S Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared
Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, et al. Weakly supervised classifi-
cation of aortic valve malformations using unlabeled cardiac mri sequences. Nature communica-
tions, 10(1):1–10, 2019.

Chufan Gao, Stephen Clark, Jacob Furst, and Daniela Raicu. Augmenting lidc dataset using 3d
generative adversarial networks to improve lung nodule detection. In Medical Imaging 2019:
Computer-Aided Diagnosis, volume 10950, pp. 109501K. International Society for Optics and
Photonics, 2019.

Hannah C Glass, Courtney J Wusthoff, and Renée A Shellhaas. Amplitude-integrated electro-
encephalography: the child neurologist’s perspective. Journal of child neurology, 28(10):1342–
1350, 2013.

Mononito Goswami, Benedikt Boecking, and Artur Dubrawski. Weak supervision for affordable
modeling of electrocardiogram data. In AMIA Annual Symposium Proceedings, volume 2022.
American Medical Informatics Association, 2022.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as a conference paper at ICLR 2022

Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn,
Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection and classification
in ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1):65–69,
2019.

LJ Hirsch, SM LaRoche, N Gaspard, E Gerard, A Svoronos, ST Herman, Ram Mani, H Arif, N Jette,
Y Minazad, et al. American clinical neurophysiology society’s standardized critical care eeg
terminology: 2012 version. Journal of clinical neurophysiology, 30(1):1–27, 2013.

Sarah Hooper, Michael Wornow, Ying Hang Seah, Peter Kellman, Hui Xue, Frederic Sala, Curtis
Langlotz, and Christopher Re. Cut out the annotator, keep the cutout: better segmentation with
weak supervision. In International Conference on Learning Representations, 2020.

Peiyun Hu, Zachary C Lipton, Anima Anandkumar, and Deva Ramanan. Active learning with partial
feedback. arXiv preprint arXiv:1802.07427, 2018.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. arXiv
preprint arXiv:1703.03365, 2017.

Hongwei Li, Bin Yu, and Dengyong Zhou. Error rate analysis of labeling by crowdsourcing. In
ICML Workshop: Machine Learning Meets Crowdsourcing. Atalanta, Georgia, USA. Citeseer,
2013.
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A APPENDIX

A.1 DATASET DETAILS

The Heart Disease dataset (Detrano et al., 1989) contains clinical and noninvasive test results from
patients undergoing angiography at the Cleveland Clinic in Cleveland, Ohio, Hungarian Institute of
Cardiology in Budapest, Hungary, Veterans Administration Medical Center in Long Beach, Califor-
nia; and University Hospitals in Zurich and Basel, Switzerland. For our experiments, we concatenate
all the databases into one and predict whether or not an individual has heart disease. The Diabetes
dataset (Strack et al., 2014) comprises of clinical records from over million patients admitted to 130
US hospitals and integrated delivery networks between 1999 to 2008. Given features representing
patients such as their age, race, gender, time in hospital, diagnosis etc., the goal is to predict whether
they are re-admitted for further treatment. We also use two breast cancer datasets, namely Wisconsin
Diagnostic Breast Cancer dataset (Street et al., 1993) and Wisconsin Breast Cancer Database (Man-
gasarian & Wolberg, 1990). For both the datasets, the prediction task is to distinguish between sam-
ples of malignant and benign breast cancer using different sets of features. The diagnostic dataset
comprises of features characterizing cell nuclei present in a digitized image of a fine needle aspirate
(FNA) of a breast mass. The latter dataset instead contains 9 cytological characteristics of breast
FNA graded between 1–10 at the time of sample collection.

A.2 EEG DATA COLLECTION

EEG monitoring was initiated a median of 10 hours after initial collapse as standard routine of
care on arrival to the intensive care unit (Elmer et al., 2016). EEG was recorded using XLTech
Natus Neuroworks digital video/EEG systems (Natus Medical Inc) at 256Hz from 22 gold-plated
cup electrodes placed in the international 10-20 system positions.

