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Abstract

Graph Coarsening (GC) is a prominent graph reduction technique that com-
presses large graphs to enable efficient learning and inference. However, existing
GC methods generate only one coarsened graph per run and must recompute from
scratch for each new coarsening ratio, resulting in unnecessary overhead. Moreover,
most prior approaches are tailored to homogeneous graphs and fail to accommodate
the semantic constraints of heterogeneous graphs, which comprise multiple node
and edge types. To overcome these limitations, we introduce a novel framework
that combines Locality-Sensitive Hashing (LSH) with Consistent Hashing to en-
able adaptive graph coarsening. Leveraging hashing techniques, our method is
inherently fast and scalable. For heterogeneous graphs, we propose a type-isolated
coarsening strategy that ensures semantic consistency by restricting merges to
nodes of the same type. Our approach is the first unified framework to support both
adaptive and heterogeneous coarsening. Extensive evaluations on 23 real-world
datasets—including homophilic, heterophilic, homogeneous, and heterogeneous
graphs demonstrate that our method achieves superior scalability while preserving
the structural and semantic integrity of the original graph. Our code is available
here.

1 Introduction

Graphs are ubiquitous and have emerged as a fundamental data structure in numerous real-world
applications [1-3]. Broadly, graphs can be categorized into two types: (a) Homogeneous graphs
[4-6], which consist of a single type of nodes and edges. For instance, in a homogeneous citation
graph, all nodes represent papers, and all edges represent the “cite” relation between them; (b)
Heterogeneous graphs [7-9], which involve multiple types of nodes and/or edges, enabling the
modeling of richer and more realistic interactions. For example, in a recommendation system, a
heterogeneous graph may contain nodes of different types, such as users, items, and categories, and
edge types such as “(user, buys, item)”, “(user, views, item)”, and “(item, belongs-to, category)”.
Although many real-world datasets are inherently heterogeneous, early research in graph machine
learning predominantly focused on homogeneous graphs due to their modeling simplicity, availabil-
ity of standardized benchmarks, and theoretical tractability [10, 11]. However, the limitations of
homogeneous representations in capturing rich semantic information have shifted attention toward
heterogeneous graph modeling [8, 12].

As real-world networks continue to grow rapidly in size and complexity, large-scale graphs have
become increasingly common across various domains [1, 13—15]. This surge in scale poses signifi-
cant computational and memory challenges for learning and inference tasks on such graphs. This
underscores the growing importance of developing efficient and effective methodologies for process-
ing large-scale graph data. To address the issue, an expanding line of research investigates graph
reduction methods that compress structures without compromising essential properties. Most existing
graph reduction techniques, including pooling [16], sampling-based [17], condensation [18], and
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Figure 1: AH-UGC consists of three modules: (a) Mysu constructs an augmented feature matrix by combining
node features and structural context using a heterophily-aware factor «, enabling support for both homophilic
and heterophilic graphs. Inspired by UGC [4], we use LSH projections to compute node hash indices via
z/}(hpkll) (see Section 3); (b) Mcu applies consistent hashing to merge nodes clockwise based on a target
coarsening ratio r, yielding the coarsening matrix C; (c) the coarsened graph G. is obtained via A, = C ' AC.
The framework is inherently adaptive— i.e., once an intermediate coarsening is obtained, further reduction can be
applied incrementally using Mcy and already calculated coarsening matrix C, enabling efficient multi-resolution
processing.

coarsening-based methods [4, 19, 20]. Coarsening methods have demonstrated effectiveness in
preserving structural and semantic information [4, 19, 20], this study focuses on graph coarsening
(GC) as the primary reduction strategy. Despite advancements in existing GC frameworks, two key
challenges remain:

» Lack of “Adaptive Reduction”. Many applications, such as interactive visualization and real-time
recommendations, benefit from multi-resolution graph representations. These scenarios often
require dynamically adjusting the coarsening ratio based on user interaction or task demands.
However, most existing methods generate a single fixed-size coarsened graph and must recompute
from scratch for each new ratio, incurring high overhead. This highlights the need for adaptive
coarsening frameworks that enable efficient, progressive refinement without redundant computation.

* Lack of “Heterogeneous Graph Coarsening” Framework. Existing methods typically assume
homogeneous node types, making them unsuitable for heterogeneous graphs with semantically
distinct nodes. This can result in invalid supernodes for example, merging an author with a paper
node in a citation graph thus violating type semantics. Moreover, node types often have different
feature dimensions, which standard coarsening techniques are not designed to handle.

Key Contribution. To address the dual challenges of adaptive reduction and heterogeneous GC,
we propose AH-UGC, a unified framework for Adaptive and Heterogeneous Universal Graph
Coarsening. We integrate locality-sensitive hashing (LSH) [4, 21, 22] with consistent hashing (CH)
[23, 24]. While LSH ensures that similar nodes are coarsened together based on their features and
connectivity, CH—a technique originally developed for load balancing—enables us to design a
coarsening process that supports multi-level adaptive coarsening without reprocessing the full graph.
To handle heterogeneous graphs, AH-UGC enforces type-isolated coarsening, wherein nodes are first
grouped by their types, and coarsening is applied independently within each type group. This ensures
that nodes and edges of incompatible types are never merged, preserving the semantic structure of the
original heterogeneous graph. Additionally, AH-UGC is naturally suited for streaming or evolving
graph settings, where new nodes and edges arrive over time. Our LSH- and CH-based method allows
new nodes to be integrated into the existing coarsened structure with minimal recomputation. To
summarize, AH-UGC is a general-purpose graph coarsening framework that supports adaptive,
streaming, expanding, heterophilic, and heterogeneous graphs.

2 Background
Definition 2.1 (Graph) A graph is represented as G(V, A, X), where V. = {v1,...,un} is

the set of N nodes, A € RN*N is the adjacency matrix, and X € RN*? is the node fea-



71
72
73

74

75
76

77
78

79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

95

96
97

98
99
100
101
102

103

104
105
106

107

108
109

110
111

112
113
114

ture matrix with each row X; € R? denoting the feature vector of node v;. An edge be-
tween nodes v; and v; is indicated by A;; > 0. Let D € RN*N be the degree matrix with
Dy =3 ; Ajj, and let L = D — A denote the unnormalized Laplacian matrix. L € Sy, where

Sy = {L € RVXN ‘ Lij = Lj; <0fori# j; Ly = _Zj;éiLij} . For i # j, the matrices are

related by A;; = —L;;, and A;; = 0. Hence, the graph G(V, A, X) may equivalently be denoted
G(L, X)), and we use either form as contextually appropriate.

Definition 2.2 A heterogeneous graph can be represented in two equivalent forms, with either
representation utilized as required within the paper.

» Entity-based: A heterogeneous graph extends the standard graph structure by incorporating
multiple types of nodes and/or edges. Formally, a heterogeneous graph is defined as G(V, E, ®, V),
where ® : V — Ty and V : E — Tg are node-type and edge-type mapping functions, respectively
[9]. Here, Ty and Tg denote the sets of possible node types and edge types. When the total
number of node types | Ty | and edge types | Tg| is equal to 1, the graph degenerates into a standard
homogeneous graph (Definition 2.1).

o Type-based: Alternatively, —a  heterogeneous graph can be described as
G ({Xnode_type) }» { Atedge_ype) }» {Yttarger_ype) ), Where  feature matrices X, adjacency matri-
ces A, and target labels y are grouped and indexed by their corresponding node, edge, and target
types [25].

