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Abstract

Graph Coarsening (GC) is a prominent graph reduction technique that com-1

presses large graphs to enable efficient learning and inference. However, existing2

GC methods generate only one coarsened graph per run and must recompute from3

scratch for each new coarsening ratio, resulting in unnecessary overhead. Moreover,4

most prior approaches are tailored to homogeneous graphs and fail to accommodate5

the semantic constraints of heterogeneous graphs, which comprise multiple node6

and edge types. To overcome these limitations, we introduce a novel framework7

that combines Locality-Sensitive Hashing (LSH) with Consistent Hashing to en-8

able adaptive graph coarsening. Leveraging hashing techniques, our method is9

inherently fast and scalable. For heterogeneous graphs, we propose a type-isolated10

coarsening strategy that ensures semantic consistency by restricting merges to11

nodes of the same type. Our approach is the first unified framework to support both12

adaptive and heterogeneous coarsening. Extensive evaluations on 23 real-world13

datasets—including homophilic, heterophilic, homogeneous, and heterogeneous14

graphs demonstrate that our method achieves superior scalability while preserving15

the structural and semantic integrity of the original graph. Our code is available16

here.17

1 Introduction18

Graphs are ubiquitous and have emerged as a fundamental data structure in numerous real-world19

applications [1–3]. Broadly, graphs can be categorized into two types: (a) Homogeneous graphs20

[4–6], which consist of a single type of nodes and edges. For instance, in a homogeneous citation21

graph, all nodes represent papers, and all edges represent the “cite” relation between them; (b)22

Heterogeneous graphs [7–9], which involve multiple types of nodes and/or edges, enabling the23

modeling of richer and more realistic interactions. For example, in a recommendation system, a24

heterogeneous graph may contain nodes of different types, such as users, items, and categories, and25

edge types such as “(user, buys, item)”, “(user, views, item)”, and “(item, belongs-to, category)”.26

Although many real-world datasets are inherently heterogeneous, early research in graph machine27

learning predominantly focused on homogeneous graphs due to their modeling simplicity, availabil-28

ity of standardized benchmarks, and theoretical tractability [10, 11]. However, the limitations of29

homogeneous representations in capturing rich semantic information have shifted attention toward30

heterogeneous graph modeling [8, 12].31

As real-world networks continue to grow rapidly in size and complexity, large-scale graphs have32

become increasingly common across various domains [1, 13–15]. This surge in scale poses signifi-33

cant computational and memory challenges for learning and inference tasks on such graphs. This34

underscores the growing importance of developing efficient and effective methodologies for process-35

ing large-scale graph data. To address the issue, an expanding line of research investigates graph36

reduction methods that compress structures without compromising essential properties. Most existing37

graph reduction techniques, including pooling [16], sampling-based [17], condensation [18], and38
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Figure 1: AH-UGC consists of three modules: (a)MLSH constructs an augmented feature matrix by combining
node features and structural context using a heterophily-aware factor α, enabling support for both homophilic
and heterophilic graphs. Inspired by UGC [4], we use LSH projections to compute node hash indices via
ψ(hPkl

1) (see Section 3); (b) MCH applies consistent hashing to merge nodes clockwise based on a target
coarsening ratio r, yielding the coarsening matrix C; (c) the coarsened graph Gc is obtained via Ac = C⊤AC.
The framework is inherently adaptive— i.e., once an intermediate coarsening is obtained, further reduction can be
applied incrementally usingMCH and already calculated coarsening matrix C, enabling efficient multi-resolution
processing.

coarsening-based methods [4, 19, 20]. Coarsening methods have demonstrated effectiveness in39

preserving structural and semantic information [4, 19, 20], this study focuses on graph coarsening40

(GC) as the primary reduction strategy. Despite advancements in existing GC frameworks, two key41

challenges remain:42

• Lack of “Adaptive Reduction”. Many applications, such as interactive visualization and real-time43

recommendations, benefit from multi-resolution graph representations. These scenarios often44

require dynamically adjusting the coarsening ratio based on user interaction or task demands.45

However, most existing methods generate a single fixed-size coarsened graph and must recompute46

from scratch for each new ratio, incurring high overhead. This highlights the need for adaptive47

coarsening frameworks that enable efficient, progressive refinement without redundant computation.48

• Lack of “Heterogeneous Graph Coarsening” Framework. Existing methods typically assume49

homogeneous node types, making them unsuitable for heterogeneous graphs with semantically50

distinct nodes. This can result in invalid supernodes for example, merging an author with a paper51

node in a citation graph thus violating type semantics. Moreover, node types often have different52

feature dimensions, which standard coarsening techniques are not designed to handle.53

Key Contribution. To address the dual challenges of adaptive reduction and heterogeneous GC,54

we propose AH-UGC, a unified framework for Adaptive and Heterogeneous Universal Graph55

Coarsening. We integrate locality-sensitive hashing (LSH) [4, 21, 22] with consistent hashing (CH)56

[23, 24]. While LSH ensures that similar nodes are coarsened together based on their features and57

connectivity, CH—a technique originally developed for load balancing—enables us to design a58

coarsening process that supports multi-level adaptive coarsening without reprocessing the full graph.59

To handle heterogeneous graphs, AH-UGC enforces type-isolated coarsening, wherein nodes are first60

grouped by their types, and coarsening is applied independently within each type group. This ensures61

that nodes and edges of incompatible types are never merged, preserving the semantic structure of the62

original heterogeneous graph. Additionally, AH-UGC is naturally suited for streaming or evolving63

graph settings, where new nodes and edges arrive over time. Our LSH- and CH-based method allows64

new nodes to be integrated into the existing coarsened structure with minimal recomputation. To65

summarize, AH-UGC is a general-purpose graph coarsening framework that supports adaptive,66

streaming, expanding, heterophilic, and heterogeneous graphs.67

2 Background68

Definition 2.1 (Graph) A graph is represented as G(V,A,X), where V = {v1, . . . , vN} is69

the set of N nodes, A ∈ RN×N is the adjacency matrix, and X ∈ RN×d̃ is the node fea-70
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ture matrix with each row Xi ∈ Rd̃ denoting the feature vector of node vi. An edge be-71

tween nodes vi and vj is indicated by Aij > 0. Let D ∈ RN×N be the degree matrix with72

Dii =
∑

j Aij , and let L = D − A denote the unnormalized Laplacian matrix. L ∈ SL, where73

SL =
{
L ∈ RN×N

∣∣∣Lij = Lji ≤ 0 for i ̸= j; Lii = −
∑

j ̸=i Lij

}
. For i ̸= j, the matrices are74

related by Aij = −Lij , and Aii = 0. Hence, the graph G(V,A,X) may equivalently be denoted75

G(L,X), and we use either form as contextually appropriate.76

Definition 2.2 A heterogeneous graph can be represented in two equivalent forms, with either77

representation utilized as required within the paper.78

• Entity-based: A heterogeneous graph extends the standard graph structure by incorporating79

multiple types of nodes and/or edges. Formally, a heterogeneous graph is defined as G(V,E,Φ,Ψ),80

where Φ : V → TV and Ψ : E → TE are node-type and edge-type mapping functions, respectively81

[9]. Here, TV and TE denote the sets of possible node types and edge types. When the total82

number of node types |TV | and edge types |TE | is equal to 1, the graph degenerates into a standard83

homogeneous graph (Definition 2.1).84

• Type-based: Alternatively, a heterogeneous graph can be described as85

G ({X(node_type)}, {A(edge_type)}, {y(target_type)}), where feature matrices X , adjacency matri-86

ces A, and target labels y are grouped and indexed by their corresponding node, edge, and target87

types [25].88

Definition 2.3 Following [4, 19, 20], The Graph Coarsening (GC) problem involves learning a89

coarsening matrix C ∈ RN×n, which linearly maps nodes from the original graph G to a reduced90

graph Gc, i.e., V → Ṽ . This linear mapping should ensure that similar nodes in G are grouped into91

the same super-node in Gc, such that the coarsened feature matrix is given by X̃ = CTX . Each92

non-zero entry Cij denotes the assignment of node vi to super-node ṽj . The matrix C must satisfy the93

following structural constraints:94

S = {C ∈ RN×n, Cij ∈ {0, 1}, ∥Ci∥ = 1, ⟨CT
i , CT

j ⟩ = 0 ∀i ̸= j, ⟨Cl, Cl⟩ = dṼl
, ∥CT

i ∥0 ≥ 1}

where dṼl
means the number of nodes in the lth-supernode. The condition ⟨CT

i , CT
j ⟩ = 0 ensures95

that each node of G is mapped to a unique super-node. The constraint ∥CT
i ∥0 ≥ 1 requires that each96

super-node contains at least one node.97

2.1 Problem formulation and Related Work98

We formalize the problem through two key objectives: Goal 1. Adaptive Coarsening and Goal 2.99

Graph Coarsening for Heterogeneous Graphs.100

101

Figure 2: Comparison of capability support
across existing GC methods.