Löfhede et al. (2008) has shown near-perfect spatial correlation of many clinically important EEG
features in patients after cardiac arrest, allowing the 22-sample signal to be down-sampled without
significant information loss. Additionally, after cardiac arrest, many prognostic clinical findings can
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be identified accurately from lower-resolution quantitative summaries (e.g. 1Hz aEEG, Fig. 4) (Oh
et al., 2015; Glass et al., 2013). Thus, to optimize computational efficiency, we aimed to develop
similar heuristics as labeling functions to classify raw EEG signals from contemporaneous aEEG
summaries.

Figure 4: An example aEEG waveform (T = 21600 seconds). Each alternating pink and grey region
marks an one-hour segment. The dashed red line represents baseline aEEG value determined using
robust linear regression (aka RANSAC (Fischler & Bolles, 1981)).

Characteristic Number (%)
Number of patients 1310
Age, mean (std), years 57 (17)
Female 503 (38)
Initial arrest rhythm

VT/VF 370 (28)
PEA 482 (37)
Asystole 371 (28)
Unknown 87 (6)

Arrest location
In-hospital cardiac arrest 243 (19)
Out-of-hospital cardiac arrest 1067 (81)

Hours from arrest to EEG start, median (IQR) 10 (6)
Survived to hospital discharge 387 (30)
Disposition

Home 111 (29)
Acute rehabilitation 112 (29)
Skilled nursing facility 78 (20)
Long-term acute care 46 (12)
Hospice 22 (6)
Other 18 (4)

Circumstances of death
Rearrested, intractable shock, multi-system organ failure 184 (20)
Withdrawal for non-neurological reasons 114 (10)
Brain death 96 (12)
Withdrawal for perceived poor neurological prognosis 529 (57)

Table 3: Clinical Characteristics and Patient Outcomes: A summary of the patients characteristics
in the EEG dataset.

For our experiments, we used 6-hour aEEG time series starting at the initiation of EEG monitoring
from 1310 patients with mean age 57 years of whom 503 (38%) were female. Approximately
30% survived to discharge from the hospital. A large subset of our data (approximately 70%) was
initially jointly annotated by two experts in cardiac arrest care and clinical EEG interpretation at
UPMC. They manually annotated EEG findings using an adaptation of the 2016 American Clinical
Neurophysiology Society guidelines (Hirsch et al., 2013).

Based on prior research and our expert clinicians, we developed a simplified multinomial labeling
convention to summarize prognostic EEG findings that occur commonly after cardiac arrest. Specif-
ically, we classified the raw EEG waveforms as: generalized suppression; burst suppression with
epileptiform activity (including burst suppression with identical bursts); burst suppression without
epileptiform activity; and, near-continuous or continuous background activity (Elmer et al., 2020).
Because continuous background activity with epileptiform activity occurred infrequently in this data
set, we did not further subdivide categories of patients with continuous background activity.

13



Under review as a conference paper at ICLR 2022

A.3 KNOWLEDGE SHIFT EXPERIMENTS

Synthetic Dataset
Methods Accuracy ∆Accuracy F1

Train Generative
Active WeaSuL 90.29± 7.57 17.77± 7.57 88.94± 9.30
Nashaat et al. 71.17± 3.20 −1.35± 3.20 68.80± 4.78

WARM 91.66± 0.05 4.72± 0.07 91.85± 0.03

Test Discriminative
Active WeaSuL 92.83± 2.80 9.47± 2.80 92.46± 3.03
Nashaat et al. 82.42± 3.22 −0.95± 3.22 80.62± 4.94
Active learning 96.85± 0.09 46.85± 0.09 96.85± 0.08

WARM 91.71± 0.11 5.95± 0.15 91.60± 0.14

Table 4: Knowledge Shift experiments on the Synthetic Dataset. Accuracy is final accuracy, and
∆Accuracy is change from initial to final accuracy.

