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Abstract—This paper investigates the cognition problem of
surroundings for the agent only with the knowledge of angle
measurement. In this paper, in virtue of the local motion
information of the agent, the problem determining the agent’s
position and attitude in surroundings with only angle measure-
ment is attributed to solve linear algebraic equations. Based on
the obtained position and attitude information, the localization
problem of the object in surroundings is handled by solving
overdetermined linear algebraic equations. Finally, the proposed
methods are verified by the experiments.

Index Terms—angle measurement, environmental cognition,
rotation transformation, overdetermined equation

I. INTRODUCTION

For the past decade, cooperative control of multi-agent
systems has been an active research area. As one of the
fundamental cooperative control problems, the localization
problem has been extensively studied. Potential applications
of localization algorithms can be found in security and surveil-
lance, and environmental monitoring and sampling. A crucial
task in these applications is to find the (possibly time-varying)
locations of all the agents based on sensor measurement data
available to the agents.

Based on the type of measurement data available, localiza-
tion algorithms can be classified into three categories: position-
based schemes [1]–[5], distance-based schemes [6]–[10] and
direction-based scheme. Due to the complex sensing hardware
or global positioning system, full information may not be
used in some environment. In the distance-based schemes, the
relative distances between certain neighboring agents are avail-
able for localization purposes. In comparison, the direction-
based localization schemes use angle measurements instead of
relative distances, which are often cheaper and more accessible
than position measurements. Thus, the localization problem
has been widely addressed.

In [11], the problem of bearing-only localization of a single
target is formulated as a constrained optimization problem us-
ing synchronous measurements from multiple sensors, which
is solved by an iterative algorithm. In [12], self-localization
and formation control tasks are considered when the agents
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have limited sensing capabilities. [13] considers the problem
of localization and circumnavigation of a slowly drifting target
with unknown speed using the agents known position and the
bearing angle of the target. In [14], the authors further inves-
tigate the scenario where the agent moves with constant speed
using bearing measurements. [15] investigates the problem of
bearing measurement based distributed localization for sensor
networks where a common sense of north is not be shared.
[16] develops a distributed source localization scheme based
on bearing angle measurements for a group of unicycle-type
agents without the need of GPS and compass.

In practical application, the global coordinate frame shared
among all the agents are required for coordination control of
the multi-agent systems. However, since data received from
each agent is represented in its own local frame, there is
no global coordinate frame shared among all the agents.
Therefore, how to construct the transformation relationship
between local coordinate frame and its global frame is needed.
Most literatures assume that the coordinate transformation
relationship mentioned above is known by default or the
relative position information can be directly detected, and
then focus on developing control algorithms, thus ignoring
the systems distributed characteristic. However, in practice,
how to obtain the transformation relationship is challenging,
especially when the system is based on incomplete information
where the sensors can only measure bearing information. In
[17], authors discussed preliminarily the calibration problem
of the transformation relationship between local coordinate
frames. However, localizing the object in the surroundings is
not considered.

In this paper, we first investigate how to determine the
agent’s position and attitude in surroundings with only angle
measurement, which is transformed to solve linear algebraic
equations. Based on the obtained position and attitude informa-
tion, the localization problem of the object in surroundings is
attributed to solve overdetermined linear algebraic equations.
Finally, we develop experiments to verify the availability of
the proposed methods.

The rest of this paper is organized as follows. In Section II,
objectives of this paper are introduced formally. In Section III,
main results of this paper are presented. We first solve how
to determine the relationship between the agent and the



surroundings. Then the localization problem of the object
in surroundings is solved. Experiments results are shown in
Section IV. Conclusions are included in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

The theoretical analysis of the paper relies on technique of
the coordinate transformation and the linear equation.

Denote Σs is the surrounding frame and Σa is the lo-
cal frame of agent ν. From the knowledge of coordinate
transformation, we know there exist rotation matrix R (R is
orthogonal) and translation vector t, s.t.,

yp = Rxp + t.

Here, xp and yp are the coordinate of point P , respectively,
in Σs and Σa.

Suppose there are n groups of points {µi, νi}, where µi and
νi are, respectively, the points in Σs and Σa. Here, µi and µj

(i ̸= j) can be the same or not, and νi and νj (i ̸= j) are
as well, but µi and νi (i = 1, 2, · · · , n) are different. Collect
the data xµi , yνi

and li (i = 1, 2, · · · , n). Here, xµi is the
coordinate of point µi in Σs, yνi

is the coordinate of point νi
in Σa, li ∈ R3 denotes the unit vector (in Σa) pointing from
the point νi to the point µi, that is,

li =
Rxµi

+ t− yνi

∥Rxµi + t− yνi
∥
.

Then we can build the nonhomogeneous linear equation as
below,

Qxµi
+ s− λili = yνi

, i = 1, 2, · · · , n (1)

where Q ∈ R3×3, s ∈ R3 and λi ∈ R are unknown variables.

