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Boolformer: Symbolic Regression of Logic Functions with Transformers

Anonymous Authors1

Abstract
We introduce Boolformer, a Transformer-based
model trained to perform end-to-end symbolic re-
gression of Boolean functions. First, we show
that it can predict compact formulas for complex
functions not seen during training, given their full
truth table. Then, we demonstrate that even with
incomplete or noisy observations, Boolformer is
still able to find good approximate expressions.
We evaluate Boolformer on a broad set of real-
world binary classification datasets, demonstrat-
ing its potential as an interpretable alternative to
classic machine learning methods. Finally, we
apply it to the widespread task of modeling the
dynamics of gene regulatory networks and show
through a benchmark that Boolformer is competi-
tive with state-of-the-art genetic algorithms, with
a speedup of several orders of magnitude. Our
code and models are available publicly.

1. Introduction
Deep neural networks, in particular those based on the Trans-
former architecture (Vaswani et al., 2017), have led to break-
throughs in computer vision (Dosovitskiy et al., 2021) and
language modelling (Brown et al., 2020), and have fuelled
the hopes to accelerate scientific discovery (Jumper et al.,
2021). However, their ability to perform simple logic tasks
remains limited (Delétang et al., 2022). These tasks differ
from traditional vision or language tasks in the combinato-
rial nature of their input space, which makes representative
data sampling challenging.

Reasoning tasks have thus gained major attention in the deep
learning community, either (i) with explicit reasoning in the
logical domain, e.g., tasks in the realm of arithmetic (Saxton
et al., 2019; Lewkowycz et al., 2022), algebra (Zhang et al.,
2022) or algorithmics (Velickovic et al., 2022), or (ii) im-
plicit reasoning in other modalities, e.g., benchmarks such as

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

Pointer Value Retrieval (Zhang et al., 2021) and Clevr (John-
son et al., 2017) for vision models, or LogiQA (Liu et al.,
2020) and GSM8K (Cobbe et al., 2021) for language mod-
els. Reasoning also plays a key role in tasks which can be
tackled via Boolean modelling, particularly in the fields of
biology (Wang et al., 2012) and medicine (Hemedan et al.,
2022).

As these endeavours remain challenging for current Trans-
former architectures, it is natural to examine whether they
can be handled more effectively with different approaches,
e.g., by better exploiting the Boolean nature of the task. In
particular, when learning Boolean functions with a ‘classic’
approach based on minimizing the training loss on the out-
puts of the function, Transformers learn potentially complex
interpolators as they focus on minimizing the degree pro-
file in the Fourier spectrum, which is not the type of bias
desirable for generalization on domains that are not well
sampled (Abbe et al., 2022). In turn, the complexity of the
learned function makes its interpretability challenging. This
raises the question of how to improve generalization and
interpretability of such models.

In this paper, we tackle Boolean function learning with
Transformers, but we rely directly on ‘symbolic regression’:
our Boolformer is tasked to directly predict a Boolean for-
mula, i.e., a symbolic expression of the Boolean function
in terms of the three fundamental logical gates (AND, OR,
NOT) such as those of Figs. 1,2. As illustrated in Fig. 3,
this task is framed as a sequence prediction problem: each
training example is a synthetically generated function whose
truth table is the input and whose formula is the target.

By moving to this setting, we decouple the symbolic task
of inferring the logical formula and the numerical task of
evaluating it on new inputs: the Boolformer only has to
handle the first part. We show that this approach can give
surprisingly strong performance both in abstract and real-
world settings, and discuss how this lays the ground for
future improvements and applications.

1.1. Contributions

1. We train Transformers over synthetic datasets to perform
end-to-end symbolic regression of Boolean formulas.
The synthetic functions are generated by simplifying
formulas whose tree have either low width or low depth

1
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Figure 1. Example Boolean formula predicted by our model.
Left: the multiplexer, a function commonly used in electronics to
select one out of four sources x0, x1, x2, x3 based on two selector
bits s0, s1. Right: given two 5-bit numbers a = (x0x1x2x3x4)
and b = (x5x6x7x8x9), returns 1 if a > b, 0 otherwise.

(see Section 2.1). We show that given the full truth table
of an unseen function, Boolformer is able to predict a
compact formula, as illustrated in Fig. 1.

2. We show that Boolformer is robust to noisy and incom-
plete observations, by training it on incomplete truth
tables with flipped bits and irrelevant variables. This is
a necessary condition for its applicability to real-word
data.

3. We evaluate Boolformer on various real-world binary
classification tasks from the PMLB database (Olson et al.,
2017) and show that it is competitive with classic ma-
chine learning approaches such as Random Forests while
being more interpretable as illustrated in Fig. 2.

4. We apply Boolformer to the well-studied task of model-
ing Gene Regulatory Networks (GRNs) in biology. Us-
ing a recent benchmark (Pušnik et al., 2022), we show
that our model is competitive with state-of-the-art meth-
ods with orders of magnitude faster inference.

Reproducibility All code used for the paper is avail-
able at https://anonymous.4open.science/r/
Boolformer/README.md.

1.2. Related Work

Logical reasoning in deep learning Several papers have
studied the ability of deep neural networks to solve logic
tasks. Evans & Grefenstette (2018) introduce differential
inductive logic as a method to learn logical rules from noisy
data, and a few subsequent works attempted to craft dedi-
cated neural architectures to improve this ability (Ciravegna
et al., 2023; Shi et al., 2020b; Dong et al., 2019). Large
language models (LLMs) such as ChatGPT, however, have
been shown to perform poorly at simple logical tasks such as
basic arithmetic (Delétang et al., 2022; Jelassi et al., 2023),
and tend to rely on approximations and shortcuts (Liu et al.,
2022). Although some reasoning abilities seem to emerge

with scale (Wei et al., 2022a) and can be enhanced via sev-
eral procedures such as scratchpads (Nye et al., 2021) and
chain-of-thought prompting (Wei et al., 2022b), achieving
holistic and interpretable reasoning in LLMs remains a chal-
lenge.