Heart Disease Dataset
Models Accuracy ∆Accuracy F1

Train Generative
Active WeaSuL 36.31± 0.00 0.00± 0.00 5.47± 0.38
Nashaat et al. 37.26± 0.52 0.95± 0.52 8.02± 1.05

WARM 80.56± 1.88 1.06± 0.65 86.53± 1.27

Test Discriminative
Active WeaSuL 30.35± 2.07 4.82± 2.07 13.16± 8.18
Nashaat et al. 35.32± 3.15 9.79± 3.15 21.27± 7.59
Active learning 79.01± 1.65 29.01± 1.65 85.65± 1.42

WARM 80.14± 0.78 2.55± 1.24 86.97± 0.33

Table 5: Knowledge Shift experiments on the Heart Disease Dataset. Accuracy is final accuracy,
and ∆Accuracy is change from initial to final accuracy.
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A.4 ADDING ARTIFICIAL NOISE TO LFS

Heart Disease Dataset
Methods Accuracy ∆Accuracy F1

0% Noise

Train Generative
Active WeaSuL 46.20± 0.54 0.27± 0.54 4.90± 1.14
Nashaat et al. 48.23± 1.17 2.31± 1.17 11.75± 4.06

WARM 78.61± 1.56 0.00± 0.00 80.50± 1.46

Test Discriminative

Active WeaSuL 48.26± 1.59 5.87± 1.59 28.25± 3.45
Nashaat et al. 53.59± 7.07 11.20± 7.07 38.54± 14.93

WARM 78.59± 0.43 0.00± 0.00 82.64± 0.45
25% Noise

Train Generative
Active WeaSuL 48.34± 0.53 0.65± 0.53 12.00± 2.12
Nashaat et al. 50.11± 0.83 2.42± 0.83 19.22± 3.79

WARM 79.62± 1.09 −0.05± 0.35 81.39± 1.25

Test Discriminative
Active WeaSuL 58.26± 1.47 10.43± 1.47 49.03± 2.56
Nashaat et al. 59.13± 5.34 11.30± 5.34 50.36± 9.79

WARM 77.83± 0.72 0.54± 0.60 81.84± 0.87
50% Noise

Train Generative
Active WeaSuL 47.15± 0.00 0.00± 0.00 10.16± 0.00
Nashaat et al. 48.26± 0.25 1.11± 0.25 15.00± 0.74

WARM 78.89± 0.96 −0.33± 0.83 80.78± 0.94

Test Discriminative
Active WeaSuL 46.09± 1.11 5.33± 1.11 21.67± 3.55
Nashaat et al. 52.07± 7.89 11.30± 7.89 31.31± 18.65

WARM 77.17± 1.50 −1.41± 1.12 80.84± 1.58
75% Noise

Train Generative
Active WeaSuL 43.29± 1.47 −0.73± 1.47 15.23± 2.84
Nashaat et al. 48.45± 4.21 4.43± 4.21 25.20± 6.44

WARM 79.54± 1.25 0.43± 0.95 81.79± 1.16

Test Discriminative
Active WeaSuL 42.61± 0.81 1.30± 0.81 11.35± 2.56
Nashaat et al. 48.80± 7.89 7.50± 7.89 25.01± 21.41

WARM 77.61± 0.41 1.30± 0.55 81.53± 0.58
100% Noise

Train Generative
Active WeaSuL 49.86± 0.00 0.00± 0.00 35.83± 0.00
Nashaat et al. 53.26± 2.31 3.40± 2.31 35.62± 4.92

WARM 78.42± 1.21 0.82± 0.63 79.00± 0.77

Test Discriminative
Active WeaSuL 37.83± 2.24 −1.30± 2.24 13.52± 4.19
Nashaat et al. 54.35± 5.00 15.22± 5.00 42.74± 9.75