Goal 1. The objective is to compute multiple coarsened102

graphs {G(r)
c }Rr=1 from input graph G(V,A,X), where each103

G(r)
c corresponds to a target coarsening ratio r ∈ (0, 1], with-104

out recomputing from scratch for each resolution. Formally,105

the goal is to construct a family of coarsening matrices106

{C(r) ∈ RN×n(r)} such that107

X̃(r) = (C(r))⊤X, Ã(r) = (C(r))⊤AC(r),

with the constraint that all C(r) are derived from a single, shared projection s = HASH(X), thereby108

ensuring consistency across coarsening levels and enabling adaptive GC.109

Goal 2. The objective is to learn a coarsening matrix C ∈ RN×n, such that the resulting coarsened110

graph Gc(Ṽ , Ẽ, Φ̃, Ψ̃) satisfies the following constraints:111

Φ̃(ṽj) = Φ(vi), ∀ṽj ∈ Ṽ , ∀vi ∈ π−1(ṽj),

Ψ̃(ṽj , ṽk) ∈ TE only if ∃(vi, vl) ∈ E s.t. π(vi) = ṽj , π(vl) = ṽk,

where π : V → Ṽ is the node-to-supernode mapping induced by C. These constraints guarantee112

that: a) nodes of different types are not merged into the same supernode, and b) edge types between113

supernodes are consistent with the original heterogeneous schema.114
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Related Work. Graph reduction methods have been extensively studied and can be broadly catego-115

rized into optimization-based and GNN-based approaches. Among optimization-driven heuristics,116

Loukas’s spectral coarsening methods [20] including edge-based (LVE) and neighborhood-based117

(LVN) variants aim to preserve the spectral properties of the original graph. Other techniques, such118

as Heavy Edge Matching (HEM)[17, 26], Algebraic Distance[27], Affinity [28], and Kron reduc-119

tion [29], rely on topological heuristics or structural similarity principles. FGC [19] incorporates node120

features to learn a feature-aware reduction matrix. Despite their diverse designs, a common drawback121

of these methods is that they are computationally demanding, often with time complexities ranging122

from O(n2) to O(n3), and are not well suited for large-scale or adaptive graph reduction settings.123

UGC [4], a recent LSH-based framework, addresses these challenges by operating in linear time124

and supporting heterophilic graphs. However, it produces only a single coarsened graph and must125

recompute reductions for different coarsening levels, limiting its adaptability. GNN-based condensa-126

tion methods like GCond [30] and SFGC [31] learn synthetic graphs through gradient matching but127

require full supervision, are model-specific, and lack scalability. HGCond [25] is the only approach128

designed for heterogeneous graphs, yet it inherits the inefficiencies of condensation-based techniques.129

While some methods are model-agnostic, others offer partial support for heterophilic or streaming130

graphs. Yet, no existing approach simultaneously addresses all these challenges—model-agnosticism,131

adaptability, and support for heterophilic, heterogeneous, and streaming graphs. As illustrated in132

Figure 2, HA-UGC is the first framework to meet all six criteria comprehensively. For details on LSH133

and consistent hashing, see Appendix B.134

3 The Proposed Framework: Adaptive and Heterogeneous Universal Graph135

Coarsening136

In this section we propose our framework AH-UGC to address the issues of adaptive and heteroge-137

neous graph coarsening. Figure 1 shows the outline of AH-UGC.138

3.1 Adaptive Graph Coarsening(Goal 1)139

The AH-UGC pipeline closely follows the recently proposed structure of UGC but incorporates140

consistent hashing principles to enable adaptive i.e., multi-level coarsening. Our framework introduces141

an innovative and flexible approach to graph coarsening that removes the UGC’s dependency on142

fixed bin widths and enables the generation of multiple coarsened graphs. Similar to UGC [4],143

AH-UGC employs an augmented representation to jointly encode both node attributes and graph144

topology. For a given graph G(V,A,X), we compute a heterophily factor α ∈ [0, 1], which quantifies145

the relative emphasis on structural information based on label agreement between connected nodes146

i.e., α = |{(v,u)∈E:yv=yu}|
|E| . This factor is then used to blend node features Xi and adjacency vectors147

Ai. For each node vi we calculate Fi = (1 − α) · Xi ⊕ α · Ai where ⊕ denotes concatenation.148

This hybrid representation ensures that both local attribute similarity and topological proximity are149

captured before the coarsening process. Importantly, this design enables our framework to handle150

heterophilic graphs robustly by incorporating structural properties beyond mere feature similarity.151

Adaptive Coarsening via Consistent and LSH Hashing. Let Fi ∈ Rd denote the augmented152

feature vector for node vi. AH-UGC applies l random projection functions using a projection matrix153

W ∈ Rd×l and bias vector b ∈ Rl, both sampled from a p-stable distribution [32]. The scalar hash154

score for each projection for ith node is given by:155

ski = Wk · Fi + bk, ∀k ∈ {1, . . . , l}
UGC relies on a bin-width parameter (r) to control the coarsening ratio (R), but determining156

appropriate bin-widths for different target ratios can be computationally expensive. In contrast,157

AH-UGC eliminates the need for bin width by leveraging consistent hashing. Once the hash scores158

(si) across projections are computed, AH-UGC enables efficient construction of coarsened graphs159

at multiple coarsening ratios without requiring reprocessing, making it well-suited for adaptive160

settings. We define an AGGREGATE function to combine projection scores across multiple random161

projectors. For each node i, the final score si is computed as:162

si = AGGREGATE
({

ski
}l

k=1

)
=

1

l

l∑
k=1

ski

Alternative aggregation functions such as max, median, or weighted averaging can also be used,163

depending on the design objectives. After computing the scalar hash scores {si} for all nodes vi ∈ V ,164
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we sort the nodes in increasing order of si to form an ordered list L, represented as a list of super-node165

and mapped nodes: L = [{u1 : {v1}}, {u2 : {v2}}, . . . , {un : {vn}}] , where each key uj denotes a166

super-node index, and the associated value is the set of nodes currently assigned to that super-node.167

Initially, each node is its own super-node, and the number of super-nodes is |V (0)
c | = |V |. At each168

iteration t, a super-node uj is randomly selected from the current list L(t) and merged with its169

immediate clockwise neighbor uj+1. The updated super-node entry is given by:170

L(t+1)[j] = {uj : L(t)[uj ] ∪ L(t)[uj+1]},

followed by the removal of uj+1 from the list. This reduces the number of super-nodes by one:171

|V (t+1)
c | = |V (t)

c |−1. The process is repeated until the desired coarsening ratio is reached: R = |Vc|
|V | .172

Furthermore, this coarsening strategy is inherently adaptive, enabling transitions between any two173

coarsening ratios R → T directly from the sorted list without reprocessing.174

Since the list L is constructed using locality-sensitive hashing (LSH) principles [32], similar nodes175

are positioned adjacently. Through Theorem 3.1 and Lemma 1, we show that the clockwise merging176

operations in Consistent Hashing (CH) are locality-aware and effectively preserve feature similarity.177

Theorem 3.1 Let x, y ∈ Rd, and let the projection function be defined as: h(x) =178 ∑ℓ
j=1 r

⊤
j x, rj ∼ N (0, Id) i.i.d. Then the difference h(x)− h(y) ∼ N (0, ℓ∥x− y∥2), and for any179

ε > 0:180

Pr [|h(x)− h(y)| ≤ ε] = erf

(
ε√

2ℓ∥x− y∥

)
Proof: The proof is deferred in Appendix D.181

This gives the probability that two nodes, initially close in the feature space, are projected within an182

ϵ-range in the projection space.183

Lemma 1 Let x, y, z ∈ Rd, with ∥x − y∥ ≪ ∥x − z∥. Then the probability that a distant point z184

lies between x and y after projection is:185

Pr[h(x) < h(z) < h(y)] ≤ Φ

(
∥x− y∥√
ℓ∥x− z∥

)
where Φ is the cumulative distribution function (CDF) of the standard normal distribution. This186

result ensures that distant nodes rarely interrupt merge candidates that are close in feature space,187

preserving the structural consistency of coarsened regions.188

Remark 1 Our framework also supports de-coarsening i.e., given the final sorted list and merge189

history, the graph can be reconstructed to finer resolutions by reversing the merging process. However,190

in this work, we restrict our focus to the coarsening direction only.191

Construction of Coarsening Matrix C. Given the score-based node assignments π : V → Ṽ , where192

π[vi] is the super-node index of vi, the binary coarsening matrix C ∈ {0, 1}N×n is defined such that193