Learning Boolean functions Learning Boolean functions
has been an active area in theoretical machine learning,
mostly under the probably approximately correct (PAC) and
statistical query (SQ) learning frameworks (Hellerstein &
Servedio, 2007; Reyzin, 2020). More recently, Abbe et al.
(2023) shows that regular neural networks learn by gradually
fitting monomials of increasing degree, in such a way that
the sample complexity is governed by the ‘leap complex-
ity’ of the target function, i.e. the largest degree jump the
Boolean function sees in its Fourier decomposition. In turn,
Abbe et al. (2022) shows that this leads to a ‘min-degree
bias’ limitation: Transformers tend to learn interpolators
having least ‘degree profile’ in the Boolean Fourier basis,
which typically lose the Boolean nature of the target and of-
ten produce complex solutions with poor out-of-distribution
generalization.

Inferring Boolean formulas A few works have explored
the paradigm of inferring Boolean formulas in symbolic
form, using SAT solvers (Narodytska et al., 2018), ILP
solvers (Wang & Rudin, 2015; Su et al., 2015) or LP-
relaxation (Malioutov et al., 2017). However, all these
works predict the formulas in conjunctive or disjunctive
normal forms (CNF/DNF), which typically amounts to ex-
ponentially long formulas. In contrast, the Boolformer
is biased towards predicting compact expressions1, which
is more akin to logic synthesis – the task of finding the
shortest circuit to express a given function, also known as
the Minimum Circuit Size Problem (MCSP). While a few
heuristics (e.g. Karnaugh maps (Karnaugh, 1953)) and algo-
rithms (e.g. ESPRESSO (Rudell & Sangiovanni-Vincentelli,
1987)) exist to tackle the MCSP, its NP-hardness (Murray &
Williams, 2017) remains a barrier towards efficient circuit
design. Given the high resilience of computers to errors,
approximate logic synthesis techniques have been intro-
duced (Scarabottolo et al., 2018; Venkataramani et al., 2012;
2013; Boroumand et al., 2021; Oliveira & Sangiovanni-
Vincentelli, 1993; Rosenberg et al., 2023), with the aim of
providing approximate expressions given incomplete data –
this is similar in spirit to what we study in Section 4.

Symbolic regression Symbolic regression (SR), i.e. the
search of mathematical expressions underlying a set of nu-

1Consider for example the comparator of Fig. 1: since the
truth table has roughly as many positive and negative outputs, the
CNF/DNF involves O(2D) terms where D is the number of input
variables. For D = 10 this is several thousand binary gates, versus
17 for our model.

2
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Figure 2. A Boolean formula predicted to determine whether
a mushroom is poisonous. We considered the "mushroom"
dataset from the PMLB database (Olson et al., 2017), and this
formula achieves an F1 score of 0.96.

Encode DecodeFFN

Embed Transformer

OutputTarget

and, x1, x2
XE 
loss

Input

and, x1, not, x2

Figure 3. Summary of our approach. We feed N
points (x, f(x)) ∈ {0, 1}D+1 to a seq2seq Trans-
former, and supervise the prediction to f via cross-
entropy loss.

merical values, is still today a rather unexplored paradigm
in the ML literature. Since this search cannot directly be
framed as a differentiable problem, the dominant approach
for SR is genetic programming (see (La Cava et al., 2021)
for a recent review). A few recent publications applied
Transformer-based approaches to SR (Biggio et al., 2021;
Valipour et al., 2021; Kamienny et al., 2022; Tenachi et al.,
2023), yielding comparable results but with a significant
advantage: the inference time rarely exceeds a few seconds,
several orders of magnitude faster than existing methods.
Indeed, while the latter needs to be run from scratch on
each new set of observations, Transformers are trained over
synthetic datasets, and inference simply consists of a for-
ward pass. Such efficiency opens the possibility of merging
the two approaches, by using the trained model to suggest
meaningful mutations in the context of genetic algorithm
(e.g. (Romera-Paredes et al., 2024)). This may boost both
the convergence speed and the quality of the results, espe-
cially in search spaces where most random mutations would
result in invalid candidates.

2. Methods
Our task is to infer Boolean functions of the form f :
{0, 1}D → {0, 1}, by predicting a Boolean formula built
from the basic logical operators: AND, OR, NOT, as il-
lustrated in Figs. 1,2. We train Transformers (Vaswani
et al., 2017) on a large dataset of synthetic examples,
following the seminal approach of (Lample & Charton,
2020). For each example, the input Ωfit is a set of pairs
{(xi, y = f(xi))}i=1...N , and the target is the function f
as described above. Our general method is summarized in
Fig. 3. Examples are generated by first sampling a random
function f , then generating the corresponding (x, y) pairs
as described in the following sections.

2.1. Generating formulas

To sample Boolean formulas2, we construct random unary-
binary tree with mathematical operators at the internal nodes
and variables at the leaves. We rely on the tree generator of
(Lample & Charton, 2020), whose distribution is biased to-
wards trees which are either relatively narrow (and possibly
deep) or relatively shallow (and possibly wide). Moreover,
once operators and variables are sampled inside the tree, we
further simplify the formula using algebraic rules in order
to make the formula as simple as possible, encouraging the
model to predict maximally compact formulas. The full
sampling procedure is detailed in App. A.

