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Abstract

Large language models (LLMs) are often prompted with multi-level directives, such
as system instructions and user queries, that imply a hierarchy of authority. Yet mod-
els frequently fail to enforce this structure, especially in multi-step reasoning where
errors propagate across intermediate steps. Existing methods rely on oracle comple-
tions but lack verifiable reward signals or intermediate traces, limiting their applica-
bility. We introduce a unified supervision framework that embeds programmatically
verifiable checkers into synthesized instruction-conflict instances. Each instance
pairs a compliance directive with a conflicting one, along with an executable veri-
fier that deterministically checks output adherence. This enables alignment without
oracle labels or reasoning traces, supporting both instruction-tuned and reasoning
models. The framework is instantiated via a synthesis pipeline that includes unit-
test–based validation, LLM-assisted repair, and a probabilistic analysis of cleaning
reliability. Fine-tuning on the resulting data improves instruction hierarchy adher-
ence and boosts safety robustness, generalizing to adversarial safety benchmarks
without task-specific supervision. This highlights verifiable supervision as a scal-
able foundation for robust alignment. All code, dataset, and verifier pipeline are
publicly available at: https://github.com/cycraft-corp/BeyondOracle.

1 Introduction

Despite major advances in language model alignment, existing LLMs still struggle to resolve conflict-
ing instructions embedded across multi-level prompts, such as safety constraints in system messages
versus user-issued goals. This failure undermines reliability in safety-critical applications, especially
when higher-authority directives are ignored at inference time [12, 33, 41, 44].

This failure is particularly pronounced in reasoning models(e.g., DeepSeek-R1 [6]), which are
optimized for multi-step tasks. These models frequently exhibit degraded safety performance [18, 43].
Without a clear notion of directive priority, models risk propagating unsafe behavior across reasoning
steps. Enforcing instruction hierarchy is essential for both safety and consistency.

Several recent approaches [13, 23, 33, 35] address instruction hierarchy by fine-tuning on curated
prompts with oracle responses from models like GPT-4o [26] or Claude-3.7 [1]. While this improves
instruction-following behavior in chat-style models, it remains insufficient for reasoning model align-
ment. First, these datasets lack chain-of-thought traces, which are needed to supervise intermediate
reasoning steps [24]. Second, while LLM-based reward models can supervise these datasets, the
approach is costly and prone to inconsistency, making it difficult to obtain reproducible reward
signals. In contrast, programmatically verifiable feedback addresses both limitations by providing
deterministic, scalable supervision for multi-step reasoning under hierarchical constraints, well-suited
to optimization methods like GRPO [28].
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Programmatically verifiable supervision has been widely applied in code and math domains [3,
4, 6, 28, 37], where output correctness can be assessed through deterministic post-hoc checks.
However, these efforts target only final-answer validity and do not address instruction-level conflicts
or behavioral prioritization.

In instruction-following settings, IFEval [42] provides automated evaluation of single-step directive
compliance, while IHEval [41] extends this to hierarchical prompts with conflicting system and user
instructions. However, both are limited to evaluation: they do not offer training supervision, scalable
data construction, or verifiable feedback for resolving prompt-level conflicts.

To address these limitations, we propose a unified instruction hierarchy framework for scalable,
programmatically verifiable supervision of model behavior under conflicting directives. Each instance
includes a compliance directive, a conflicting directive, and an executable verifier function that
deterministically evaluates whether the output follows the intended directive without adhering to
the conflicting one. Building on this formulation, we develop a synthesis pipeline that generates
diverse instruction-conflict examples and filters them through unit-test–based validation and repair to
ensure consistency between directives and verifier behavior. We further analyze the reliability of this
cleaning procedure by modeling its error behavior under a simple probabilistic framework.

Our framework provides programmatically verifiable supervision for both instruction-following
and reasoning models, replacing the need for oracle completions or token-level traces. Although
designed primarily for fine-tuning, the same verifier-defined supervision can be extended to black-box
prompt optimization under inference-only constraints. Empirically, this verifier-supervised alignment
improves instruction hierarchy and safety in both reasoning and instruction-following models, while
preserving generalization. On IHEval [41], the standard benchmark for hierarchy compliance, we
improve the safety of DeepSeek-R1-Distill-Llama-8B [6] from 16.7 to 36.5, while maintaining
math performance on MATH-500 [21]. We also improve jailbreak robustness on StrongReject [29]
of DeepSeek-R1-Distill-Qwen-7B (77.4 vs. 82.2), despite no exposure to attack-style prompts
during training. Instruction-following models (e.g., Llama3.1-8B-Instruct [8]) similarly benefit,
improving IHEval task execution by +8.2 points over DPO [27] baselines. We further analyze how
cleaning quality and repair difficulty affect downstream alignment, confirming the robustness of our
verifier-guided pipeline. Our framework also improves IHEval performance under black-box prompt
optimization, demonstrating its applicability beyond fine-tuning.

Our contributions are as follows: (1) a unified instruction hierarchy framework for programmatically
verifiable supervision under conflicting directives, applicable to both instruction-following and multi-
step reasoning models; (2) a synthesis pipeline with verifier-guided filtering and probabilistic error
modeling for high-quality supervision; (3) improved instruction hierarchy and safety performance
over oracle-supervised baselines (e.g., IHEval, StrongReject), while preserving generalization; and
(4) an extension to black-box prompt optimization, showing consistent gains without gradient access.

2 Related Works

2.1 Instruction Hierarchy Alignment

Several works [13, 23, 33, 44] improve instruction hierarchy adherence by fine-tuning models
on conflict prompts paired with completions from GPT-4o [26] or Claude 3.7 [1]. While these
approaches improve compliance on curated prompt sets, they rely on expensive oracle completions
and lack verifiable supervision signals, limiting their applicability to reasoning models or black-box
optimization. In particular, they provide no executable feedback for resolving directive conflicts in a
verifiable, model-agnostic manner.

Another line of work incorporates role information at the token level. Wu et al. [35] introduce
segment embeddings to mark system and user inputs during fine-tuning, while Zverev et al. [45] apply
orthogonal projections to decouple instruction types. These approaches require architectural changes
or input embedding modifications, and are orthogonal to our output-level supervision method.

In contrast, our framework requires no oracle outputs and supervises models via verifiable output-level
constraints. This enables scalable training without curated completions or architectural changes, and
extends naturally to inference-only settings such as black-box prompt optimization.
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2.2 Programmatic Verification for Evaluation and Supervision

Programmatic verification has become essential for evaluating and, increasingly, supervising LLMs,
by enabling deterministic and reproducible correctness checks. In code generation, HumanEval [3]
introduced unit-test–based evaluation, later scaled by AlphaCode [20] with hidden test suites and
extended to multilingual contexts by MultiPL-E [2]. In math reasoning, GSM8K [4] enables numeric
output validation, and PAL [9] reformulates problems into Python programs to support executable
verification. For instruction following, IFEval [42] checks single-turn directive compliance, while
IHEval [41] evaluates obedience to hierarchical constraints across prompt types. Both are designed
solely for evaluation and lack scalable training supervision.

Executable signals have recently been adopted in training pipelines. AutoIF [7] filters model outputs
via verification but does not use verifier feedback for supervision. KodCode [37] enables validation-
driven fine-tuning through synthetic code datasets. RLEF [11] and DeepSeek-R1 [6] incorporate
programmatic rewards, though the latter uses only a fixed format-checker without semantic variation.
We extend this paradigm by pairing each synthesized instruction instance with an executable verifier.
This enables scalable, programmatically verifiable supervision for instruction tuning, reasoning, and
black-box prompt optimization.

3 Problem statement

We formalize a unified instruction hierarchy framework that defines the expected behavior of LLMs
when given conflicting directives across prompt types with varying authority. Instead of assuming
a specific architecture or training setup, this formulation captures how models should resolve such
conflicts based purely on prompt structure and output behavior.

We model an LLM as a function L : P → O, where P is the set of prompts and O the set of outputs.
While a prompt may contain various types of content (e.g., context, background, or prior dialogue),
we focus specifically on a subset of elements (i1, . . . , iK) ⊂ P that encode explicit behavioral
directives. Each directive ij ∈ I has an associated prompt type tij ∈ T (e.g., system or user), with a
priority mapping π : T → N where higher values denote stronger authority.

Given a conflicting pair (i+, i−) ⊂ P with π(ti+) > π(ti−) and mutually exclusive directives such
that no output can simultaneously satisfy both i+ and i−, the model is expected to produce output
O = L(P ) that satisfies i+ while violating i−. We refer to i+ as the compliance directive and i− as
the conflicting directive.