Definition 2.3 Following [4, 19, 20], The Graph Coarsening (GC) problem involves learning a
coarsening matrix C € RNX" wwhich linearly maps nodes from the original graph G to a reduced

graph G, i.e., V. — V. This linear mapping should ensure that similar nodes in G are grouped into
the same super-node in G, such that the coarsened feature matrix is given by X = C* X. Each
non-zero entry C;; denotes the assignment of node v; to super-node v;. The matrix C must satisfy the
following structural constraints:

S={CeR™™ C;e{0,1}, |Gl =1, (€] .C]) =0Vi#j, (C1,C1) = dgs, [IC lo > 1}

7 ) J
where d‘~/’ means the number of nodes in the 1*"-supernode. The condition (cr, C]T> = 0 ensures
that each node of G is mapped to a unique super-node. The constraint ||C¥'||o > 1 requires that each
super-node contains at least one node.

2.1 Problem formulation and Related Work
We formalize the problem through two key objectives: Goal 1. Adaptive Coarsening and Goal 2.
Graph Coarsening for Heterogeneous Graphs.

1: Model-Agnostic 2: Linear Time 3: Heterophilic 4: Heterogeneous 5: Adaptive 6: Streaming

23456

Goal 1. The objective is to compute multiple coarsened

graphs {G{"}_| from input graph G(V;, A, X), where each

£") corresponds to a target coarsening ratio » € (0, 1], with-

out recomputing from scratch for each resolution. Formally,
the goal is to construct a family of coarsening matrices

{c" ¢ RNX”(T)} such that

X = (C(T))TX, Al — (C(T))TAC(T)7 Figure 2: Comparison of capability support
across existing GC methods.
with the constraint that all C(") are derived from a single, shared projection s = HASH(X), thereby

ensuring consistency across coarsening levels and enabling adaptive GC.

Total Capabilities Supported Eout of 6)

Goal 2. The objective is to learn a coarsening matrix C € RV*" such that the resulting coarsened
graph G.(V, E, ®, ) satisfies the following constraints:

(W) = ®(v;), VU; € V,Vu; € 71 (7),
@(@ﬂk) €Tg onlyif 3I(v;,v) € Es.tw(v;) =0y, m(v) = Vg,

where 7 : V — V is the node-to-supernode mapping induced by C. These constraints guarantee
that: a) nodes of different types are not merged into the same supernode, and b) edge types between
supernodes are consistent with the original heterogeneous schema.
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Related Work. Graph reduction methods have been extensively studied and can be broadly catego-
rized into optimization-based and GNN-based approaches. Among optimization-driven heuristics,
Loukas’s spectral coarsening methods [20] including edge-based (LVE) and neighborhood-based
(LVN) variants aim to preserve the spectral properties of the original graph. Other techniques, such
as Heavy Edge Matching (HEM)[17, 26], Algebraic Distance[27], Affinity [28], and Kron reduc-
tion [29], rely on topological heuristics or structural similarity principles. FGC [19] incorporates node
features to learn a feature-aware reduction matrix. Despite their diverse designs, a common drawback
of these methods is that they are computationally demanding, often with time complexities ranging
from O(n?) to O(n?), and are not well suited for large-scale or adaptive graph reduction settings.
UGC [4], a recent LSH-based framework, addresses these challenges by operating in linear time
and supporting heterophilic graphs. However, it produces only a single coarsened graph and must
recompute reductions for different coarsening levels, limiting its adaptability. GNN-based condensa-
tion methods like GCond [30] and SFGC [31] learn synthetic graphs through gradient matching but
require full supervision, are model-specific, and lack scalability. HGCond [25] is the only approach
designed for heterogeneous graphs, yet it inherits the inefficiencies of condensation-based techniques.

While some methods are model-agnostic, others offer partial support for heterophilic or streaming
graphs. Yet, no existing approach simultaneously addresses all these challenges—model-agnosticism,
adaptability, and support for heterophilic, heterogeneous, and streaming graphs. As illustrated in
Figure 2, HA-UGC is the first framework to meet all six criteria comprehensively. For details on LSH
and consistent hashing, see Appendix B.

3 The Proposed Framework: Adaptive and Heterogeneous Universal Graph

Coarsening
In this section we propose our framework AH-UGC to address the issues of adaptive and heteroge-
neous graph coarsening. Figure 1 shows the outline of AH-UGC.

3.1 Adaptive Graph Coarsening(Goal 1)

The AH-UGC pipeline closely follows the recently proposed structure of UGC but incorporates
consistent hashing principles to enable adaptive i.e., multi-level coarsening. Our framework introduces
an innovative and flexible approach to graph coarsening that removes the UGC’s dependency on
fixed bin widths and enables the generation of multiple coarsened graphs. Similar to UGC [4],
AH-UGC employs an augmented representation to jointly encode both node attributes and graph
topology. For a given graph G(V, A, X)), we compute a heterophily factor o« € [0, 1], which quantifies
the relative emphasis on structural information based on label agreement between connected nodes

ie,a= % This factor is then used to blend node features X; and adjacency vectors

A;. For each node v; we calculate F; = (1 — «) - X; @ « - A; where & denotes concatenation.
This hybrid representation ensures that both local attribute similarity and topological proximity are
captured before the coarsening process. Importantly, this design enables our framework to handle
heterophilic graphs robustly by incorporating structural properties beyond mere feature similarity.

Adaptive Coarsening via Consistent and LSH Hashing. Let F; € R? denote the augmented
feature vector for node v;. AH-UGC applies [ random projection functions using a projection matrix
W e R%*! and bias vector b € R, both sampled from a p-stable distribution [32]. The scalar hash
score for each projection for i*" node is given by:

S =Wh-Fi+by, Vee{l,...,1}

UGC relies on a bin-width parameter () to control the coarsening ratio (R), but determining
appropriate bin-widths for different target ratios can be computationally expensive. In contrast,
AH-UGC eliminates the need for bin width by leveraging consistent hashing. Once the hash scores
(s;) across projections are computed, AH-UGC enables efficient construction of coarsened graphs
at multiple coarsening ratios without requiring reprocessing, making it well-suited for adaptive
settings. We define an AGGREGATE function to combine projection scores across multiple random
projectors. For each node i, the final score s; is computed as:

l
s = AGGREGATE ({s},_, ) = % A
k=1

Alternative aggregation functions such as max, median, or weighted averaging can also be used,
depending on the design objectives. After computing the scalar hash scores {s;} for all nodes v; € V,
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we sort the nodes in increasing order of s; to form an ordered list £, represented as a list of super-node
and mapped nodes: £ = [{uq : {v1}}, {ua : {va}}, ..., {un : {vn}}], where each key u; denotes a
super-node index, and the associated value is the set of nodes currently assigned to that super-node.

Initially, each node is its own super-node, and the number of super-nodes is |VC(O) | = |V|. Ateach
iteration ¢, a super-node u; is randomly selected from the current list L£® and merged with its
immediate clockwise neighbor ;1. The updated super-node entry is given by:

ﬂ(t+1)[j] _ {Uj . [Uj] uL® [’u]‘+1]}a

followed by the removal of u;,, from the list. This reduces the number of super-nodes by one:

|Vc(t+1) | = |Vc(t) | — 1. The process is repeated until the desired coarsening ratio is reached: R = ‘I“//C\‘ .