The distribution of functions generated in this way spans
the whole space of possible Boolean functions (of size 22

D

),
but in a non-uniform fashion with a bias towards functions
described by a relatively simple formula3. As discussed
quantitatively in App. B, the diversity of functions gener-
ated in this way is such that throughout the whole training
procedure, functions of dimension D ≥ 7 are typically
encountered at most once.

2.2. Generating inputs

Once the function f is generated, we select N points x in
the Boolean hypercube following the procedure detailed
below, and compute the corresponding outputs y = f(x).
Optionally, we may flip the bits of the inputs and outputs
independently with probability σflip; we consider the two
following setups.

2A Boolean formula is a tree where input variables can appear
more than once, and differs from a Boolean circuit, which is a
directed graph which can feature cycles, but where each input bit
appears once at most.

3Indeed, for uniformly random function, the task would be
hopeless as it is known to be NP-hard (Murray & Williams, 2017)

3
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Noiseless regime The noiseless regime, studied in Sec. 3,
is defined as follows:

• Noiseless data: there is no bit flipping, i.e. σflip = 0.
• Full support: all the input variables are present in the

Boolean formula.
• Full observability: the model has access to the whole

truth table of the Boolean function, i.e. N = 2D. This
limits us to a maximum of 10 input variables.

Noisy regime In the noisy regime, studied in Sec. 4, the
model must determine which variables affect the output,
while also being able to cope with corruption of the inputs
and outputs. During training, we vary the amount of noise
for each sample so that the model can handle a variety of
noise levels:

• Noisy data: the probability of each bit (both input and
output) being flipped σflip is sampled uniformly in [0, 0.1].

• Partial support: the model can handle functions with
up to 120 input variables, but only up to 6 of these are
“active”, i.e. appear in the Boolean formula – all the other
variables are “inactive”.

• Partial observability: a subset of the hypercube is ob-
served: the number of input points N is sampled uni-
formly in [30, 300], which is typically much smaller that
2D. Additionally, instead of sampling uniformly (which
would cause distribution shifts if the inputs are not uni-
formly distributed at inference), we generate the input
points via a random walk in the hypercube. Namely, we
sample an initial point x0 then construct the following
points by flipping independently each coordinate with a
probability sampled uniformly in [0.05, 0.25].

2.3. Model

Tokenization To represent Boolean formulas as sequences
processed by the decoder, we enumerate the nodes of the
trees in prefix order, i.e., direct Polish notation as in (Lample
& Charton, 2020): operators and variables are represented
as single autonomous tokens, e.g. [AND, x1,NOT, x2]. The
evaluations fed to the encoder are embedded using {0,1}
tokens. In the noiseless regime, we shrink the input length
by providing less than half of the truth table, namely only
the entries corresponding to the less frequent output of
the boolean function. Using a special token, we indicate
whether this value is 0 or 1 which effectively provides the
information of the full truth table, albeit implicitly. Formu-
las requiring more than 200 tokens are discarded, as we are
limited by the attention size of the decoder.

Token Embeddings Our model is provided N input
points (x, y), each of which is represented by D + 1 to-
kens of dimension Demb, where D is the dimension of x.

As D and N become large, this would result in very long
input sequences (ND tokens) which are suboptimal given
the quadratic complexity of Transformers in the input length.
To mitigate this, we introduce compressed embeddings to
map each input pair (x, y) to a single embedding, follow-
ing (Kamienny et al., 2022). To do so we pad the empty
input dimensions to Dmax, enabling our model to handle
variable input dimension, then concatenate all the tokens
and feed the (Dmax + 1)×Demb-dimensional result into a
linear layer which projects it down to dimension Demb. The
resulting N embeddings of dimension Demb are then fed to
the Transformer.

Transformer We use the Transformer architec-
ture (Vaswani et al., 2017) where the encoder and decoder
use 8 and 8 layers, 16 attention heads and an embedding
dimension of 512, for a total of ∼ 60M parameters. A
notable property of this task is the permutation invariance
of the N input points. As such, we remove positional
embeddings from the encoder, encoding this invariance in
the model. The decoder uses standard learnable, absolute
positional embeddings.

We have attempted scaling up the model, testing 110M and
450M parameter versions. Interestingly, there were few if
any improvements, both on the cross-entropy loss, and the
benchmark evaluations. This is peculiar, as transformers
have shown to yield predictable improvements with scaling
(Kaplan et al., 2020). We leave to future work the investi-
gation of this phenomenon and its potential relation to the
specific task of symbolic regression.

2.4. Training and evaluation

Training We optimize a cross-entropy loss with the
AdamW optimizer and a batch size of 1024, warming up
the learning rate from 10−7 to 2× 10−4 over the first 5,000
steps. It is then kept constant for 60,000 steps, after which
we perform a linear cooldown back to 0 (Hägele et al., 2024).
On 4 H100 GPUs, this takes about 1 day.

Inference At inference time, we find that beam search
does not provide measurable improvements compared to
standard sampling. Therefore, in most results presented in
this paper, we generate 10 candidates by sampling, then
rank them according to how well they fit the input data (to
assess this, we use the fitting error defined below). Note that
when the data is noiseless, the model will often find several
candidates which have an accuracy close to 100%.

Evaluation Given a set of input-output pairs Ω generated
by a target function f⋆, we compute the accuracy of a pre-
dicted function f as 1

|Ω|
∑

(x,y)∈Ω 1[f(x) = f⋆(x)].