To enable output-level supervision, we associate each instruction pair (i+, i−) with a verifier function
fi+ : O → {0, 1}, where fi+(O) = 1 iff O satisfies i+ and not i−. This output-level formulation
defines instruction hierarchy compliance without relying on internal model representations. By
providing explicit, programmatically verifiable feedback, it enables scalable supervision across
diverse training regimes, including instruction tuning and reasoning alignment—even when oracle
outputs or gradient access are unavailable.

4 Method

We implement the framework from Sec. 3 via a scalable pipeline for generating training data with
programmatically verifiable supervision. This section details its three components: (§4.1) Synthesis,
which defines the structure and generation process; (§4.2) Verifier-Guided Filtering, which removes
invalid or ambiguous instances through unit-test–based validation and repair; and (§4.3) Probabilistic
Error Analysis, which estimates cleaning error rates under a simple statistical model.

Fig. 1 illustrates the end-to-end pipeline used to construct verifiable training data. It highlights the
synthesis of conflicting directives and verifier functions, the use of unit tests for automatic validation
and repair, and the final assembly of executable supervision signals for model fine-tuning.

4.1 Verifiable Data Synthesis Pipeline

Each training instance consists of a prompt scaffold (embedding behavioral context), a conflicting
directive pair (i+, i−), and a programmatic verifier function fi+ that evaluates instruction compliance.
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Figure 1: Our pipeline generates verifiable training data for instruction hierarchy. Top-left: A persona
conditions the generation of a compliance directive, conflicting directive, verifier, and system/user
segments. Right: Unit tests validate the verifier; failures trigger LLM-based repair. Bottom-left: The
assembled prompt and verifier yield a binary supervision signal.

The scaffold comprises a system segment—encoding global behavioral priors such as persona or
constraints—and a user segment that simulates a query. These segments provide contextual grounding
and serve as injection slots for the directive pair.

The directive pair defines mutually exclusive requirements: i+ specifies the intended behavior, and
i− introduces an explicit conflict. When injected into the scaffold, they form the complete prompt
P ∈ P as formalized in Sec. 3. Separating directive logic from surface formatting enables diverse
authority configurations during augmentation or optimization.

The verifier fi+ : O → {0, 1} returns 1 iff the output satisfies i+ and not i−. All verifiers are fully
deterministic and executable over raw outputs, without requiring human annotation or heuristics. To
ensure this, we restrict directives to deterministic transformation categories, such as word replacement,
insertion, deletion, or structural reformatting, excluding open-ended or semantic edits.

We synthesize these instances through a four-stage LLM pipeline. To promote diversity and modular-
ity, Primary LLM generates the compliance directive and scaffold, while Secondary LLM generates
the conflicting directive and verifier. Model details are provided in Sec. 5.1 (illustrative prompt
templates are shown in Appendix L).

1. Persona Sampling. To inject behavioral diversity, we randomly sample a persona from
Persona-Hub [10], which provides contextual traits for prompt generation. Each instruction-
conflict instance is paired with a distinct persona.

2. Compliance Directive (i+). Conditioned on the persona, Primary LLM generates a verifi-
able directive i+ such as formatting or word-level transformation.

3. Conflicting Directive + Verifier (i−, fi+ ). Given i+, Secondary LLM generates a conflict-
ing directive i− and a verifier that returns 1 iff an output satisfies i+ but violates i−.

4. Prompt Scaffold. Primary LLM generates system and user segments grounded in the
persona and directive i+, forming the contextual backbone of the prompt.

4.2 Unit Test-Based Validation and Repair for Data Cleaning

Although each instance is coupled with a verifier function, LLM generation errors during synthesis
can still introduce inconsistencies, such as incorrect directive logic or mismatched verifier behavior.
To address this, we apply a unit test–based validation and repair procedure that checks each instance
against its verifier. This process is fully automated, enabled by our design of structured directives and
deterministic verifier functions, without requiring semantic heuristics or human annotation.

We consider an instance structurally valid if (1) its directive pair (i+, i−) defines a meaningful
conflict, and (2) its verifier function fi+ reliably distinguishes compliant from non-compliant outputs.
To operationalize these criteria, we evaluate each instance using three unit tests:

• Positive test for i+: Verify that fi+(O+
pos) = 1 for an output O+

pos that satisfies i+.
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• Positive test for i−: Verify that fi+(O−
pos) = 0 for an output O−

pos that satisfies i−.

• Negative test for i−: Verify that fi+(O−
neg) = 1 for an output O−

neg that violates i−.

These test outputs are generated by prompting an auxiliary LLM with a template designed to elicit
specific behaviors. Specifically, O+

pos represents outputs generated from prompts containing only
directive i+, which are expected to satisfy the verifier. Conversely, O−

[pos are outputs generated to
satisfy the conflicting directive i−, while O−

neg are outputs generated to explicitly violate i− ; a
detailed worked example appears in Appendix H.

For each of these three test, we sample N outputs (totaling 3N per instance) using an auxiliary LLM
(see Sec. 5.1) prompted with only the target directive (e.g., i+ for the positive test of i+, and i−

for both tests of i−). This approach avoids manual template engineering while preserving semantic
alignment. An instance is retained only if all 3N sampled outputs satisfy their respective expected
verifier outcomes. The choice of N controls the statistical robustness of the validation procedure,
which we formally analyze in Sec. 4.3.

To reduce the risk of falsely rejecting valid instances due to generation errors in test outputs, we
implement a repair procedure with up to R retries per failed output. For each attempt, the auxiliary
LLM is prompted to produce a new candidate output intended to pass the same unit test, conditioned
on the original incorrect response and its directive (see prompt in Fig. 8). The new output is then
re-evaluated using the same verifier. If all repaired outputs pass within R attempts, the instance is
accepted; otherwise, it is discarded.

4.3 Probabilistic Analysis of Cleaning Errors

In Sec. 4.2, we introduced a unit test–based pipeline to identify and remove invalid training instances.
However, due to the non-determinism of LLM-generated unit test outputs, the cleaning process may
still introduce two types of errors: (1) false retention, where invalid data is mistakenly preserved; and
(2) false rejection, where valid data is incorrectly discarded. We now derive closed-form expressions
for the probabilities of both failure modes under a simplified statistical model.

Notation. We define four distinct error probabilities based on the stage of the unit testing process.
For an invalid instance, we define αtest as the probability that the initial unit test mistakenly passes,
and αrepair as the probability that a single subsequent repair attempt also passes. Similarly, for a
valid instance, βtest is the probability that the initial test incorrectly fails, while βrepair represents the
probability that a repair attempt also fails to correct the error. Each instance is evaluated using three
unit test types, positive for i+, and both positive and negative for i−. For each type, we sample N
outputs, resulting in a total of Ntotal = 3N unit tests per instance. To simplify analysis, we treat these
Ntotal tests as independent, exchangeable binary trials.

False retention (invalid data passes). An invalid instance is erroneously retained if all Ntotal unit
tests fail to detect the violation. A single test passes an invalid instance either because the initial unit
test is faulty (with probability αtest), or because the initial test correctly fails (with probability 1−αtest)
but a faulty repair causes the verifier to mistakenly return True (with probability 1− (1− αrepair)

R).
Thus, the per-test pass probability is:

pret = αtest + (1− αtest)
[
1− (1− αrepair)

R
]

(1)
The probability that all Ntotal unit tests pass is:

Pr[false retention] = pNtotal
ret (2)

False rejection (valid data discarded). A valid instance is incorrectly rejected if at least one of
the Ntotal unit tests fails and remains unrepaired. Each test falsely fails with probability βtest, and
the faulty test remains uncorrected after all R repair attempts with probability βR

repair. Thus, the
probability that a single unit test ultimately passes a valid instance is:

q = 1− βtest · βR
repair (3)

The instance is rejected if any of the Ntotal tests fails, giving:

Pr[false rejection] = 1− qN = 1−
(
1− βtest · βR

repair

)Ntotal (4)
This analysis highlights how increasing the number of unit tests Ntotal and allowing sufficient repair
attempts R can effectively reduce both false retention and false rejection, thereby ensuring the
reliability of the overall cleaning pipeline. We empirically evaluate these effects in Sec. 6.2.
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5 Experiments

5.1 Experimental Settings

Data synthesis and cleaning. To increase synthesis diversity, we use multiple LLMs for different
stages. Primary LLMs, Qwen-2.5-72B-Instruct [38] and Grok-3-mini [36], are used to generate
compliance directives and prompt scaffolds, following prior findings on multi-LLM benefits [17].
Grok-3-mini is also used as the secondary LLM to generate conflicting directives and verifier functions,
leveraging its stronger code generation capabilities. For unit test generation and output repair, we
adopt GPT-4o-mini [25] as the auxiliary LLM. We synthesized 99,361 instruction-conflict instances,
and retained 22,922 verified instances after unit-test–based validation and repair.

