
Gradient strikes back: How filtering out high
frequencies improves explanations

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent years have witnessed an explosion in the development of novel prediction-1

based attribution methods, which have slowly been supplanting older gradient-2

based methods to explain the decisions of deep neural networks. However, it is still3

not clear why prediction-based methods outperform gradient-based ones. Here, we4

start with an empirical observation: these two approaches yield attribution maps5

with very different power spectra, with gradient-based methods revealing more6

high-frequency content than prediction-based methods. This observation raises7

multiple questions: What is the source of this high-frequency information, and does8

it truly reflect decisions made by the system? Lastly, why would the absence of9

high-frequency information in prediction-based methods yield better explainability10

scores along multiple metrics? We analyze the gradient of three representative11

visual classification models and observe that it contains noisy information emanat-12

ing from high-frequencies. Furthermore, our analysis reveals that the operations13

used in Convolutional Neural Networks (CNNs) for downsampling appear to be a14

significant source of this high-frequency content – suggesting aliasing as a possible15

underlying basis. We then apply an optimal low-pass filter for attribution maps and16

demonstrate that it improves gradient-based attribution methods. We show that (i)17

removing high-frequency noise yields significant improvements in the explainabil-18

ity scores obtained with gradient-based methods across multiple models – leading19

to (ii) a novel ranking of state-of-the-art methods with gradient-based methods20

at the top. We believe that our results will spur renewed interest in simpler and21

computationally more efficient gradient-based methods for explainability.22

1 Introduction23

Explaining and interpreting the decision of AI architectures is an important area of research towards24

enabling the development of more interpretable models. Explainability methods (XAI) aim to provide25

insights into the strategies used by models to arrive at their decision. This is expected to lead to the26

development of better models that are more accurate, robust, and better aligned with humans.27

One of the first attribution methods proposed, “Saliency“ [1], consists of back-propagating a model’s28

decision back to an input image to highlight areas that most affected the final decision. The method29

remains relatively simple and computationally efficient, but it is also known to be noisy and to lead to30

attribution maps that are often hard to interpret. Multiple methods have been proposed since to try to31

improve on these limitations. These methods fall broadly into two main classes. (i) Gradient-based32

methods extend Saliency [1] by smoothing the resulting attribution maps [2–8]. However, these33

so-called white-box methods require access to all the model’s components, which is not always34

† The authors contributed equally.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Figure 1: Effect of FORGrad on gradient-based attribution methods. We show that for an
input image (left), the initial explanations from two gradient-based methods are plagued by noise
as indicated by the high power in the high-frequency range of their respective spectra. Filtering the
explanations with FORGrad yields improved explanations (right).

possible. Conversely, prediction-based methods, also called black-box methods [3, 9–11], alter the35

input of the model to produce an explanation based on the resulting change in the output. Those36

methods are computationally inefficient and are known to sometimes fail to capture all the diagnostic37

information, but they currently lead to the best fidelity scores across all explainability methods.38

Overall, there are dozens of attribution methods available but relatively little is understood about39

what makes certain methods more accurate than others.40

Here, we start with the observation made across multiple studies [12, 4, 13] that the attribution maps41

derived with Saliency are very noisy. Generally, these maps highlight sparse pixel activations around42

a region of interest, and they are often hard to interpret. Because Saliency is simply the gradient of43

the score function with respect to the input, we suggest that the noise originates from the gradient44

itself: in other words, because the gradient is noisy, the explanation provided by Saliency is also45

noisy. To try to better understand the origin of this noise, we compare the Fourier power spectra of46

gradient-based methods (including Saliency) against prediction-based methods and observe that they47

differ quite markedly. We discern significant differences between the two classes of approaches, with48

gradient-based methods returning higher frequency content and prediction-based methods returning49

lower frequency content. In the remainder of this paper, we will show that:50

• The gradient is indeed noisy, and this noise is especially present in the high-frequencies.51