We can then define:

4
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• Fitting accuracy: accuracy obtained when re-using the
points used to predict the formula, Ω = Ωfit

• Fitting perfect recovery: defined as 1 if the fitting error
is strictly equal to 0, and 0 otherwise.

• Test accuracy: accuracy obtained when sampling points
different than the ones used for the prediction. Thie met-
ric does not apply in the noiseless regime, as the model
observes all possible sampling points.

• Test perfect recovery: defined as 1 if the test error is
strictly equal to 0, and 0 otherwise.

3. Noiseless regime: finding the shortest
formula

The noiseless setting is akin to logic synthesis, where the
goal is to find the shortest formula that implements a given
function. The practical relevance of this regime is limited
by the fact that it requires full observability of the function;
as such, the results of this section serve as a controlled
setting to probe the generalization abilities of Boolformer.
Specifically, we do not claim that logic synthesis is a useful
application of Boolformer in its current iteration, but rather
an interesting task to examine the potential of the model,
which we argue really shines in the noisy setting (Sec. 4).

In-domain performance In Fig. 4, we report the per-
formance of the model when varying the number of input
variables and the number of operators in the ground truth.
Metrics are averaged over 10, 000 formulas, sampled from
the generator used during training.

The model demonstrates high accuracy in predicting target
functions across all cases, including for D ≥ 7, where
memorization is not feasible (samples with D ≥ 7 have
typically not been encountered during training as shown
in App. B). Of course, these results reflect the model’s
performance on the specific distribution of functions it was
trained on, which is highly nonuniform within the 22

D

-
dimensional space of Boolean functions. It is important to
note that for a Boolean function sampled uniformly from this
space, the likelihood of achieving any meaningful accuracy
is effectively negligible, as such random functions are highly
unlikely to be expressible in fewer than 200 tokens.

As a baseline, we also compare with ESPRESSO (Rudell &
Sangiovanni-Vincentelli, 1987), which is a heuristic logic
synthesizer that, despite its age, is still relevant today. Com-
paring to Boolformer (more details in App. C), the two
methods yield comparable average formula lengths, with
Boolformer yielding shorter formulas more often, especially
when more variables are involved. The comparison is not
perfect, as ESPRESSO is constrained to output formulas in
sum-of-products form. Still, the ability to generate concise
formulas is confirmation that Boolformer is at least learning

non-trivial representations that generalize to unseen data.

Figure 4. Our model is able to approximate the formula of un-
seen functions with high accuracy. We report perfect recovery
and fitting accuracy of our model when varying the number of
binary gates and input variables. Metrics are averaged over 10,000
samples from the function generator.

Success and failure cases In Fig. 1, we show two exam-
ples of Boolean functions where our model successfully pre-
dicts a compact formula for: the 4-to-1 multiplexer (which
takes 6 input variables) and the 5-bit comparator (which
takes 10 input variables). In App. E, we provide more ex-
amples: addition and multiplication, as well as majority and
parity functions. By increasing the dimensionality of each
problem up to the point of failure, we show that in all cases
our model typically predicts exact and compact formulas
as long as the function can be expressed with less than 100
binary gates (which is the largest size seen during training,
as larger formulas exceed the 200 tokens limit) and fails
beyond. Still, even in this cases, the model is still able to
approximate the formula well, as the accuracy still remains
high.

Hence, the failure point depends on the intrinsic difficulty of
the function: for example, Boolformer can predict an exact
formula for the comparator function up to D = 10, but only
D = 6 for multiplication, D = 5 for majority and D = 4
for parity as well as typical random functions (whose outputs
are independently sampled from {0, 1}). Parity functions
are well-known to be the most difficult functions to learn
for SQ models due to their leap-complexity, and are also
the hardest to learn in our framework because they require
the most operators to be expressed (the XOR operator being
excluded in this work).

4. Noisy regime: applications to real-world
data

We now turn to the noisy regime, which is defined at the
end of Sec. 2.2. We begin by studying the robustness of
Boolformer to incomplete and corrupted observations, then
demonstrate its practical relevance by studying two real-
world applications: interpretable binary classification and
efficient Gene Regulatory Network (GRN) inference.

5
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Figure 5. Our model is robust to data incompleteness, bit flipping and noisy variables. We display the test perfect recovery of our
model when varying the four factors of difficulty described in Sec. 2. The colors depict different number of active variables (which appear
in the Boolean formula), as shown in the first panel. Metrics are averaged over 10k samples from the random generator.

4.1. Results on noisy data

Figure 6. Our model is competitive with classic machine learn-
ing methods while providing highly interpretable results. We
display the F1 score obtained on various binary classification
datasets from the Penn Machine Learning Benchmark (Olson et al.,
2017). We compare the F1 score of the Boolformer with random
forests (using 1 and 100 estimators) and logistic regression.

In Fig. 5, we show how the performance of our model de-
pends on the various factors of difficulty of the problem.
The different colors correspond to different numbers of ac-
tive variables appearing in the formula, as shown in the
leftmost panel: in this setting with multiple sources of noise,
we see that accuracy drops much faster with the number of
active variables than in the noiseless setting.

As could be expected, performance improves as the number
of input points N increases, and degrades as the amount
of random flipping and the number of inactive variables
increase. However, our model copes relatively well with
noise in general, as it displays nontrivial generalization even
when we add up to 120 inactive variables and up to 10%
random flipping.

4.2. Application 1: interpretable binary classification

In this section, we show that our noisy model can be applied
to binary classification tasks, providing an interpretable
alternative to classic machine learning methods on tabular
data.