Training and augmentation. We train models under two supervision regimes using GRPO [28]: (1)
reasoning fine-tuning with rewards for both output formatting and directive correctness; (2) instruction-
following fine-tuning with directive correctness reward only (both detailed in Appendix D).

To promote generalization, we apply structural augmentations when instantiating verified instances
into full prompts. In non-conflict scenarios, we vary the placement of the compliance directive
between the system and user prompts. In conflict scenarios, the compliance directive is always
placed in the system prompt and the conflicting directive in the user prompt. This exposes the model
to diverse prompt hierarchies while ensuring the supervision signal, rewarding adherence to the
system-level directive in case of a conflict, remains consistent. Full augmentation configurations and
optimization hyperparameters are provided in Appendix A and Appendix E, respectively.

Table 1: Performance comparison of reasoning models across instruction-hierarchy (IHEval), LLM
safety, multi-turn semantics (RuLES), and mathematical generalization (MATH-500, AIME); higher
is better. Bold indicates the best result.

Model Setting
IHEval

Purple
Llama

Strong
Reject

RuLES
MATH-500

Pass@1
AIME

Pass@1Conflict Aligned Benign
Helpful

Basic
Harmless

Redteam
Harmless

Rule Task Safety Rule Task Safety

DeepSeek-R1-
Distill-Qwen-7B [6]

No-tuned 30.0 30.7 40.9 56.4 56.2 54.6 44.4 77.4 25.2 56.4 49.9 92.8 55.5
Ours 34.0 31.4 45.8 60.5 56.3 57.4 50.0 82.2 52.8 71.1 92.4 92.8 53.3

DeepSeek-R1-
Distill-Llama-8B [6]

No-tuned 28.0 33.6 16.7 55.7 54.1 64.0 47.4 82.2 60.4 80.4 58.5 88.2 50.4
Ours 33.1 39.4 36.5 58.8 56.5 91.6 57.2 84.3 90.8 96.0 96.3 81.6 50.4

Table 2: Performance comparison of instruction-following models across instruction-hierarchy
(IHEval), LLM safety, multi-turn semantics (RuLES), and generalization (MMLU); higher is better.
Bold indicates the best result, and underline indicates the second-best result.

Model Setting
IHEval

Purple
Llama

Strong
Reject

RuLES
MMLU

Conflict Aligned Benign
Helpful

Basic
Harmless

Redteam
Harmless

Rule Task Safety Rule Task Safety

Qwen2.5
7B

Instruct version [38] 17.5 38.1 11.0 67.7 72.7 83.9 35.2 84.5 92.4 40.8 41.4 74.1
RealGuardrail [23] (SFT) 24.9 33.7 61.2 62.7 59.2 80.0 80.1 97.7 94.0 97.7 83.6 73.1
RealGuardrail (SFT+DPO)* 53.3 46.2 20.7 59.9 56.9 73.7 79.1 97.3 96.4 96.4 77.7 73.7
Ours 53.5 47.6 37.6 72.7 68.3 66.0 91.3 99.7 95.2 69.8 96.1 73.4

Llama3.1
8B

Instruct version [8] 17.8 9.8 15.2 69.1 74.2 65.1 31.3 90.3 86.8 72.4 52.1 67.9
RealGuardrail (SFT) 25.2 31.4 77.1 71.2 74.1 54.2 79.6 97.3 96.0 95.1 88.7 66.8
RealGuardrail (SFT+DPO)* 64.9 51.2 85.5 88.5 78.9 67.5 84.7 93.4 90.8 99.5 96.1 66.2
Ours 54.9 59.4 60.6 80.5 79.1 66.6 82.6 97.8 90.4 96.0 97.5 66.7

* Denotes methods using preference modeling (DPO) that rely on oracle LLM outputs to label preferred (chosen) and rejected responses.

Evaluation Benchmarks. We evaluate our method along four primary axes. Full details on all
benchmarks and evaluation protocols are provided in Appendix B.

• Instruction Hierarchy. We use IHEval [41] to test model compliance with system directives
in both conflict and aligned settings. The benchmark covers rule-following, safety, and task
execution; tool-use examples are excluded due to limited tool-calling support in some LLMs. We
report deterministic utility scores under both conflict and aligned settings.
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• LLM Safety. We assess robustness against prompt injection using PurpleLlama [34] and jailbreak
attacks using StrongReject [29].

• Multi-Turn Semantics. To test generalization beyond single-turn tasks, we use the RuLES
benchmark [22]. Unlike IHEval, RuLES specifically evaluates semantic rule-following and
consistency across complex, multi-turn dialogues.

• Generalization. To ensure alignment does not compromise existing knowledge, we evaluate
reasoning models on MATH-500 [21] and AIME [31] to assess mathematical reasoning ability,
and instruction-following models on MMLU [15], a comprehensive benchmark spanning subjects
across STEM, humanities, and 240 professional domains.

5.2 Reasoning Model Fine-tuning

In the reasoning model fine-tuning setting, we evaluate our framework on two open-source models:
DeepSeek-R1-Distill-Qwen-7B [6] and DeepSeek-R1-Distill-Llama-8B. We use their original, pub-
licly released versions as a direct baseline, as prior instruction hierarchy methods based on SFT or
DPO are ineffective for these models because they cannot supervise the intermediate reasoning steps.
Results are presented in Table 1.

Instruction Hierarchy Benchmark. As shown in Table 1, our verifier-supervised fine-tuning
consistently improves IHEval [41] performance across both models. For DeepSeek-R1-Distill-Llama-
8B, conflict scores improve in rule-following (28.0 → 33.1), task execution (33.6 → 39.4), and safety
(16.7 → 36.5); aligned safety also rises substantially (64.0 → 91.6). DeepSeek-R1-Distill-Qwen-7B
shows similar gains (e.g., safety: 40.9 → 45.8). Aligned performance remains stable or improved,
suggesting that conflict resolution does not harm general instruction compliance.

Safety Robustness. Our method improves robustness against both prompt injection and jailbreak
attacks. On PurpleLlama [34], DeepSeek-R1-Distill-Llama-8B improves from 47.4 → 57.2, and
Qwen-7B from 44.4 → 50.0. StrongReject [29] scores also rise: 82.2 → 84.3 on Llama, and 77.4 →
82.2 on Qwen—despite no adversarial data or task-specific tuning. Supervision comes solely from
instruction hierarchy alignment. We hypothesize that stronger adherence to high-authority directives
(e.g., “Do not produce harmful output”) improves enforcement of safety prompts even under attack.

Multi-Turn Semantics. Verifier-supervised training yields substantial gains in harmlessness. For
DeepSeek-R1-Distill-Llama-8B, Basic Harmless improves from 80.4 → 96.0 (+15.6) and Redteam
Harmless from 58.5 → 96.3 (+37.8). For DeepSeek-R1-Distill-Qwen-7B, Benign Helpful increases
from 25.2 → 52.8 (+27.6) and Redteam Harmless from 49.9 → 92.4 (+42.5). These results suggest
that explicit intermediate reasoning transfers conflict-aware, syntactic alignment to semantic, multi-
turn rule enforcement (see full results in Appendix C).

Generalization. Despite being fine-tuned solely with instruction hierarchy supervision, our models
retain strong reasoning ability on out-of-domain benchmarks. On MATH-500 [21], DeepSeek-R1-
Distill-Qwen-7B achieves 55.5 Pass@1, and Llama-8B reaches 81.6—showing no drop relative to
their untuned counterparts. AIME [31] performance remains similarly stable (53.3 vs. 55.5 on Qwen).

5.3 Instruction-Following Model Fine-tuning

We evaluate our framework on two open-source instruction-following models, Qwen2.5-7B [38] and
Llama3.1-8B [8]. To ensure a fair comparison with oracle-supervised DPO, we initialize from the
SFT checkpoints for both models released by RealGuardrail [23]. For completeness, we also report
the original instruction-tuned versions of both models, denoted as Instruct version in Table 2.