Cij = 1 if π[vi] = ṽj , and Cij = 0 otherwise. Each entry Cij of the coarsening matrix is set to 1 if194

node vi is assigned to super-node ṽj . Since each node receives a unique hash value hi, it is exclusively195

mapped to a single super-node. This one-to-one assignment guarantees that every super-node has at196

least one associated node. As a result, each row of C contains exactly one non-zero entry, ensuring197

that its columns are mutually orthogonal. The matrix C therefore adheres to the structural properties198

defined in Equation 2.3. The adaptiveness of C stems from its sensitivity to local projection scores199

rather than fixed bin constraints.200

Construction of the Coarsened Graph Gc. The final coarsened graph Gc = (Ṽ , Ã, F̃ ) is constructed201

from the coarsening matrix C. Two super-nodes ṽi and ṽj are connected if there exists at least one202

edge (u, v) ∈ E with u ∈ π−1(ṽi) and v ∈ π−1(ṽj). The weighted adjacency matrix is obtained203

via matrix multiplication: Ã = CTAC. The super-node features are computed as the average of204

the features of the original nodes merged into the super-node: F̃i =
1

|π−1(ṽi)|
∑

u∈π−1(ṽi)
Fu. This205

ensures that the coarsened representation preserves the aggregate semantic and structural content of206

its constituent nodes. Since each super-edge aggregates multiple edges from the original graph, Ã is207

significantly sparser than A, leading to lower memory and computation requirements downstream.208

Algorithm 1 in Appendix G outlines the sequence of steps in our AH-UGC framework.209
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3.2 Heterogeneous Graph Coarsening210

In this section, we present AH-UGC’s capability to handle heterogeneous graphs. Given a heteroge-211

neous graph,212

G
(
A{A(author, write, paper), A(reader, read, paper)}, X{X(author), X(reader), X(paper)}, Y {y(paper)}

)
,

AH-UGC proceeds by first partitioning G by node type and independently applying the coarsening213

framework to each subgraph. This ensures that only semantically similar nodes are grouped into214

supernodes and that type-specific structure and features are preserved. Our approach naturally215

supports varying feature dimensions and allows different coarsening ratios ηtype across node types.216

Figure 7 in Appendix H illustrates this process, highlighting how AH-UGC preserves semantic217

meaning compared to other GC methods that merge heterogeneous nodes indiscriminately.218

Construction of the Coarsened Heterogeneous Graph Gc. The output of AH-UGC consists of a219

set of coarsening matrices220

CH = {C(t) ∈ {0, 1}|V(t)|×|Ṽ(t)|}t∈T ,

each of which maps original nodes of type t i.e., V(t) to their corresponding super-nodes Ṽ(t). Using221

these mappings, we construct the coarsened graph222

Gc

(
Ã{Ã(author, write, paper), Ã(reader, read, paper)}, X̃{X̃(author), X̃(reader), X̃(paper)}, Ỹ {ỹ(paper)}

)
,

For each node type t, the coarsened feature matrix is computed as: X̃(t) = C(t) ·X(t), where rows223

of C(t) are row-normalized so that super-node features represent the average of their constituent224

nodes. The label matrix ỹ(paper) is computed by majority voting over the labels of nodes merged225

into each super-node. To compute the coarsened edge matrices, for each edge type Te ∈ TE , we226

consider the interaction between supernodes of types node-type1 and node-type2, corresponding to227

the edge relation e = (node-type1, Te, node-type2) ∈ Ẽ. The coarsened adjacency matrix Ã(e) is228

then computed as:229

Ã(e) = C(node-type1) ·A(e) · CT
(node-type2)

.

This formulation accumulates the edge weights between the original nodes to define the inter-230

supernode connections, thereby preserving the structural connectivity patterns between different231

node-types of the original graph. Since each edge type is coarsened independently based on the map-232

pings from its corresponding node types, Gc preserves the heterogeneous semantics and topological233

relationships of the original graph G. Algorithm 2 in Appendix G outlines the sequence of steps in234

our AH-UGC framework. By leveraging consistent hashing, our method ensures balanced supernode235

formation. Theorem 3.2 provides a probabilistic upper bound on the number of nodes mapped to any236

supernode, thereby guaranteeing load balance across supernodes with high probability.237

Theorem 3.2 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-238

cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing239

n − k random rightward merges in the sorted list. Then, for any constant c > 0, the maximum240

number of nodes in any supernode Si satisfies:241

Pr

[
max

i
|Si| ≤

n

k
+

n(log k + c)

k

]
≥ 1− e−c

Proof: The proof is deferred in Appendix C.242

4 Experiments243

We conduct comprehensive experiments to evaluate the effectiveness of AH-UGC. First, we validate244

its ability to perform adaptive graph coarsening. Second, we assess the quality of coarsened graphs245

using node classification accuracy and spectral similarity. Finally, we demonstrate AH-UGC’s246

generalizability by evaluating its performance on heterogeneous graphs.247

Datasets: We experiment on 23 widely-used benchmark datasets grouped into four categories:248

• Homophilic: Cora ,Citeseer, Pubmed [33], CS, Physics [34], DBLP [35];249

• Heterophilic: Squirrel, Chameleon, Texas, Cornell, Film, Wisconsin [36–39], Penn49, deezer-250

europe, Amherst41, John Hopkins55, Reed98 [11];251
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• Heterogeneous: IMDB, DBLP, ACM [7, 25];252

• Large-scale: Flickr, Yelp, [14] ogbn-arxiv [6] , Reddit [40].253

These datasets enable us to evaluate all six key components outlined in Section 2.1. For detailed254

dataset statistics and characteristics, refer to Table 5 in Appendix A.255

System Specifications: All experiments are conducted on a server equipped with two NVIDIA RTX256

A6000 GPUs (48 GB memory each) and an Intel Xeon Platinum 8360Y CPU with 1 TB RAM.257

Table 1: Total time (in seconds) to generate coarsened graphs at multiple resolutions, targeting a set of coarsening
ratios ofR = {55, 50, 45, 40, 35, 30, 25, 20, 15, 10}. The best and the second-best accuracies in each row are
highlighted by dark and lighter shades of Green, respectively. “OOT” indicates out-of-time or memory errors.

Dataset VAN VAE VAC HE aJC aGS Kron FGC LAGC UGC AH-UGC

Cora 19 13 29 9 13 30 9 OOT OOT 30 7
Citeseer 28 23 37 21 22 31 20 OOT OOT 28 6
DBLP 162 138 388 204 206 1270 184 OOT OOT 131 20
PubMed 166 224 510 213 231 2351 155 OOT OOT 137 29
CS 174 237 343 216 256 1811 204 OOT OOT 233 23
Physics 411 798 943 705 906 9341 755 OOT OOT 331 54

Texas 1.59 0.91 2.66 0.77 0.96 1.32 0.8 OOT OOT 11 0.73
Cornell 1.76 0.99 2.72 0.86 1.11 1.35 0.68 OOT OOT 9 0.79
Chameleon 31 17 104 20 32 82 15 OOT OOT 21 6.73
Squirrel 384 61 398 66 342 1113 68 OOT OOT 53 4.69
Film 64 34 255 36 44 257 30 OOT OOT 92 11

Flickr 1199 2301 24176 2866 3421 59585 2858 OOT OOT 187 51
ogbn-arxiv OOT OOT OOT OOT OOT OOT OOT OOT OOT 1394 185
Reddit OOT OOT OOT OOT OOT OOT OOT OOT OOT 1595 290
Yelp OOT OOT OOT OOT OOT OOT OOT OOT OOT 6904 1374

4.1 Adaptive Coarsening Run-Time.258

Figure 3: Empirical proof that two feature
vectors remain close in projection space.

Given a graph G, we evaluate AH-UGC’s abil-259

ity to adaptively coarsen it to multiple resolu-260

tions, targeting a set of coarsening ratios R =261

{55, 50, 45, 40, 35, 30, 25, 20, 15, 10}. As described in262

Section 3, AH-UGC leverages LSH and consistent hash-263

ing to group similar nodes into supernodes, enabling the264

construction of multiple coarsened graphs in a single pass.265

This adaptivity significantly reduces computational over-266

head compared to existing methods, which typically re-267

quire reprocessing the entire graph for each target reso-268

lution. The computational advantages of our approach269

are evident in Table 1, where AH-UGC outperforms all270

baseline methods by a significant margin, achieving the lowest coarsening time across all datasets and271

coarsening ratios, while maintaining scalability even on large-scale graphs where other methods fail.272

4.2 Spectral Properties Preservation.273

Following the experimental setup of [4, 19, 20] we use Hyperbolic Error (HE), Reconstruction274

Error (RcE) and Relative Eigen Error (REE) to indicate the structural similarity between G and275

Gc. A more detailed discussion about these properties is included in Appendix F. Across three276

spectral evaluation metrics AH-UGC delivers performance that is comparable to, and in several cases277

surpasses, state-of-the-art methods, see Table 2. While there are minor dips in performance on a few278

datasets, this trade-off can be justified given the significant computational efficiency and scalability279

gains offered by our framework. These results underscore that AH-UGC achieves strong structural280

fidelity without compromising on runtime, making it especially suitable for large-scale or adaptive281

coarsening scenarios.282

LSH and consistent hashing results. We empirically validates Theorem 3.1, see Figure 3. As283

ϵ increases, Pr [|h(x)− h(y)| ≤ ε] approaches 1, consistent with the theoretical erf-based bound.284

These results justify the use of consistent hashing, where each node is merged with its nearest285

clockwise neighbor. Theorem 3.1 and Figure 3 together guarantee that similar nodes are projected to286

nearby locations and are thus highly likely to be merged into a supernode.287
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Table 2: Illustration of spectral properties preservation, including HE, RcE and REE at 50% coarsening ratio.