Proposition 1.[17] R and t are always a solution of equation
(1). Another way to think about it is if equation (1) has unique
solution Q0 and s0, then Q0 = R and s0 = t.

Proposition 2.[17] In order to solve R and t, we only need
collect data to guarantee that homogeneous linear equation

Qxµi + s− λili = 0. i = 1, 2, · · · , n (2)

has only zero solution.

Remark 1. Considering RTR = I is not a linear relationship,
we choose to ignore the orthogonality of R and set up general
linear equations, since the linear equations are easy to build
and to solve.

Proposition 3.[17] Ignore the orthogonality of R, if equation
(2) has only zero solution, then xµ1 , xµ2 , · · · , xµn must be
non-coplanar.

B. Problem Statement

The objective of this paper includes two parts: (i) Determine
the position and attitude relationship between the agent and
the surroundings; (ii) Localize the object in the surroundings.
Therefore, we propose the following two problems.

Problem 1. In 3D space, the goal is to figure out the co-
ordinate transformation relationship between the surrounding
frame Σs and the local frame Σa, that is, to figure out R and
t.

Problem 2. In 3D space, the goal is to figure out the relative
relation among the points in surrounding frame, that is, figure
out the coordinate of the point in Σs.

III. PROPOSED SOLUTION

In order to satisfy Proposition 3, the following assumptions
are proposed.

Assumption 1. xµ1 , xµ2 , xµ3 , xµ4 are known in Σs, and
they are non-coplanar.

Remark 2. From the logic of the paper, Assumption 1 is
unnecessary. First, the conclusion that “not coplanar is the
necessary condition for the existence of only zero solution for
(2)” is proposed when the orthogonality of R is ignored. Sec-
ond, even the above conclusion holds with the orthogonality
of R being considered, we didn’t mention that (2) has only
zero solution is the necessary condition for solving R, t.

Assumption 2. For t = t1 and t = t2 (t1 < t2), ν knows
the rotation matrix and the translation vector from t1 to t2 (in
Σa).

A. Determine the Relationship between the Agent and the
Surroundings

Represent the local frame of agent ν as ΣT
a , when t = T .

This subsection will determine the relationship between Σs

and ΣT
a .

Theorem 1. Suppose that Assumption 1 and Assumption 2
hold, and ν can measure the directions of four points in
Assumption 1. Then Problem 1 is almost always solvable.

Proof. Collect data at t = 0 and t = T , where T > 0.
Suppose that the directions of points measured at t = 0 by
ν in Assumption 1 are, respectively, l01, l02, l03, l04 (in ΣT

a ), and
the directions of that at t = T are, respectively, lT1 , lT2 , lT3 , lT4
(in ΣT

a too). Denote[
xµ1 xµ2 xµ3 xµ4

1 1 1 1

]
as X , then from equation (2) we have[

Q s
]
X =

[
λ0
1l

0
1 λ0

2l
0
2 λ0

3l
0
3 λ0

4l
0
4

]
=

[
λT
1 l

T
1 λT

2 l
T
2 λT

3 l
T
3 λT

4 l
T
4

]
.

Obviously, for the agent who is freely moving in 3D space,
l0i = lTi (i = 1, · · · , 4) is an Zero-Probability event, which



means that λ0
i = λT

i = 0 (i = 1, · · · , 4) is almost always true.
Consequently, [

Q s
]
X = 0

is almost always true. As can be seen from the premise of
the theorem, X is nonsingular, thus Q = 0 and s = 0 also
are almost always true. From Proposition 2, Problem 1 almost
always solvable.

Remark 3. If premise is added to Theorem 1, which is “the
agent does not move toward the observed points, that is, l0i ̸=
lTi (i = 1, · · · , 4)”, then Problem 1 must be solvable.

In the following, an algorithm is given to solve Problem 1.

Algorithm 1. Represent the rotation matrix and the translation
vector in Assumption 2 as Γ and τ respectively, that is, yT =
Γy0 + τ . Then, R and t in Problem 1 can be solved by
following steps:

1) Calculate[
l01 l02 l03 l04

]
= Γ

[
l1(0) l2(0) l3(0) l4(0)

]
,

where li(0) (i = 1, · · · , 4) is the direction recorded at
t = 0.

2) Calculate y0
s = Γys + τ , where ys is installation

position of camera on the agent, that is, the coordinate
of the camera position in ΣT

a .
3) Solve{

Qxµi + s− λ0
i l

0
i = y0

s,

Qxµi + s− λT
i l

T
i = ys.

i = 1, · · · , 4

Then, the solution of Q and s are, respectively, the
rotation matrix and the translation vector between Σs

and ΣT
a .

Remark 4. Obviously, the rotation matrix and the translation
vector between Σs and Σ0

a can be obtained by R, Γ, t and τ
(are, respectively, Γ−1R and Γ−1(t− τ )).