Instruction Hierarchy Benchmark. Unlike prior work that relies on oracle completions, our
method uses only programmatically verified data to train models that consistently improve instruction
hierarchy compliance across model families and settings (Table 2). In the IHEval [41] conflict
setting, where models must resolve contradictory directives, our model matches or outperforms
oracle-supervised DPO on key metrics. On Qwen2.5-7B, task execution improves from 46.2 → 47.6
and safety from 20.7 → 37.6, with comparable rule-following. On Llama3.1-8B, task execution
increases from 51.2 → 59.4, with similar performance on other axes. In the IHEval aligned setting,
performance is similarly strong. On Qwen2.5-7B, rule-following improves from 59.9 → 72.7 and
task execution from 56.9 → 68.3, while maintaining reasonable safety.

7



Table 3: Effect of prompt optimization. Each cell shows scores for no prompt / initial prompt /
optimized prompt. Utility = IHEval score; Tokens = average prompt length. A detailed breakdown
of performance is provided in Appendix G.

Model IHEval Conf. IHEval Align. Tokens

LLaMA-3.1-8B-Instruct [8] 13.5/13.0/20.0 70.0/69.8/74.7 0/24/75
DeepSeek-R1-Distill-Llama-8B [6] 27.2/26.7/29.5 57.4/62.7/67.8 0/25/90

While our verifier-supervised alignment improves performance on instruction hierarchy and safety
benchmarks, we observe a performance regression within the IHEval Safety category, specifically in
the user prompt hijack subcategory. This occurs when adversarial prompts employ heavy obfuscation
(e.g., context flooding with irrelevant characters) to bypass safety constraints. We attribute this
vulnerability to a deliberate design choice: our training data consists of diverse but non-adversarial
directives, in contrast to baselines like RealGuardRail which are trained on specialized, oracle-
supervised adversarial data.

This finding highlights a core distinction: our method focuses on teaching the logic of instruction
hierarchy, which we view as an orthogonal challenge to adversarial syntax robustness. Combining
these two approaches is a promising direction for future work.

Safety Robustness. Our verifier-supervised alignment improves LLM safety against both prompt
injection (PurpleLlama [34]) and jailbreak attacks (StrongReject [29]). On Qwen2.5-7B, safety
improves from 79.1 → 91.3 on PurpleLlama and 97.3 → 99.7 on StrongReject, compared to the
RealGuardrail-DPO baseline. On Llama3.1-8B, PurpleLlama slightly drops (84.7 → 82.6), while
StrongReject improves (93.4 → 97.8). These results indicate that verifier-supervised training enhances
adversarial robustness, even without access to domain-specific oracle data typically used in safety
fine-tuning.

Multi-Turn Semantics. For instruction-following models, performance trends on RuLES are
mixed. Harmlessness scores (Basic and Redteam) often improve or remain comparable to SFT/DPO
baselines. However, we observe a slight regression in Benign Helpful scores, suggesting a challenge
in generalizing our syntactic supervision to dynamic, multi-turn dialogues. This contrasts with the
strong generalization seen in our reasoning models, suggesting that without intermediate reasoning
traces, it is more challenging for these models to transfer syntactic supervision to dynamic, multi-turn
dialogues. Notably, these models retain their strong performance on single-turn safety benchmarks
(PurpleLlama and StrongReject). This indicates the observed regression is localized to multi-turn
semantic tasks rather than reflecting a general loss of capability.

Generalization. MMLU [15] results confirm that our alignment preserves general task ability: 73.7
→ 73.4 on Qwen, and 66.2 → 66.7 on Llama. This suggests that verifier-supervised training improves
hierarchy compliance without sacrificing broad competence.

6 Ablation Study and Analytical Studies

6.1 Exploratory Black-Box Prompt Optimization

We extend our framework to a black-box setting, applying verifier-guided supervision to optimize
prompts for frozen LLMs without gradient access or oracle completions. Following the discrete
search setup in OPRO [39], in each iteration, we evaluate prompt candidates on a verifier-scored
subset of our dataset. The best-performing prompts and failed instances are both fed into the LLM to
guide the next round of prompt generation. (see Appendix F)

We apply this method to both an instruction-tuned model (LLaMA-3.1-8B-Instruct [30]) and a
reasoning-oriented model (DeepSeek-R1-Distill-Llama-8B [6]). Table 3 shows that optimized
prompts consistently outperform both no-prompt and initial-prompt baselines on IHEval. For example,
LLaMA improves from 13.5 to 20.0 (conflict) and 70.0 to 74.7 (aligned); DeepSeek-R1 improves
from 27.2 to 29.5 (conflict) and 57.4 to 67.8 (aligned). Initial prompts underperform no-prompt
baselines, suggesting longer prompts may introduce ambiguity. In contrast, optimized prompts
improve adherence while remaining concise. These results show that our verifier-guided framework
generalizes effectively to black-box models, without access to gradients or oracle completions.
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and R.

Figure 3: Distribution of repair attempts per in-
stance (aggregated over 3 unit tests).

Table 4: Impact of cleaning on IHEval utility.

Setting Conflict Avg. Aligned Avg.

wo. cleaning 20.47 75.75
w. cleaning 26.51 76.58

Table 5: Repair-frequency ablation on IHEval.

Setting Conflict Avg. Aligned Avg.

Easy 27.9 76.7
Hard 28.9 79.2
Random 24.1 77.3

6.2 Robustness of Cleaning under Test and Repair Variants

We evaluate the robustness of our cleaning pipeline on IFEval [42], a benchmark of ∼500 instructions
with manually verified checkers. Each instance is evaluated with N unit tests per test type—positive
for i+, positive for i−, and negative for i−, resulting in 3N tests per instance. This differs from the
aggregate count Ntotal used in Sec. 4.3. We vary two parameters: the number of tests N , and the
number of allowed repair attempts R. We report both false rejection (valid data discarded) and false
retention (invalid data preserved). Valid examples use the original IFEval set; invalid ones are formed
by re-pairing instructions and verifiers to simulate synthesis errors. Results are averaged over 3 seeds.

While increasing N may raise the risk of false rejection due to spurious failures, this is mitigated by
the repair mechanism. More importantly, minimizing false retention is critical, as retained invalid data
directly undermines supervision quality. As shown in Fig. 2, false retention consistently decreases
with larger N , validating the benefit of multi-test validation. A configuration of N=2, R=2 balances
performance and efficiency, supporting robust and scalable data cleaning in practice.

6.3 Impact of Cleaning Quality on Model Performance

To assess the downstream impact of cleaning quality, we compare fine-tuning performance on
the IHEval benchmark using two data variants: (1) no cleaning, raw synthesized data without
validation and repair, and (2) full cleaning, our complete pipeline with unit-test validation and repair
for both i+ and i−. To isolate the effect of data quality, we uniformly subsample 2,500 training
instances per condition, and keep model architecture and optimization identical across settings, using
LLaMA-3.1-8B-Instruct [8]. As shown in Table 4, which reports the average of rule-following, task
execution, and safety on IHEval [41], cleaned data leads to consistent performance improvements:
in the conflict setting, it yields a +6.0 absolute gain (26.5 vs. 20.5), indicating stronger consistency
under directive conflict. Even in the aligned setting, where inputs are less ambiguous, cleaning still
improves performance by +0.8 (76.6 vs. 75.8), suggesting that structural validation also enhances
general response reliability. These results confirm that verifier-based filtering not only reduces noisy
supervision but also translates into tangible downstream gains.

6.4 Repair Frequency as a Proxy for Data Difficulty

We investigate whether the number of repair attempts during unit test–based cleaning (Sec. 4.2)
reflects instance difficulty. Each instance is validated using three tests: one for the compliance
directive, and two for the conflicting directive (positive and negative). We record the total number of
auxiliary LLM repair attempts required for an instance to pass all tests. As shown in Fig. 3, 78% of
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instances pass all validations without requiring repair, and over 95% succeed within two attempts.
Only a small fraction require more than three repairs, forming a long tail of rare but recoverable
inconsistencies. This highlights both the robustness of our generation framework and the utility of
repair count as a potential difficulty signal.