Method We consider the tabular datasets from the Penn
Machine Learning Benchmark (PMLB) from (Olson et al.,
2017). These contain a wide variety of real-world problems,
such as predicting chess moves, toxicity of mushrooms,
credit scores, and heart diseases. Since our model only takes
binary features as input, we discard continuous features and
binarize the categorical features with C > 2 classes into
C binary variables. Note that this procedure can greatly
increase the total number of features,we only keep datasets
for which this results in less than 120 features (the maximum
our model can handle). We randomly sample 25% of the
examples for testing and report the F1 score obtained on
this set.

We compare our model with two classic machine learn-
ing methods: logistic regression and random forests, using
the default hyperparameters from sklearn. For random
forests, we test two values for the number of estimators:
1 (in which case we obtain a simple decision tree as for
Boolformer) and 100.

Results Results are reported in Fig. 6, where for readabil-
ity we only display the datasets where the random forest
with 100 estimators achieves an F1 score above 0.75. The
performance of Boolformer is similar on average to that of
logistic regression : logistic regression typically performs
better on "hard" datasets where there is no exact logical rule,
for example medical diagnosis tasks such as heart_h, but
worse on logic-based datasets where the data is not linearly
separable such as xd6.

The F1 score of our model is slightly below that of a random
forest of 100 trees, but slightly above that of the random

6
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forest with a single tree. This is remarkable considering
that the Boolean formula it outputs usually contains a few
dozen nodes, whereas the trees of random forest use up to
several hundreds. As an example, we display a formula
predicted for the mushroom toxicity dataset in Fig. 2, and a
more extensive collection of formulas in App. F.

4.3. Application 2: efficient inference of gene regulatory
networks

A Boolean network is a dynamical system composed of D
bits whose transition from one state to the next is governed
by a set of D Boolean functions4. These types of networks
have attracted a lot of attention in the field of computational
biology as they can be used to model gene regulatory net-
works (GRNs) (Zhao et al., 2021) – see App. G for a brief
overview of this field. In this setting, each bit represents
the (discretized) expression of a gene (on or off) and each
function represents the regulation of a gene by the other
genes. In this section, we investigate the applicability of our
symbolic regression-based approach to this task.

Benchmark We use the recent benchmark for GRN infer-
ence introduced by (Pušnik et al., 2022). This benchmark
compares 5 methods for Boolean network inference on 30
Boolean networks inferred from biological data, with sizes
ranging from 16 to 64 genes, and assesses both dynamical
prediction (how well the model predicts the dynamics of the
network) and structural prediction (how well the model pre-
dicts the Boolean functions compared to the ground truth).
Structural prediction is the binary classification task of pre-
dicting whether variable i influences variable j, and can be
evaluated by many binary classification metrics; we report
here the structural F1 and Youden’s J statistic metrics, which
are the most holistic, and defer other metrics to App. G.

Method Our model predicts each component fi of the
Boolean network independently, by taking as input the
whole state of the network at times [0 . . . t−1] and as output
the state of the ith bit at times [1 . . . t]. Once each compo-
nent has been predicted, we can build a causal influence
graph, where an arrow connects node i to node j if j ap-
pears in the update equation of i: an example is shown
in Fig. 7c. Note that since the dynamics of the Boolean
network tend to be slow, an easy way to get rather high
dynamical accuracy would be to simply predict the trivial
fixed point fi = xi. In concurrent approaches, the function
set explored excludes this solution; in our case, we simply
mask the ith bit from the input when predicting fi.

Results We display the results of our model on the bench-
mark in Fig. 7a. Boolformer performs on par with the

4The i-th function fi takes as input the state of the D bits at
time t and returns the state of the i-th bit at time t+ 1.

SOTA algorithms, GABNI (Barman & Kwon, 2018) and
MIBNI (Barman & Kwon, 2017). A striking feature of our
model is its inference speed, displayed in Fig. 7b: a few
seconds, against up to an hour for concurrent approaches,
which mainly rely on genetic programming. Note also that
our model predicts an interpretable Boolean function, where
the other SOTA methods (GABNI and MIBNI) only pick out
the most important variables and the sign of their influence.

The fast inference speed of the Boolformer suggests that
it could be used in combination with genetic approaches,
to further increase the quality of the results, at the cost of
inference speed. In such an approach, the fast model can be
used to replace the random mutations, instead sampling the
mutations from Boolformer, which should allow for a much
more efficient exploration of the search space (Romera-
Paredes et al., 2024). Due to the autoregressive nature of
Boolformer, it is not well-suited for this task; a BERT-like
architecture (Devlin et al., 2019) would be more appropriate,
so we leave explorations of this approach for future work.

5. Discussion
In this work, we have shown that Transformers can be used
to strongly perform the symbolic regression of logical func-
tions, opening up a new, more interpretable framework than
classical machine learning to solve certain types of classifi-
cation tasks. Their ability to infer GRNs several orders of
magnitude faster than existing methods offers the promise of
many other exciting applications in biology, where Boolean
modelling plays a key role (Hemedan et al., 2022). There are
however several limitations in our current approach, which
open directions for future work.

Limited Number of Input Points. First, the number of
input points is limited to a thousand during training, which
limits our model’s performance on high-dimensional func-
tions (although the model does exhibit some length general-
ization abilities at inference, as shown in App. D). Note that
we did not consider linear attention mechanisms (Choro-
manski et al., 2021; Wang et al., 2020) because on top of
potentially degrading performance5, this would not funda-
mentally improve scalability, as the volume of input space
grows exponentially with the input dimension.

