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Abstract

Given that Large Language Models (LLMs)
are widely used in everyday society, it is im-
portant that these LLMs produce reliable, well-
reasoned outputs. However, the TRIP bench-
mark reveals a concerning trend in which LLMs
that purport high accuracy on reasoning tasks
may not be able to justify their outputs with
sound evidence. To address this issue, our
project implements three approaches to im-
prove reasoning abilities in LLMs and to en-
courage LLMs to generate their outputs by
following coherent reasoning steps. Specif-
ically, our three approaches include transfer-
ring knowledge from related reasoning tasks,
employing powerful model architectures, and
crafting prompts that surface reasoning abili-
ties in LLMs. Through combinations of these
approaches, we achieve approximately 20% im-
provements in performance on the lower-level
reasoning tasks on the TRIP benchmark (Storks
etal., 2021).

1 Introduction

As Large Language Models (LLMs) continue to
rapidly grow in size and accuracy, they are being
increasingly relied upon in our everyday society.
Today, these LLMs are applied across a wide array
of high-stakes industries, including medicine, law,
and robotics (Kaddour et al., 2023). In fact, recent
research estimates that LLMs will eventually im-
pact a staggering 80% of workers in the United
States (Eloundou et al., 2023). Outside of the work-
force, the average person interacts with various
LLMs and chatbots in their day-to-day life, with
ChatGPT reaching an unprecedented 100M users
within only two months of its release (Leng, 2024).
The expanding reach of LLMs, across both our
essential industries and our personal lives, makes
it more important than ever for LLMs to produce
reliable, well-reasoned outputs.

Unfortunately, prior work suggests that LLMs
may lack these reasoning skills. For instance,

LLMs are prone to hallucinations, where they in-
vent inaccurate information that may appear to be
true at face value (Huang et al., 2024). Even in
cases where LLLMs report high accuracy on rea-
soning tasks, some literature suggests that LLMs
can artificially achieve this accuracy without ac-
tually performing the desired reasoning. Rather,
the LLMs are exploiting spurious correlations that
happen to exist in the training data (Chen et al.,
2019; Gururangan et al., 2018), which means these
LLMs may be unable to generalize to related rea-
soning tasks or to other plausible data distributions.
This faulty reasoning and misleadingly high perfor-
mance is concerning, especially given the extent to
which our society relies on LLMs.

One key work that investigates this concern is
the Tiered Reasoning for Intuitive Physics (TRIP)
benchmark (Storks et al., 2021). In this benchmark,
the authors ask LLM-based models to solve a stan-
dard commonsense reasoning task, with the caveat
that the LLM must explicitly justify its output with
evidence and reasoning. Specifically, the authors
pose a story prediction task where the model is
presented with two stories and must identify which
story is plausible. To justify its choice, the model
must examine the implausible story to determine
which two sentences cause the implausibility. In
even finer detail, the model must assess those sen-
tences and their associated objects to identify which
physical states cause the sentences to conflict. Fig-
ure 1 presents an example of two input stories and
the tiered process the model follows to evaluate
those stories.

Through this tiered three-step evaluation, the
TRIP benchmark allows us to measure not only
the model’s accuracy in a high-level reasoning task
(story prediction), but also the extent to which this
high-level output is grounded in logical reasoning
about relevant lower-level subtasks (conflict detec-
tion and physical state detection). Unfortunately,
when this evaluation is performed on BERT-based



Story A

1. Ann sat in the chair.

Story B

2. Ann unplugged the telephone.
3. Ann picked up a pencil.
4. Ann opened the 4. Ann opened the

5. Ann wrote in the
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3. Ann picked up a pencil.
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Figure 1: An example input and output in the TRIP benchmark. Given two stories, the model must identify which
story is plausible, identify the two conflicting sentences in the implausible story, and identify the physical state
changes in the conflicting sentences. This tiered evaluation assesses the model’s reasoning skills on both a high-level
task (story prediction) and its lower-level subtasks (conflict detection and physical state detection). Image from

(Storks et al., 2021)

models (Devlin et al., 2019; Liu et al., 2019; He
et al., 2020), it reveals a concerning trend where
the performance on the high-level task significantly
exceeds the performance on the two lower-level
subtasks, as shown in Table 1. This trend indicates
that the model’s true reasoning ability is actually
much lower than the high accuracy may have led
us to believe.

Given the concerning gap between the models’
performance on the high-level and low-level reason-
ing tasks, our project implements three approaches
to improve the models’ lower-level reasoning skills
and to encourage the model to apply these skills
when solving the high-level task. These approaches
include transfer learning, model selection, and ad-
vanced prompting.

In our first approach, we aimed to improve the
models’ lower-level reasoning skills via transfer
learning. We identified relevant commonsense rea-
soning datasets that emphasize physical state detec-
tion and conflict detection, and we fine-tuned the
model on these datasets to improve its reasoning
skills in these low-level areas. Our performance on
these fine-tuned models was comparable or slightly
reduced from the original TRIP benchmark. This
result may support concerns that models trained on
commonsense reasoning datasets have not learned
generalizable reasoning skills, but rather learned
spurious correlations for solving that specific end
task.

Given that the BERT-based model did not dis-
play sufficient low-level reasoning even after fine-
tuning, our second approach replaced the BERT-
based model with a more powerful LLM that con-
tains significantly more parameters and may there-
fore be better equipped for complicated reasoning
tasks. Our evaluation tests a variety of models that

differ by developer (LLaMA vs. Mistral), number
of parameters (7, 8, or 13 billion), instruction fine-
tuning (included or not), and version (LLaMA 2
vs. LLaMA 3) in order to isolate which aspects of
these models improve performance the most. Our
best-performing model is Mistral-7B-Instruct-v0.3,
which achieves strong performance of 40.14% con-
sistency and 27.46% verifiability on the two low-
level reasoning tasks. This model also had the low-
est variance and the highest accuracy (61.97%) on
the high-level task, which suggests that strong low-
level reasoning is a more successful and reliable
path to high end-task performance.

Our third approach aims to further improve the
performance of Mistral-7B-Instruct-v(.3 by apply-
ing targeted prompts that encourage the model to
reason. Especially because many of our evaluated
models observed high variance across repeated tri-
als, we hypothesize that these models do have the
necessary reasoning skills to perform well on the
TRIP benchmark, but they struggle to access these
skills in practice. Thus, our third approach assesses
the extent to which few-shot demonstrations and
role-playing prompts can surface the model’s com-
monsense reasoning. Our results show that model
performance can vary significantly as we change
the number of demonstrations and their represented
conflict types and object types. By carefully assess-
ing these variations, we curated sets of few-shot
demonstrations that improve accuracy and consis-
tency by almost 10%. Further, we were able to de-
sign a role-play prompt that successfully enhanced
the model’s physical state understanding and im-
proved its performance on the verifiability metric.