Dataset VAN VAE VAC HE aJC aGS Kron UGC AH-UGC

HE
Error

DBLP 2.20 2.07 2.21 2.21 2.12 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 3.19 2.77 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 2.72 1.52 1.92 2.01 1.87 0.69 0.82

Chameleon 2.77 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71

ReC
Error

DBLP 4.94 4.89 5.03 5.06 5.03 4.73 5.08 5.24 5.11
Pubmed 4.48 5.13 5.14 5.08 5.03 4.78 4.99 4.60 4.43
Squirrel 10.36 9.90 10.31 9.13 9.88 10.00 9.39 9.09 9.07

Chameleon 7.90 7.72 8.05 7.55 7.52 7.58 7.13 7.40 7.16

REE
Error

DBLP 0.10 0.05 0.13 0.07 0.06 0.03 0.18 0.44 0.32
Pubmed 0.05 0.97 0.88 0.71 0.48 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 0.44 0.34 0.36 0.48 0.05 0.07

Chameleon 0.76 0.69 0.67 0.38 0.38 0.35 0.52 0.09 0.12

Table 3: Node classification accuracy across various datasets and models at 50% coarsening ratio.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

Citeseer GCN 59.90 60.36 58.40 61.26 60.81 61.26 62.76 65.31 65.46 70.12
SAGE 66.51 65.01 64.41 63.96 66.06 65.31 63.51 61.71 64.26 74.47
APPNP 62.16 63.36 62.46 60.21 62.91 63.81 63.21 68.61 69.06 73.12

PubMed GCN 74.34 72.46 74.06 71.72 67.36 72.87 69.59 84.66 85.47 87.60
SAGE 74.36 73.04 73.68 66.45 69.04 74.06 71.70 87.34 72.16 88.28
APPNP 76.34 77.00 73.55 75.55 71.75 76.72 70.46 85.64 85.80 87.88

Physics GCN 94.75 94.62 94.57 94.73 94.39 94.75 94.40 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 95.97 96.04 96.18 96.01 95.21 95.78 96.44
APPNP 96.20 96.20 96.28 96.11 95.97 96.07 96.21 96.17 96.10 96.28

Chameleon SGC 38.60 51.58 45.79 54.91 52.63 53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 51.40 43.33 50.35 49.82 49.30 54.39 58.25 58.60 63.16
GPR-GNN 40.53 46.32 41.05 39.64 40.35 43.68 51.05 54.74 52.28 55.04

Cornell SGC 67.24 67.09 68.26 68.02 68.35 69.02 68.33 76.68 76.08 72.78
Mixhop 66.79 67.67 67.14 66.07 66.45 66.71 66.41 70.64 71.61 76.49
GPR-GNN 64.98 64.27 65.17 65.00 63.55 63.67 63.48 69.66 68.00 67.46

Penn94 SGC 62.93 62.33 62.23 62.13 63.52 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62 69.35 68.36 67.98 68.40 67.98 73.36 72.13 80.28
GPR-GNN 68.18 68.19 68.36 68.20 67.77 68.15 68.11 67.93 68.55 79.43

4.3 Node Classification Accuracy288

Graph Neural Networks (GNNs) are widely used for node classification tasks [5, 40–42], where the289

goal is to predict labels for nodes based on both node features and the underlying graph structure. In290

this context, we evaluate the effectiveness of AH-UGC by examining how well it preserves predictive291

performance when downstream models are trained on coarsened graphs [43]. Specifically, we292

train several GNN models on the coarsened version of the original graph while evaluating their293

performance on the original graph’s test nodes. As discussed earlier, our experimental setup spans294

a diverse collection of datasets, each with distinct structural characteristics. Following established295

practice in the literature, we employ different GNN backbones tailored to each graph type. For296

“homophilic” datasets, we use GCN [5], Sage [40], GAT [41], GIN [42] and APPNP [43], which are297

well-suited to leverage dense neighborhood similarity. For “heterophilic” datasets, we adopt GPRGNN298

[44], MixHop [45], H2GNN [46], GCN-II [47], GatJK [48] and SGC [49], which are designed to299

handle weak or inverse homophily. For “heterogeneous” graphs, we use HeteroSGC, HeteroGCN,300

HeteroGCN2 [25] models that respect node and edge types during message passing. Complete301

architectural and hyperparameter details are provided in Appendix E. Due to space constraints, Table302

3 reports node classification accuracy for homophilic and heterophilic graphs on a representative303

subset of datasets and GNN models. Please refer to Table 8 in Appendix E for comprehensive results304

across additional datasets and architectures. The AH-UGC framework consistently delivers results305

that are either on par with or exceed the performance of existing coarsening methods. As shown in306

Table 3, the framework is independent of any particular GNN architecture, highlighting its robustness307

and model-agnostic characteristics.308

Performance on Heterogeneous Graphs: As outlined in Section 3, conventional graph coarsening309

techniques struggle with preserving the semantic integrity of heterogeneous graphs. In contrast,310
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Table 4: Node classification accuracy (%) for heterogeneous datasets at 30% coarsening ratio.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

IMDB HeteroSGC 27.42 27.30 27.42 27.42 27.42 27.30 27.42 50.05 57.4 66.74
HeteroGCN 35.78 36.05 35.82 35.46 35.7 35.7 35.93 37.33 57.75 61.72
HeteroGCN2 35.78 35.82 35.82 35.82 35.82 35.82 35.82 37.65 58.57 63.47

DBLP HeteroSGC 30.95 29.43 29.43 53.07 56.65 29.43 29.43 37.06 79.18 94.10
HeteroGCN 32.38 31.77 32.75 32.75 33 35.46 31.28 63.66 66.74 84.18
HeteroGCN2 31.69 31.52 31.77 33.25 31.12 32.01 32.63 39.08 66 79.33

ACM HeteroSGC 84.46 42.31 OOT 34.54 42.31 34.54 42.31 63.63 59 92.06
HeteroGCN 36.52 35.2 OOT 35.7 35.2 35.53 35.1 38.51 84.95 92.72
HeteroGCN2 38.67 37.35 OOT 36.19 37.35 35.04 37.35 42.64 83.47 92.72

AH-UGC explicitly enforces type-aware coarsening, ensuring that supernodes are composed of nodes311

from a single type, thus maintaining the heterogeneity semantics. Table 4 presents node classification312

accuracies across various heterogeneous GNN models. AH-UGC consistently outperforms other313

methods due to its ability to preserve type purity within supernodes. This structural consistency314

enables all tested GNN architectures to achieve significantly higher classification performance.315

Figure 4 illustrates the degree of supernode impurity for each method. Each bar corresponds to a316

supernode and depicts the percentage distribution of node types within it. While supernodes generated317

by AH-UGC are entirely type-pure, those produced by baseline methods exhibit substantial cross-type318

mixing, leading to semantic drift and reduced model performance. Figure 5 analyzes the effect of319

increasing coarsening ratios on node classification accuracy. As expected, all methods experience320

performance degradation with aggressive coarsening. However, the drop is exponential for existing321

approaches due to rising impurity levels. In contrast, AH-UGC maintains structural purity across322

coarsening levels, resulting in a gradual, near-linear decline in accuracy. This robustness demonstrates323

AH-UGC’s superior capacity to coarsen heterogeneous graphs while preserving their semantic and324

structural fidelity.325

Figure 4: Supernode impurity across AH-UGC (left), UGC (center) and VAN (right) on IMDB dataset. Different
colors represent different node types(Movie, Director, Actor).

Figure 5: Node classification accuracy on the hDBLP dataset under decreasing coarsening ratios for three
heteroGNN models: HeteroSGC (left), HeteroGCN (center), and HeteroGCN2 (right).