• We then look for the origin of these high frequencies in vision models. Our findings show52

that downsampling operations (via MaxPooling or strides) are the main sources of high53

frequencies, and training the model does not alleviate the issue.54

• We then propose to repair Saliency – as well as other gradient-based methods – by introduc-55

ing FORGrad (FOurier Reparation of the Gradient). This method consists in estimating the56

optimal amount of high frequencies to remove per model to make gradient-based methods57

surpass the prediction-based family of attribution methods.58

2 Related Work59

Attribution methods for black-box models Various methods have been developed to compute60

importance scores for individual pixels or groups of pixels. For black-box (prediction-based) attribu-61

tion methods, the analytical form and potential internal states of the model are unknown. The first62

method, Occlusion [3], masks individual image regions, one at a time, using an occluding mask set to63

a baseline value. The corresponding prediction scores are assigned to all pixels within the occluded64

region, providing an easily interpretable explanation. However, occlusion fails to account for the65

joint (higher-order) interactions between multiple image regions. For instance, occluding two image66

regions individually may only have a minimal impact on the model’s prediction, such as removing a67

single eye or mouth component from a face. However, occluding these two regions together may lead68
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to a substantial change in the model’s prediction if these regions interact non-linearly, as expected69

in a deep neural network. Sobol [10], along with related methods such as LIME [11] and RISE [9],70

address this problem by randomly perturbing multiple regions of the input image simultaneously.71

Interestingly, recent studies, including RISE [9] and Sobol [10], have demonstrated that black-box72

attribution methods can rival and even surpass the commonly used white-box methods without relying73

on internal states.74

Attribution methods for white-box models The gradient-based methods, that we propose to75

improve here, were first introduced in [14] and improved in [2–4]. They consist in explaining the76

decisions of a model by back-propagating the gradient from the output to the input, indicating which77

pixels affect the decision score the most. However, this family of methods is limited because they78

focus on the influence of individual pixels in an infinitesimal neighborhood in the input image. For79

instance, it has been shown that gradients often vanish when the prediction score to be explained is80

near the maximum value [6]. Integrated Gradient [6] and SmoothGrad [5] partially address this issue81

by accumulating gradients. Another family of attribution methods relies on the neural network’s82

activation, like CAM [7], which computes an attribution score based on a weighted sum of feature83

channel activities – right before the classification layer. GradCAM [8] extends CAM via the use of84

gradients, re-weighting each feature channel to take into account their importance for the predicted85

class. Nevertheless, the choice of the layer has a huge impact on the quality of the explanation. Our86

contribution proposes to overcome some of the mentioned issues by removing the noise present in87

the gradients in the form of high frequencies.88

Fourier analysis of vision models Very little work has been proposed to analyze vision models89

and methods from a Fourier perspective. The closest, [15], used Fourier analysis to investigate the90

impact of DNNs optimization parameters and methods without a specific focus on vision.91

Additional work has focused on the analysis and development of adversarial attacks in the Fourier92

domain, [16, 17], while others [18–20] have proposed to defend against adversarial attacks by93

transforming the input image in the Fourier domain. Jo and Bengio [21] examined whether CNNs94

rely on high-level features by using Fourier-filtered images. None of the mentioned studies make a95

link between explainability and attribution methods with Fourier analysis.96

3 Decomposing the gradient: An analysis of frequency content in attribution97

methods98

Notations We consider a general supervised learning setting, where a classifier f : X → Y maps99

images from an input space X ⊆ RW×H to an output space Y ⊆ R. Let (x1, . . . ,xN ) be a set of100

images which contains N samples drawn from a probability distribution ∀i ∈ {1 · · ·n},xi ∼ D.101

Moreover, we respectively denote F and F−1 the Discrete Fourier Transform (DFT) on RW×H and102

its inverse. Therefore: ∀x ∈ X , F(x) ∈ CW×H and (F−1 ◦ F)(x) = x. Additionally, when we103

visualize the Fourier spectrum, we always shift the low-frequency components to the center of the104

spectrum. We recall that an attribution method is a function φ : X → RW×H that maps an input of105

interest to its corresponding importance scores φ(x). Finally, we denote by φσ(x) the attribution106

method where high frequencies have been filtered using a cutoff value of σ.

Figure 2: Fourier footprint of attribution methods. We show on the top row the Fourier spectrum of
prediction-based attribution methods and of the gradient-based methods on the bottom row, computed
with a ResNet50. The two families can be distinguished by methods but also by their signature in
the Fourier domain. The former method has magnitudes largely concentrated in the low frequencies,
while the latter is more spread out: it features non-trivial magnitudes almost everywhere, including in
high frequencies.