Overall, the key contribution of our work is a
comprehensive evaluation of how transfer learning,
model selection, and prompting techniques can be



Model Accuracy T Consistency T Verifiability 1

Random 49.5% 10.7% 0.0%

BERT 70.9% 21.9% 8.3%
ROBERTA 72.9% 19.1% 9.1%
DEBERTA 72.9% 22.2% 6.6%

Table 1: Performance of BERT-based models on the TRIP benchmark (Storks et al., 2021). Accuracy measures
performance on story prediction. Consistency measures performance on both story prediction and conflict detection.
Verifiability measures performance on story prediction, conflict detection, and physical state detection.

used to improve a model’s lower-level reasoning
skills and its ability to apply these skills in prac-
tice. Our most successful configuration is a Mistral-
7B-Instruct-v0.3 model with few-shot prompting,
which improves the TRIP benchmark’s consistency
and verifiability by approximately 20% compared
to the original (Storks et al., 2021) paper.

2 Related Work

This section contextualizes our project against re-
lated work in commonsense reasoning. First, we
discuss standard commonsense benchmarks and
how they differ from the tiered evaluation in the
TRIP benchmark. Next, we discuss prior works
that transfer knowledge across commonsense rea-
soning tasks, which motivates our project’s transfer
learning approach. Then, we discuss SOTA mod-
els that are tailored for reasoning tasks and how
these models compare to the LLMs our project
evaluates. Finally, we discuss prompting strategies
our project applies to improve performance on the
TRIP benchmark.

2.1 Standard Datasets in Commonsense
Reasoning

There are several popular benchmarks that are used
to train and evaluate commonsense reasoning in
LLMs, where commonsense reasoning generally
refers to a model’s ability to apply widely-accepted
logic in the context of common events and occur-
rences. These datasets encompass a wide range
of commonsense areas, including physical (Bisk
et al., 2019), cultural (Shen et al., 2024), temporal
(Mostafazadeh et al., 2016), and spatial (Mirzaee
et al., 2021), among others. Our project specifi-
cally focuses on physical commonsense reasoning,
which is traditionally challenging for LLMs be-
cause they exist online and primarily observe our
3D physical world secondhand through text.

2.2 Tiered Datasets for Procedural Reasoning

One challenge with commonsense reasoning bench-
marks is that many of them only evaluate the
model’s accuracy on a specific end task. In these
cases, the model may achieve artificially high accu-
racy by exploiting spurious correlations that exist
in the data, as opposed to performing actual human-
level reasoning (Gururangan et al., 2018). Some
datasets (Chen et al., 2019) address this by incorpo-
rating adversarially designed examples that models
cannot answer correctly if they overfit to spurious
correlations. Other datasets (Storks et al., 2021;
Tandon et al., 2018; Yang et al., 2018) incorpo-
rate a tiered evaluation process where the model
must justify its end-task output by correctly solving
lower-level subtasks of the end-task. The intent of
such datasets is to identify unwanted performance
gaps between the model’s high-level and low-level
reasoning. Our project uses the tiered evaluation
framework presented in the Tiered Reasoning for
Intuitive Physics (TRIP) benchmark (Storks et al.,
2021).

2.3 Transferring Knowledge from Other
Datasets

Given the wide range of available commonsense
reasoning datasets, researchers have turned to trans-
fer learning as a strategy to increase model gener-
alizability and improve end-task performance. For
example, (Jiang et al., 2023b) transfers knowledge
from a complicated procedural reasoning dataset
to learn sound reasoning processes and therefore
improve performance on a variety of simpler com-
monsense reasoning benchmarks. Models may also
transfer information from knowledge graphs (Sap
et al., 2019; Speer et al., 2018) that encode more
broadly applicable reasoning trends compared to
the task-specific patterns in many commonsense
reasoning datasets. There are even works that
can automatically construct these knowledge bases
(Bosselut et al., 2019). In our project, we apply



transfer learning to improve performance on the
TRIP benchmark (Storks et al., 2021). Specifi-
cally, we transfer knowledge from commonsense
reasoning datasets that specifically target the low-
level reasoning skills the TRIP benchmark under-
performs on.

2.4 Tailored Architectures for Reasoning

In addition to datasets that emphasize procedu-
ral reasoning structures, there are also models and
associated learning frameworks that do this. For
example, the CGLI model (Ma et al., 2022) empha-
sizes consistency between local and global patterns,
and the Breakpoint Transformer (Richardson et al.,
2022) emphasizes reliable reasoning throughout
intermediate steps in the model. Both of these mod-
els achieve near SOTA performance on the TRIP
benchmark. In comparison to these models that
are specifically designed to reason well, our project
evaluates the zero-shot reasoning capabilities of
general-purpose LLMs.

2.5 Pretrained Language Models

Pretrained Language Models (PLMs) have shown
impressive performance on commonsense reason-
ing tasks. In particular, models in the LLaMA
(Dubey and et al., 2024), Mistral (Jiang et al.,
2023a), and GPT (Ouyang et al., 2022) families
have reported significant improvements in accu-
racy for a variety of commonsense reasoning tasks.
Given the significant advancements in LLMs over
the past few years, the BERT-based PLMs evalu-
ated in the 2021 TRIP benchmark (Storks et al.,
2021) are now outdated. Therefore, our project
replaces these BERT-based PLMs with more recent
models. To identify exactly which components of
these models improve performance the most we
evaluate 6 PLMs that vary in their developer, ver-
sion, parameter count, and instruction fine-tuning
(Zhang et al., 2024). Further, our approach pri-
oritizes the evaluation of small language models
(ranging from 7B to 13B parameters) in response
to growing concerns about large language models
that have high carbon footprints, low interpretabil-
ity, and unequal accessibility across researchers
(Bender et al., 2021).