Predefined Feature Sets. Our model is developed on bi-
nary input features. Although it is easy to binarize categori-
cal and continuous features, this increases the input dimen-
sion significantly, and our model has a hard limit on the
number of input features it can handle, which is set to a hun-
dred in this work. This could be mitigated by considering

5We hypothesize that full attention span is particularly impor-
tant in this specific task: the attention maps displayed in App. I are
visually dense and high-rank matrices.
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Figure 7. Our model is competitive with state-of-the-art methods for GRN inference with orders of magnitude faster inference. (a)
We compare the ability of our model to predict the next states (dynamic accuracy) and the influence graph (structural accuracy) with that
of other methods using a recent benchmark (Pušnik et al., 2022) – more details in Sec. 4.3. (b) Average inference time of the various
methods. (c) From the Boolean formulas predicted, one can construct an influence graph where each node represents a gene, and each
arrow signals that one gene regulates another.

an extension to q-ary input features, although this requires
choosing a new list of associated universal operators.

Vocabulary Limitations. The logical functions on which
our model is trained do not include the XOR gate explicitly,
limiting the compactness of the formulas it predicts. This
limitation is due to our generation procedure that relies
on expression simplification, which requires rewriting the
XOR gate in terms of AND, OR and NOT. We leave it as
future work to adapt the generation of simplified formulas
containing XOR gates, as well as more general operators
with more than two inputs as in (Rosenberg et al., 2023).

Lack of Intermediate Results and Multi-Output. The
simplicity of the formulas predicted is limited in two addi-
tional ways: our model only handles (i) single-output func-
tions – multi-output functions are predicted independently
component-wise and (ii) gates with a fan-out of one. As a
result, our model cannot reuse intermediary results for dif-
ferent outputs or for different computations within a single

output6. One could address this either by post-processing
the generated formulas to identify repeated substructures,
or by adapting the data generation process to support multi-
output functions and cyclic graphs.

Finally, this paper mainly focused on investigating concrete
applications and benchmarks to motivate the potential and
development of Boolformers. A natural direction is to in-
vestigate theoretically and practically how the control of the
data generator can influence the model simplicity and its
impact on the ‘generalization on the unseen’ (Abbe et al.,
2023) benchmarks.

6Consider the D-parity: one can build a formula with only
3(n − 1) binary AND-OR gates by storing D − 1 intermediary
results: a1 = XOR(x1, x2), a2 = XOR(a1, x3), . . . , an−1 =
XOR(aD−2, xD). Our model needs to recompute these interme-
diary values, leading to much larger formulas, e.g. 35 binary gates
instead of 9 for the 4-parity as illustrated in App. E.
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A. Details on data generation
A.1. Formula generation

To construct random unary-binary trees, we follow the steps below:

1. Sample the input dimension D of the function f uniformly in [1, Dmax] .
2. Sample the number of active variables S uniformly in [1,min(D,Smax)]. S determines the number of variables which

affect the output of f (the number of active tree inputs); the other variables are inactive. Select a set of S variables from
the original D variables uniformly at random.

3. Sample the number of binary operators B uniformly in [S − 1, Bmax] then sample B operators from {AND, OR}
independently with equal probability.

4. Build a binary tree with those B nodes, using the sampling procedure of (Lample & Charton, 2020), designed to
produce a diverse mix of deep and narrow versus shallow and wide trees.

5. Negate some of the nodes of the tree by adding NOT gates independently with probability pNOT = 1/2.
6. Fill in the leaves: for each of the B + 1 leaves in the tree, sample independently and uniformly at random one of the

variables from the set of active variables7.
7. Simplify the tree using Boolean algebraic rules, as described below. This greatly reduces the number of operators, and

occasionally reduces the number of active variables.

To maximize diversity, we sample large formulas (up to Bmax = 500 binary gates), which are then heavily pruned in the
simplification step8.

A.2. Formula simplification

The data generation procedure heavily relies on expression simplification. This is of utmost importance for four reasons:

• It reduces the output expression length and hence memory usage as well as increasing speed

• It improves the supervision by reducing expressions to a more canonical form, easier to guess for the model

• It encourages the model to output the simplest formula, which is a desirable property.

We use the package boolean.py9 for this, which is considerably faster than sympy (the function simplify_logic
of the latter has exponential complexity, and is hence only implemented for functions with less than 9 input variables).

Empirically, we found the following procedure to be optimal in terms of average length obtained after simplification:

1. Preprocess the formula by applying basic logical equivalences: double negation elimination and De Morgan’s laws.

2. Parse the formula with boolean.py and run the simplify() method until it stabilizes (sometimes, simplify more
than once is necessary)

3. Apply once again the first step

Note that this procedure drastically reduces the number of operators and renders the final distribution highly nonuniform, as
shown in Fig. 8.

B. Does Boolformer memorize?
One natural question is whether our model simply performs memorization on the training set. Indeed, the number of possible
functions of D variables is finite, and equal to 22

D

.

7The S variables are sampled without replacement in order for all the active variables to appear in the tree.
8The simplification leads to a non-uniform distribution of number of operators as discussed in App. A.
9https://github.com/bastikr/Boolean.py
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Figure 8. Distribution of number of operators after expression simplification. The initial number of binary operators is sampled
uniformly in [1, 500]. The total number of examples is 104.

Let us first assume naively that our generator is uniform in the space of boolean functions. Since 22
4 ≃ 6× 104 (which is

smaller than the number of examples seen during training) and 22
5 ≃ 5.109 (which is much larger), one could conclude that

for D ≤ 4, all functions are memorized, whereas for D > 4, only a small subset of all possible functions are seen, hence
memorization cannot occur.