107
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3.1 Different signatures for different categories of methods108

In this work, we analyze the Fourier signature of several attribution methods. To do so, we compute109

the feature map φ(x) for most existing attribution methods on representative models of the literature110

(ResNet50 in Figure 2). From these importance maps, we extract the corresponding amplitude of the111

Fourier spectrum, |(F ◦φ)(x)|. In Figure 2, we show the average power spectra, over 1,000 images,112

for an array of methods. Upon visual inspection, it is obvious that certain methods tend to emphasize113

higher frequencies in their explanations, while others concentrate on lower frequencies. Interestingly,114

these differences can be traced to the class of methods: Black-box methods, which do not rely115

on gradients, exhibit frequency footprints dominated by very low frequencies, whereas white-box116

methods exhibit footprints that extend into higher frequencies. To quantify our observations, we117

employ two metrics to measure the complexity of the attribution maps. The first metric employs118

a Laplacian-based operator [22, 23] that evaluates the presence of high frequencies in images by119

analyzing their second derivative. The second metric involves measuring the file size of the image120

after undergoing lossless compression [24, 25], which we refer to as “High-frequency content“121

throughout this study (as it can be seen as a loose approximation of Kolmogorov complexity).122

Figure 3: High-frequency power in attribution
methods. High-frequency power present in the
importance maps derived from different attribution
methods. Prediction-based methods produce less
high-frequency content than gradient-based meth-
ods.

Both metrics validate our visual observations,123

as depicted in Figure 3 (see Laplace quantity124

in appendix). It is evident that black-box meth-125

ods (shown in dark in the figure) exhibit fewer126

high frequencies compared to white-box meth-127

ods. This observation provides valuable insight128

into where these methods extract information129

from the model to compute their explanations.130

3.2 High-frequencies131

are just noise in the gradient132

Naturally, gradient-based methods will be sub-133

ject to the characteristics of the gradient itself.134

Consequently, when the gradient is subject to135

noise, the resulting explanation provided by136

such methods becomes similarly noisy. In light137

of this observation, we propose to demonstrate138

that the gradients obtained from three state-of-139

the-art models (ResNet50 [26], ViT [27], and140

ConvNeXT [28]) do indeed contain noise, pre-141

dominantly present in high-frequency compo-142

nents. To achieve this, we suggest an approach

Figure 4: Evidence for noise in the gradient. We plot the residual of the first-order approximation
of the model, that is f(x + ε) ≈ f(x) + ε∇xf(x), with the gradient ∇f filtered at different
bandwidths σ. We sample 100 values of ε uniformly on Sd−1 scaled by the radius, for 1,000 images
of the validation set of ImageNet. If high-frequencies contained information necessary for a good
linearization of the model then we would observe a gap between the curves of σ = 224 - where no
filter is applied, vs. the curves where we apply a filter - σ < 224.

143
that involves selectively removing high-frequency gradient information by employing various fre-144

quency cutoffs σ. By computing residuals between f(x + ε) and its first order filtered by σ145

decomposition around x that we denote by f(x) + ε∇σ
xf(x), we generate corresponding curves for146
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different scales of ε, which are presented in Figure 4. As anticipated, our observations reveal that the147

curves exhibiting reduced high-frequency content (from σ < 224 to σ = 10) closely align with the148

one of the non-filtered gradient (σ = 224). In other words, the gradient remains approximately as149

informative, even after removing high-frequency information. This implies that the high-frequency150

content primarily contains noisy information within the gradient.151

3.3 Investigating the mechanisms introducing noise152

Next, we investigated the underlying operations responsible for the introduction of such content153

by computing the power of high-frequency content in the gradients at the level of all the layers.154

Notably, we observed a consistent trend in CNNs where high-frequency content tends to increase155

and jump at each block, indicative of downsampling operation through strided convolutions or156

pooling. This observation aligns with the findings of [29, 30], suggesting that downsampling157

operations via MaxPooling or strided convolution can introduce noise. To verify this hypothesis,158

we substituted these specific operations in two representative CNNs, namely ResNet50 [26] (which159

incorporates strided convolutions and MaxPooling) and VGG16 [31] (details in appendix) with160