2.6 Variance in LLM Outputs

Although LLMs purport high accuracy across sev-
eral commonsense reasoning tasks, one issue is that
this accuracy may not be consistent across repeated
trials on the same prompts and datasets. In fact,

recent work (Atil et al., 2024) suggests that LLM
accuracy can vary as much as 10%, even when the
LLM’s configuration is not changed across runs.
In response to this concern, our project analyzes
the margin of error of various LLMs on the TRIP
benchmark. Among our evaluated models, the Mis-
tral models have the most consistent performance.
Additionally, the model with the lowest variance
also achieves the highest performance on the two
low-level reasoning tasks in the benchmark, which
indicates that models following structured, logical
reasoning processes can more consistently arrive at
the correct output.

2.7 Prompts that Encourage Reasoning

In addition to the accuracy variations mentioned
above, LLM performance is also sensitive to the
specific phrasing of the input prompt. In fact, many
studies have identified methods of writing input
prompts that encourage model reasoning and thus
significantly improve performance. For example,
chain-of-thought prompts (Wei et al., 2022) explic-
itly ask the model to explain its reasoning, which
helps the model identify and correct its own mis-
takes. As another strategy, few-shot prompting
(Brown, 2020) provides the model with examples
of the desired output format, which allows the
model to quickly adapt to new tasks. In addition,
role-play prompting (Kong et al., 2023) improves
performance by asking the model to respond in the
context of a specific persona who may be more
likely to follow the desired reasoning processes.
Finally, self-consistency prompting (Wang et al.,
2023) allows the model to generate more reliable
outputs by considering and combining multiple po-
tential responses to the prompt. Our project applies
many of these prompting strategies in an effort to
encourage LLMs to perform deeper reasoning on
the TRIP benchmark.

3 Description of Approaches

In this section, we describe the three approaches we
implemented to improve performance on the TRIP
benchmark: transfer learning, model selection, and
advanced prompting techniques. In particular, our
goal is to improve the lower-level reasoning skills
of the evaluated LLMs and to improve these LLMs’
ability to utilize those skills in practice. For each ap-
proach, we describe our motivation, design choices,
and implementation details.



3.1 Approach 1: Transfer Learning with
BERT

Our first approach to improve performance on the
TRIP benchmark is to apply transfer learning to the
BERT-based model used in the original TRIP paper
(Storks et al., 2021).

3.1.1 Review of BERT in TRIP

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) is a state-
of-the-art transformer-based language model devel-
oped by Google. It is designed to understand the
context of words in a text by considering the words
that come before and after them (bidirectional con-
text), which makes it powerful for various natural
language processing (NLP) tasks. Unlike tradi-
tional models that process text in a unidirectional
manner (e.g., left-to-right or right-to-left), BERT
processes text bidirectionally. This means it learns
contextual word representations by looking at the
entire sequence of words, both preceding and fol-
lowing a target word, during training. BERT is
based on the Transformer model, specifically its en-
coder mechanism. At a high level, BERT consists
of four modules: tokenizer, embedding, encoder
and task head.

BERT was pre-trained on two tasks, which are
masked language modeling and next sentence pre-
diction. BERT can be fine-tuned with fewer re-
sources on smaller datasets to optimize its perfor-
mance on specific tasks such as natural language
inference and text classification, and sequence-to-
sequence-based language generation tasks such as
question answering and conversational response
generation.

The TRIP paper (Storks et al., 2021) utilizes
the large version of BERT (BERT-Large), which
includes 24 layers, 16 attention heads and 1024
hidden units with 355 M parameters in total. The
benchmark with BERT in the TRIP paper has good
accuracy performance but concerning results in
verifiability and consistency, as Table 1 shows.

3.1.2 Review of Transfer Learning

Transfer learning (Bozinovski, 2020) is a trans-
formative approach in machine learning, partic-
ularly impactful in natural language processing
(NLP), where pre-trained models like BERT (De-
vlin et al., 2019), GPT (Ouyang et al., 2022), and
LLaMA (Dubey and et al., 2024) have revolution-
ized tasks such as text classification, translation,
and question answering. By leveraging knowl-

edge gained from large-scale corpora, these mod-
els require minimal labeled data to adapt to tar-
get tasks, significantly reducing training time and
improving performance. Common techniques in-
clude fine-tuning pre-trained models and adapting
them through domain-specific training. Despite
its success, challenges like domain mismatches,
overfitting on small datasets, and inherent biases
in pre-trained models persist as (Zoph et al., 2020)
points out.

3.1.3 Datasets for Transfer Learning

We transfer knowledge from two datasets (Conver-
sational Entailment and Physical Interaction Ques-
tion Answering) that emphasize the low-level rea-
soning skills that the TRIP benchmark currently
underperforms on.

Conversational Entailment (CE (Zhang and Chai,
2010)) was first introduced by Chen Zhang and
Joyce Chai in 2010. It is designed to evaluate
a model’s ability to perform entailment reason-
ing within the context of dialogues or conversa-
tions. Conversational entailment is a subtask of
natural language inference that involves determin-
ing whether a hypothesis logically follows (entail-
ment), contradicts (contradiction), or is neutral to
a premise, where the premise typically arises from
conversational exchanges. These reasoning skills
align well with the story plausibility and conflict
detection tasks in the TRIP benchmark.

Physical Interaction Question Answering (PIQA
(Bisk et al., 2019) ) dataset is a benchmark de-
signed to evaluate a model’s ability to reason about
physical interactions in everyday scenarios. It fo-
cuses on common-sense physical reasoning, which
involves understanding how objects and actions
work together in the real world. As the task of
PIQA, given a natural language question and two
possible answers, the model must choose the more
plausible answer based on physical reasoning. By
fine-tuning on PIQA, we aim to improve the TRIP
benchmark’s performance on physical state detec-
tion.

The motivation is to enable the BERT model
to learn reasoning skills through transfer learning
from the CE and PIQA datasets. Although the
original TRIP paper (Storks et al., 2021) evaluates
BERT, ROBERTA, and DEBERTA, our evaluation
focuses on BERT because it had the most balanced
performance on the consistency and verifiability
metrics.



Accuracy T Consistency 1 Verifiability 1
BERT 70.9% 21.9% 8.3%
BERT Fine-tuned on CE 72.9% 21.9% 5.4%
BERT Fine-tuned on PIQA 70.4% 16.8% 5.4%

Table 2: Performance on TRIP Benchmark After Transfer Learning

3.1.4 Detailed Transfer Learning
Implementation

The large version of BERT was fine-tuned on the
PIQA and CE datasets to enhance its performance
on the TRIP dataset. The finetuned BERT models
with PIQA and CE model were saved locally, with
embeddings, configuration files, pretrained model
weights, and the tokenizer, to ensure efficient and
customized adaptation. The finetuned model with
local files was then trained and tested on TRIP with
the three metrics, accuracy, consistency, and veri-
fiability. By leveraging the pre-trained knowledge
from BERT and refining it with domain-specific
datasets, this approach aims to improve the model’s
ability to generalize across related tasks while main-
taining robust contextual understanding.