WARM 71.96± 1.31 −1.41± 0.55 74.64± 1.36

Table 6: Experiments on the Heart Disease dataset by adding varying levels of uniform random
noise to LF decision parameters. Accuracy is final accuracy, and ∆Accuracy is change from
initial to final accuracy. Noisy LFs hurt both label and end model performance. However, WARM can
iteratively de-noise LFs by actively collecting a few more labeled examples. Even with 75% noise
initially, WARM can refine LFs such that the resulting label and end model perform on par with those
trained using LFs with no noise. WARM also consistently outperforms other baselines.
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A.5 RUNTIMES

Figure 5: Active weak supervision runtimes (in seconds on log scale). WARM is significantly faster
than compared existing methods across all datasets.
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A.6 EXAMPLE RULES

On the heart disease dataset, we carried out our knowledge shift experiments, where the initial
labeling functions were based on the young population, but the target population was that of old
patients. Below is a list of initial rules tailored to the young patients. The decision parameters in
parenthesis reflect the modified labeling function parameters, tailored to older patients.

If Chest pain type <= 0.898(0.978) then ABSENCE else PRESENCE
If Serum cholesterol in mg/dl <= 124.057(119.793) then PRESENCE else ABSENCE
If Maximum heart rate achieved <= 0.244(0.079) then PRESENCE else ABSENCE
If Exercise induced angina <= 144.666(150.123) then ABSENCE else PRESENCE
If thal <= 0.646(0.796) then ABSENCE else PRESENCE
If Chest pain type <= 0.898(0.978) then ABSENCE else PRESENCE
If ST depression induced by exercise relative to rest <= 0.273(0.383)

then ABSENCE else PRESENCE
If Exercise induced angina <= 144.666(150.123) then ABSENCE else PRESENCE
If thal <= 0.646(0.796) then ABSENCE else PRESENCE
If Maximum heart rate achieved <= 0.533(0.367) then PRESENCE else ABSENCE
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A.7 WARM COMPARISON TO OTHER MODELS

(i) Diabetes (ii) EEG

(iii) Wisconsin Breast Cancer (iv) Wisconsin Diagnostic Breast Cancer

(v) Heart disease (vi) Synthetic

Figure 6: Results of label model predictions on the training datasets. These results are a direct
measure of training set quality.

Wisconsin Breast Cancer Database
Methods Accuracy ∆Accuracy F1

Train Generative

Active WeaSuL (Biegel et al., 2021) 67.69± 0.00 0.00± 0.00 85.88± 0.00
Nashaat et al. (2018) 91.63± 0.21 0.57± 0.21 86.75± 0.40

Snuba (Varma & Ré, 2018) 94.17± 1.69 4.83± 4.24 91.40± 2.71
WARM (Ours) 94.10± 0.00 7.87± 0.00 91.08± 0.02

Test Discriminative

Active WeaSuL (Biegel et al., 2021) 93.57± 1.28 0.00± 1.28 90.20± 1.95
Nashaat et al. (2018) 92.29± 1.05 −1.29± 1.05 88.08± 1.79

Snuba (Varma & Ré, 2018) 92.86± 1.63 3.29± 3.77 88.71± 2.98
WARM (Ours) 89.29± 0.00 1.07± 0.36 82.76± 0.00

Active Learning 94.86± 0.70 44.86± 0.70 92.39± 1.11
FS Logistic Regression –

Table 7: Performance metrics for the Wisconsin Breast Cancer database. Accuracy is final accuracy,
and ∆Accuracy is change from initial to final accuracy.
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(i) Diabetes (ii) EEG

(iii) Wisconsin Breast Cancer (iv) Wisconsin Diagnostic Breast Cancer

(v) Heart disease (vi) Synthetic

Figure 7: Results of the logistic regression end model evaluated on the testing dataset. datasets.