AveragePooling. This replacement ensured the preservation of information continuity in the gradient.161

The resulting plots for ResNet50 (VGG) are presented in Figures 5 - bottom curve (see appendix162

for VGG), displaying the power of high-frequency content using Kolmogorov image compression163

and Laplace-operator (see appendix) at each step. The depicted red shades represent the amount of164

high-frequency content in both models. We observe that prior to the initial dimension change, the165

quantity of high-frequency content remain comparable, suggesting that operations within a block of166

the same dimension does not significantly increase the power of high-frequency content. However,167

with the introduction of a downsampling layer, the curves for each model diverge, indicating a168

bigger contribution to the introduction of high frequencies by striding or MaxPooling compared to169

AveragePooling. Our findings corroborate the observations of [29], as the gradients (even averaged)170

following MaxPooling or strides exhibit checkerboard patterns, providing a plausible explanation for171

our quantitative observation of increased high-frequency content.172

We employ the same pipeline to calculate the high-frequency content for both a random model and a173

trained model, using the identical set of models including ViT [27]. The resulting curves are depicted174

in Figures 5 - top curve, for ResNet50 (see appendix for VGG16 and for ViT), showcasing that there is175

no discrepancy in high-frequency content between the trained and random CNNs. Given our previous176

section’s demonstration that high-frequencies carry negligible information for the model, one would177

expect that training could potentially eliminate this content, leaving only relevant information to be178

processed. However, as our observations indicate the absence of such behavior despite the models179

accomplishing the task, we propose that the models were unable to adapt the gradient’s content,180

thereby suggesting it to be an inherent by-product of downsampling operations. In the case of the ViT,181

however, training appears to introduce some high frequencies from the initial operation, potentially182

arising from transformers’ pre-processing functions, such as image flattening via patches. These183

multiple findings suggest that high-frequency content emerges as a by-product of particular operations,184

predominantly observed in CNNs, which the models are unable to modulate during training. We185

therefore propose to consider most of the high-frequency content as noise. Consequently, when186

generating explanations for the models’ decisions, it is justifiable to disregard high frequencies as187

they offer limited or negligible information.188

3.4 FORGrad: a simple strategy to remove noise189

An adapted σ⋆ per model With FORGrad, we propose to remove high-frequency content,190

considered as noise, in order to obtain an optimal explanation related to the optimal frequency band191

from the gradient. We therefore propose to apply a low-pass filter on the Fourier spectrum of the192

gradient, employing multiple frequency cutoffs spaced evenly apart. For each filtered explanation,193

we compute the score from two different metrics. The first one Deletion – denoted D(φ(x) [9] – is194

a measure of the decrease in the likelihood of a particular class as the important pixels (identified195

by the saliency map) are systematically removed from the image. If the likelihood of the class196

experiences a rapid decrease, resulting in a small area under the probability curve, this is a strong197

indication of a good explanation. Complementary, Insertion, I(φ(x)) [9] measures the significance198

of the pixels based on their capacity to create an image, and is calculated by measuring the increase199

in the probability of the class of interest as pixels are added in accordance with the generated200

importance map. Overall, we propose a heuristic to optimize our σ⋆, representing the ideal bandwidth201

maximizing the difference σ⋆ = argmaxσ ExD(φσ(x))− I(φσ(x)), combining the score of both202

metrics, on a subset of the validation set of ImageNet (1,000 images). Using both deletion and203
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Figure 5: Evolution of the high-frequency content in Resnet50. We compute the high-frequency
content along the depth of a ResNet50 varying either the weights or the pooling. The top curve
represents the trained model, indicated by the red curve, while the untrained model is represented by
the black curve. The bottom curve illustrates the impact of different poolings, with MaxPooling and
stride shown in dark red and AveragePooling in pink. Each point on the graph corresponds to a layer
within the models. In addition, we present visual examples of averaged gradients across 128 images
after applying MaxPooling. Despite the averaging process, these examples exhibit checkerboard
patterns, serving as a visual demonstration of the presence of high-frequencies.