3.2 Approach 2: Use More Powerful Large
Language Models

Given that the BERT-based model in Approach 1
did not display sufficient low-level reasoning even
after fine-tuning, our next approach replaces this
BERT-based model with compact state-of-the-art
models, Mistral and LLaMA, to investigate their
potential in addressing the multi-tiered reasoning
challenges posed by the TRIP dataset. In this sec-
tion, we detail our methodological advancements
in applying in-context learning (ICL) strategies to
these LLMs for commonsense reasoning tasks, par-
ticularly emphasizing the integration of heuristic-
analytic reasoning (HAR).

3.2.1 Heuristic-Analytic Reasoning in
Contextual Language Models

Now that we have switched from a BERT-based
model to a LLM that accepts free-text inputs, we
need to identify a strategy for phrasing our prompts
to the LLMs. The state-of-the-art prompts for the
TRIP benchmark follow the heuristic-analytic rea-
soning process outlined in (Zhang et al., 2023).
The concept of heuristic-analytic reasoning
(HAR) is rooted in dual-process theories from cog-
nitive psychology, where humans combine fast,
intuitive heuristic thinking with slower, delibera-

tive analytic reasoning to make decisions and ra-
tionalize them coherently. Inspired by this cogni-
tive framework, (Zhang et al., 2023) designed a
methodology to guide pre-trained language mod-
els (PLMs) through multi-tiered reasoning tasks.
HAR provides a structured mechanism by which
higher-level heuristic decisions inform and refine
lower-level analytic rationalizations.

Within the context of the TRIP dataset, HAR eval-
uates reasoning coherence through tasks requiring
both high-level decisions, such as story plausibility
classification, and granular evidence-based justifi-
cations, such as identifying conflicting sentences
and underlying physical states. HAR addresses
these requirements by prioritizing heuristic pro-
cesses for initial decision-making, followed by an-
alytic processes to ensure detailed and verifiable
reasoning.

In addition to applying HAR, the prompts in
(Zhang et al., 2023) also leverage in-context learn-
ing. In-context learning allows PLMs to adapt to
specific tasks without gradient updates by leverag-
ing demonstration examples provided in the input
prompt. This approach guided the PLM through
top-down reasoning, beginning with high-level pre-
dictions and iteratively refining context relevance
at each reasoning step.

3.2.2 Experimental Setup and Model
Selection

Existing research in commonsense reasoning of-
ten emphasizes larger models, such as GPT-3 or
LLaMA-65B, due to their high accuracy in down-
stream tasks. However, these larger architectures
are computationally intensive, limiting their prac-
tical application. By contrast, compact models
present an opportunity to achieve similar coher-
ence metrics with reduced resource requirements.
Furthermore, the limited exploration of small mod-
els within the domain of reasoning tasks creates a
compelling gap that our research addresses. There-
fore, in implementing HAR, we focused on the
compact PLMs listed in Table 3.

Our experimental pipeline utilized in-context learn-



Accuracy T Consistency 1 Verifiability 1
Model # Parameters (%) (%) (%)
BERT (Storks et al., 2021) 355M 70.9 21.9 8.3
ROBERTA (Storks et al., 2021) 355M 72.9 19.1 9.1
DEBERTA (Storks et al., 2021) 140M 72.9 22.2 6.6
LLaMA-2 7B 51.83 +£2.07 17.11 £ 1.90 5.77 +£0.91
LLaMA-2 13B 50.85 + 1.82 21.06 + 1.83 11.62 + 1.39
LLaMA-3.1 8B 52.04 + 3.86 31.13+ 3.46 23.80 + 2.80
LLaMA-3.1-Instruct 8B 52.754+2.53 31.90 £ 3.45 20.14 £ 1.99
Mistral-v0.3 7B 53.59 £ 0.16 31.76 + 0.16 23.31 £ 0.16
Mistral-Instruct-v0.3 7B 61.97 + 0.00 40.14 £ 0.00 27.46 + 0.00
LLaMA (Zhang et al.) 65B 55.6 444 35.2
InstructGPT (Zhang et al.) 175B 72.6 47.9 23.9

Table 3: Performance comparison of models on the TRIP dataset using accuracy, consistency, and verifiability
metrics. Higher values indicate better performance. Our results are reported with a 95% confidence interval across

10 trials for each model.

ing, wherein demonstration examples were con-
catenated to input prompts to adapt the models to
TRIP tasks without gradient updates. This design
allowed us to assess the efficacy of HAR in improv-
ing the reasoning capabilities of compact models,
particularly their ability to align heuristic and ana-
lytic reasoning steps.

3.3 Approach 3: Incorporating Advanced
Prompting Techniques

The TRIP benchmark performance in (Storks et al.,
2021) indicates a concerning lack of reasoning on
the lower-level tasks. Thus, we incorporated ad-
vanced prompting techniques to enhance the rea-
soning capabilities of our evaluated PLMs and max-
imize the effectiveness of in-context learning (ICL).
These techniques aim to refine model behavior by
manipulating the structure, content, and diversity
of demonstrations provided during inference. This
section details our exploration of three key strate-
gies: optimizing the number of demonstrations,
analyzing the variance introduced by demonstra-
tion selection, and employing role-playing prompts
to guide reasoning.

3.3.1 Number of Demonstrations

The number of demonstrations included in a
prompt plays a crucial role in determining the
quality of the model’s predictions. Intuitively, a
higher number of demonstrations should provide
more context for the model to generalize its reason-

ing processes. However, this is counterbalanced
by practical constraints such as the fixed context
length of PLMs, especially in smaller architectures
like Mistral-7B and LLaMA-3.1-8B-Instruct.

In our experiments, we systematically varied the
number of demonstrations to evaluate their impact
on task performance across TRIP’s multi-tiered
reasoning metrics. We observed diminishing re-
turns beyond a certain number of demonstrations,
likely due to the model’s difficulty in maintaining
focus across longer input sequences. These find-
ings motivate us to build a high quality prompt by
strategically choosing demonstrations.