Wisconsin Diagnostic Breast Cancer Dataset
Methods Accuracy ∆Accuracy F1

Train Generative

Active WeaSuL (Biegel et al., 2021) 67.69± 0.00 0.00± 0.00 28.29± 0.00
Nashaat et al. (2018) 65.36± 0.11 −2.33± 0.11 18.93± 0.46

Snuba (Varma & Ré, 2018) 92.53± 0.90 2.37± 1.69 90.07± 0.86
WARM (Ours) 93.05± 0.90 7.78± 1.25 90.52± 1.74

Test Discriminative

Active WeaSuL (Biegel et al., 2021) 88.95± 1.53 0.35± 1.53 79.28± 3.23
Nashaat et al. (2018) 94.74± 1.57 6.14± 1.57 90.83± 3.01

Snuba (Varma & Ré, 2018) 88.95± 0.43 0.88± 3.09 82.15± 0.39
WARM (Ours) 91.23± 0.96 3.16± 1.31 87.27± 1.19

Active Learning 97.19± 0.35 47.19± 0.35 95.45± 0.59
FS Logistic Regression –

Table 8: Performance metrics for the Wisconsin Diagnostic Breast Cancer dataset. Accuracy is final
accuracy, and ∆Accuracy is change from initial to final accuracy.
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Heart Disease Dataset
Methods Accuracy ∆Accuracy F1

Train Generative

Active WeaSuL (Biegel et al., 2021) 47.01± 0.54 0.14± 0.54 6.61± 1.14
Nashaat et al. (2018) 48.23± 1.17 1.36± 1.17 11.75± 4.06

Snuba (Varma & Ré, 2018) 75.62± 2.34 12.07± 9.97 75.95± 4.48
WARM (Ours) 78.78± 1.35 0.08± 0.24 80.52± 1.24

Test Discriminative

Active WeaSuL (Biegel et al., 2021) 50.43± 1.55 2.07± 1.55 33.21± 4.14
Nashaat et al. (2018) 53.59± 7.07 5.22± 7.07 38.54± 14.93

Snuba (Varma & Ré, 2018) 71.30± 2.02 8.37± 9.56 73.01± 4.73
WARM (Ours) 77.72± 0.34 −0.87± 0.27 81.74± 0.55

Active Learning 76.63± 1.33 26.63± 1.33 79.34± 1.17
FS Logistic Regression –

Table 9: Performance metrics for the Heart disease dataset. Accuracy is final accuracy, and
∆Accuracy is change from initial to final accuracy.

Diabetes Dataset
Methods Accuracy ∆Accuracy F1

Train Generative

Active WeaSuL (Biegel et al., 2021) 53.94± 0.14 0.10± 0.14 7.77± 7.32
Nashaat et al. (2018) 53.98± 0.21 0.14± 0.21 7.35± 4.55

Snuba (Varma & Ré, 2018) 52.06± 4.06 0.81± 5.43 50.16± 5.29
WARM (Ours) 60.19± 0.24 0.59± 0.29 48.53± 2.16

Test Discriminative

Active WeaSuL (Biegel et al., 2021) 54.57± 0.41 −0.47± 0.41 4.71± 3.73
Nashaat et al. (2018) 54.27± 0.32 −0.76± 0.32 2.62± 2.37

Snuba (Varma & Ré, 2018) 52.14± 4.28 0.94± 5.48 50.04± 5.94
WARM (Ours) 60.14± 0.20 0.21± 0.31 48.15± 2.44

Active Learning 52.21± 1.41 2.21± 1.41 50.23± 7.44
FS Logistic Regression –

Table 10: Performance metrics for the Diabetes dataset. Accuracy is final accuracy, and ∆Accuracy
is change from initial to final accuracy.