insertion metrics can provide a more comprehensive evaluation of the quality of the attribution204

map or saliency map generated for a given model. The deletion metric is useful for identifying205

important regions of an image that contribute to a model’s decision, while the insertion metric is206

valuable for assessing the quality of the generated saliency map in terms of its ability to reconstruct207

the original image. By combining both metrics, we aim to assess the quality of the explanations208

generated by considering the impact of pixel removal and addition on the likelihood and significance209

of the target class, respectively. In the latter sections, we will consider the faithfulness metric to be210

the combination [Deletion-Insertion] Additionally, we also evaluate FORGrad on a third metric,211

MuFidelity, F (φ(x)), [32]. The fidelity correlation metric serves to verify the correlation between212

the attribution score and a random subset of pixels. To achieve this, a set of pixels is randomly chosen213

and set to a baseline state, after which a prediction score is obtained. The fidelity correlation metric214

evaluates the correlation between the decrease in the score and the significance of the explanation for215

each random subset created.216

Theoretical foundations In this section, we build on the empirically demonstrated assumption that217

the gradient is noisy and prove, through a Fourier perspective, that FORGrad effectively recovers218

the true gradient. Moreover, assuming that the noise is originally Gaussian, we characterize the219

distribution of the noise in Fourier space. Finally, we propose a convergence bound for SmoothGrad,220

valid on finite samples, showing that it also recovers the true gradient at the cost of multiple samplings.221

We denote ∥·∥F as the Frobenius norm and ∥·∥2 as the spectral norm. Note that ∥·∥2 ≤ ∥·∥F in222

order to interpret our results. Finally, we define Kσ ∈ {0, 1}W×H as the binary Fourier mask,223

parameterized by σ, that we used to filter high frequency, where each element Kσ
(i,j) is determined224

as Kσ
(i,j) = 1|i−W

2 |≤σ1|j−H
2 |≤σ, with 1 the indicator function abd K̄σ = 1 − Kσ. As we have225

discussed above, the gradient of deep models is noisy, and in the following work, we consider that226

we only have access to ∇xf̂(x), a noisy estimator of ∇xf(x) such that ∇xf̂(x) = ∇xf(x) + ε227

with ε ∈ RW×H . We do not assume any randomness for the noise so far. The following proposition228

develops the squared residual of the filtered noisy gradient as compared to the true one. Under the229

condition of finding the optimal filter, the gap between the two is naturally norm of the remaining230

noise post filtering.231

Proposition 3.1. Let f : X → Y a predictor, and denote ∇f̂ = ∇f + ε as the noisy gradient of f ,232

with ε ∈ RW×H . For σ∗ = inf
{
σ : ∥F(∇f)⊙ K̄σ∥2F = 0

}
, we have233

∥F−1(F(∇f̂)⊙Kσ∗
)−∇f∥2F = ∥F−1(F(ε)⊙Kσ∗

)∥2F ≤ ∥ε∥2F , (1)
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where ⊙ is the Hadamard product, Kσ∗
a binary mask for low-pass filtering of frequency σ, and234

K̄σ∗
is the opposite mask.235

Remark 3.2. This result holds as long as we find σ∗. There always exists a σ∗ as the set always236

contains σ = max(H,W ) which does not alter the Fourier spectrum of an image of size W ×H .237

However, finding σ∗ poses a challenge, leading us to leverage XAI metrics as a heuristic.238

With the information that the remaining gap between the filtered estimator and the true gradient is239

the remaining noise, of which the norm is upper bounded by the one of the original noise, we aim240

at measuring the reduction of the noise. In that way, we demonstrate the always-positive effect of241

FORGrad on gradient methods. In particular, under the assumption of Gaussian noise, we derive242

the distribution of the ratio ∥ε∥2F /∥F−1(F(ε)⊙Kσ∗
)∥2F .243

Proposition 3.3. Let the noise ε ∈ RW×H follow a normal distribution ε ∼ N (0, ς)⊗N . Then the244

norm of the Fourier spectra of the noise ∥F(ε)∥2F ∼ Γ(k = 2WH, θ = ς2WH) and filtered noise245