5 Conclusion326

In this paper, we propose AH-UGC, a unified framework for adaptive and heterogeneous graph327

coarsening. By integrating Locality-Sensitive Hashing (LSH) with Consistent Hashing, AH-UGC328

efficiently produces multiple coarsened graphs with minimal overhead. Additionally, its type-329

aware design ensures semantic preservation in heterogeneous graphs by avoiding cross-type node330

merges. The framework is model-agnostic, scalable, and capable of handling both heterophilic and331

heterogeneous graphs. We demonstrate that AH-UGC preserves key spectral properties, making it332

applicable across diverse graph types. Extensive experiments on 23 real-world datasets with various333

GNN architectures show that AH-UGC consistently outperforms existing methods in scalability,334

classification accuracy, and structural fidelity.335
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A Datasets495

We experiment on 24 widely-used benchmark datasets grouped into four categories: (a) Homophilic:496

Cora ,Citeseer, Pubmed [33], CS, Physics [34], DBLP [35]; (b) Heterophilic: Squirrel, Chameleon,497

Texas, Cornell, Film, Wisconsin [36–39], Penn49, deezer-europe, Amherst41, John Hopkins55,498

Reed98 [11]; (c) Heterogeneous: IMDB, DBLP, ACM [7, 25]; and (d) Large-scale: Flickr, Yelp,499

[14] ogbn-arxiv [6] , Reddit [40]. These datasets enable us to evaluate all six key components500

outlined in Section 2.1. Please refer to Table 5 and 6 for detailed dataset statistics and characteristics.501

Table 5: Summary of the datasets.

Category Data Nodes Edges Feat. Class H.R(α)

Homophilic
dataset

Cora 2,708 5,429 1,433 7 0.19
Citeseer 3,327 9,104 3,703 6 0.26
DBLP 17,716 52,867 1,639 4 0.18

CS 18,333 163,788 6,805 15 0.20
PubMed 19,717 44,338 500 3 0.20
Physics 34,493 247,962 8,415 5 0.07

Heterophilic
dataset

Texas 183 309 1703 5 0.91
Cornell 183 295 1703 5 0.70

Film 7600 33544 931 5 0.78
Squirrel 5201 217073 2089 5 0.78

Chameleon 2277 36101 2325 5 0.75
Penn94 41,554 1.36M 5 2 0.53

Deezer-europe 28,281 185.5k 31.24k 2 -
Amherst41 2235 181.9k 1193 3 -

John-Hopkin55 41,554 2.7M 4,814 3 -
Reed98 962 37.6k 745 3 -

Large dataset
Flickr 89,250 899,756 500 7 -
Reddit 232,965 11.60M 602 41 -

Ogbn-arxiv 169,343 1.16M 128 40 -
Yelp 716,847 13.95M 300 100 -

502

Table 6: Summary of Heterogeneous graph datasets

Dataset Nodes Edges Features Classes

IMDB

Movie - 4278 (Movie, to, Director) - 4278

3061 Movie: 3Director - 2081 (Movie, to, Actor) - 12828
Actor - 5257 (Director, to, Movie) - 4278

(Actor, to, Movie) - 12828

DBLP

(Author, to, Paper) - 19645

Author: 4

Author - 4057 (Paper, to, Author) - 19645 Author - 334
Paper - 4231 (Paper, to, Term) - 85810 Paper - 4231
Term - 7723 (Paper, to, Conference) - 14328 Term - 50

Conference - 50 (Term, to, Paper) - 85810 Conference - NA
(Conference, to, Paper) - 14328

ACM

(Paper, cite, Paper) - 5343

All except term - 1902
Term - NA Paper: 3

(Paper, ref, Paper) - 5343
Paper - 3025 (Paper, to, Author) - 9949

Author - 5959 (Author, to, Paper) - 9949
Subject - 56 (Paper, to, Subject) - 3025
Term - 1902 (Subject, to, Paper) - 3025

(Paper, to, Term) - 255619
(Term, to, Paper) - 255619

B Locality-Sensitive Hashing and Consistent Hashing503

Locality-Sensitive Hashing (LSH) is a technique for hashing high-dimensional data points so that504

similar items are more likely to collide (i.e., hash to the same bucket) [32, 50, 51]. It is commonly505

used in approximate nearest neighbor search, dimensionality reduction, and randomized algorithms506

[52]. For example, a hash function h(·) is locality-sensitive with respect to a similarity measure s(·, ·)507

if Pr[h(x) = h(y)] increases with s(x, y). Gaussian LSH schemes, such as those using random508

projections, are particularly effective for preserving Euclidean distances [4, 22].509

In the consistent hashing (CH) [23, 24] scheme, objects/requests are hashed to random bins/servers510

on the unit circle, as shown in Figure 6. Objects are then assigned to the closest bin in the clockwise511

direction. CH was originally proposed for load balancing in distributed systems; it maps data points512
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Figure 6: Consistent Hashing (CH): Objects and bins are hashed to a unit circle; each object is
assigned to the next bin in clockwise order.

to buckets such that small changes in input (e.g., adding or removing an object) do not drastically513

affect the overall assignment. We aim to employ CH for adaptive graph coarsening, as it enables514

stable and scalable grouping of similar objects/nodes. When combined with LSH, consistent hashing515

offers a powerful mechanism for adaptive graph reduction.516

C Proof of Theorem 3.2517

Theorem C.1 (Explicit Load Balance via Random Rightward Merges) Let n nodes be sorted ac-518

cording to the consistent hashing scores defined earlier. Let k supernodes be formed by performing519

n − k random rightward merges in the sorted list. Then, for any constant c > 0, the maximum520

number of nodes in any supernode Si satisfies:521

Pr

[
max

i
|Si| ≤

n

k
+

n(log k + c)

k

]
≥ 1− e−c

Proof Let U1, . . . , Uk−1 ∼ Uniform(0, 1) and let U(1) < · · · < U(k−1) be their order statistics.522

Define the spacings:523

I1 = U(1) − 0, I2 = U(2) − U(1), . . . , Ik = 1− U(k−1)

Then (I1, . . . , Ik) form a random partition of the unit interval [0, 1]. It is a classical result (e.g., [53])524

that:525

• The vector (I1, . . . , Ik) ∼ Dirichlet(1, . . . , 1),526

• Each individual spacing Ii ∼ Beta(1, k − 1).527

Tail bound on Ii. The PDF of Ii is:528

f(t) = (k − 1)(1− t)k−2, t ∈ [0, 1]

and its tail probability is:529

Pr[Ii > t] = (1− t)k−1

Choose t = log k+c
k . Then:530

Pr[Ii > t] ≤ exp (−(log k + c)) =
1

k
e−c

Union bound. Over all k intervals:531

Pr

[
max

i
Ii >

log k + c

k

]
≤ k · 1

k
e−c = e−c ⇒ Pr

[
max

i
Ii ≤

log k + c

k

]
≥ 1− e−c

Scaling to n nodes. We model the sorted list of n nodes as uniformly spaced over [0, 1]. Each532

spacing Ii then corresponds to a fraction of the list, and multiplying by n yields the expected number533
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of nodes in that supernode:534

|Si| = n · Ii ⇒ max
i

|Si| = n ·max
i

Ii ≤
n

k
+

n(log k + c)

k

This completes the proof.535

D Proof of Theorem 3.1536

Theorem D.1 (Projection Proximity for Similar Points) Let x, y ∈ Rd, and define the projection537

function:538

h(x) =

ℓ∑
j=1

r⊤j x, rj ∼ N (0, Id) i.i.d.

Then the difference h(x)− h(y) ∼ N (0, ℓ∥x− y∥2), and for any ε > 0:539

Pr [|h(x)− h(y)| ≤ ε] = erf

(
ε√

2ℓ∥x− y∥

)

Proof Let z = x− y ∈ Rd. Then:540

h(x)− h(y) =

ℓ∑
j=1

r⊤j x−
ℓ∑

j=1

r⊤j y =

ℓ∑
j=1

r⊤j (x− y) =

ℓ∑
j=1

r⊤j z

Each term r⊤j z is a linear projection of a standard Gaussian vector, hence:541

r⊤j z ∼ N (0, ∥z∥2) = N (0, ∥x− y∥2)

Since the rj are independent, the sum of ℓ such independent variables is:542

h(x)− h(y) ∼ N (0, ℓ∥x− y∥2)

Now consider the probability:543

Pr [|h(x)− h(y)| ≤ ε]

This is the cumulative probability within ε of a zero-mean Gaussian with variance ℓ∥x− y∥2. Let544

σ2 = ℓ∥x− y∥2. Then:545

Pr [|Z| ≤ ε] = erf

(
ε√
2σ2

)
= erf

(
ε√

2ℓ∥x− y∥

)
as required.546

E Node Classification Accuracy547

Graph Neural Networks (GNNs), designed to operate on graph data [4, 54], have demonstrated strong548

performance across a range of applications [55–58]. Nevertheless, their scalability to large graphs549

remains a significant bottleneck. Motivated by recent efforts in scalable learning [43], we explore550

how our graph coarsening framework can improve the efficiency and scalability of GNN training,551

enabling more effective processing of large-scale graph data. Specifically, we train several GNN552

models on the coarsened version of the original graph while evaluating their performance on the553

original graph’s test nodes. As discussed earlier in 4.3, our experimental setup spans a diverse554

collection of datasets, each with distinct structural characteristics. For homophilic graph settings, we555

follow the architectural configurations proposed in UGC [4], see Table 7. For heterophilic graphs, the556

GNN model designs are based on the implementations introduced in [11]. The heterogeneous GNN557

architectures are adopted directly from [25].558

Table 8 reports node classification accuracy for homophilic and Table 9 reports node classification559

accuracy for heterophilic graphs. The AH-UGC framework consistently delivers results that are560

either on par with or exceed the performance of existing coarsening methods. As shown in Table 3,561

the framework is independent of any particular GNN architecture, highlighting its robustness and562

model-agnostic characteristics.563
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Table 7: Summary of GNN architectures used in our experiments. Each model is described by its
layer composition, hidden units, activation functions, dropout strategy, and notable characteristics.