Synthetic Dataset
Methods Accuracy ∆Accuracy F1

Train Generative

Active WeaSuL (Biegel et al., 2021) 91.05± 0.00 0.00± 0.00 85.88± 0.00
Nashaat et al. (2018) 90.70± 0.01 0.03± 0.01 90.13± 0.01

Snuba (Varma & Ré, 2018) 95.83± 0.39 2.28± 3.63 95.89± 0.30
WARM (Ours) 95.39± 0.22 1.52± 0.26 95.55± 0.17

Test Discriminative

Active WeaSuL (Biegel et al., 2021) 95.51± 0.52 2.88± 0.52 95.36± 0.55
Nashaat et al. (2018) 92.93± 0.28 0.30± 0.28 92.71± 0.29

Snuba (Varma & Ré, 2018) 95.51± 0.37 1.65± 3.24 95.49± 0.26
WARM (Ours) 95.77± 0.20 2.21± 0.19 95.80± 0.23

Active Learning 97.33± 0.15 47.33± 0.15 97.34± 0.13
FS Logistic Regression –

Table 11: Performance metrics for the Synthetic dataset. Accuracy is final accuracy, and
∆Accuracy is change from initial to final accuracy.

EEG Dataset
Methods Accuracy ∆Accuracy F1

Train Generative WARM (Ours) 71.16± 2.09 5.00± 1.65 69.30± 2.66

Test Discriminative
WARM (Ours) 72.29± 1.48 3.89± 1.12 70.19± 2.14

Active Learning 64.50± 1.80 14.50± 1.80 62.79± 16.78
FS Logistic Regression –

Table 12: Performance metrics for the EEG dataset. Accuracy is final accuracy, and ∆Accuracy
is change from initial to final accuracy.
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A.8 WARM RANDOM SAMPLING VS UNCERTAINTY SAMPLING

Synthetic Dataset
Methods Accuracy ∆Accuracy F1

Train Generative WARM 93.77± 2.29 0.34± 2.19 93.67± 2.75
WARM (US) 95.39± 0.22 1.52± 0.26 95.55± 0.17

Test Discriminative WARM 93.72± 2.52 0.35± 2.44 93.39± 3.03
WARM (US) 95.77± 0.20 2.21± 0.19 95.80± 0.23

Table 13: Effect of random sampling on Synthetic Dataset. Accuracy is final accuracy, and
∆Accuracy is change from initial to final accuracy. Accuracy and F1 score metrics are much
lower for random sampling (RS) than the uncertainty sampling (US).

Wisconsin Diagnostic Breast Cancer
Methods Accuracy ∆Accuracy F1

Train Generative WARM (RS) 82.86± 3.80 −3.82± 3.63 69.49± 8.79
WARM (US) 93.05± 0.90 7.78± 1.25 90.52± 1.74

Test Discriminative WARM (RS) 83.16± 3.74 −4.91± 3.75 62.77± 10.81
WARM (US) 91.23± 0.96 3.16± 1.31 87.27± 1.19

Table 14: Effect of random sampling on Wisconsin Diagnostic Breast Cancer Dataset. Accuracy is
final accuracy, and ∆Accuracy is change from initial to final accuracy. Accuracy and F1 score
metrics are much lower for random sampling (RS) than the uncertainty sampling (US).
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A.9 WARM ABLATION EXPERIMENTS ON DATASET SIZE AND DOWNSTREAM MODELS

For the rest of our experiments, we created synthetic datasets using sklearn’s
make classification5 method. The datasets comprise of clusters of points normally
distributed (with standard deviation 1) about vertices of a 25-dimensional hypercube with sides of
length 2, with an equal number of clusters (= 5) to each class. We used 25 decision tree stumps
as LFs. In order to automatically create the simple LFs, we followed the same procedure outlined
in Section 4.1, with the only difference being that the Random Forest classifier was trained using
250 data points sampled from the training dataset. This was done to ensure that WARM received
the same amount of weak supervision regardless of the size of the dataset, and the differences in
performance were solely due to the size of the dataset and not the quality of weak supervision.