However, the effective number of unique functions seen during training is actually smaller because our generator of random
functions is nonuniform in the space of boolean functions. In this case, for which value of D does memorization become
impossible? To investigate this question, for each D < Dmax, we sample min

(
22

D

, 100
)

unique functions from our random
generator, and count how many times their exact truth table is encountered over an epoch (300,000 examples).

Results are displayed in Fig. 9. As expected, the average number of occurences of each function decays exponentially fast,
and falls to zero for D = 7, meaning that each function is typically unique for D ≥ 7. Hence, memorization cannot occur
for D ≥ 7. Yet, as shown in Fig. 4, our model achieves excellent accuracies even for functions of 10 variables, which
excludes memorization as a possible explanation for the ability of our model to predict logical formulas accurately.
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Figure 9. Functions with 7 or more variables are typically never seen more than once during training. We display the average
number of times functions of various input dimensionalities are seen during an epoch (300,000 examples). For each point on the curve,
the average is taken over min(22

D

), 100) unique functions.

C. Comparison to ESPRESSO in the noiseless setting
To compare the logic synthesis capability of Boolformer with ESPRESSO, we generate 3000 formulas with our generator.
The number of input variables is distributed uniformly among [1,10], however, the final distribution is a bit different, as some
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of the inputs are sometimes redundant. We run these through Boolformer, which outputs valid simplifications (i.e. perfect
recovery) on 96.5% of the formulas in this set. We compare performance only on this subset of formulas, the remaining
3.5% can be considered as ’failed to simplify’ by Boolformer.

Figure 10. Histogram comparing the average length of output expression of Boolformer vs ESPRESSO.

Fig. 10 displays the average length of the simplified formula for different numbers of active variables. Overall, Boolformer
does worse on this front. One reason why the average length metric is not better for Boolformer is that when it fails to find a
short simplification, it will sometimes try to correct with many tokens, generating a very long answer. Indeed, if we compare
the ’head-to-head’ count of which formula is shorter, we obtain Fig. 11

Figure 11. Histogram displaying the head-to-head simplification performance of Boolformer vs ESPRESSO. The green portion is the
percentage of formulas that were better simplified by Boolformer, the gray where both methods found equal length formulas, and the red
where ESPRESSO did better. Formula lengths below 5 should be mostly disregarded, as Boolformer is potentially able to ‘memorize’
the dataset at these lengths (see Fig 9 ). However, we see that for longer formulas, when Boolformer succeeds, it is often shorter than
ESPRESSO.
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Looking at Fig.11, Boolformer simplifications seem to be better than ESPRESSO a majority of the time, though not always.
This conclusively shows that what Boolformer does is at least non-trivial: it does not consist of simple combinations (e.g.
Disjunctive Normal Form, DNF) to craft a formula from its truth table. Additionally, its simplification capabilities extend
beyond memorization, as they still produce good results for a number of variables above 7. That being said, the output space
of Boolformer is bigger than ESPRESSO, as the former is allowed to output any valid Boolean formula using AND, OR,
and NOT operations, while the latter has to output it in DNF. Nonetheless, it is the closest comparison we were able to find,
as most logic synthesis programs are focused on multi-output functions, and mostly work with And-Inverter Graphs (AIGs),
which are composed of an even more restrictive set of operations (only AND and NOT).

Finally, we can also compare the inference time per formula, which gives 0.06s for Boolformer and 3.16s for ESPRESSO.
Here, the big advantage is mainly due to the fact that ESPRESSO runs on CPU, while Boolformer can leverage GPU, so it is
not a particularly illuminating comparison. Still, maybe in future work one could focus on the noiseless setting, using a
more reasonable representation as input (such as AIG, which is widely used in modern logic synthesis tools such as ABC
(ber, 2025)), and test to see whether Boolformer-like pipelines can advance the state of the art.

D. Length generalization
In this section we examine the ability of our model to length generalize. In this setting, there are two types of generalization
one can define: generalization in terms of the number of inputs N , or in terms of the number of active variables S10. We
examine length generalization in the noisy setup (see Sec. 2.2), because in the noiseless setup, the model already has access
to all the truth table (increasing N does not bring any extra information), and all the variables are active (we cannot increase
S as it is already equal to D).

D.1. Number of inputs

Since the input points fed to the model are permutation invariant, our model does not use any positional embeddings. Hence,
not only can our model handle N > Nmax, but performance often continues to improve beyond Nmax, as we show for two
datasets extracted from PMLB (Olson et al., 2017) in Fig. 12.
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Figure 12. Our model can length generalize in terms of sequence length. We test a model trained with Nmax = 300 on the chess
and german datasets of PMLB. Results are averaged over 10 random samplings of the input points, with the shaded areas depicting the
standard deviation.

D.2. Number of variables

To assess whether our model can infer functions which contain more active variables than seen during training, we evaluated
a model trained on functions with up to 6 active variables on functions with 7 or more active variables. We provided the
model with the truth table of two very simple functions: the OR and AND of the first S ≥ 7 variables. We observe that the

10Note that our model cannot generalize to a problem of higher dimensionality D than seen during training, as its vocabulary only
contains the names of variables ranging from x1 to xDmax .
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model succeeds for S = 7, but fails for S ≥ 8, where it only includes the first 7 variables in the OR / AND. Hence, the
model can length generalize to a small extent in terms of number of active variables, but less easily than in terms of number
of inputs. We hypothesize that proper length generalization could be achieved by "priming", i.e. adding even a small number
of "long" examples, as performed in (Jelassi et al., 2023).