Model Layers Hidden Units Activation Dropout Learning rate Decay Epoch

GCN 3 × GCNConv 64 → 64 → Output ReLU Yes (intermediate layers) 0.003 0.0005 500
APPNP Linear → Linear → APPNP 64 → 64 → 10 → Output ReLU Yes (before Linear layers) 0.003 0.0005 500
GAT 2 × GATv2Conv 64 × 8 → Output ELU Yes (p=0.6) 0.003 0.0005 500
GIN 2 × GATv2Conv 64 × 8 → Output ELU Yes (p=0.6) 0.003 0.0005 500
GraphSAGE 2 × SAGEConv 64 → Output ReLU Yes (after first layer) 0.003 0.0005 500

Table 8: Node classification accuracy (%) for homophilic datasets.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

Cora GCN 77.34 83.79 81.58 81.58 83.05 82.32 79.18 79.00 77.34 85.81
SAGE 80.47 82.87 81.95 81.76 83.97 82.87 82.87 76.61 76.24 89.87
GIN 78.63 77.53 74.58 76.79 79.18 78.08 77.16 55.43 77.34 87.29
GAT 77.16 78.08 75.87 74.40 81.21 80.47 74.58 78.26 81.03 87.10
APPNP 82.87 84.53 82.50 84.53 84.34 85.26 82.87 86.37 84.53 88.58

DBLP GCN 79.65 80.36 80.55 79.99 80.55 79.26 79.40 85.75 80.27 84.00
SAGE 80.58 80.07 80.16 80.81 80.61 81.57 79.48 68.56 68.31 84.08
GIN 79.40 79.20 80.38 78.83 77.96 78.18 78.01 73.95 79.82 83.26
GAT 74.43 78.32 76.49 77.56 78.97 77.51 75.93 77.93 79.48 82.25
APPNP 84.25 83.80 83.63 83.60 83.29 84.25 84.05 84.84 85.18 85.75

CS GCN 91.63 92.01 91.19 92.03 91.41 87.26 92.55 92.66 92.47 93.51
SAGE 94.32 94.19 94.57 94.24 93.94 93.70 94.02 89.17 89.83 94.82
GIN 89.80 89.69 89.83 90.70 89.61 88.00 90.64 86.77 81.07 83.50
GAT 91.98 91.52 92.31 91.57 90.67 91.19 89.50 89.83 90.48 91.84

Citeseer GCN 59.90 60.36 58.40 61.26 60.81 61.26 62.76 65.31 65.46 70.12
SAGE 66.51 65.01 64.41 63.96 66.06 65.31 63.51 61.71 64.26 74.47
GIN 59.60 60.36 59.00 59.45 56.15 62.91 57.50 64.41 63.66 71.62
GAT 53.45 58.55 54.95 53.45 62.76 59.75 57.35 65.76 69.21 71.32
APPNP 62.16 63.36 62.46 60.21 62.91 63.81 63.21 68.61 69.06 73.12

PubMed GCN 74.34 72.46 74.06 71.72 67.36 72.87 69.59 84.66 85.47 87.60
SAGE 74.36 73.04 73.68 66.45 69.04 74.06 71.70 87.34 72.16 88.28
GIN 57.17 66.53 61.53 60.11 65.66 60.85 63.46 82.42 83.97 85.75
GAT 46.85 40.03 52.68 50.60 53.29 56.99 69.09 84.66 84.63 87.39
APPNP 76.34 77.00 73.55 75.55 71.75 76.72 70.46 85.64 85.80 87.88

Physics GCN 94.75 94.62 94.57 94.73 94.39 94.75 94.40 95.20 94.88 95.79
SAGE 96.26 96.04 96.08 95.97 96.04 96.18 96.01 95.21 95.78 96.44
GIN 94.90 94.56 94.78 94.49 93.79 94.79 92.65 94.41 94.94 95.66
GAT 94.97 95.01 95.00 94.65 95.36 94.60 94.85 96.02 95.10 94.28
APPNP 96.20 96.20 96.28 96.11 95.97 96.07 96.21 96.17 96.10 96.28

F Spectral Properties564

1. Relative Eigen Error (REE): REE used in [4, 19, 20] gives the means to quantify the measure565

of the eigen properties of the original graph G that are preserved in coarsened graph Gc.566

Definition F.1 REE is defined as follows:567

REE(L,Lc, k) =
1

k

k∑
i=1

|λ̃i − λi|
λi

(1)

where λi and λ̃i are top k eigenvalues of original graph Laplacian (L) and coarsened graph568

Laplacian (Lc) matrix, respectively.569

2. Hyperbolic error (HE): HE [59] indicates the structural similarity between G and Gc with the570

help of a lifted matrix along with the feature matrix X of the original graph.571

Definition F.2 HE is defined as follows:572

HE = arccosh(
||(L− Llift)X||2F ||X||2F

2trace(XTLX)trace(XTLliftX)
+ 1) (2)
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Table 9: Node classification accuracy (%) for heterophilic datasets.

Dataset Model VAN VAE VAC HE aJC aGS Kron UGC AH-UGC Base

Film SGC 29.36 27.84 29.95 26.15 26.89 25.74 27.74 21.47 21.68 27.63
Mixhop 28.21 30.68 29.84 29.52 29.10 29.15 31.15 21.57 21.79 30.92
GCN2 26.15 28.47 28.00 26.94 27.63 25.84 29.42 19.47 20.42 28.36
GPR-GNN 26.52 27.95 27.10 27.74 26.78 28.36 28.26 20.68 21.31 29.73
GatJK 26.11 25.89 25.79 25.10 25.31 25.31 26.63 22.42 21.21 23.94

deezer-europe SGC 54.55 55.31 54.50 55.38 54.48 54.69 55.15 54.49 55.06 57.08
Mixhop 58.42 59.10 58.48 58.82 58.34 57.38 58.80 59.78 60.98 64.31
GCN2 57.79 58.34 57.76 58.34 57.15 57.57 58.25 58.00 58.46 60.88
GPR-GNN 56.30 56.85 56.70 56.77 55.73 55.55 56.31 58.44 58.46 56.97
GatJK 55.21 57.50 54.63 55.76 55.31 56.03 56.87 57.01 57.33 59.01

Amherst41 SGC 61.42 63.19 59.06 60.83 63.39 62.99 63.78 78.74 73.82 73.46
Mixhop 59.25 58.46 57.68 58.66 59.06 63.78 58.66 69.29 64.37 72.48
GCN2 62.99 62.01 60.63 59.25 58.66 60.63 56.50 71.06 68.50 71.74
GPR-GNN 59.45 58.86 58.07 55.91 57.68 59.25 55.71 66.73 63.98 60.93
GatJK 57.48 63.58 60.24 62.99 61.61 64.76 62.60 64.37 67.72 78.13

Johns Hopkins55 SGC 62.72 69.19 68.77 69.35 68.85 70.28 69.19 73.80 72.96 73.77
Mixhop 63.64 65.74 68.18 64.90 62.22 64.90 63.73 69.94 67.25 73.56
GCN2 66.16 67.51 67.42 64.23 65.49 65.74 64.40 71.12 65.24 73.45
GPR-GNN 62.05 63.06 62.30 62.80 60.37 61.96 61.71 66.33 63.31 64.95
GatJK 62.80 69.10 67.34 66.41 65.99 65.58 67.00 69.77 65.32 77.12

Reed98 SGC 53.46 57.14 53.92 52.07 55.30 58.06 53.92 57.60 57.60 68.79
Mixhop 50.69 58.99 49.77 48.85 55.30 59.45 53.46 60.37 52.53 62.43
GCN2 56.68 59.45 51.61 50.69 51.61 56.68 50.69 61.75 57.14 64.16
GPR-GNN 48.39 57.60 48.39 45.62 55.76 58.06 53.46 57.60 54.84 56.07
GatJK 55.30 58.99 53.00 51.61 51.61 56.22 53.92 62.67 60.83 69.94

Squirrel SGC 31.97 33.13 30.98 36.66 34.97 36.59 35.59 40.89 39.51 43.61
Mixhop 36.28 30.21 24.60 34.90 28.44 27.90 37.05 46.12 43.97 46.40
GCN2 39.74 42.28 39.20 41.74 37.97 39.12 41.51 43.12 44.35 50.72
GPR-GNN 29.36 25.67 28.82 28.82 26.44 27.06 30.59 45.12 43.74 34.39
GatJK 31.44 37.43 32.82 46.12 38.36 37.89 46.81 40.89 39.43 46.01