3.3.2 Demonstration Selection

The selection of demonstrations in few-shot
learning settings significantly impacts the model’s
performance, particularly in tasks requiring
nuanced reasoning. To investigate the effects of
demonstration selection on the TRIP benchmark,
we conducted experiments that varied two key
aspects of the demonstrations: the type of conflict
in the implausible story, and the objects and states
in the stories.

Demonstrations with Different Conflict Types
Conflict types within the TRIP dataset can be
broadly categorized into explicit and implicit. Ex-
plicit conflicts arise from direct contradictions in
the narrative, such as an object being presented as
"unedible" in one sentence but "edible" in the next.



In contrast, implicit conflicts rely on unstated as-
sumptions or commonsense reasoning, such as an
object being described as cold despite conditions
that indirectly imply this is not the case. Figure
2 provides a more detailed example of these two
conflict types.

To understand the impact of varying conflict
types on model performance, we tested five
settings for the distribution of explicit and implicit
conflicts in the few-shot demonstrations. The
goal was to evaluate how these distributions
influence the model’s ability to accurately predict
story plausibility and maintain coherence in its
reasoning.

Demonstrations with Different Object Types
We also measure the variance caused by changing
which objects are included in the few-shot exam-
ples. The goal of this experiment is to evaluate how
robust the model is to the specific objects described
in the input stories.

Specifically, given an initial set of few-shot
demonstrations, we generate a new set of demon-
strations by modifying the object that causes con-
flict to another similar object. We then evaluate
the model on both this modified set and the orig-
inal set to compare their performance. For exam-
ple, given a demonstration containing the sentence
“Mary ate the donut", our replacement sentence
could be “Mary ate the banana." Because both the
original and replaced objects are foods, these sen-
tences are conceptually equivalent, yet we discover
that this substitution does in fact impact model per-
formance.

Through this approach, we aim to understand
how variations in object types and demonstrations
affect accuracy, consistency, and verifiability, as
well as to identify the specific configurations that
lead to improved performance on the TRIP bench-
mark. This prompting strategy provides insights
into the role of few-shot examples in enhancing
reasoning tasks.

3.3.3 Role-Playing Prompts

In reasoning tasks that can be approached from
multiple angles, role-playing prompts guide model
behavior by assigning the model to predefined role
that will tend to approach the task in a particu-
lar way. Our project designed and evaluated two
roles: “Careful Story Editor" and "Interior Dec-
orator." The careful story editor is described as

meticulously analyzing narratives for logical con-
sistency, while the interior decorator is described
as intuitively understanding physical objects and
their common usages. In this way, we expect that
the careful story editor role will improve consis-
tency, while the interior decorator role will improve
verifiability.

4 Evaluation

In this section, we discuss our quantitative results
for each of the three approaches described in the
previous section. In our evaluation, we emphasize
comprehensive and robust analysis. Based on this
analysis, we make continual improvements to our
project strategy across our three approaches.

4.1 Metrics for Multi-Tiered Reasoning

To evaluate the reasoning coherence of our mod-
els, we utilized the three-tiered evaluation metrics
defined by the TRIP benchmark: accuracy, con-
sistency, and verifiability. Each metric captures a
distinct aspect of reasoning:

* Accuracy measures the correctness of high-
level decisions, specifically identifying the
plausible story from a pair of narratives.

* Consistency evaluates whether the model
correctly identifies the conflicting sentences
within the implausible story, linking high-
level decisions to specific textual evidence.

* Verifiability assesses the model’s ability to
justify conflicts through correct predictions
of underlying physical states. This metric en-
sures that the reasoning chain is coherent and
fully supported by evidence.

These metrics collectively provide a comprehen-
sive framework for assessing not just end-task per-
formance but also the logical rigor of the model’s
reasoning processes.

4.2 Transfer Learning Results

After hyperparameter tuning, we pre-trained the
BERT model on the CE dataset using a batch size
of 1, learning rate of 10~° and 10 epochs, and we
pre-trained on the PIQA dataset using a batch size
of 8, learning rate of 107> and 10 epochs.

Table 2 compares the performance of the origi-
nal large BERT model to the performances of the
BERT models we fine-tuned on the CE and PIQA



Explicit conflicts

Implicit conflicts

effect: donut is
inedible

Mary tossed the
donut in the trash

Mary ate the donut precondition :

donut is edible

Tom put the soup
in the microwave

implies the soup
should be heated

up
Tom ate the cold precondition :
soup soup is cold

Figure 2: Examples of the two types of conflicts in the implausible stories in the TRIP dataset

datasets. The finetuned model from CE can in-
crease accuracy. However, the benchmarks of the
low-level tasks, consistency and verifiability, do
not have better performance after transfer learning
with the two datasets, CE and PIQA.

4.3 Model Selection Results

Table 3 provides a comprehensive comparison of
six pre-trained language models (PLMs) evaluated
on the TRIP dataset. For each model, we report
its performance with 95% confidence, as measured
across 10 trials per model. These results reveal
several interesting patterns regarding model perfor-
mance and their alignment with multi-tiered rea-
soning requirements.

Performance of Mistral vs. LLaMA Models A
notable observation from the results is the superior
performance of the Mistral series over the LLaMA
series across most metrics. For example, Mistral-
7B-Instruct-v0.3 achieves the highest scores among
smaller models for both consistency (40.14%) and
verifiability (27.46%). In contrast, LLaMA-3.1-
Instruct lags behind, with consistency at 31.90%
and verifiability at 20.14%. Similarly, even the
non-instruction-finetuned version, Mistral-7B-v0.3,
outperforms both LLaMA-3.1-8B and LLaMA-3.1-
8B-Instruct in these two metrics.

This trend suggests that the Mistral models are in-
herently better at aligning high-level predictions
with specific evidence and providing justifications,
likely due to their architecture or fine-tuning strate-
gies. The instruction-tuned variant of Mistral fur-
ther amplifies these advantages, particularly in rea-
soning coherence as measured by consistency and
verifiability.

Relationship Between Performance and Vari-
ance Another critical insight from the results is
the relationship between a model’s performance
on consistency and verifiability and its variance
across trials. Models that perform better on these

metrics, such as Mistral-7B-Instruct-v0.3, exhibit
lower variance. For instance, Mistral-7B-Instruct-
v0.3 demonstrates near-zero variance for both con-
sistency (40.14 = 0.00%) and verifiability (27.46
+ 0.00%), indicating its robustness across multiple
trials. In contrast, LLaMA-3.1-8B-Instruct, which
performs worse on these metrics, exhibits higher
variance (31.90 £ 3.45% for consistency and 20.14
+ 1.99% for verifiability). This observation sug-
gests that models capable of maintaining reasoning
coherence are less sensitive to the specific config-
urations of the task or the inherent randomness in
few-shot learning setups.