Furthermore, this coarsening strategy is inherently adaptive, enabling transitions between any two
coarsening ratios R — T directly from the sorted list without reprocessing.

Since the list £ is constructed using locality-sensitive hashing (LSH) principles [32], similar nodes
are positioned adjacently. Through Theorem 3.1 and Lemma 1, we show that the clockwise merging
operations in Consistent Hashing (CH) are locality-aware and effectively preserve feature similarity.

Theorem 3.1 Let =,y € R? and let the projection function be defined as: h(z) =

25:1 rjx, 1y ~N(0,1q) iid. Then the difference h(xz) — h(y) ~ N(0, €|z —y||*), and for any

e>0:

Pr{|h(z) — h(y)| < €] = erf (\/ﬂ”i_y”>

Proof: The proof is deferred in Appendix D.
This gives the probability that two nodes, initially close in the feature space, are projected within an
e-range in the projection space.

Lemma 1 Let x,y, 2 € RY with ||z — y|| < ||x — z||. Then the probability that a distant point z
lies between x and y after projection is:

lz —yll
Prlh(z) < h(z) < h(y)] < ® (
Vlz — 2|
where ® is the cumulative distribution function (CDF) of the standard normal distribution. This
result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,
preserving the structural consistency of coarsened regions.

Remark 1 Our framework also supports de-coarsening i.e., given the final sorted list and merge
history, the graph can be reconstructed to finer resolutions by reversing the merging process. However,
in this work, we restrict our focus to the coarsening direction only.

Construction of Coarsening Matrix C. Given the score-based node assignments 7 : V' — V, where
[v;] is the super-node index of v;, the binary coarsening matrix C € {0, 1}V *" is defined such that
Cij = 1if m[v;] = v, and C;; = 0 otherwise. Each entry C;; of the coarsening matrix is set to 1 if
node v; is assigned to super-node v;. Since each node receives a unique hash value h;, it is exclusively
mapped to a single super-node. This one-to-one assignment guarantees that every super-node has at
least one associated node. As a result, each row of C contains exactly one non-zero entry, ensuring
that its columns are mutually orthogonal. The matrix C therefore adheres to the structural properties
defined in Equation 2.3. The adaptiveness of C stems from its sensitivity to local projection scores
rather than fixed bin constraints.

Construction of the Coarsened Graph G.. The final coarsened graph G, = (‘7, A, ﬁ) is constructed
from the coarsening matrix C. Two super-nodes v; and v; are connected if there exists at least one
edge (u,v) € E withu € 771(9;) and v € 7~1(v;). The weighted adjacency matrix is obtained
via matrix multiplication: A = CT AC. The super-node features are computed as the average of
the features of the original nodes merged into the super-node: F; = W > uen—1(5;) Fu- This
ensures that the coarsened representation preserves the aggregate semantic and structural content of

its constituent nodes. Since each super-edge aggregates multiple edges from the original graph, Ais
significantly sparser than A, leading to lower memory and computation requirements downstream.
Algorithm 1 in Appendix G outlines the sequence of steps in our AH-UGC framework.
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3.2 Heterogeneous Graph Coarsening
In this section, we present AH-UGC’s capability to handle heterogeneous graphs. Given a heteroge-
neous graph,

g (A{A(author, write, paper) s A(reader, read, paper)}7 X{X(author)a X(reader)a X(paper)}7 Y{Y(paper)})v

AH-UGC proceeds by first partitioning G by node type and independently applying the coarsening
framework to each subgraph. This ensures that only semantically similar nodes are grouped into
supernodes and that type-specific structure and features are preserved. Our approach naturally
supports varying feature dimensions and allows different coarsening ratios 7ype across node types.
Figure 7 in Appendix H illustrates this process, highlighting how AH-UGC preserves semantic
meaning compared to other GC methods that merge heterogeneous nodes indiscriminately.

Construction of the Coarsened Heterogeneous Graph G.. The output of AH-UGC consists of a
set of coarsening matrices

Co = {Cay € {0, 1}V Violy o

each of which maps original nodes of type ¢ i.e., V) to their corresponding super-nodes 17@). Using
these mappings, we construct the coarsened graph

Ge (A{A(author, write, paper) s A(reader, read, paper) }7 X{X(author) ) X(reader) ) X(paper) }7 Y{g(paper) }) )

For each node type ¢, the coarsened feature matrix is computed as: X ;) = C(y) - X(;), where rows
of C(;) are row-normalized so that super-node features represent the average of their constituent
nodes. The label matrix (paper) is computed by majority voting over the labels of nodes merged
into each super-node. To compute the coarsened edge matrices, for each edge type 7. € Tg, we
consider the interaction between supernodes of types node-type; and node-type,, corresponding to

the edge relation e = (node-type;, 7c, node-type,) € E. The coarsened adjacency matrix A is
then computed as:

A(e) = C(node-typel) . A(e) : Cgl;Ode—typeQ)'

This formulation accumulates the edge weights between the original nodes to define the inter-
supernode connections, thereby preserving the structural connectivity patterns between different
node-types of the original graph. Since each edge type is coarsened independently based on the map-
pings from its corresponding node types, G. preserves the heterogeneous semantics and topological
relationships of the original graph G. Algorithm 2 in Appendix G outlines the sequence of steps in
our AH-UGC framework. By leveraging consistent hashing, our method ensures balanced supernode
formation. Theorem 3.2 provides a probabilistic upper bound on the number of nodes mapped to any
supernode, thereby guaranteeing load balance across supernodes with high probability.

Theorem 3.2 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n — k random rightward merges in the sorted list. Then, for any constant ¢ > 0, the maximum
number of nodes in any supernode S; satisfies:

n(logk + ¢)

n
P g <2
rmiax| \_k—i— -

>1—e¢

Proof: The proof is deferred in Appendix C.

4 Experiments

We conduct comprehensive experiments to evaluate the effectiveness of AH-UGC. First, we validate
its ability to perform adaptive graph coarsening. Second, we assess the quality of coarsened graphs
using node classification accuracy and spectral similarity. Finally, we demonstrate AH-UGC’s
generalizability by evaluating its performance on heterogeneous graphs.

Datasets: We experiment on 23 widely-used benchmark datasets grouped into four categories:

* Homophilic: Cora,Citeseer, Pubmed [33], CS, Physics [34], DBLP [35];
* Heterophilic: Squirrel, Chameleon, Texas, Cornell, Film, Wisconsin [36-39], Penn49, deezer-
europe, Amherst41, John Hopkins55, Reed98 [11];
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* Heterogeneous: IMDB, DBLP, ACM [7, 25],
» Large-scale: Flickr, Yelp, [14] ogbn-arxiv [6] , Reddit [40].

These datasets enable us to evaluate all six key components outlined in Section 2.1. For detailed
dataset statistics and characteristics, refer to Table 5 in Appendix A.

System Specifications: All experiments are conducted on a server equipped with two NVIDIA RTX
A6000 GPUs (48 GB memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.