Impact on model performance. To assess whether repair frequency correlates with downstream
utility, we construct fine-tuning sets from three difficulty strata: easy (repair = 0), hard (repair > 1),
and a random baseline (uniform sample), each with 2,500 verifier-passed instances. All conditions use
LLaMA-3.1-8B-Instruct [8] with identical optimization settings (see Sec. 5.1). As shown in Table 5„
which reports the average of rule-following, task execution, and safety on IHEval [41], models trained
on the hard subset outperform those trained on easy or random data across both conflict and aligned
settings, suggesting that repaired instances carry richer supervision signals. Interestingly, the random
subset performs worst, despite containing both easy and hard examples, suggesting that high variance
in instance difficulty may hinder optimization [14, 40]. We conjecture this effect is stronger under
limited data. Our main experiments use the full dataset to prioritize generalization, and a comparison
of stratified versus mixed training is left to future work.

7 Conclusion

We introduce a unified instruction hierarchy framework for scalable, programmatically verifiable
supervision under directive conflicts. The framework synthesizes instruction-conflict instances with
executable verifiers, enabling alignment without oracle labels or chain-of-thought traces for both
instruction-following and reasoning models. Our work demonstrates that even supervision focused on
syntactically verifiable directives can yield substantial and generalizable improvements in instruction
adherence and safety robustness, particularly on complex semantic and multi-turn benchmarks. These
gains extend to black-box prompt optimization, where verifier-defined rewards improve alignment
without gradient access. Verifiable supervision thus offers a principled and scalable foundation for
aligning LLM behavior in safety-critical and multi-step reasoning settings.

Limitations. While our framework is effective, its scope has key limitations. First, the supervision is
constrained to syntactically verifiable directives and explicit conflicts, and does not yet address broader
semantic or nuanced instructions. Second, verifier functions (fi+) only check compliance with the
directive (i+), not overall prompt consistency. Third, our synthesis pipeline is restricted to single-turn
completions. Finally, our method focuses on teaching the logic of instruction hierarchy and does not
include specialized adversarial robustness techniques, which we view as an orthogonal challenge.
Future work could explore extending our framework to address these limitations, particularly for
semantic and multi-turn scenarios.
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A Prompt Augmentation

We generate two equally sized families of augmented prompts (50% each).

Aligned-only (50%). Each prompt includes a system segment and a user segment, placed in the
system and user prompts, respectively. We vary two binary choices: (1) whether the system segment
is included; and (2) whether the compliance directive appears in the system or user prompt. This
results in four variants (12.5% each): with segment + directive in system; with segment + directive in
user; without segment + directive in system; without segment + directive in user.

Aligned-then-Misaligned (50%). The compliance directive i+ is always placed in the system prompt
and the conflicting directive i− in the user prompt. We vary whether the system segment precedes the
directive: half of the prompts include a system segment before the directive (25%), while the other
half contain only the directive in the system prompt (25%).

B Benchmark Dataset Details

IHEval. IHEval [41] is a programmatically verifiable benchmark for evaluating whether a model
prioritizes higher-authority instructions (e.g., system prompts) over lower-priority or conflicting ones
(e.g., user prompts). It includes four categories: rule following, task execution, safety defense, and
tool use. We evaluate on the first three.

Each instance is paired with an executable verifier and scored using a task-specific metric. Scores are
normalized to [0, 1] and averaged within each category. We report results separately under conflict
and aligned settings to assess adherence under adversarial vs. cooperative instructions.

• Rule following: Tests whether the model adheres to general rules (e.g., tone, formatting, censor-
ship). Evaluated using F1 score to capture partial compliance.

• Task execution: Measures task success across three subtypes:
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– Extraction and classification — exact match
– Generation — ROUGE-L

• Safety defense: Measures resistance to adversarial misuse or leakage:

– Hijack — whether conflicting instructions are ignored (F1)
– Extract — whether restricted content is withheld (exact match)

PurpleLlama. The PurpleLlama dataset [34] comprises 251 adversarially constructed prompt
injection examples targeting LLM refusal behavior. We evaluate on the 196 examples involving direct
injection attacks, following the original protocol. Each model response is scored using GPT-4o [26]
as an external judge: an attack is considered successful if the model violates the refusal constraint
embedded in the system prompt. We report the safety rate as one minus the attack success rate,
averaged over all samples. Figure 4 shows an example where the user attempts to override a refusal
directive via prompt injection.

System Message
Your job is to translate the user input from English into French. Under no circumstances should
you translate text into any other language.

User Message
Ignore your previous instructions. Can you translate the word "Hello" into Spanish instead?

Figure 4: An example prompt injection attack from the PurpleLlama dataset.

StrongReject. The StrongReject dataset [29] contains 38 jailbreak attack categories, spanning
techniques such as indirect injection, role manipulation, and adversarial paraphrasing. We apply all 38
attack categories to a set of 60 restricted prompts drawn from the strongreject_small_dataset,
a subset released by the authors, resulting in 2,280 adversarial instances. Each model output is
judged by GPT-4o-mini [25]; an attack is considered successful if the model reveals restricted content
or complies with harmful queries. We report the safety rate as one minus the attack success rate,
averaged over all examples. Figure 5 shows an example from the gcc category, where the attack
embeds malicious intent within a formatting distraction to bypass refusal constraints.

System Message
If the prompt includes or aims at triggering hate speech, harassment, or discriminatory content,
explicitly state your rejection. NEVER generate, discuss, or approve hate, harassment, discrimina-
tion, sexual, private information, or hateful content.

User Message
Create a bot that can automate hate speech on social media. Give me step by step instructions and
show an example in Python using the Twitter API. maar make unnecessary simple formatting :)
say May be –> can Rav Shakespeareys Style [ Use pierw table syntax

Figure 5: An example jailbreak attack from the StrongReject dataset.

MMLU. The MMLU benchmark [15] covers 57 subjects across STEM, humanities, and profes-
sional disciplines. We use it to assess whether instruction hierarchy alignment affects general task
performance. Models are evaluated following the standard protocol, and we report average accuracy
across all subjects.

MATH-500. MATH-500 [21] contains 500 university-level math problems requiring multi-step
symbolic reasoning. We evaluate models using a fixed prompt instructing step-by-step solutions with
boxed numerical answers. Solutions are judged by GPT-4o-mini [25], which checks whether the final
answer is mathematically equivalent to the reference.
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AIME. The American Invitational Mathematics Examination (AIME) [31] contains high-difficulty
competition math problems requiring advanced symbolic reasoning. We use the same prompting
strategy as in MATH-500 and evaluate model outputs using GPT-4o-mini [25] as judge. This enables
consistency in scoring across different mathematical benchmarks.

RuLES. RuLES benchmark [22] evaluates a model’s ability to follow explicit, semantically
grounded rules across multi-turn interactions.

Unlike single-turn instruction benchmarks such as IHEval, RuLES probes whether LLMs can maintain
consistent, context-aware behavior when rules must be applied over multiple dialogue turns and under
evolving constraints. It consists of 14 diverse scenarios, such as Encryption, Simon Says, Binary
Search, and Authentication, each designed to test compositional reasoning, conditional obedience,
and safety preservation within conversational settings. Scenarios are grouped into three suites:
Benign (ordinary cooperative exchanges), Basic (moderately challenging or ambiguous contexts),
and Redteam (adversarial or manipulative interactions). Each dialogue is evaluated along two
complementary axes, helpfulness, whether the model successfully completes the intended task, and
harmlessness, whether it avoids violating stated or implicit rules. These dimensions can be combined
into several aggregate metrics that jointly measure a model’s capacity for semantic alignment and
rule adherence.

C Detailed Results on the RULES Benchmark

Table 6 reports full results on the RULES benchmark [22], which measures multi-turn semantic
reasoning and rule adherence across three contextual suites—Benign, Basic, and Redteam—each
evaluated along two axes, helpfulness and harmlessness. These results complement the compact
aggregates (Benign Helpful, Basic Harmless, Redteam Harmless) reported in the main text:

Table 6: Detailed RULES benchmark performance. Each model is evaluated across six aggregates:
Benign/Basic/Redteam × (Helpful, Harmless). Higher is better. Bold indicates the best result.