E. Formulas predicted for logical circuits
In Figs. 13 and 14, we show examples of some common arithmetic and logical formulas predicted by our model in the
noiseless regime, with a beam size of 100. In all cases, we increase the dimensionality of the problem until the failure point
of Boolformer.
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(a) Addition of two 2-bit numbers: y0y1y2 = (x0x1) + (x2x3). All formulas are correct.
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(b) Addition of two 3-bit numbers: y0y1y2y3 = (x0x1x2) + (x3x4x5). All formulas are correct, except y3 which gets an error of 3%.
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F. Formulas predicted for PMLB datasets
In Fig. 15, we report a few examples of boolean formulas predicted for the PMLB datasets in Fig. 6. In each case, we also
report the F1 scores of logistic regression and random forests with 100 estimators.
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(c) Multiplication of two 2-bit numbers: y0y1y2y3 = (x0x1)× (x2x3). All formulas are correct.
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(d) Multiplication of two 3-bit numbers: y0y1y2y3y4y5 = (x0x1x2)× (x3x4x5). All formulas are correct, except y4 which gets an error
of 5%.

Figure 13. Some arithmetic formulas predicted by our model.
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Figure 14. Some logical functions predicted by our model.
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Figure 15. Some logical formulas predicted by our noisy model for some binary classification PMLB datasets. In each case, we
report the name of the dataset and the F1 score of the Boolformer, logistic regression and random forest in the caption.
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G. Additional results on gene regulatory network inference
In this section, we give a very brief overview of the field of GRN inference and present additional results using our
Boolformer.

G.1. A brief overview of GRNs

Inferring the behavior of GRNs is a central problem in computational biology, which consists in deciphering the activation
or inhibition of one gene by another gene from a set of noisy observations. This task is very challenging due to the
low signal-to-noise ratios recorded in biological systems, and the difficulty to obtain temporal ordering and ground truth
networks.

GRN algorithms can infer relationships between the genes based on static observations (Singh & Vidyasagar, 2015; Haury
et al., 2012; Huynh-Thu et al., 2010), or on input time-series recordings (Adabor & Acquaah-Mensah, 2019; Huynh-Thu &
Geurts, 2018), and can either infer correlational relationships, i.e. undirected graphs, or causal relationships, i.e. directed
graphs – the latter being more useful, but harder to obtain.

We focus on methods which model the dynamics of GRNs via Boolean networks: REVEAL (Liang et al., 1998), Best-
Fit (Lähdesmäki et al., 2003), MIBNI (Barman & Kwon, 2017), GABNI (Barman & Kwon, 2018) and ATEN (Shi et al.,
2020a). We evaluate our approach on the recent benchmark from (Pušnik et al., 2022).

G.2. Additional results

The benchmark studied in the main text assesses both dynamical prediction (how well the model predicts the dynamics of
the network) and structural prediction (how well the model predicts the Boolean functions compared to the ground truth).
Structural prediction is framed as the binary classification task of predicting whether variable i influences variable j, and
can hence be evaluated by several binary classification metrics, defined below11:

Acc =
TP + TN

TP + TN + FP + FN
, Pre =

TP
TP + FP

, Rec =
TP

TP + FN
, F1 = 2

Pre · Rec
Pre + Rec

,

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,BM =

TP
TP + FN

+
TN

TN + FP
− 1

Where TP, TN are True Positive and True Negative, while FP FN are False Positive and False Negative. We report these
metrics in Fig. 16.

11The authors of the benchmark consider the two latter to be the best metrics to give a comprehensive view on the classifier performance
for this task.
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Figure 16. Binary classification metrics used in the gene regulatory network benchmark. The competitors and metrics are taken from
the recent benchmark of (Pušnik et al., 2022), and described in Sec. 4.3.
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H. Exploring the beam candidates
In this section, we explore the beam candidates produced by the Boolformer. In Fig. 17, we show the 8 top-ranked candidates
when predicting a simple logic function, the 2-comparator. We see that all candidates perfectly match the ground truth, but
have different structure.

I. Attention maps
In Fig. 18, we show the attention maps produced by our model when presented three truth tables: (a) that of the 4-digit
multiplier, (b) that of the 4-parity function and (c) a random truth table. Each panel corresponds to a different layer and head
of the model.

Each attention map is an N ×N matrix, where N is the number of input points. The element (i, j) represents the attention
score between tokens i and j, and is marked by the colormap, from blue (0) to yellow (1). Here the tokens are ordered
from left to right by lexicographic order: 0000, 0001, 0010, ..., 1111. In this particular order, many interesting structures
appear, especially for the first two functions which are non-random. For example, for the 4-parity function, the anti-diagonal
attention map of (head 8, layer 7) indicates that the model compares antipodal points in the hypercube: (0000, 1111), (0011,
1100)...

As for the 4-digit multiplier, some attention heads have hadamard-like structure (e.g. heads 3,4,5 of layer 8), some have
block-structured checkboard patterns (e.g. head 12 of layer 5), and many heads put most attention weight on the final input,
1111, which is more informative (e.g. head 15 of layer 3).
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Figure 17. Beam search reveals equivalent formulas. We show the first 8 beam candidates for the 2-comparator, which given two 2-bit
numbers a = (x0x1) and b = (x2x3), returns 1 if a > b, 0 otherwise. All candidates perfectly match the ground truth.
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(b) 4-parity
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(c) 4d random data

Figure 18. The attention maps reveal intricate analysis. See Sec. I for more details on this figure.
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