Table 1: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of coarsening
ratios of R = {55, 50, 45, 40, 35, 30, 25, 20, 15, 10}. The best and the second-best accuracies in each row are

highlighted by dark and lighter shades of , respectively. “OOT” indicates out-of-time or memory errors.
Dataset VAN VAE VAC HE aJC aGS Kron  FGC LAGC UGC ‘ AH-UGC
Cora 19 13 29 9 13 30 9 Oo0oT OO0T 30 7
Citeseer 28 23 37 21 22 31 20 OO0T OOT 28 6
DBLP 162 138 388 204 206 1270 184 OoOoT OooT 131 20
PubMed 166 224 510 213 231 2351 155 OO0T OOT 137 29
CS 174 237 343 216 256 1811 204 OO0T OOT 233 23
Physics 411 798 943 705 906 9341 755 OO0T  OO0T 331 54
Texas 1.59 0.91 2.66 0.77  0.96 1.32 0.8 o0oT OO0T 11 0.73
Cornell 1.76 0.99 272 0.86 1.11 1.35 0.68 OO0T OOT 9 0.79
Chameleon 31 17 104 20 32 82 15 O0T OO0T 21 6.73
Squirrel 384 61 398 66 342 1113 68 ooT OO0T 53 4.69
Film 64 34 255 36 44 257 30 OO0T OOT 92 11
Flickr 1199 2301 24176 2866 3421 59585 2858 OO0T OO0T 187 51
ogbn-arxiv OO0T 00T 00T OO0T 00T 00T Oo0oT OO0T OO0T 1394 185
Reddit OOT OOT OO0T OOT OOT OOT OO0T OO0T OOT 1595 290
Yelp OO0T 00T OO0T OO0T 00T OO0T OoO0T OO0T OO0T 6904 1374

4.1 Adaptive Coarsening Run-Time.

Given a graph G, we evaluate AH-UGC’s abil- o prfscion rodmi Wadaten
ity to adaptively coarsen it to multiple resolu- B v

tions, targeting a set of coarsening ratios R =
{55, 50,45, 40, 35, 30, 25,20, 15,10}. As described in
Section 3, AH-UGC leverages LSH and consistent hash- .
ing to group similar nodes into supernodes, enabling the o
construction of multiple coarsened graphs in a single pass. o
This adaptivity significantly reduces computational over-
head compared to existing methods, which typically re- ' £

quire reprocessing the entire graph for each target reso-
lution. The computational advantages of our approach
are evident in Table 1, where AH-UGC outperforms all
baseline methods by a significant margin, achieving the lowest coarsening time across all datasets and
coarsening ratios, while maintaining scalability even on large-scale graphs where other methods fail.

Prl|z| = €]

Figure 3: Empirical proof that two feature
vectors remain close in projection space.

4.2 Spectral Properties Preservation.

Following the experimental setup of [4, 19, 20] we use Hyperbolic Error (HE), Reconstruction
Error (RcE) and Relative Eigen Error (REE) to indicate the structural similarity between G and
G.. A more detailed discussion about these properties is included in Appendix F. Across three
spectral evaluation metrics AH-UGC delivers performance that is comparable to, and in several cases
surpasses, state-of-the-art methods, see Table 2. While there are minor dips in performance on a few
datasets, this trade-off can be justified given the significant computational efficiency and scalability
gains offered by our framework. These results underscore that AH-UGC achieves strong structural
fidelity without compromising on runtime, making it especially suitable for large-scale or adaptive
coarsening scenarios.

LSH and consistent hashing results. We empirically validates Theorem 3.1, see Figure 3. As
e increases, Pr [|h(z) — h(y)| < €] approaches 1, consistent with the theoretical erf-based bound.
These results justify the use of consistent hashing, where each node is merged with its nearest
clockwise neighbor. Theorem 3.1 and Figure 3 together guarantee that similar nodes are projected to
nearby locations and are thus highly likely to be merged into a supernode.



288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308

309
310

Table 2: Illustration of spectral properties preservation, including HE, RcE and REE at 50% coarsening ratio.

Dataset VAN VAE VAC HE alC aGS Kron UGC AH-UGC

HE DBLP 2.20 2.07 221 221 212 2.06 2.24 2.10 1.99
Error Pubmed 2.49 3.33 3.46 319 277 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 2.72 1.52 1.92 2.01 1.87 0.69 0.82
Chameleon 2.77 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71

ReC DBLP 4.94 4.89 5.03 506 5.03 4.73 5.08 5.24 5.11
Error Pubmed 4.48 5.13 5.14 508 5.03 4.78 4.99 4.60 4.43
Squirrel 1036 9.90 1031 913 9.88  10.00 9.39 9.09 9.07
Chameleon 7.90 7.72 8.05 7.55 752 7.58 7.13 7.40 7.16

REE DBLP 0.10 0.05 0.13 0.07  0.06 0.03 0.18 0.44 0.32
Error Pubmed 0.05 0.97 0.88 071 048 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 044 034 0.36 0.48 0.05 0.07
Chameleon 0.76 0.69 0.67 038 0.38 0.35 0.52 0.09 0.12

Table 3: Node classification accuracy across various datasets and models at 50% coarsening ratio.

Dataset Model VAN VAE VAC HE alC aGS Kron UGC AH-UGC ‘ Base
Citeseer GCN 5990 6036 5840 6126  60.81 61.26  62.76 65.31 65.46 | 70.12
SAGE 66.51 65.01 64.41 63.96  66.06 6531 63.51 61.71 64.26 74.47
APPNP 62.16 6336 6246  60.21 62.91 63.81 63.21 68.61 69.06 | 73.12
PubMed GCN 7434 7246 7406 71.72 6736 7287  69.59 84.66 85.47 87.60
SAGE 7436  73.04 73.68 6645 69.04 7406 71.70 87.34 72.16 88.28
APPNP 7634  77.00 7355 7555 7175 76.72 7046 85.64 85.80 87.88
Physics GCN 9475  94.62 9457 9473 9439 9475 9440 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 9597 96.04 96.18 96.01 95.21 95.78 96.44
APPNP 96.20 96.20 | 96.28 96.11 9597  96.07 96.21 96.17 96.10 | 96.28
Chameleon  SGC 38.60 51.58 4579 5491 52.63  53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 5140 4333 5035 49.82 4930 5439 58.25 58.60 | 63.16
GPR-GNN 40.53 4632 41.05 39.64 4035 43.68 51.05 54.74 52.28 55.04
Cornell SGC 6724  67.09 6826 68.02 6835 69.02 6833 76.68 76.08 72.78
Mixhop 66.79  67.67 67.14 6607 6645  66.71 66.41 70.64 71.61 76.49
GPR-GNN 6498 6427  65.17 6500 6355 63.67 6348 69.66 68.00 | 67.46
Penn9%4 SGC 6293 6233 6223 62.13 6352 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62 6935 6836 6798 6840 67.98 73.36 72.13 80.28
GPR-GNN 68.18 68.19 68.36 6820 67.77 68.15  68.11 67.93 68.55 79.43