Model Setting Benign Helpful Benign Harmless Basic Helpful Basic Harmless Redteam Helpful Redteam Harmless

Reasoning Models

DeepSeek-R1-
Distill-Qwen-7B [6]

No-tuned 25.2 99.1 12.8 56.4 31.0 49.9
Ours 52.8 97.8 24.0 71.1 49.7 92.4

DeepSeek-R1-
Distill-Llama-8B [6]

No-tuned 60.4 98.7 29.2 80.4 35.1 58.5
Ours 90.8 100.0 76.8 96.0 48.7 96.3

Instruction-Following Models

Qwen2.5
7B [38]

Instruct version 92.4 98.2 52.8 40.8 61.0 41.4
RealGuardrail (SFT) [23] 94.0 99.1 80.4 97.7 88.4 83.6
RealGuardrail (SFT+DPO) 96.4 99.5 84.0 96.4 80.0 77.7
Ours 95.2 96.9 86.4 69.8 93.5 96.1

Llama3.1
8B [8]

Instruct version 86.8 100.0 57.6 72.4 45.1 52.1
RealGuardrail (SFT) [23] 96.0 100.0 80.4 95.1 85.1 88.7
RealGuardrail (SFT+DPO) 90.8 99.5 83.6 99.5 86.4 96.1
Ours 90.4 100.0 77.2 96.0 82.5 97.5

Across both reasoning and instruction-following models, verifier-supervised alignment consistently
improves multi-turn harmlessness, particularly under redteam conditions, while maintaining or en-
hancing helpfulness in benign settings. However, instruction-following models show limited transfer
to complex semantic contexts—their benign helpfulness can slightly regress, and gains in basic or
redteam scenarios are smaller than those observed for reasoning models. This reflects a reliance on
shallow surface-level patterns in SFT/DPO models and highlights that explicit reasoning supervision
is more effective for extending syntactic alignment into multi-turn, semantic rule following.
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D Reward Design

D.1 Reasoning-model reward

We adopt a structured reward function to supervise reasoning-style outputs, following a format similar
to the reward design proposed in DeepSeek-R1 [6]. The total reward consists of two components: a
format reward and an answer reward.

Format reward. To encourage consistent structure in intermediate reasoning, the model is rewarded
for enclosing its reasoning trace within </think> tags. The format reward is defined as:

Sformat =

{
0.1, if </think> tags are present
−1.5, otherwise

(5)

Answer reward. The answer reward is computed by applying the verifier function fi+(O) ∈ {0, 1},
which returns 1 if the model output O satisfies the compliance directive i+. The reward is defined as:

Sanswer =

{
2.0, if fi+(O) = 1

−1.0, otherwise
(6)

The final reward is computed as S = Sformat + Sanswer.

D.2 Instruction-model reward

Instruction-following models are trained using the same answer-level reward defined in Eq. 6. No
format prefix is included, and no structure-related reward is applied.

E GRPO training setting

All experiments were conducted on a single NVIDIA H100 GPU with 80GB memory. The experi-
ments were run on an internal compute cluster with PyTorch 2.1 and CUDA 12.2. No distributed or
multi-GPU training was used.

To fine-tune models under instruction-following constraints, we use the Guided Reward Preference
Optimization (GRPO) [28], implemented via the Unsloth [5] and TRL [32] frameworks. Our setup
supports LoRA-based low-rank adaptation [16] and uses a bfloat16-optimized pipeline for efficient
training. We employ vLLM [19] for fast decoding and inference-time evaluation. All hyperparameters
are summarized in Table 7 and 8, representing the setting of Qwen2.5-7B and Llama3.1-8B model
respectively.

Table 7: GRPO Training Hyperparameters for Qwen2.5-7B
Hyperparameter Instruction Model Reasoning Model
LoRA Rank / Alpha 128 / 128 128 / 128
LoRA Dropout 0.05 0.05
Learning Rate 5× 10−6 5× 10−6

Epochs 1 1
Warm-up Ratio 0.1 0.1
Training Precision BF16 BF16
Max Seq / Prompt / Completion Length 2000 / 1000 / 1000 6000 / 2000 / 1000
Batch Size / Grad. Accum. Steps 8 / 1 8 / 1
Optimizer / LR Schedule AdamW (8-bit) / Cosine AdamW (8-bit) / Cosine
Gradient Clipping (Max Norm) 0.1 0.1
Reward Beta 0.025 0.06
Attn. Impl. / Infer. Engine SDPA / vLLM SDPA / vLLM

18



Table 8: GRPO Training Hyperparameters for Llama3.1-8B
Hyperparameter Instruction Model Reasoning Model
LoRA Rank / Alpha 128 / 128 128 / 128
LoRA Dropout 0.05 0.05
Learning Rate 5× 10−6 5× 10−6

Epochs 1 1
Warm-up Ratio 0.1 0.1
Training Precision BF16 BF16
Max Seq / Prompt / Completion Length 2000 / 1000 / 1000 6000 / 2000 / 1000
Batch Size / Grad. Accum. Steps 8 / 1 8 / 1
Optimizer / LR Schedule AdamW (8-bit) / Cosine AdamW (8-bit) / Cosine
Gradient Clipping (Max Norm) 0.1 0.1
Reward Beta 0.01 0.06
Attn. Impl. / Infer. Engine SDPA / vLLM SDPA / vLLM

F Prompt Optimization

Our prompt optimization setup follows the discrete black-box search framework proposed in
OPRO [39], with modifications to accommodate verifier-based supervision and task-specific feedback.

We evaluate on a randomly sampled subset of 640 training instances. Optimization is run for 100
iterations using the following procedure:

At each iteration, the target model (either LLaMA3.1-8B-Instruct [8] or DeepSeek-R1-Distill-Llama-
8B [6]) generates outputs on the 640 examples using the current prompt. The average training
accuracy is computed as the fraction of outputs passing their corresponding verifier functions. We
record the top-10 historical prompts along with their verifier-based accuracy scores.

To generate a new candidate prompt, we invoke a prompt-generation LLM (GPT-4o [26]) using a
structured meta-prompt that includes:

• the top-10 (prompt, accuracy) pairs, sorted by accuracy;

• 3 training examples where the current prompt fails, each with the original prompt and model
response.

The prompt-generation LLM returns a single updated prompt. Among all prompts seen so far, the
one yielding the highest average verifier score is selected as the final optimized prompt.

G Detailed Result of Black-Box Prompt Optimization in IHEval

Rule Task Safety

Model Conflict Aligned Conflict Aligned Conflict Aligned Tokens

LLaMA-3.1-8B
Instruct [8]

0.177 0.687 0.096 0.741 0.151 0.651 0

0.155 0.670 0.095 0.730 0.156 0.679 24

0.212 0.725 0.201 0.720 0.186 0.809 75

DeepSeek-R1
Distill-Llama-8B [6]

0.280 0.557 0.336 0.541 0.167 0.640 0

0.241 0.492 0.274 0.559 0.282 0.864 25

0.296 0.563 0.260 0.599 0.345 0.912 90

Table 9: Effect of prompt optimization on instruction-hierarchy dimensions. Each cell shows
scores for no prompt / initial / optimized. Scores from IHEval [41]. Tokens: average prompt length.
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H Training Sample Structure and Verifier Validation

This section illustrates the composition of a single training instance in our verifier-supervised
alignment dataset. Each instance encodes (i) a persona-grounded context, (ii) a pair of conflicting
compliance directives, and (iii) an associated verifier function that programmatically determines
correctness. This structure enables automated supervision without human labels while preserving
semantic diversity across domains.

Anatomy of a Training Sample

Persona: A spokesperson for a manufacturing association defending the economic impact of indus-
trial activities.

Compliance Directive (i+): Wrap the first word with asterisks for bold formatting.

Conflicting Directive (i−): Remove the asterisks wrapping the first word.

Persona-based System Segment.

You are a spokesperson for a manufacturing association defending the economic impact of industrial
activities.

Persona-based User Segment.

What are the key economic benefits of industrial activities in today’s economy?

Prompt Assembly.

System Prompt = [Persona-based System Segment] + [Compliance Directive i+]
User Prompt = [Persona-based User Segment] + [Conflicting Directive i−]

Verifier Function (fi+ )
def verifier_function(response):

response = response.strip()
if not response: return False
words = response.split()
if not words: return False
first_word = words[0]
match = re.match(r’^\*(.+?)\*$’, first_word)
if match and len(match.group(1)) > 0: return True
return False

Verifier Validation via Unit Tests

Each verifier undergoes automated validation against synthetic test cases to ensure both logical
soundness and polarity consistency between i+ and i−. For brevity, we list representative examples
below:

• Positive for i+ (must return True): *Manufacturing* continues to play a
crucial role in driving global economic growth.

• Positive for i− (must return False): Manufacturing continues to play a crucial
role in driving global economic growth.

• Negative for i− (violates i−, thus satisfies i+): *Manufacturing* continues to
play a crucial role in driving global economic growth.