∥F(ε)⊙Kσ∥2F ∼ Γ(k = 8σ2, θ = 4ς2σ2) follow Gamma distributions.246

Therefore, the ratio of the two distributions R = ∥F(ε)∥2F /∥F(ε) ⊙Kσ∥2F follows a Beta prime247

distribution R ∼ β′ (2N, 8σ2, 1, WH
4σ2

)
.248

This result allows us to directly compute the distribution of the ratio of the norm of the original249

noise on the norm of the filtered noise (up to a scaling factor, by Parseval’s Theorem). Naturally,250

this distribution depends on the parameter σ of the filtering. From this, we can deduce probabilistic251

results, such as, for σ = 10 and ς = 1, the ratio of the norms is larger than 70 with probability almost252

one.253

Finally, in the following proposition, we obtain a non-asymptotic result on the concentration of the254

SmoothGrad procedure to its expected value based on the Matrix Bernstein inequality [33].255

Proposition 3.4. We recall that SmoothGrad is defined as SG = 1
n

∑n
i=1 ∇xf(x + δi)256

with ∀i=1,...,nδi ∈ N (0, ς). Here we compute SG on the noisy estimate of the gradient257

∇xf̂(x + δi) ∈ RW×H , which is then a random matrix ŜG. Assuming our predictor258

f ∈ L-Lip(X ) is L-Lipschitz. We denote ∥·∥2 as the spectral norm, and define the variance259

as V(SG) = max
(
∥E((SG− ESG) · (SG− ESG)T )∥2, ∥E((SG− ESG)T · (SG− ESG))∥2

)
.260

We then have, for t > 0,261

P
(
∥ŜG− ESG∥2 ≥ t

)
≤ (W +H) · exp

(
−t2n2/2

V(ŜG) + 2Lt/3

)
. (2)

Our results suggest that in order to effectively eliminate noise using the SmoothGrad method, several262

iterations are required as opposed to ours. For instance, to be at least t = L
10 away from its expected263

value, with probability at most 0.01, we need n ≈ 700 iterations, for ς = 1. Furthermore, the noisy264

SmoothGrad gradually approaches the expected outcome of the non-noisy SmoothGrad. Additionally,265

SmoothGrad alleviate the noise but at the cost of employing Monte-Carlo sampling.266

4 Gradient-based methods perform better and are more efficient267

The new explanations are free from noise Figure 6 presents qualitative examples of corrected268

gradients obtained using the Gradient Input method [34] combined with FORGrad. As we analyze269

the different images, we observe that gradually removing high frequencies from the gradients has a270

notable impact on the resulting explanation. The initially noisy patterns transform into larger patches271

until the saliency map effectively highlights the key features that represent the object for categorization.272

However, it is crucial to consider the optimal value of σ⋆, as exceeding this threshold leads to the273

map spreading too widely and the explanation becoming less informative. This observation is further274

supported by the curve on the right, which demonstrates the evolution of the faithfulness score as σ275

changes. Prior to finding the optimal σ, the faithfulness score fluctuates around the initial value before276

gradually increasing to reach its optimal level. As expected, when all the information is removed277

(represented by the last point on the x-axis), the fidelity score drops to zero.278

A new ranking of attribution methods We apply FORGrad on all the gradient-based attri-279

bution methods and report the scores in Table 1 for three models: ResNet50 [26], ViT [27] and280

ConvNeXT [28]. GradCAM methods can’t be tested on ViT because they are based on convolution so281

are limited to CNNs. We can observe two notable findings. Firstly, it is rare to encounter cases where282
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Figure 6: FORGrad : selection of the optimal σ. With FORGrad, we aim to derive the explanation
from the gradient’s corrected version. To achieve this, we determine the optimal cutoff of high
frequencies in order to maximize the faithfulness of the explanation. The images displayed on the
left illustrate the progression for different cutoff values. On the right side, the curve represents the
variation of the metric across 1,000 images from the validation set of ImageNet, as a function of σ,
representing the cutoff value. σ⋆ represents the optimal value, selected as the one maximizing the
faithfulness score, equivalent to [Deletion-Insertion].

ResNet50 ViT ConvNeXT

Del.(↓)Ins.(↑) Fid.(↑) Comp. Del.(↓)Ins.(↑) Fid.(↑) Comp. Del.(↓)Ins.(↑) Fid.(↑) Comp.