4.3 Node Classification Accuracy

Graph Neural Networks (GNNs) are widely used for node classification tasks [5, 40-42], where the
goal is to predict labels for nodes based on both node features and the underlying graph structure. In
this context, we evaluate the effectiveness of AH-UGC by examining how well it preserves predictive
performance when downstream models are trained on coarsened graphs [43]. Specifically, we
train several GNN models on the coarsened version of the original graph while evaluating their
performance on the original graph’s test nodes. As discussed earlier, our experimental setup spans
a diverse collection of datasets, each with distinct structural characteristics. Following established
practice in the literature, we employ different GNN backbones tailored to each graph type. For
“homophilic” datasets, we use GCN [5], Sage [40], GAT [41], GIN [42] and APPNP [43], which are
well-suited to leverage dense neighborhood similarity. For “heterophilic” datasets, we adopt GPRGNN
[44], MixHop [45], H2GNN [46], GCN-II [47], GatJK [48] and SGC [49], which are designed to
handle weak or inverse homophily. For “heterogeneous” graphs, we use HeteroSGC, HeteroGCN,
HeteroGCN2 [25] models that respect node and edge types during message passing. Complete
architectural and hyperparameter details are provided in Appendix E. Due to space constraints, Table
3 reports node classification accuracy for homophilic and heterophilic graphs on a representative
subset of datasets and GNN models. Please refer to Table 8 in Appendix E for comprehensive results
across additional datasets and architectures. The AH-UGC framework consistently delivers results
that are either on par with or exceed the performance of existing coarsening methods. As shown in
Table 3, the framework is independent of any particular GNN architecture, highlighting its robustness
and model-agnostic characteristics.

Performance on Heterogeneous Graphs: As outlined in Section 3, conventional graph coarsening
techniques struggle with preserving the semantic integrity of heterogeneous graphs. In contrast,
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Table 4: Node classification accuracy (%) for heterogeneous datasets at 30% coarsening ratio.

Dataset Model VAN VAE VAC HE aJ]C aGS Kron UGC AH-UGC \ Base
IMDB  HeteroSGC 2742 2730 2742 2742 2742 2730 2742 50.05 574 66.74
HeteroGCN 3578 36.05 35.82 3546 35.7 35.7 3593 37.33 57.75 61.72
HeteroGCN2 35.78 35.82 3582 3582 3582 3582 3582 37.65 58.57 63.47
DBLP  HeteroSGC 3095 2943 2943 53.07 56.65 2943 2943 37.06 @79.18 94.10
HeteroGCN 3238 31.77 3275 3275 33 3546 31.28 63.66 66.74 84.18
HeteroGCN2 31.69 31.52 31.77 33.25 31.12 32.01 32.63 39.08 66 79.33
ACM HeteroSGC 84.46 4231 OOT 3454 4231 3454 4231 63.63 59 92.06
HeteroGCN 36.52 352 OOT 35.7 35.2 3553 35.1 38.51 84.95 92.72
HeteroGCN2 38.67 37.35 OOT 36.19 3735 35.04 3735 42.64 83.47 92.72

AH-UGC explicitly enforces type-aware coarsening, ensuring that supernodes are composed of nodes
from a single type, thus maintaining the heterogeneity semantics. Table 4 presents node classification
accuracies across various heterogeneous GNN models. AH-UGC consistently outperforms other
methods due to its ability to preserve type purity within supernodes. This structural consistency
enables all tested GNN architectures to achieve significantly higher classification performance.
Figure 4 illustrates the degree of supernode impurity for each method. Each bar corresponds to a
supernode and depicts the percentage distribution of node types within it. While supernodes generated
by AH-UGC are entirely type-pure, those produced by baseline methods exhibit substantial cross-type
mixing, leading to semantic drift and reduced model performance. Figure 5 analyzes the effect of
increasing coarsening ratios on node classification accuracy. As expected, all methods experience
performance degradation with aggressive coarsening. However, the drop is exponential for existing
approaches due to rising impurity levels. In contrast, AH-UGC maintains structural purity across
coarsening levels, resulting in a gradual, near-linear decline in accuracy. This robustness demonstrates
AH-UGC'’s superior capacity to coarsen heterogeneous graphs while preserving their semantic and
structural fidelity.
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Figure 4: Supernode impurity across AH-UGC (left), UGC (center) and VAN (right) on IMDB dataset. Different
colors represent different node types(Movie, Director, Actor).
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Figure 5: Node classification accuracy on the hDBLP dataset under decreasing coarsening ratios for three
heteroGNN models: HeteroSGC (left), HeteroGCN (center), and HeteroGCN2 (right).

5 Conclusion

In this paper, we propose AH-UGC, a unified framework for adaptive and heterogeneous graph
coarsening. By integrating Locality-Sensitive Hashing (LSH) with Consistent Hashing, AH-UGC
efficiently produces multiple coarsened graphs with minimal overhead. Additionally, its type-
aware design ensures semantic preservation in heterogeneous graphs by avoiding cross-type node
merges. The framework is model-agnostic, scalable, and capable of handling both heterophilic and
heterogeneous graphs. We demonstrate that AH-UGC preserves key spectral properties, making it
applicable across diverse graph types. Extensive experiments on 23 real-world datasets with various
GNN architectures show that AH-UGC consistently outperforms existing methods in scalability,
classification accuracy, and structural fidelity.
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A Datasets

We experiment on 24 widely-used benchmark datasets grouped into four categories: (a) Homophilic:
Cora ,Citeseer, Pubmed [33], CS, Physics [34], DBLP [35]; (b) Heterophilic: Squirrel, Chameleon,
Texas, Cornell, Film, Wisconsin [36-39], Penn49, deezer-europe, Amherstd41, John Hopkins55,
Reed98 [11]; (c) Heterogeneous: IMDB, DBLP, ACM [7, 25]; and (d) Large-scale: Flickr, Yelp,
[14] ogbn-arxiv [6] , Reddit [40]. These datasets enable us to evaluate all six key components
outlined in Section 2.1. Please refer to Table 5 and 6 for detailed dataset statistics and characteristics.

Table 5: Summary of the datasets.

Category Data Nodes Edges Feat. Class H.R(«)
Cora 2,708 5,429 1,433 7 0.19
Citeseer 3,327 9,104 3,703 6 0.26
Homophilic DBLP 17,716 52,867 1,639 4 0.18
dataset CS 18,333 163,788 6,805 15 0.20
PubMed 19,717 44,338 500 3 0.20
Physics 34,493 247,962 8415 5 0.07
Texas 183 309 1703 5 0.91
Cornell 183 295 1703 5 0.70
Heterophilic Fi!m 7600 33544 931 5 0.78
dataset Squirrel 5201 217073 2089 5 0.78
Chameleon 2277 36101 2325 5 0.75
Penn9%4 41,554 1.36M 5 2 0.53
Deezer-europe 28,281 185.5k  31.24k 2 -
Ambherst41 2235 181.9k 1193 3 -
John-Hopkin55 41,554 2.M 4,814 3 -
Reed98 962 37.6k 745 3 -
Flickr 89,250 899,756 500 7 -
Large dataset Reddit 232,965 11.60M 602 41 -
Ogbn-arxiv 169,343  1.16M 128 40 -
Yelp 716,847 13.95M 300 100 -

Table 6: Summary of Heterogeneous graph datasets

Dataset Nodes Edges Features Classes

Movie - 4278 (Movie, to, Director) - 4278
Director - 2081 (Movie, to, Actor) - 12828