4.4 Prompting Strategy

We explore the variance of LLM outputs with differ-
ent prompting strategies. In detail, we investigate
the impacts of number of demonstrations, demon-
stration selection with different conflict types and
object types and role-playing prompting on Mistral
model.

4.4.1 Number of Demonstrations

Two models Mistral-7B-Instruct-v0.3 and Mistral-
7B-v0.3 with 2, 4 and 6 few-shot demonstrations
are evaluated. The 4 demonstrations correspond to
the default examples provided in the code (Zhang
et al., 2023), while the 2 demonstrations are the
first two examples from this set. The 6 demonstra-
tions represent the examples selected for the default
balanced option. As the results shown in Table 6
and Table 7, both models achieved the best overall
performance with 4 demonstrations, while their per-
formance were worst with 6 demonstrations. This
suggests that using 6 demonstrations may lead to
overfitting, resulting in poorer performance.

4.4.2 Demonstration Selection

Demonstrations with Different Conflict Types
The results of the two models, Mistral-7B-Instruct-
v0.3 and Mistral-7B-v0.3, as shown in Tables 8



Prompting Strategy Accuracy 1 Consistency T Verifiability 1
HAR 61.97% 40.14% 27.46%
HAR with Careful Story Editor Role 61.27% 40.14% 26.76%
HAR with Interior Decorator Role 62.68% 38.03% 28.17%

Table 4: Performance of Mistral-7B-Instruct-v0.3 with role-playing prompts

Prompting Strategy Accuracy 1 Consistency 1 Verifiability 1
HAR 53.59% 31.76% 23.31%
HAR with Careful Story Editor Role 55.63% 34.51% 27.46%
HAR with Interior Decorator Role 55.63% 35.21% 27.46%

Table 5: Performance of Mistral-7B-v0.3 with role-playing prompts

and 9, reveal several notable trends regarding the
relationship between conflict type distributions in
demonstrations and model performance across ac-
curacy, consistency, and verifiability.

e Best Results Do Not Occur in All-Explicit or
All-Implicit Configurations
The best performance in terms of consistency
and verifiability does not occur at the extremes
of conflict distributions, such as 4 explicit con-
flicts and O implicit conflicts, or 0 explicit
conflicts and 4 implicit conflicts. Instead, con-
figurations with a balanced mix of explicit and
implicit conflicts tend to yield better results.
This suggests that a balance between explicit
and implicit conflicts provides the model with
richer yet interpretable demonstrations, en-
abling better alignment of high-level predic-
tions with underlying evidence. All-explicit
configurations may oversimplify the task, pro-
viding limited opportunities for the model to
generalize beyond simple, surface-level con-
tradictions. On the other hand, all-implicit
configurations often demand nuanced com-
monsense reasoning and rely on implicit as-
sumptions that the model may not be well-
equipped to handle, leading to decreased per-
formance in consistency and verifiability.

Instruction-Tuned Models Perform Better in
the Consistency Metric

Across all conflict type distributions, Mistral-
7B-Instruct-v0.3 consistently outperforms
Mistral-7B-v0.3 in consistency. This im-
proved performance in consistency can be at-
tributed to instruction fine-tuning, which en-
hances the model’s understanding at the sen-
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tence level (Zhang et al., 2024). Instruction
tuning encourages the model to align its pre-
dictions more closely with sentence-level ev-
idence, enabling it to better identify explicit
conflicts and maintain coherence when rea-
soning across multiple sentences.

However, since instruction fine-tuning is
trained at the sentence-level, it does not ap-
pear to significantly improve the model’s un-
derstanding at the physical state level, which
is a critical factor for verifiability. Verifiabil-
ity requires a deeper reasoning process that
connects high-level predictions with detailed
physical state transitions, such as precondi-
tions and effects. The lack of improvement in
verifiability scores, and the fact that Mistral-
7B-Instruct-v0.3 does not consistently outper-
form Mistral-7B-v0.3 on this metric, supports
that instruction tuning primarily benefits tasks
requiring sentence-level reasoning rather than
tasks requiring deeper physical commonsense
understanding.

Demonstrations with Different Object Types
In our experiments, we observe significant variance
in performance metrics when replacing the objects
in the few-shot demonstrations with conceptually
similar alternatives. As shown in Tables 10 and 11,
we first select a set of default few-shot demonstra-
tions (Initial Demo #1) and generate a modified set
(Modified Demo #1) by replacing objects that cause
conflicts with similar objects. Additionally, we se-
lect a second set of few-shot demonstrations (Initial
Demo #2) and evaluate the model’s performance
on both this set and its modified version (Modified
Demo #2). This setup allows us to measure how
object replacements affect accuracy, consistency,



Number of Demonstrations Accuracy T Consistency 1 Verifiability 1
2 62.67% 37.32% 20.42%
4 61.97% 40.14% 27.46%
6 54.23% 37.32% 15.49%

Table 6: Performance of Mistral-7B-Instruct-v0.3 with Different Numbers of Few-Shot Demonstrations

Number of Demonstrations Accuracy T Consistency 1 Verifiability 1
2 49.30% 30.99% 21.13%
4 53.59% 31.76% 23.31%
6 50.00% 35.21% 10.56%

Table 7: Performance of Mistral-7B-v0.3 with Different Numbers of Few-Shot Demonstrations

and verifiability for the Mistral-7B-Instruct-v0.3
and Mistral-7B-v0.3 models.

In this analysis, we examined the impact of mod-
ifying the object types in few-shot demonstrations
on the model’s performance. Our initial hypothe-
sis was that the reasoning process should remain
object-agnostic, meaning that replacing the objects
causing conflicts with different types of objects
would not affect the model’s performance. How-
ever, the results in Table 10 and 11 reveal unex-
pected changes in accuracy, consistency, and ver-
ifiability after object replacement. For example,
for Mistral-7B-v0.3-Instruct, accuracy improves
slightly (+0.99%) in the first set but decreases sig-
nificantly (-4.22%) in the second set. This vari-
ability indicates that while object replacement may
provide richer context for reasoning, it can also
introduce additional complexity that challenges the
model’s ability to make accurate predictions.