G
ra

di
en

t-
ba

se
d

Saliency[1] 0.77 0.85 0.07 Θ(2) 0.77 0.82 0.01 Θ(2) 0.85 0.86 0.05 Θ(2)
Saliency⋆ 0.74 0.90 0.15 Θ(2) 0.81 0.89 0.03 Θ(2) 0.82 0.88 0.06 Θ(2)

GradInput[34] 0.76 0.87 0.05 Θ(2) 0.78 0.88 0.01 Θ(2) 0.83 0.89 0.05 Θ(2)
GradInput⋆ 0.74 0.88 0.13 Θ(2) 0.74 0.89 0.05 Θ(2) 0.81 0.88 0.07 Θ(2)

SmoothGrad[5] 0.74 0.89 0.08 Θ(200) 0.80 0.87 0.03 Θ(200) 0.86 0.86 0.05 Θ(200)
SmoothGrad⋆ 0.72 0.93 0.19 Θ(200) 0.78 0.92 0.04 Θ(200) 0.82 0.88 0.06 Θ(200)

VarGrad[35] 0.74 0.91 0.07 Θ(200) 0.72 0.88 0.01 Θ(200) 0.89 0.86 0.02 Θ(200)
VarGrad⋆ 0.73 0.91 0.18 Θ(200) 0.74 0.90 0.02 Θ(200) 0.80 0.88 0.02 Θ(200)

Int.Grad[6] 0.75 0.88 0.06 Θ(200) 0.78 0.86 0.01 Θ(200) 0.82 0.90 0.05 Θ(200)
Int.Grad⋆ 0.74 0.89 0.15 Θ(200) 0.79 0.87 0.03 Θ(200) 0.81 0.90 0.05 Θ(200)

Pr
ed

ic
tio

n-
ba

se
d GradCAM[8] 0.78 0.92 0.06 Θ(2) n.a n.a n.a n.a 0.87 0.92 0.06 Θ(2)

GradCAM++[36] 0.75 0.93 0.08 Θ(2) n.a n.a n.a n.a 0.90 0.92 0.02 Θ(2)
Occlusion[34] 0.75 0.85 0.06 Θ(1024) 0.79 0.83 0.01 Θ(1024) 0.83 0.88 0.07 Θ(1024)
HSIC[37] 0.72 0.92 0.05 Θ(2000) 0.77 0.91 0.02 Θ(2000) 0.80 0.92 0.05 Θ(2000)
Sobol[38] 0.74 0.92 0.06 Θ(4000) 0.79 0.91 0.02 Θ(4000) 0.82 0.93 0.08 Θ(4000)
RISE[9] 0.76 0.93 0.07 Θ(8000) 0.80 0.92 0.01 Θ(8000) 0.84 0.94 0.07 Θ(8000)

Table 1: Results on Faithfulness metrics. Deletion, Insertion, and Fidelity scores obtained on 1,000
ImageNet validation set images, on an Nvidia V100 (For Deletion, lower is better and for Insertion
and Fidelity, higher is better). Complexity Θ (Comp.) corresponds to the number of forward +
backward passes required for computation, up to a factor that depends on the model. The first and
second best results are in bold and underlined.

the scores after applying FORGrad are lower than the scores obtained before. In such instances, the283

decrease in scores is typically observed in only one metric, either Deletion or Insertion. However,284

since the other metric is optimized, the overall Faithfulness, as measured by [Deletion-Insertion],285

remains at least as good as before. Secondly, even without explicitly optimizing the Fidelity metric,286

we observe an improvement in this score across all methods and the three models analyzed. Fur-287

thermore, after applying FORGrad, we observe that the scores of several gradient-based methods288

surpass or at least match those of prediction-based methods. Notably, these gradient-based methods289

offer the additional advantage of being significantly more computationally efficient, as evident from290

the complexity column. In order to determine the best method for each model, we propose to291

aggregate the scores from the three metrics to obtain a single global score for each method and model.292

This resulting score, is denoted as I(φ(x)) + F (φ(x)) −D(φ(x)), corresponding to the sum of293