IMDB Actor - 5257 (Director, to, Movie) - 4278 3061 Movie: 3
(Actor, to, Movie) - 12828
(Author, to, Paper) - 19645
Author - 4057 (Paper, to, Author) - 19645 Author - 334
Paper - 4231 (Paper, to, Term) - 85810 Paper - 4231 .
DBLP Term - 7723 (Paper, to, Conference) - 14328 Term - 50 Author: 4
Conference - 50 (Term, to, Paper) - 85810 Conference - NA
(Conference, to, Paper) - 14328
(Paper, cite, Paper) - 5343
(Paper, ref, Paper) - 5343
Paper - 3025 (Paper, to, Author) - 9949
Author - 5959 (Author, to, Paper) - 9949
ACM Subject - 56 (Paper, to, Subject) - 3025 All ex’;zfr;[?rlgj/\- 1902 Paper: 3
Term - 1902 (Subject, to, Paper) - 3025

(Paper, to, Term) - 255619
(Term, to, Paper) - 255619

B Locality-Sensitive Hashing and Consistent Hashing

Locality-Sensitive Hashing (LSH) is a technique for hashing high-dimensional data points so that
similar items are more likely to collide (i.e., hash to the same bucket) [32, 50, 51]. It is commonly
used in approximate nearest neighbor search, dimensionality reduction, and randomized algorithms
[52]. For example, a hash function A(-) is locality-sensitive with respect to a similarity measure s(-, )
if Pr[h(z) = h(y)] increases with s(z,y). Gaussian LSH schemes, such as those using random
projections, are particularly effective for preserving Euclidean distances [4, 22].

In the consistent hashing (CH) [23, 24] scheme, objects/requests are hashed to random bins/servers
on the unit circle, as shown in Figure 6. Objects are then assigned to the closest bin in the clockwise
direction. CH was originally proposed for load balancing in distributed systems; it maps data points
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Figure 6: Consistent Hashing (CH): Objects and bins are hashed to a unit circle; each object is
assigned to the next bin in clockwise order.

to buckets such that small changes in input (e.g., adding or removing an object) do not drastically
affect the overall assignment. We aim to employ CH for adaptive graph coarsening, as it enables
stable and scalable grouping of similar objects/nodes. When combined with LSH, consistent hashing
offers a powerful mechanism for adaptive graph reduction.

C Proof of Theorem 3.2

Theorem C.1 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-
cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing
n — k random rightward merges in the sorted list. Then, for any constant ¢ > 0, the maximum
number of nodes in any supernode S; satisfies:

Pr maxwi‘g%w e

Proof Let Uy, ...,U;_1 ~ Uniform(0,1) and let Uay < -+ < Ug—1) be their order statistics.
Define the spacings:
Ile(l)—O, IQZU(2)—U(1)’ ceay IkZI—U(k_l)

Then (I, ..., I}) form a random partition of the unit interval [0, 1]. It is a classical result (e.g., [53])
that:

* The vector (I3, ..., I)) ~ Dirichlet(1
* Each individual spacing I; ~ Beta(1,

Tail bound on I;. The PDF of I; is:
f) =k =10 -t)"2 telo1]

,eenn ),
k—1).

and its tail probability is:
Pr[l; > t] = (1 —t)*!

Choose t = %. Then:

PI‘[IZ > t] < exp (7(10gk + C)) — %676

Union bound. Over all k intervals:

logk + ¢ 1 logk + ¢
k

Pr |max I; > §k~%efc:efc:>Pr max I; < >1—-e ¢
1 (2

Scaling to n nodes. We model the sorted list of n nodes as uniformly spaced over [0,1]. Each
spacing I; then corresponds to a fraction of the list, and multiplying by n yields the expected number
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of nodes in that supernode:

n  n(logk+c)
Tk

|Si| =n-I; = max|S;| =n-maxI; <
1 2

This completes the proof.

D Proof of Theorem 3.1

Theorem D.1 (Projection Proximity for Similar Points) Ler z,y € RY, and define the projection
function:

V4
h(z)=>"rlz, rj~N(0,1)iid
j=1
Then the difference h(z) — h(y) ~ N(0, ||z — y||?), and for any € > 0:

Pr{|h(z) — h(y)| < €] = erf (\/ﬂ”i_y”>

Proof Let z = x — y € R?. Then:

¢ ¢ ¢ ¢
h(z) — h(y) = ZT]TJ’J — Zr}y = ZTJT(J; —y) = ZTJTZ
=1 =1 =1 i=1

Each term ] z is a linear projection of a standard Gaussian vector, hence:

J
rj 2~ N0, [12]%) = N (0, ||z — yl|*)
Since the r; are independent, the sum of £ such independent variables is:
h(z) = h(y) ~ N0, €|z — y|*)

Now consider the probability:
Pr(|h(z) = h(y)| < €]

This is the cumulative probability within ¢ of a zero-mean Gaussian with variance £||x — y||?. Let
0% = l||z — y||*. Then:

Pr(|Z] <] = erf (\/g) e (JW)

as required.

E Node Classification Accuracy

Graph Neural Networks (GNNs), designed to operate on graph data [4, 54], have demonstrated strong
performance across a range of applications [55-58]. Nevertheless, their scalability to large graphs
remains a significant bottleneck. Motivated by recent efforts in scalable learning [43], we explore
how our graph coarsening framework can improve the efficiency and scalability of GNN training,
enabling more effective processing of large-scale graph data. Specifically, we train several GNN
models on the coarsened version of the original graph while evaluating their performance on the
original graph’s test nodes. As discussed earlier in 4.3, our experimental setup spans a diverse
collection of datasets, each with distinct structural characteristics. For homophilic graph settings, we
follow the architectural configurations proposed in UGC [4], see Table 7. For heterophilic graphs, the
GNN model designs are based on the implementations introduced in [11]. The heterogeneous GNN
architectures are adopted directly from [25].

Table 8 reports node classification accuracy for homophilic and Table 9 reports node classification
accuracy for heterophilic graphs. The AH-UGC framework consistently delivers results that are
either on par with or exceed the performance of existing coarsening methods. As shown in Table 3,
the framework is independent of any particular GNN architecture, highlighting its robustness and
model-agnostic characteristics.
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Table 7: Summary of GNN architectures used in our experiments. Each model is described by its
layer composition, hidden units, activation functions, dropout strategy, and notable characteristics.

Model | Layers | Hidden Units | Activation | Dropout | Learningrate | Decay | Epoch
GCN 3 x GCNConv 64 — 64 — Output ReLU Yes (intermediate layers) 0.003 0.0005 500
APPNP Linear — Linear — APPNP | 64 — 64 — 10 — Output | ReLU Yes (before Linear layers) 0.003 0.0005 500
GAT 2 x GATv2Conv 64 x 8 — Output ELU Yes (p=0.6) 0.003 0.0005 | 500
GIN 2 x GATv2Conv 64 x 8 — Output ELU Yes (p=0.6) 0.003 0.0005 500
GraphSAGE | 2 x SAGEConv 64 — Output ReLU Yes (after first layer) 0.003 0.0005 500

Table 8: Node classification accuracy (%) for homophilic datasets.