Intuitively, the object substitutions should not
change the performance because the logic and plau-
sibility of the input stories has not changed. Specif-
ically, all of our object replacements are concep-
tually equivalent, such as replacing "donut" with
another food like "banana" or "apple". However,
we still observe performance changes of as much
as 7%, which may suggest that the models are sen-
sitive to subtle contextual shifts in the narrative.
Alternatively, it is possible that the objects in the
TRIP dataset do not all occur at equal rates, such
that more frequent objects may be more useful as
examples.

In summary, the demo selection plays an essen-
tial role in model performance. Additionally, the
experiments reveal that object replacements intro-
duce variance in performance metrics due to subtle
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narrative shifts, even for conceptually equivalent
objects. This highlights the importance of carefully
selecting few-shot demonstrations to ensure opti-
mal model consistency with reasoning tasks like
TRIP.

4.4.3 Role-Playing Prompts

Role-Playing prompts generally improved perfor-
mance on both of the evaluated Mistral models,
as shown in Tables 4 and 5. The performance
improvements are particularly noticeable for the
Mistral-7B-v0.3 model, whose performance in-
creased by 2-4% for each metric. Notably, the
Interior Decorator role improved accuracy and veri-
fiability on both models. This makes sense because
the Interior Decorator was described as having a
strong understanding of physical states, which is
directly aligned with the verifiability metric. We
also observed that the Careful Story Editor did not
improve performance to the extent of the Interior
Decorator. We hypothesize that this is due to the
word choice of Story Editor because stories are of-
ten associated with creative writing, which does
not have the level of objectivity necessary for the
reasoning tasks in the TRIP benchmark.

5 Discussion of Results

In this section, we interpret the trends in the results
we reported in the previous section, and we dis-
cuss the significance of our results in the field of
commonsense reasoning. Overall, our results iden-
tify model selection and few-shot prompting as the
most successful strategies to improve performance
on the TRIP benchmark.



Conflict Types in 4 Few-Shot Examples Accuracy T Consistency 1 | Verifiability 1
4 explicit vs. 0 implicit 50.00% 31.69% 11.27%
3 explicit vs. 1 implicit 55.63% 38.73% 16.90%
2 explicit vs. 2 implicit 54.23% 38.03% 11.97%
1 explicit vs. 3 implicit 59.15% 33.10% 9.86%
0 explicit vs. 4 implicit 66.20% 38.73% 8.45%

Table 8: Performance of Mistral-7B-Instruct-v0.3 with Different Distributions of Explicit vs. Implicit Conflicts in

the Few-shot Examples

Conflict Types in 4 Few-Shot Examples Accuracy 1 Consistency 1 Verifiability 1
4 explicit vs. 0 implicit 50.70% 35.21% 13.38%
3 explicit vs. 1 implicit 51.41% 38.03% 13.38%
2 explicit vs. 2 implicit 52.11% 34.51% 8.45%
1 explicit vs. 3 implicit 49.30% 27.46% 14.08%
0 explicit vs. 4 implicit 49.30% 28.17% 9.15%

Table 9: Performance of Mistral-7B-v0.3 with Different Distributions of Explicit vs. Implicit Conflicts in the

Few-shot Examples

5.1 Transfer Learning Inference

The BERT model transferred from CE has in-
creased the accuracy of the TRIP benchmark, but
not the consistency and verifiability. Given this
result, we infer that CE aligns better with accu-
racy than consistency and verifiability. This result
also suggests that fine-tuning on CE enhanced the
model’s ability to handle complex, abstract rea-
soning but may have sacrificed the detailed and
grounded understanding needed for low-level tasks.

The results indicate that the BERT model trans-
ferred from PIQA underperformed compared to
the original BERT model on the TRIP benchmark.
This outcome suggests that while the PIQA fine-
tuning process improved the model’s understand-
ing of physical reasoning, it may have led to over-
specialization or an imbalance in general reasoning
capabilities required for TRIP. An additional poten-
tial explanation is that the physical states learned
from PIQA may not be similar enough to the phys-
ical states in TRIP. Previous work (Jiang et al.,
2023b) aims to transfer knowledge from TRIP to
PIQA, which is opposite to our work, and also con-
firms that 66.7% of task participants in PIQA are
unseen during training with TRIP dataset.

Overall, our findings highlight the challenges of
transfer learning, where task-specific fine-tuning
can inadvertently reduce performance on tasks with
distinct or broader requirements. Our results may
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also support concerns that models trained on com-
monsense reasoning datasets have not learned gen-
eralizable reasoning skills, but rather learned spuri-
ous correlations for solving that specific end task.

5.2 Heuristic-Analytic Reasoning in
Contextual Language Models

The results reveal several critical insights into the
performance of compact models and the effective-
ness of HAR. Despite their smaller size, Mistral-7B
and LLaMA-3.1-8B-Instruct achieved competitive
verifiability scores, outperforming BERT in align-
ing high-level decisions with evidence-based justifi-
cations. This demonstrates the potential of compact
architectures when combined with structured rea-
soning frameworks.

A closer examination of the metrics highlights the
trade-offs between accuracy and coherence. While
larger models, such as LLaMA-65B and Instruct-
GPT, excel in accuracy, their dependency on ex-
tensive computational resources raises questions
about their scalability. In contrast, the improved
coherence metrics of compact models suggest a
promising direction for resource-efficient reason-
ing.

The disparity between accuracy and coherence met-
rics also underscores the importance of multi-tiered
evaluation. Models achieving high accuracy but
low consistency or verifiability, such as BERT, may
lack the reasoning coherence required for critical



Demonstration Set | Accuracy | Consistency | Verifiability
(%) (%) (%)

Initial Demos #1 61.97 40.14 27.46
Modified Demos #1 62.96 40.14 29.57
A +0.99 0.00 +2.11
Initial Demos #2 70.42 50.00 18.31
Modified Demos #2 66.2 49.29 21.26
A -4.22 -0.71 +2.95

Table 10: Changes of Metrics without/with object replacement for Mistral-7B-Instruct Model, as evaluated on two

different sets of initial demos.

Demonstration Set | Accuracy | Consistency | Verifiability
(%) (%) (%)

Initial Demos #1 53.59 31.76 23.31
Modified Demos #1 52.11 31.06 25.35
A -1.48 -0.07 +2.04
Initial Demos #2 52.11 32.39 14.08
Modified Demos #2 52.11 30.99 21.83
A 0.00 -1.40 +7.75

Table 11: Changes of Metrics with objects replacement for Mistral-7B Model, as evaluated on two different sets of

initial demos.

applications. HAR addresses this gap by ensur-
ing that heuristic decisions are consistently sup-
ported by analytic rationalizations, thereby enhanc-
ing trustworthiness.