Chameleon SGC 38.60 51.58 45.79 54.91 52.63 53.15 54.39 58.60 59.65 57.46
Mixhop 40.53 51.40 43.33 50.35 49.82 49.30 54.39 58.25 58.60 63.16
GCN2 47.37 52.11 56.84 59.30 59.65 58.95 59.12 51.40 49.82 67.11
GPR-GNN 40.53 46.32 41.05 39.64 40.35 43.68 51.05 54.74 52.28 55.04
GatJK 41.40 52.46 36.49 60.00 56.49 55.96 62.63 54.39 55.44 71.05

Cornell SGC 67.24 67.09 68.26 68.02 68.35 69.02 68.33 76.68 76.08 72.78
Mixhop 66.79 67.67 67.14 66.07 66.45 66.71 66.41 70.64 71.61 76.49
GCN2 66.31 66.83 66.98 67.64 67.17 62.91 66.50 72.71 70.90 77.18
GPR-GNN 64.98 64.27 65.17 65.00 63.55 63.67 63.48 69.66 68.00 67.46
GatJK 63.48 65.31 68.28 66.00 67.40 66.21 66.64 70.09 70.35 78.37

Penn94 SGC 62.93 62.33 62.23 62.13 63.52 63.03 63.52 75.74 75.87 66.78
Mixhop 71.71 69.62 69.35 68.36 67.98 68.40 67.98 73.36 72.13 80.28
GCN2 71.79 69.55 70.75 69.52 69.61 71.41 69.61 71.85 72.07 81.75
GPR-GNN 68.18 68.19 68.36 68.20 67.77 68.15 68.11 67.93 68.55 79.43
GatJK 67.94 67.05 66.73 66.21 66.34 66.06 66.33 69.23 69.26 80.74

where L is the Laplacian matrix and X ∈ RN×d is the feature matrix of the original input graph,573

Llift is the lifted Laplacian matrix defined in [20] as Llift = CLcCT where C ∈ RN×n is the574

coarsening matrix and Lc is the Laplacian of Gc.575

3. Reconstruction Error (RcE)576

Definition F.3 Let L be the original Laplacian matrix and Llift be the lifted Laplacian matrix,577

then the reconstruction error (RE) [19, 60] is defined as:578

RcE = ∥L− Llift∥2F (3)

G Algorithms579

H Heterogenous graph coarsening580
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Table 10: This table illustrates spectral properties including HE, RcE, REE across datasets and
methods at 50% coarsening ratio. AH-UGC achieves competitive performance across most datasets.

Dataset VAN VAE VAC HE aJC aGS Kron UGC AH-UGC

Cora 2.04 2.08 2.14 2.19 2.13 1.95 2.14 1.96 2.03

HE
Error

DBLP 2.20 2.07 2.21 2.21 2.12 2.06 2.24 2.10 1.99
Pubmed 2.49 3.33 3.46 3.19 2.77 2.48 2.74 1.72 1.53
Squirrel 4.17 2.61 2.72 1.52 1.92 2.01 1.87 0.69 0.82

Chameleon 2.77 2.55 2.99 1.80 1.86 1.97 1.86 1.28 1.71
Deezer-Europe 1.90 1.97 2.04 1.95 1.90 1.62 1.90 1.76 1.61

Penn94 1.96 1.52 1.65 1.57 1.51 1.43 1.55 1.05 1.09

ReC
Error

Cora 3.78 3.83 3.90 3.95 3.91 3.71 3.92 4.07 4.14
DBLP 4.94 4.89 5.03 5.06 5.03 4.73 5.08 5.24 5.11

Pubmed 4.48 5.13 5.14 5.08 5.03 4.78 4.99 4.60 4.43
Squirrel 10.36 9.90 10.31 9.13 9.88 10.00 9.39 9.09 9.07

Chameleon 7.90 7.72 8.05 7.55 7.52 7.58 7.13 7.40 7.16
Deezer-Europe 5.08 5.06 5.19 5.04 5.04 4.68 5.01 8.03 8.05

Penn94 7.77 7.71 7.77 7.73 7.73 7.63 7.76 7.71 7.74

REE
Error

Cora 0.09 0.07 0.05 0.04 0.11 0.09 0.03 0.64 0.66
DBLP 0.10 0.05 0.13 0.07 0.06 0.03 0.18 0.44 0.32

Pubmed 0.05 0.97 0.88 0.71 0.48 0.06 0.42 0.31 0.21
Squirrel 0.88 0.58 0.42 0.44 0.34 0.36 0.48 0.05 0.07

Chameleon 0.76 0.69 0.67 0.38 0.38 0.35 0.52 0.09 0.12
Deezer-Europe 0.48 0.29 0.47 0.25 0.21 0.02 0.19 0.35 0.35

Penn94 0.31 0.02 0.05 0.02 0.09 0.05 0.08 0.22 0.23

Algorithm 1 AH-UGC: Adaptive Universal Graph Coarsening

Require: Input G(V,A,X), l← Number of Projectors
1: α = |{(v,u)∈E:yv=yu}|

|E| ; α is heterophily factor, yi ∈ RN is node labels, E denotes edge list
2: F =

{
(1− α) ·X ⊕ α ·A

}
3: S ← F · W + b;S ∈ Rn×l // compute projections
4: W ∈ Rd×l, b ∈ Rl ∼ D(·) // sample projections
5: S ← F · W + b; S ∈ Rn×l // compute projections
6: si ← AGGREGATE({Si,k}lk=1) =

1
l

∑l
k=1 Si,k ∀i ∈ {1, . . . , n} // mean aggregation

7: L ← sort ({vi}ni=1) by ascending si // ordered node list
8: L ← [{u1 : {v1}}, {u2 : {v2}}, . . . , {un : {vn}}] // initial super-nodes
9: while |L|/|V | > r do

10: uj ∼ Uniform(L) // sample a super-node
11: L[uj ]← L[uj ] ∪ L[uj+1] // merge with right neighbor
12: L ← L \ {uj+1} // remove right neighbor

13: C ∈ {0, 1}|L|×|V |, Cij ←

{
1 if vj ∈ L[ui]

0 otherwise
// partition matrix

14: C ← row-normalize(C) // normalize rows:
∑

j Cij = 1

15: F̃ ← CF ; Ã← CACT // coarsened features and adjacency
16: return Gc = (Ṽ , Ã, F̃ ), C
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Algorithm 2 Heterogeneous Graph Coarsening

Require: Graph G
(
{X(node_type)}, {A(edge_type)}, {y(target_type)}

)
, compression ratio η

Ensure: Condensed graph Gc
(
{X̃(node_type)}, {Ã(edge_type)}, {Ỹ(target_type)}

)
1: for each node type t do
2: rt ← η · |Vt|
3: Gcoarse

t , Ct ← AH-UGC(Xt, At, rt)

4: X̃t ← node features from Gcoarse
t

5: if t is target type then
6: ỹt[i]← majority vote of yj for vj ∈ Ct[i]
7: for each edge type e = (t1, t2) do
8: Initialize Ãe ∈ R|Ṽt1

|×|Ṽt2
|

9: for each (vi, vj) ∈ Ae do
10: u← super-node index of vi via Ct1
11: v ← super-node index of vj via Ct2
12: Ãe[u, v]← Ãe[u, v] + 1

13: return Gc
(
{X̃(node_type)}, {Ã(edge_type)}, {Ỹ(target_type)}

)
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Figure 7: This figure illustrates this process, highlighting how AH-UGC preserves semantic meaning
compared to other GC methods that merge heterogeneous nodes indiscriminately.
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aren’t acknowledged in the paper. The authors should use their best judgment and recognize622

that individual actions in favor of transparency play an important role in developing norms that623

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize624
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their results reproducible or verifiable.653

• Depending on the contribution, reproducibility can be accomplished in various ways. For654

example, if the contribution is a novel architecture, describing the architecture fully might655

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary656

to either make it possible for others to replicate the model with the same dataset, or provide657

access to the model. In general. releasing code and data is often one good way to accomplish658

this, but reproducibility can also be provided via detailed instructions for how to replicate the659

results, access to a hosted model (e.g., in the case of a large language model), releasing of a660

model checkpoint, or other means that are appropriate to the research performed.661

• While NeurIPS does not require releasing code, the conference does require all submissions662

to provide some reasonable avenue for reproducibility, which may depend on the nature of the663

contribution. For example664

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to665

reproduce that algorithm.666

(b) If the contribution is primarily a new model architecture, the paper should describe the667

architecture clearly and fully.668

(c) If the contribution is a new model (e.g., a large language model), then there should either669

be a way to access this model for reproducing the results or a way to reproduce the model670

(e.g., with an open-source dataset or instructions for how to construct the dataset).671