Dataset  Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

Cora GCN 77.34 1 83.79 81.58 81.58 83.05 8232 79.18 79.00 77.34 85.81
SAGE 80.47 82.87 8195 8176 8397 82.87 8287 76.61 76.24 89.87
GIN 78.63 77.53 7458 76.79 < 79.18 78.08 77.16 55.43 7734 87.29
GAT 77.16 78.08 75.87 74.40  81.21 80.47 7458 78.26 81.03 87.10
APPNP  82.87 84.53 8250 84.53 84.34 8526 82.87 86.37 84.53 88.58
DBLP GCN 79.65 8036 80.55 79.99 80.55 7926 79.40 @ 85.75 80.27 84.00
SAGE 80.58 80.07 80.16 80.81 80.61 81.57 79.48 68.56 68.31 84.08
GIN 79.40 79.20  80.38 7883 7796 78.18 78.01 73.95 79.82  83.26
GAT 7443 | 7832 7649 7756 7897 7751 7593 77.93 79.48 82.25
APPNP 8425 83.80 83.63 83.60 8329 8425 8405 84.84 85.18 85.75
CS GCN 91.63 92.01 91.19 92.03 9141 8726 9255 92.66 9247 93.51
SAGE 9432 94.19 9457 9424 9394 93770 94.02 89.17 89.83  94.82
GIN 89.80 89.69 89.83 90.70 89.61 88.00 90.64 86.77 81.07 83.50
GAT 91.98 9152 9231 9157 90.67 91.19 89.50 89.83 90.48 91.84
Citeseer GCN 5990 60.36 5840 6126 60.81 6126 62.76 6531 65.46 70.12
SAGE 66.51 6501 6441 6396 66.06 6531 6351 61.71 64.26 74.47
GIN 59.60 60.36 59.00 5945 56.15 6291 5750 @ 6441 63.66 71.62
GAT 53.45 58.55 5495 5345 6276 59.715 5735 65.76 69.21 71.32
APPNP 62.16 6336 6246 6021 6291 6381 6321 68.61 69.06 73.12
PubMed GCN 7434 7246 74.06 7172 6736 7287 69.59 84.66 85.47 87.60
SAGE 7436 73.04 73.68 6645 69.04 7406 71.70 87.34 72.16  88.28
GIN 57.17 66.53 61.53 60.11 6566 60.85 6346 8242 83.97 85.75
GAT 46.85 40.03 52.68 50.60 53.29 5699 69.09 84.66 84.63 87.39
APPNP 7634 77.00 7355 7555 7175 76.72 7046 85.64 85.80 87.88
Physics  GCN 9475 94.62 9457 94773 9439 94775 9440 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 9597 96.04 96.18 96.01 95.21 95.78 96.44
GIN 9490 9456 9478 9449 93779 94779 92.65 9441 9494  95.66
GAT 9497 95.01 95.00 94.65 9536 94.60 94.85 96.02 95.10 94.28
APPNP 9620 96.20 96.28 96.11 9597 96.07 96.21 96.17 96.10 96.28

F Spectral Properties
1. Relative Eigen Error (REE): REE used in [4, 19, 20] gives the means to quantify the measure
of the eigen properties of the original graph G that are preserved in coarsened graph G..

Definition F.1 REE is defined as follows:

b~
1 i — A
REE(L, L., k) = % E w ()
i=1 i

where \; and \; are top k eigenvalues of original graph Laplacian (L) and coarsened graph
Laplacian (L.) matrix, respectively.

2. Hyperbolic error (HE): HE [59] indicates the structural similarity between G and G, with the
help of a lifted matrix along with the feature matrix X of the original graph.
Definition F.2 HE is defined as follows:

(L = Lun) X |21 X ||
2trace(XTLX)trace(XT LX)

HE = arccosh( +1) )

17



574
575
576
577
578

579

580

Table 9: Node classification accuracy (%) for heterophilic datasets.

Dataset Model VAN VAE VAC HE alC aGS Kron UGC AH-UGC Base
Film SGC 2936 27.84 | 2995 26.15 26.89 2574 27.74 2147 21.68 27.63
Mixhop 28.21 30.68 29.84 29.52 29.10 29.15 31.15 21.57 21.79  30.92
GCN2 26.15 2847 28.00 2694 27.63 2584 2942 1947 20.42  28.36
GPR-GNN 26.52 2795 27.10 27.74 26.78 2836 2826 20.68 21.31 29.73
GatJK 26.11 2589 2579 25.10 2531 2531 26.63 2242 21.21 2394
deezer-europe SGC 54.55 5531 5450 5538 5448 54.69 55.15 54.49 55.06 57.08
Mixhop 58.42 59.10 5848 5882 5834 5738 58.80 59.78 60.98 64.31
GCN2 57719 5834 57776 5834 57.15 57.57 5825 58.00 58.46  60.88
GPR-GNN 56.30 56.85 56.70 56.77 55.73 55.55 56.31 58.44 58.46 56.97
GatJK 5521 57.50 5463 5576 5531 56.03 56.87 | 57.01 57.33  59.01
Amherst41 SGC 61.42 63.19 59.06 60.83 6339 6299 63.78 | 78.74 73.82 73.46
Mixhop 59.25 5846 57.68 58.66 59.06 63.78 58.66 @ 69.29 64.37 72.48
GCN2 6299 62.01 60.63 5925 58.66 60.63 56.50 @ 71.06 68.50 71.74
GPR-GNN 5945 58.86 58.07 5591 57.68 5925 5571 66.73 63.98 60.93
GatJK 57.48 63.58 6024 6299 6161 6476 62.60 064.37 67.72 78.13
Johns Hopkins55 SGC 6272 69.19 68.77 69.35 68.85 7028 69.19 | 73.80 7296 73.77
Mixhop 63.64 6574 68.18 6490 6222 6490 63.73 @ 69.94 67.25 73.56
GCN2 66.16 67.51 6742 6423 6549 6574 6440 71.12 65.24 73.45
GPR-GNN 62.05 63.06 6230  62.80 6037 6196 61.71 66.33 63.31 64.95
GatJK 62.80 69.10 67.34 66.41 6599 6558 67.00 | 69.77 6532 77.12
Reed98 SGC 53.46 57.14 5392 5207 5530 58.06 53.92 57.60 57.60 68.79
Mixhop 50.69 58.99 49.77 4885 5530 59.45 5346 60.37 52.53 6243
GCN2 56.68 5945 51.61 50.69 5161 56.68 50.69 | 61.75 57.14 64.16
GPR-GNN 4839 57.60 4839 45.62 5576 58.06 5346 57.60 54.84 56.07
GatJK 5530 58.99 53.00 51.61 51.61 5622 5392 | 62.67 60.83  69.94
Squirrel SGC 31.97 33.13 3098 36.66 3497 3659 35.59 | 40.89 39.51 43.61
Mixhop 36.28 30.21 24.60 3490 2844 2790 37.05 46.12 4397 46.40
GCN2 39.74 4228 3920 41.74 3797 39.12 4151 4312 4435 50.72
GPR-GNN 2936 25.67 2882 28.82 2644 27.06 30.59 45.12 4374 34.39
GatJK 3144 3743 3282 46.12 3836 37.89 46.81 40.89 3943  46.01
Chameleon SGC 38.60 51.58 4579 5491 52.63 53.15 5439 58.60 59.65 57.46
Mixhop 40.53 5140 4333 5035 49.82 4930 5439 5825 58.60 63.16
GCN2 4737 5211 56.84 5930  59.65 5895 59.12 51.40 49.82  67.11
GPR-GNN 40.53 4632 41.05 39.64 4035 43.68 51.05 54.74 5228 55.04
GatJK 4140 5246 3649 60.00 56.49 5596 62.63 5439 55.44  71.05
Cornell SGC 67.24 67.09 68.26 68.02 6835 69.02 6833 @ 76.68 76.08 72.78
Mixhop 66.79 67.67 67.14 66.07 6645 66.71 6641 70.64 71.61 76.49
GCN2 6631 66.83 6698 67.64 67.17 6291 66.50 | 72.71 7090 77.18
GPR-GNN 64.98 6427 65.17 65.00 6355 63.67 6348 69.66 68.00 67.46
GatJK 63.48 6531 6828 66.00 6740 6621 66.64 70.09 7035 78.37
Penn%4 SGC 6293 6233 6223 62.13 63.52 63.03 6352 7574 75.87 66.78
Mixhop 7171 69.62 6935 6836 6798 6840 6798 | 73.36 72.13  80.28
GCN2 71.79 69.55 70.75 69.52 69.61 71.41 69.61 71.85 72.07 81.75
GPR-GNN 68.18 68.19 6836 6820 67.77 68.15 68.11 67.93 68.55 79.43
GatJK 67.94 67.05 66.73 6621 6634 66.06 6633 69.23 69.26 80.74
where L is the Laplacian matrix and X € R™ >4 is the feature matrix of the original input graph,