In summary, our findings advocate for the contin-
ued exploration of HAR and compact models in
reasoning tasks. Future research could extend this
work by refining HAR strategies, exploring new
datasets, and developing more efficient prompting
mechanisms to further bridge the gap between com-
pact and large models in commonsense reasoning
tasks.

5.3 Targeted Prompts Improve Performance

Through the use of targeted prompting techniques,
we were able to significantly improve upon the
performance the Mistral models from our previ-
ous approach. Impressively, some trials saw up
to 10% improvements in the accuracy and consis-
tency metrics. The most significant performance
improvements resulted from selecting a strong set
of few-shot demonstrations that comprehensively
portrayed the reasoning tasks to the model. In
fact, carefully curated sets of 4 demonstrations fre-
quently outperformed larger sets of 6 demonstra-
tions.

However, our ability to improve performance by
changing the few-shot examples also reflects the
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model’s high sensitivity to the exact content and
phrasing of the input prompt. In fact, we saw per-
formance changes of up to 4% by simply changing
the objects used in particular few-shot examples,
even though these changes had no conceptual effect
on the logic or plausibility of the story. In future
work, we hypothesize that we could reduce this
variance by fine-tuning the Mistral model on the
PIQA dataset, similar to how we fine-tuned BERT
on PIQA in Approach 1 of our project.

We also observed improved performance after
implementing role-play prompting. By assigning
the model to an Interior Decorator persona that is
traditionally strong in physical state understanding,
the model’s performance on the verfiability metric
(for physical state detection) improved.

Overall, this approach demonstrates the ability
of carefully crafted prompts to strengthen the rea-
soning skills of LLMs. Successful prompts should
frame the model’s task with roles that have strong
lower-level reasoning skills, and should utilize a
set of diverse and informative few-shot examples
that comprehensively represent the input space.

6 Conclusion

In this study, we explore three approaches to en-
hance reasoning performance on the TRIP bench-
mark: transfer learning, model selection, and ad-



vanced prompting techniques. Through compre-
hensive evaluations, we find that the Mistral-7B-
Instruct-v0.3 model achieves the best performance,
demonstrating the importance of both instruction
fine-tuning and effective demonstration selection
in improving reasoning coherence.

Our experiments reveal that carefully curated
few-shot examples and targeted object replace-
ments can significantly influence model perfor-
mance across metrics like accuracy, consistency,
and verifiability. However, the sensitivity of mod-
els to demonstration content emphasizes the need
for continued research into optimizing input con-
figurations.

Our future work could involve implementing the
attention visualization from (Zhang et al., 2023) to
gain deeper insights into reasoning processes under
different prompting strategies. By visualizing how
models process and adapt to varying inputs, we
aim to better understand their decisions and further
optimize prompting strategies.

7 Division of Work
Tiffany:
e Implemented Code:

— Model Selection: Implemented Mistral-
7B, Mistral-7B-Instruct, & Llama 3.1-8B

— Role-play Prompting: Came up with
our 2 roles and implemented role-play
prompting

— Measuring Variance Caused By ICL
Samples: Updated HAR repository to
create few-shot demos from a list of dat-
apoint IDs specified via command line

¢ Ran Experiments:

— Model Selection: Ran all of our 60 trials
(10 trials for each of our 6 evaluated mod-
els) to establish the confidence interval
for each model’s performance

— Role-play Prompting: Ran all trials for
role-playing experiments

— Demo Selection: Ran experiments on
both Mistral models to measure perfor-
mance changes as the distribution of con-
flict types varies

— Number of Few-shot Examples: Ran
experiments on Mistral-7B-v(.3 to mea-
sure how performance changes with dif-
ferent numbers of few-shot examples

14

* Contributed to Deliverables: Wrote Intro-
duction and Related Work sections of report
and presentation. Also wrote sections 4.43
and 5.3 about prompting techniques.

* Contributed to Project Planning: Came up
with our project idea and our 3 approaches

Junkuan:

* Implemented Code:

— Explicit &Implicit demonstration Im-
plemented code to automatically se-
lect explicit and implicit demonstrations
based on command line arguments.

* Ran experiments:

— Explicit & implicit demonstration
Tested how does the distribution of ex-
plicit & implicit demonstration influence
the performance of llama-3.1-8B and
Ilama-3.1-8B-instruct.

¢ Contributed to Deliverables:

— Presentation and Report: Reported
Model Selection part in the presentation.
Wrote model selection part and explicit
& implicit demonstrations part in the pa-
per.

Yuting:
* Implemented Code:

— Transfer Learning Finetuning BERT
model with CE and PIQA and evaluation
on TRIP.

* Ran experiments:

— Transfer Learning: Ran BERT with
different hyperparameters on CE, PIQA
and TRIP training data and evaluation on
TRIP test data.

* Contributed to Deliverables: Wrote Trans-
fer Learning sections of report and presen-
tation. Also wrote prompting with different
number of demonstrations and readme of Gi-
Hub repo.

Xiyuan:

* Implemented Code:



— Model Selection: Adjust code for our
environment and Llama-2 models; Im-
plemented Llama 3.1-8B-Instruct

— Variance Due To Demo Selection: Im-
plemented the replacements of the ob-
jects in the default 4 demos and the opti-
mal demo set.

* Ran experiments:

— Model Evaluation: Evaluate Llama-
2-7B, Llama-2-13B and Llama-3.1-8B-
Instruct with default 4 demos and bal-
anced 6 demos.

— Evaluation demos with different ob-
jects:  Evaluate the performances of
Mistral-7B-Instruct-v0.3 and Mistral-7B-
v0.3 with (modified) Demo #1.

— Evaluation different demo set : Eval-
uate the performances of Mistral-7B-
Instruct-v0.3 with different demos speci-
fied by their IDs.

— Number of Few-shot Examples: Ran
experiments on Mistral-7B-Instruct-v0.3
to measure how performance changes
with different numbers of few-shot ex-
amples.

* Contributed to Deliverables: Define objec-
tives, organize workflows, and align deliver-
ables with the project’s goals.

— Responsible for Experiments part in the
report and presentation.

8 Link to Codebase

Our code is available at
https://github.com/tpari/TRIP_Team26/
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