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are672

welcome to describe the particular way they provide for reproducibility. In the case of673

closed-source models, it may be that access to the model is limited in some way (e.g.,674

to registered users), but it should be possible for other researchers to have some path to675

reproducing or verifying the results.676

5. Open access to data and code677

Question: Does the paper provide open access to the data and code, with sufficient instructions to678

faithfully reproduce the main experimental results, as described in supplemental material?679

Answer: [Yes]680

Justification: All datasets used are publicly available. See Abstract for codebase.681

Guidelines:682

• The answer NA means that paper does not include experiments requiring code.683

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/684

guides/CodeSubmissionPolicy) for more details.685

• While we encourage the release of code and data, we understand that this might not be possible,686

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless687

this is central to the contribution (e.g., for a new open-source benchmark).688

• The instructions should contain the exact command and environment needed to run to reproduce689

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/690

guides/CodeSubmissionPolicy) for more details.691

• The authors should provide instructions on data access and preparation, including how to access692

the raw data, preprocessed data, intermediate data, and generated data, etc.693

• The authors should provide scripts to reproduce all experimental results for the new proposed694

method and baselines. If only a subset of experiments are reproducible, they should state which695

ones are omitted from the script and why.696

• At submission time, to preserve anonymity, the authors should release anonymized versions (if697

applicable).698
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• Providing as much information as possible in supplemental material (appended to the paper) is699

recommended, but including URLs to data and code is permitted.700

6. Experimental setting/details701

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,702

how they were chosen, type of optimizer, etc.) necessary to understand the results?703

Answer: [Yes]704

Justification: See Section 4 and Appendix.705

Guidelines:706

• The answer NA means that the paper does not include experiments.707

• The experimental setting should be presented in the core of the paper to a level of detail that is708

necessary to appreciate the results and make sense of them.709

• The full details can be provided either with the code, in appendix, or as supplemental material.710

7. Experiment statistical significance711

Question: Does the paper report error bars suitably and correctly defined or other appropriate712

information about the statistical significance of the experiments?713

Answer: [Yes]714

Justification: See Section 4 and Appendix.715

Guidelines:716

• The answer NA means that the paper does not include experiments.717

• The authors should answer "Yes" if the results are accompanied by error bars, confidence718

intervals, or statistical significance tests, at least for the experiments that support the main claims719

of the paper.720

• The factors of variability that the error bars are capturing should be clearly stated (for example,721

train/test split, initialization, random drawing of some parameter, or overall run with given722

experimental conditions).723

• The method for calculating the error bars should be explained (closed form formula, call to a724

library function, bootstrap, etc.)725

• The assumptions made should be given (e.g., Normally distributed errors).726

• It should be clear whether the error bar is the standard deviation or the standard error of the727

mean.728

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably729

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of730

errors is not verified.731

• For asymmetric distributions, the authors should be careful not to show in tables or figures732

symmetric error bars that would yield results that are out of range (e.g. negative error rates).733

• If error bars are reported in tables or plots, The authors should explain in the text how they were734

calculated and reference the corresponding figures or tables in the text.735

8. Experiments compute resources736

Question: For each experiment, does the paper provide sufficient information on the computer737

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-738

ments?739

Answer: [Yes]740

Justification: See Appendix.741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud744

provider, including relevant memory and storage.745

• The paper should provide the amount of compute required for each of the individual experimental746

runs as well as estimate the total compute.747

• The paper should disclose whether the full research project required more compute than the748

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it749

into the paper).750

9. Code of ethics751

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS752

Code of Ethics https://neurips.cc/public/EthicsGuidelines?753

Answer: [Yes]754

Justification: Research conducted in the paper conform, in every respect, with the NeurIPS Code755

of Ethics.756

Guidelines:757
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.758

• If the authors answer No, they should explain the special circumstances that require a deviation759

from the Code of Ethics.760

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due761

to laws or regulations in their jurisdiction).762

10. Broader impacts763

Question: Does the paper discuss both potential positive societal impacts and negative societal764

impacts of the work performed?765

Answer: [NA]766

Justification: There is no societal impact of the work performed.767

Guidelines:768

• The answer NA means that there is no societal impact of the work performed.769

• If the authors answer NA or No, they should explain why their work has no societal impact or770

why the paper does not address societal impact.771

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,772

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-773

ment of technologies that could make decisions that unfairly impact specific groups), privacy774

considerations, and security considerations.775

• The conference expects that many papers will be foundational research and not tied to par-776

ticular applications, let alone deployments. However, if there is a direct path to any negative777

applications, the authors should point it out. For example, it is legitimate to point out that778

an improvement in the quality of generative models could be used to generate deepfakes for779

disinformation. On the other hand, it is not needed to point out that a generic algorithm for780

optimizing neural networks could enable people to train models that generate Deepfakes faster.781

• The authors should consider possible harms that could arise when the technology is being used782

as intended and functioning correctly, harms that could arise when the technology is being used783

as intended but gives incorrect results, and harms following from (intentional or unintentional)784

misuse of the technology.785

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies786

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for787

monitoring misuse, mechanisms to monitor how a system learns from feedback over time,788

improving the efficiency and accessibility of ML).789

11. Safeguards790

Question: Does the paper describe safeguards that have been put in place for responsible release of791

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,792

or scraped datasets)?793

Answer: [NA]794

Justification: The paper poses no such risks.795

Guidelines:796

• The answer NA means that the paper poses no such risks.797

• Released models that have a high risk for misuse or dual-use should be released with necessary798

safeguards to allow for controlled use of the model, for example by requiring that users adhere799

to usage guidelines or restrictions to access the model or implementing safety filters.800

• Datasets that have been scraped from the Internet could pose safety risks. The authors should801

describe how they avoided releasing unsafe images.802

• We recognize that providing effective safeguards is challenging, and many papers do not require803

this, but we encourage authors to take this into account and make a best faith effort.804

12. Licenses for existing assets805

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the806

paper, properly credited and are the license and terms of use explicitly mentioned and properly807

respected?808

Answer: [Yes]809

Justification: Assets are properly credited and publicly available.810

Guidelines:811

• The answer NA means that the paper does not use existing assets.812

• The authors should cite the original paper that produced the code package or dataset.813

• The authors should state which version of the asset is used and, if possible, include a URL.814

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.815
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• For scraped data from a particular source (e.g., website), the copyright and terms of service of816

that source should be provided.817

• If assets are released, the license, copyright information, and terms of use in the package should818

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for819

some datasets. Their licensing guide can help determine the license of a dataset.820

• For existing datasets that are re-packaged, both the original license and the license of the derived821

asset (if it has changed) should be provided.822

• If this information is not available online, the authors are encouraged to reach out to the asset’s823

creators.824

13. New assets825

Question: Are new assets introduced in the paper well documented and is the documentation826

provided alongside the assets?827

Answer: [NA]828

Justification: The paper does not release new assets.829

Guidelines:830

• The answer NA means that the paper does not release new assets.831

• Researchers should communicate the details of the dataset/code/model as part of their sub-832

missions via structured templates. This includes details about training, license, limitations,833

etc.834

• The paper should discuss whether and how consent was obtained from people whose asset is835

used.836

• At submission time, remember to anonymize your assets (if applicable). You can either create837

an anonymized URL or include an anonymized zip file.838

14. Crowdsourcing and research with human subjects839

Question: For crowdsourcing experiments and research with human subjects, does the paper840

include the full text of instructions given to participants and screenshots, if applicable, as well as841

details about compensation (if any)?842

Answer: [NA]843

Justification: The paper does not involve crowdsourcing nor research with human subjects.844

Guidelines:845

• The answer NA means that the paper does not involve crowdsourcing nor research with human846

subjects.847

• Including this information in the supplemental material is fine, but if the main contribution of848

the paper involves human subjects, then as much detail as possible should be included in the849

main paper.850

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other851

labor should be paid at least the minimum wage in the country of the data collector.852

15. Institutional review board (IRB) approvals or equivalent for research with human subjects853

Question: Does the paper describe potential risks incurred by study participants, whether such854

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals855

(or an equivalent approval/review based on the requirements of your country or institution) were856

obtained?857

Answer: [NA]858

Justification: The paper does not involve crowdsourcing nor research with human subjects.859

Guidelines:860

• The answer NA means that the paper does not involve crowdsourcing nor research with human861

subjects.862

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be863

required for any human subjects research. If you obtained IRB approval, you should clearly864

state this in the paper.865

• We recognize that the procedures for this may vary significantly between institutions and866

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for867

their institution.868

• For initial submissions, do not include any information that would break anonymity (if applica-869

ble), such as the institution conducting the review.870

16. Declaration of LLM usage871

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-872

standard component of the core methods in this research? Note that if the LLM is used only for873
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writing, editing, or formatting purposes and does not impact the core methodology, scientific874

rigorousness, or originality of the research, declaration is not required.875

Answer: [NA]876

Justification: Declaration is not required as LLM is only used for writing, editing, or formatting877

purposes.878

Guidelines:879

• The answer NA means that the core method development in this research does not involve LLMs880

as any important, original, or non-standard components.881

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what882

should or should not be described.883
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