Ly is the lifted Laplacian matrix defined in [20] as Lz = CL.CT where C € RNX" is the
coarsening matrix and L. is the Laplacian of G,.

3. Reconstruction Error (RcE)
Definition F.3 Let L be the original Laplacian matrix and Ly be the lifted Laplacian matrix,
then the reconstruction error (RE) [19, 60] is defined as:

ReE = ||L — Lyzl|% A3)

G Algorithms

H Heterogenous graph coarsening
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Table 10: This table illustrates spectral properties including HE, RcE, REE across datasets and
methods at 50% coarsening ratio. AH-UGC achieves competitive performance across most datasets.

Dataset VAN  VAE VAC HE aJC aGS Kron UGC  AH-UGC
Cora 2.04 2.08 2.14 219 213 1.95 2.14 1.96 2.03
DBLP 2.20 2.07 2.21 221 212 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 319 277 2.48 274 1.72 1.53
HE Squirrel 4.17 2.61 2.72 .52 192 2.01 1.87 0.69 0.82
Error Chameleon 277 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71
Deezer-Europe 1.90 1.97 2.04 1.95 1.90 1.62 1.90 1.76 1.61
Penn9%4 1.96 1.52 1.65 1.57 1.51 1.43 1.55 1.05 1.09
Cora 3.78 3.83 3.90 395 391 3.71 3.92 4.07 4.14
DBLP 4.94 4.89 5.03 506 503 473 5.08 5.24 5.11
ReC Pubmed 4.48 5.13 5.14 508 5.03 4.78 4.99 4.60 443
Error Squirrel 1036 9.90 1031  9.13 9.88 1000  9.39 9.09 9.07
Chameleon 7.90 7.72 8.05 755 152 7.58 7.13 7.40 7.16
Deezer-Europe 5.08 5.06 5.19 504  5.04 4.68 5.01 8.03 8.05
Penn94 7.717 7.71 7.71 773 173 7.63 7.76 7.71 7.74
Cora 0.09 0.07 0.05 0.04 0.11 0.09 0.03 0.64 0.66
DBLP 0.10 0.05 0.13 0.07  0.06 0.03 0.18 0.44 0.32
REE Pubmed 0.05 0.97 0.88 071 048 0.06 0.42 0.31 0.21
Error Squirrel 0.88 0.58 0.42 044 034 0.36 0.48 0.05 0.07
Chameleon 0.76 0.69 0.67 038 038 0.35 0.52 0.09 0.12
Deezer-Europe 0.48 0.29 0.47 025 021 0.02 0.19 0.35 0.35
Penn9%4 0.31 0.02 0.05 0.02  0.09 0.05 0.08 0.22 0.23

Algorithm 1 AH-UGC: Adaptive Universal Graph Coarsening

Require: Input G(V, A, X), | + Number of Projectors

I = HEeweBy=yu)[,

E|

)

« is heterophily factor, y; € R” is node labels, E denotes edge list

cF={(l-0a)-X®a- A}
S+ F-W+b;S e R
c WeR beR ~ D)

: 8 + AGGREGATE({S; 1 }he1) = + 341 Sie Vi€ {1,...,n}
: L+ sort ({vi}j=1) by ascending s;

Lo [{ur: {vi}}, {ue:
while |£|/|V| > r do
u; ~ Uniform(L)

2
3
4
5: S+ F - W+b; §SeR™!
6
7
8
9

Lluj] = Llu;] U Lluj]

L L\ A{uj41}

13: C € {0,1}‘L|X‘V‘7 Cij

14: C < row-normalize(C)

15: F

«CF ; A«cAc”
16: return G. = (V, A, F), C

1 if v; € [,[ul]
0 otherwise

{v2}} oo {un s {on}}]

/I compute projections
// sample projections
/I compute projections

// mean aggregation
/1 ordered node list
// initial super-nodes

// sample a super-node
// merge with right neighbor
// remove right neighbor

// partition matrix

/I mormalize rows: 3 Cij = 1

/I coarsened features and adjacency
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Algorithm 2 Heterogeneous Graph Coarsening

Require: Graph G ({X (node_type) }» LA (edge_type) > LY (target_type) }), compression ratio n

Ensure: Condensed graph gc ({X(nndeitype)}7 {A(edgeilype) }7 {)/(targelitype) })
: for each node type ¢ do
oo |V
Qf"a“e, Ct < AH-UGC(Xt, At, Tt)
X < node features from G;°**°
if ¢ is target type then
Yt[i] < majority vote of y; for v; € Cy[i]
: for each edge type ¢ = (t1,12) do
Initialize A, € RIVr1¥IVeal
for each (v;,v;) € Ac do
u < super-node index of v; via C¢,
v <— super-node index of v; via Cy,
12: Acfu,v] + Acfu,v] +1

13: return G. ({)?(nodeftype) }7 {Av(edgeftype) }7 {g}(targetflype) })
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Figure 7: This figure illustrates this process, highlighting how AH-UGC preserves semantic meaning
compared to other GC methods that merge heterogeneous nodes indiscriminately.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?

Answer: [Yes]

Justification: Yes, all the claims are reflected in paper. See Section 4 and Appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA]

Justification: NA.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a

complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.
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* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]

Justification: All datasets used are publicly available. See Abstract for codebase.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

» While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,

how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-

ments?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:
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* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal

impacts of the work performed?

Answer: [NA|

Justification: There is no societal impact of the work performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,

or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly

respected?

Answer: [Yes]

Justification: Assets are properly credited and publicly available.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for

some datasets. Their licensing guide can help determine the license of a dataset.

For existing datasets that are re-packaged, both the original license and the license of the derived

asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the asset’s

creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

» At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the

main paper.

According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other

labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for

their institution.

For initial submissions, do not include any information that would break anonymity (if applica-

ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-

standard component of the core methods in this research? Note that if the LLM is used only for
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writing, editing, or formatting purposes and does not impact the core methodology, scientific

rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Declaration is not required as LLM is only used for writing, editing, or formatting

purposes.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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