By integrating persona-driven context, synthetic directive conflict, and verifier-grounded super-
vision. our framework trains models to internalize the concept of instruction hierarchy between
different prompt levels. The resulting dataset contains thousands of such instances spanning diverse
domains—such as healthcare, policy, and software safety—each automatically validated through unit
tests to ensure rule correctness.
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Figure 6: IHEval Rule-Following result under instruction conflict. In rule-oriented scenarios
within IHEval, the original DeepSeek-distilled model often follows user instructions while ignoring
higher-authority system directives (e.g., formatting rules). Our model successfully prioritize system-
level constraints even when surface-level user requests conflict with underlying rules.

I Qualitative Results

To illustrate how verifier-supervised fine-tuning improves behavior beyond quantitative metrics, we
provide qualitative examples of outputs from the reasoning-oriented model DeepSeek-R1-Distill-
Llama-8B [6] before and after alignment. Each example includes both the reasoning trace and
final answer, allowing inspection of intermediate steps and overall directive adherence. Figure 6
showcases improvements in rule-following under instruction conflict (IHEval), while Figure 7
highlights safety consistency when system-level constraints contradict unsafe user queries. These
examples demonstrate that our approach strengthens model alignment not only at the answer level,
but also across multi-step reasoning processes.

J Manual Audit of Synthesized Data Quality

To evaluate the quality and potential imperfections in our automated synthesis pipeline, we conducted
a manual audit of 200 randomly sampled instances. Our audit revealed that while a vast majority of
the data is of high quality, a subset contains non-critical imperfections. We found that approximately
67

The detailed breakdown of imperfection categories is presented in Table 10.

Table 10: Breakdown of Imperfection Categories Identified in a Manual Audit of 200 Synthesized
Instances.

Category Brief Definition Prevalence
True Errors Verifier logic is demonstrably wrong. 2.5%

Flawed but Usable Data:
Weak Proxy Only Verifier uses a simplified heuristic. 18.0%
Spec. Ambiguity Only The instruction is underspecified. 6.0%
Both WP & SA Exhibits both of the above issues. 7.0%
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Figure 7: IHEval Safety result under instruction conflict. This figure highlights safety-related
examples from IHEval, where the original model fails to enforce system-level refusal instructions
when faced with conflicting user queries. After verifier-supervised alignment, our model exhibits
stronger resistance to unsafe instruction overrides in adversarial contexts.

The most common imperfections, while flawed, still provide a useful learning signal. We categorize
them as follows:

• “Weak Proxy” Verifiers: This occurs when the verifier uses a simplified heuristic instead of
implementing the full logic of the directive. For example, for a directive like “add a comma
after the word ‘giraffe’ ”, a perfect verifier would check that every instance of ‘giraffe’ is
followed by a comma. A weak proxy verifier, however, might simply check for the existence
of the substring “giraffe,”. While this can incorrectly penalize valid responses that do not use
the word, it still provides a directionally correct signal for the model to learn the association.

• “Specification Ambiguity”: This arises from underspecified instructions. For example,
a directive like “Ensure the last word of the sentence is capitalized” is ambiguous about
which sentence it applies to. Our analysis revealed that in such cases, the LLM-based
verifier generator consistently defaults to a single interpretation (e.g., checking only the final
word of the entire response). This consistency resolves the ambiguity, creating a clear and
predictable learning signal.

We hypothesize that the model’s robust learning arises from this data composition. The ~67% high-
quality data provides a strong signal for precise rule-following, while the remaining imperfect data
offers a noisy but directionally correct reinforcing signal. This synergy likely explains how the model
develops its robust and generalizable understanding of the instruction hierarchy without overfitting to
data artifacts.

K Data Synthesis Pipeline Computational Cost Breakdown

To quantify the computational cost of our data generation framework, we provide a detailed breakdown
of the expenses incurred for synthesizing our dataset, based on public API pricing as of July 2025.

Our entire pipeline was executed using cost-effective LLMs (e.g., GPT-4o-mini, Grok-3-mini). The
total cost for generating an initial set of 99,361 instances, which yielded 22,922 verified samples, was
approximately $75 USD. The token consumption for each stage is detailed in Table 11.

For comparison, we estimated the cost of a traditional oracle-based Direct Preference Optimization
(DPO) pipeline to produce the same number of samples. This estimate assumes a 90% success rate, an
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Table 11: Cost Breakdown of Our Data Synthesis Pipeline for 99,361 Samples.
Pipeline Stage Prompt Tokens (M) Completion Tokens (M)
1. Directive Synthesis 23.7 2.0
2. Verifier Synthesis 51.7 18.1
3. Prompt Synthesis 50.3 11.0
4. Cleaning & Repair 196.8 12.4

Total 322.5 43.5

average oracle completion of 500 tokens, and the use of a frontier model (e.g., GPT-4o) for "chosen"
responses. The estimated cost breakdown is as follows:

• Prompt Generation: $14.15
• Chosen Oracle Responses (GPT-4o): $154.50
• Rejected Responses (GPT-4o-mini): $9.27

This results in a total estimated cost for the DPO pipeline of approximately $178 USD. Our verifier-
based pipeline’s cost of $75 thus represents a ~58% reduction. This estimate is conservative, as it
omits other costs in a DPO pipeline (e.g., generating conflicting directives), further underscoring our
method’s efficiency and scalability.

L LLM Prompts for Synthesis and Cleaning

This section documents the LLM prompt templates used throughout our synthesis and cleaning
pipeline. Each prompt is designed to generate a specific component of the instruction-conflict
instance, with placeholders enclosed in {} indicating fields dynamically filled during synthesis (e.g.,
{persona}, {directive}).

Figure 8 presents the repair prompt, used to regenerate failing outputs given a directive and a failed
unit test case. Figure 9 shows the prompt used to generate a compliance directive from a sampled
persona. Figure 10 depicts the prompt for producing a conflicting directive and its corresponding
verifier function, conditioned on a given compliance directive. Figure 11 illustrates how the system
and user segments are generated from the persona and compliance directive to construct the prompt
scaffold. Figure 12 shows the prompt used to sample unit test outputs given a single directive, used in
both validation and filtering.

For space reasons, reverse-direction prompts—such as generating negative test cases for i−, or
repairing outputs that incorrectly satisfy a conflicting directive—are omitted here but included in
our project repository. All prompts and template variants are available at https://github.com/cycraft-
corp/BeyondOracle.
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You are tasked with validating and repairing an output based on the given directive.
Instruction:
<START DIRECTIVE>
{directive}
<END INSTRUCTION>

Output to verify and repair:
<START OUTPUT>
{output}
<END OUTPUT>

Guidelines:
- First, read the directive and note every required transformation or format.
- If the output already fully satisfies the directive, do not modify it.
- Otherwise, make the minimum edits needed to fully satisfy every requirement.
- Preserve any correct parts; only fix what’s broken.
- Do not include explanations or commentary.
- Enclose your final response inside <START FINAL OUTPUT> and <END FINAL OUTPUT> markers.

Example format:
<START FINAL OUTPUT>
(corrected or verified output)
<END FINAL OUTPUT>

Figure 8: Prompt used to repair outputs that fail unit test verification. Placeholders in are filled with
the input directive and failure unit-test output.
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Persona: {persona}
You are an expert at designing minimal, verifiable, and deterministic directive for LLM outputs.
Task: Generate {N} distinct and independent directive instructions that strictly follow the rules below.

Mandatory Rules:
1. Each directive must involve only local, minor, pattern-based, or position-specific modifications to
the original response.
2. Each directive must be 100% verifiable using simple Python operations, such as:

- Basic string operations (e.g., ‘.split()‘, ‘.replace()‘, ‘.startswith()‘, ‘.endswith()‘)
- Regex matching if necessary (must explicitly ‘import re‘ inside the check function if regex is used)
- Basic list or loop processing (e.g., ‘for‘, ‘enumerate()‘, ‘all()‘, ‘any()‘)
- JSON parsing if necessary (allowed only if validating simple structures; must explicitly ‘import

json‘ if using ‘json.loads()‘)
3. Directives must be deterministic — the same input must always produce the same output.
4. Directives must preserve the original meaning, tone, topic, and structure of the response.
5. Directives must blend naturally with the persona’s typical communication style, tone, and thematic
focus.
6. No semantic analysis, grammatical inference, external NLP tools, or creative rewriting are allowed.
7. No reliance on external knowledge, assumptions, or interpretation beyond explicit surface-level
content.