1-Deletion, Insertion and Fidelity score. Interestingly, in Table 2, we observe that the rankings change294

when we incorporate FORGrad into the analysis. This shift leads to the inclusion of at least two295

gradient-based methods among the top-5 for all three models. In the case of ResNet50, all five of the296

top-performing methods are gradient-based, whereas only one of them occupied a position in the297

previous ranking. Although some prediction-based methods, such as Sobol and HSIC, consistently298
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ResNet50 ViT ConvNeXT
Original FORGrad Original FORGrad Original FORGrad

1 GradCAM++ SmoothGrad⋆ VarGrad SmoothGrad⋆ Sobol Sobol
2 HSIC VarGrad⋆ HSIC VarGrad⋆ RISE RISE
3 RISE Saliency⋆ Sobol HSIC HSIC HSIC
4 Sobol Int.Grad⋆ RISE Sobol Occlusion GradInput⋆
5 VarGrad GradInput⋆ GradInput RISE GradCAM Int.Grad⋆

Table 2: Global ranking before (original) and after FORGrad. For each model, we show the 5
attribution methods with highest metrics, before and after applying FORGrad. The explanation
maps were computed on 1000 images from the validation set of ImageNet, based on an aggregation
of the three metrics computed by I(φ(x)) + F (φ(x))−D(φ(x)).

demonstrate good performance, we demonstrate that gradient-based methods such as SmoothGrad299

and VarGrad now perform nearly as well, with the added advantage of computational efficiency.300

5 Limitations301

In our study, we have proposed to find an optimal σ value representing an ideal cutoff to improve302

explanations of gradient-based methods. However, we acknowledge that this optimal value is highly303

dependent on the dataset, perhaps more so than on the model itself. Furthermore, while we have304

chosen a single value that maximizes the scores across 1,000 images, it may be beneficial to use305

different values for individual images, but would increase the computational costs. We also optimize306

our value of σ only on 2 metrics, deletion and insertion. Even though it turns out to also increase the307

fidelity score, we could potentially obtain even better results by optimizing on this metric as well. It’s308

however, once again, a very resource-consuming method that we chose to avoid. Furthermore, in our309

ranking computation, we combine metrics that do not precisely capture the same information. While310

Deletion and Insertion can be aggregated, particularly since we optimize the difference between them,311

it should be noted that Deletion, Insertion, and Fidelity are not directly comparable even if they range312

between 0 and 1. We have proposed one approach to integrate these metrics and derive a ranking313

based on the three scores. However, an alternative could involve producing separate rankings for each314

individual score. If we had followed this approach, the FORGrad methods would have emerged as315

the top-5 for both ResNet50 and ViT, according to MuFidelity.316

6 Conclusion317

This work started with an empirical observation: prediction-based and gradient-based methods318

exhibit distinct power spectra in their attribution maps – with gradient-based methods exhibiting319

higher power in the high frequencies compared to prediction-based methods. This led us to wonder320

whether the frequency content of model gradients is merely noisy information. We demonstrate321

that removing this content does not impair our ability to approximate the gradient and conclude that322

high frequencies predominantly carry non-essential information. We further conducted an in-depth323

analysis of gradient frequency content in CNNs across processing layers and found that downsampling324

operations, such as max pooling and striding, contribute to the introduction of high frequencies.325

This points to model aliasing as a likely cause of this high-frequency content. Interestingly, even326

with training, CNNs are unable to prevent this phenomenon. These results hence raise the question:327

Could high-frequencies be filtered out to improve the explanations derived from attribution methods?328

We design an optimal filter, σ⋆, and show that the filtering of attribution maps leads to significant329

improvements in the quality of the explanations. These improvements were most pronounced for330

gradient-based methods, which ended up approaching and sometimes even surpassing the much331

more compute-intensive prediction-based methods. Overall, our work leads to a surprising result –332

that the almost forgotten gradient-based methods turn out to contain all the information needed to333

provide a faithful explanation of a model’s decision and that they can be as interpretable as the newest334

methods. In future work, it would be worth exploring the influence of this noise on the model’s335

performance and evaluating whether replacing certain operations that introduce noise could affect336

both the accuracy and robustness of the models. Furthermore, considering that many adversarial337

attacks are gradient-based and often exploit additive noise patterns, it is worth investigating whether338

these attacks target the noisy high-frequency content in the gradients and whether they might be339

prevented by using operations not introducing high-frequencies.340
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