Downstream Model Dataset size Methods Accuracy ∆Accuracy F1

Logistic Regression

1000 Active learning 57.70± 2.01 7.70± 2.01 62.55± 4.30
WARM 58.79± 1.70 0.36± 2.30 58.51± 3.88

5000 Active learning 56.88± 1.12 6.88± 1.12 48.64± 2.06
WARM 58.80± 2.89 −2.96± 4.99 46.81± 11.11

10000 Active learning 54.14± 1.19 4.14± 1.19 54.10± 14.08
WARM 61.20± 0.98 1.75± 1.36 67.98± 1.08

20000 Active learning 62.35± 1.55 12.35± 1.55 63.86± 0.76
WARM 62.73± 0.91 0.22± 1.07 61.82± 4.97

Multi-Layer Perceptron

1000 Active learning 56.79± 2.38 6.79± 2.38 51.09± 4.15
WARM 58.67± 1.87 2.30± 4.69 57.87± 4.22

5000 Active learning 60.27± 1.76 10.27± 1.76 52.24± 0.59
WARM 58.70± 2.21 −1.13± 2.57 44.82± 10.96

10000 Active learning 55.28± 2.04 5.28± 2.04 63.70± 2.60
WARM 61.82± 1.01 1.65± 1.16 68.24± 1.11

20000 Active learning 60.10± 1.17 10.10± 1.17 57.41± 5.04
WARM 62.90± 0.97 0.05± 1.53 62.11± 4.87

Random Forests

1000 Active learning 55.64± 1.64 5.64± 1.64 59.37± 8.67
WARM 58.91± 1.42 0.48± 1.82 59.08± 4.09

5000 Active learning 59.02± 1.87 9.02± 1.87 61.98± 2.09
WARM 56.29± 2.34 −3.35± 5.32 41.49± 12.12

10000 Active learning 55.71± 2.17 5.71± 2.17 56.82± 11.39
WARM 60.25± 1.38 1.52± 1.50 67.37± 1.64

20000 Active learning 56.42± 2.19 6.42± 2.19 44.88± 4.35
WARM 62.05± 1.07 0.52± 1.76 61.24± 5.66

Table 15: Testing performance of different downstream models on datasets of different sizes. Ac-
curacy is final accuracy, and ∆Accuracy is change from initial to final accuracy. Due to the
complexity of the dataset, WARM outperforms Active learning on most occasions. Moreover,
WARM’s performance improves as the size of the dataset increases, as it is able to better estimate the
accuracies of LFs.

5https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_classification.html
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A.10 WARM EXPERIMENTS ON COMPLEXITY OF DATASET

The following results are reported on a datasets with 10000 samples and varying numbers of clusters
per class, created using sklearn’s make classification method. The number of clusters
per class controls the complexity of the problem, and more clusters per class is a harder classification
problem than fewer clusters per class. The weak supervision sources were created in exactly the
same way as mentioned in the previous section.

Downstream Model Complexity Methods Accuracy ∆Accuracy F1

Logistic Regression

8 Active learning 55.45± 1.34 5.45± 1.34 62.99± 9.72
WARM 60.30± 3.26 3.70± 2.96 54.29± 12.00

6 Active learning 61.45± 4.55 11.45± 4.55 49.31± 10.97
WARM 63.09± 2.24 −1.09± 2.41 55.64± 8.66

4 Active learning 53.76± 5.58 3.76± 5.58 59.41± 5.17
WARM 59.88± 1.06 5.52± 1.69 63.93± 3.02

2 Active learning 80.67± 3.04 30.67± 3.04 80.07± 3.15
WARM 76.73± 2.18 0.18± 1.88 76.52± 4.43

Table 16: Testing performance of downstream models on datasets with increasing complexity. Ac-
curacy is final accuracy, and ∆Accuracy is change from initial to final accuracy. The more clusters
per class, the more complex the dataset is, as can also be seen by the deteriorating performance of
the models. When the dataset is less complex, Active learning does well, but as the complex-
ity increase WARM does better. We expect Active learning to take many more data points to
learn decision boundaries in more complex datasets.
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