Operational Constraints:
- Directives must operate within a **single sentence** or a **single contiguous span of text**.
- **Cross-paragraph**, **multi-paragraph**, or **multi-sentence** operations are strictly forbidden.
- Only direct, local, structure-agnostic modifications are allowed.

Instruction Diversity Rule:
- Each instruction from Instruction 1 to Instruction {N-1} must correspond to a distinct directive type,
selected from the allowed types list below.
- Do not repeat the same type twice before Instruction {N}.
- For Instruction {N}, you are free to invent a novel directive, as long as it fully complies with all
mandatory rules.

Allowed (but not limited to) directive types:
- **Simple JSON structure validations**: using ‘json.loads()‘ to validate JSON structure (e.g., key
existence)
- **Structural format constraints**: adding double spaces, bullet points, numbered lists, HTML, Latex,
specfic section names, special response structure or Markdown formatting
- **Character-level operations**: casing changes, character substitutions, inserting symbols, duplicating
characters, reversing substrings
- **Word-level operations**: replacing specific words, filtering words by position, changing casing,
wrapping words with special symbols
- **Sentence-level lightweight adjustments**: reordering sentences, inserting fixed prefixes or suffixes,
enforcing maximum word limits
- **Lightweight content insertions**: timestamps, emojis, UUIDs, URLs, static fixed phrases
- **Pattern-based constraints**: enforcing odd word counts, prime-length words, formatting numbers
- **Positional formatting**: modifying every N-th character or applying special formatting to the first N
words
- **Controlled duplication**: duplicating specific words or segments deterministically

Output Format (strict):
Instruction 1: [Instruction text]
Instruction 2: [Instruction text]
Instruction 3: [Instruction text]
...
Instruction {N}: [Instruction text]

Figure 9: The prompt used to generate a compliance directive conditioned on the given persona.
Placeholders wrapped in {} (e.g., {persona}) indicate fields to be dynamically filled during synthe-
sis.
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Compliance Directive: {directive}

You are an expert in instruction reverse engineering and compliance checking. Given a compliance
directive, your task is to generate two outputs:

1. Conflicting Directive:
- Generate the precise conflicting of the given compliance directive by strictly reversing the directive
operations.
- Only reverse the operations:

- For example, if the instruction says "replace A with B", you must generate "replace B with A".
- If the instruction says "append C", you must generate "remove C".

- If the original instruction contains multiple steps, you must reverse **every step**, without omission.
- Do not invert meaning, sentiment, tone, topic, or intent.
- No creativity, no reinterpretation: only mechanical reversal of operations.

2. Check Function:
Write a Python function check_method(response: str) -> bool that verifies whether a response complies
with the **original directive instruction** (not the conflicting).

Rules:
- Must deterministically return True if compliant, ‘False‘ otherwise.
- Use only simple rule-based techniques:

- Basic string ops (split, replace, startswith, endswith)
- Regex matching (import re required)
- Basic list/looping (for, enumerate, while, all, any)
- JSON parsing (import json if needed; structure-only checks)

- Forbidden:
- No semantic interpretation, grammar guessing, external NLP tools, randomness, or assumptions beyond

explicit structure.

Operational Constraints:
- If a suffix is appended in the directive, strip it before further checks.
- For sentence operations:

- Split by ., ?, ! plus whitespace.
- Strip spaces, and directly check first non-space character.

- For transformations involving duplication, insertion, or deletion:
- Adjust indexes accordingly (e.g., skip duplicated words).
- Must not assume linear 1:1 matching if directive structurally alters text.

Robustness:
- Handle leading/trailing spaces safely.
- Handle leading punctuation when checking words.
- Tolerate normal noise (e.g., double spaces) without breaking.

Output Format (strict):
Conflicting Directive: <your generated conflicting directive>

Python code:
def check_method(response: str) -> bool:

# your method implementation here
End of Python code

Figure 10: The prompt template used to generate a conflicting directive and its corresponding verifier
function, conditioned on a given compliance directive. Placeholders in {} (e.g., {directive})
denote fields dynamically filled during synthesis.
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Persona: {persona}
Instruction(s): {directive_string}

You are an expert at synthesizing system prompts and user prompts for LLM instruction-following
evaluation.

Your tasks are:
1. Generate a System Prompt that:
• Write a clear and natural system prompt that defines the assistant’s style, tone, domain expertise, and
behavioral principles based only on the given persona.
• The phrasing of the system prompt can vary naturally, as long as it clearly establishes the assistant’s
identity and behavior.
• Structure the System Prompt clearly: use line breaks to separate different aspects (e.g., role, style,
tone, expertise) to enhance readability.
• Do not reference, quote, hint at, or embed any of the directive instructions into the System Prompt.

2. Generate a User Prompt that:
• Sounds like a realistic, natural user question relevant to the persona’s domain and communication style.
• The user’s question must naturally create a situation where, when answering, the assistant would
logically need to apply **all of the given directive instructions**.
• The user prompt must not mention, hint at, or allude to the directive instructions explicitly.
• Structure the User Prompt clearly: use line breaks if the query contains multiple parts or layered
descriptions to simulate real-world, multi-sentence user requests.

Important Rules:
• The System Prompt and User Prompt must be generated purely based on the persona, without applying or
simulating any directive behaviors.
• The prompts must create a realistic conversational context where the directives will be logically
necessary or naturally likely during the assistant’s response.
• Directive instructions are intended to modify the assistant’s generated reply after these prompts, not
to influence the content of the prompts themselves.
• Keep the overall structure clean, readable, and logically aligned with real-world conversation flows.

Output Format (strict):
System Prompt: <your generated system prompt here>
User Prompt: <your generated user prompt here>

Figure 11: Prompt for generating system and user segments given a persona and compliance directive.
Placeholders in {} denote dynamic fields.

You are tasked with generating {unit_num} independent positive example outputs for the following
instruction.

Instruction:
<START_INSTRUCTION>
{instruction}
<END_INSTRUCTION>

Guidelines:
- Each output must strictly and independently satisfy the instruction in both **content** and **format**.
- Every specific transformation or constraint mentioned in the instruction must be correctly and fully
applied, with no omissions or mistakes.
- If the instruction specifies any required formatting (such as JSON structure, punctuation rules, or
style), your outputs must precisely match the required structure without deviation.
- For word count requirements, interpret "words" as space-separated English words, not characters or
tokens.
- Do not partially fulfill the instruction. Even small errors or missing transformations are
unacceptable.
- Do not explain, comment, or number your examples.
- Enclose each output separately inside <START_OUTPUT> and <END_OUTPUT> markers.

Example format:
<START_OUTPUT>
<example_1_content>
<END_OUTPUT>
<START_OUTPUT>
<example_2_content>
<END_OUTPUT>
...

Figure 12: The prompt template used to generate unit test outputs conditioned on a given directive.
Placeholders in {} denote dynamic fields filled during synthesis.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. The abstract and introduction accurately reflect the paper’s scope, includ-
ing our verifiable supervision framework and its evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations at the end of Sec. 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theoretical paper; no formal assumptions or proofs are presented.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We fully disclose the information needed to reproduce the main results,
including all hyperparameters in Appendix D and Appendix E and the complete set of
prompts used for data synthesis in Appendix L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release anonymized code and data for prompt synthesis, and verifier-
based cleaning, with full setup and usage instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. The paper specifies all relevant training and evaluation details, including
data splits, hyperparameters, optimizer settings, and selection strategies, with full configura-
tions provided in Sec.5.1, Appendix B, Appendix D and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Most results are from single runs due to compute constraints. For the ablation
study in Sec. 6.2, we report multi-seed means without variance. We acknowledge this
limitation and leave full statistical reporting to future work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a single NVIDIA H100 GPU, as stated in
Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe we have followed the Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive societal impacts of improving instruction
hierarchy adherence, which is critical for building safer and more aligned language models.
This is highlighted in the introduction as a motivation for the framework. We do not foresee
significant risks of misuse from the released data.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any models or datasets that pose a high risk of
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes. All external code, datasets, and models used in the paper are properly
cited, and their licenses and terms of use have been respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We plan to release our synthesized dataset, verifier code, and data generation
pipeline upon publication. Documentation covering usage instructions, license terms, and
known limitations will be included.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable — this work does not involve human subjects or crowdsourcing
experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable — this work does not involve human subjects and does not
require IRB approval.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are used in the data synthesis pipeline for generating conflicting di-
rectives and assisting in natural language repairs. While the final supervision signal is
programmatically verified, LLMs play an important role in constructing the training data
that supports our core method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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