B. The Localization of the Object in Surroundings

When the rotation and the translation form Σa to Σs are
known, that is, R and t have been figured out, then we have
Theorem 2 and Theorem 3 as follows.

Theorem 2. Suppose that Assumption 2 holds, µ is a point
in Σs, and ν is able to measure the direction of µ. Thus
Problem 2 is almost always solvable.

Proof. Consider that ν collects data at t = 0 and t = T .
Denote the rotation matrix and the translation vector from
Σ0

a to ΣT
a as Γ and τ . The direction of µ measured by

ν are, respectively, denoted as l0 and lT (in ΣT
a ). Let x

denote the coordinate of µ (in Σs). Then we can build the
nonhomogeneous linear equation as below,{

Rx+ t− y0
s = λ0l0,

Rx+ t− ys = λT lT .
(3)

Here, y0
s = Γys+τ and l0 = Γl(0). Nonhomogeneous linear

equations (3) have unique solution if and only if homogeneous
linear equations {

Rx = λ0l0,

Rx = λT lT

have only zero solution. Obviously, when l0 and lT are non-
collinear, above equations have only zero solution. Since l0

and lT are non-collinear almost always true (as long as µ is
not in the direction of ν motion), the conclusion of the theorem
follows readily.

In Theorem 2 the target is localized in virtue of the
movement of the agent. Due to the relativity of the motion,
the following result can be obtained.

Theorem 3. Suppose that the position change of µ in Σs from
t = 0 to t = T is known, and ν can measure the direction of
µ. Then Problem 2 is almost always solvable for stationary ν.

Proof. Represent the coordinate of µ at t = 0 and t = T
as x0 and xT respectively, and let xT − x0 = σ (in Σs).
The directions of µ measured by ν at t = 0 and t = T are,
respectively, denoted as l0 and lT (in Σa). Then we can build
the nonhomogeneous linear equation as below,{

Rx0 + t− ys = λ0l0,

RxT + t− ys = λT lT ,
(4)

where xT = x0 + σ. This nonhomogeneous linear equations
have unique solution if and only if homogeneous linear
equations {

Rx0 = λ0l0,

Rx0 = λT lT

have only zero solution. When l0 and lT are non-collinear,
above equations have only zero solution. Since l0 and lT are
non-collinear almost always true (as long as µ doesnot move
in the direction of l0), the conclusion of the theorem follows
readily.

Another way to think about Theorem 3 is the following
corollary.

Corollary 1. Suppose that the relative position relationship
between µ1 and µ2 in Σs is known, and ν can measure the
directions of µ1 and µ2. Then Problem 2 is almost always
solvable for stationary ν.

IV. EXPERIMENTS

In this section, three experiments are conducted to illustrate
the feasibility of the proposed method. A wheeled robot
platform developed in our lab which carries a 3D lidar is
used as agent ν. It is noteworthy that although the whole
map containing both distance and bearing information of
the surroundings of ν can be obtained by the 3D lidar,
only the relative bearing information is utilized to mimic the



(a) Wheeled robot

(b) Experiments site

Fig. 1. The wheeled robot platform and the experiments site.

implementation of the proposed theorems. The wheeled robot
platform and the experiments site are shown in Fig. 1.

To verify Theorem 1, Theorem 2 and Theorem 3, Exper-
iment 1, Experiment 2 and Experiment 3 are respectively
conducted.

Experiment 1.
Assignments: In this experiment, the surrounding frame Σs

and the local frame Σa are defined, respectively, by a cuboidal
cabinet (one vertex and its three edges are as origin and three
axes of Σs) and the robot’s body frame. Four vertices of the
cabinet, which are non-coplanar, are used as µi (i = 1, · · · , 4)
in surroundings. Therefor, for the data in Theorem 1, what we
know ahead are xµi , ys, Γ and τ , and what we collect are
li(0) and lTi . We list these data as TABLE I, and show the
map mapping by the 3D lidar in Fig. 2.

Fig. 2. The map mapping by the 3D lidar.

TABLE I
THE INPUT DATA.

Type Variable Value
xµ1

[
36 0 0

]T
xµ2

[
0 97 0

]T
xµ3

[
0 0 45

]T
xµ4

[
0 0 0

]T
Know

ys

[
0 0 17

]T
ahead

Γ

0.839 −0.545 0
0.545 0.839 0
0 0 1


τ

[
21 −61 0

]T
l1(0)

[
0.494 0.849 0.189

]T
l2(0)

[
0.857 0.474 0.204

]T
l3(0)

[
0.592 0.800 −0.101

]T
l4(0)

[
0.569 0.803 0.181

]T
Collect

lT1
[
0.115 0.959 0.260

]T
lT2

[
0.683 0.683 0.258

]T
lT3

[
0.332 0.930 −0.157

]T
lT4

[
0.315 0.911 0.265

]T

Result: Taking the steps in Algorithm 1, we can calculate
the rotation matrix and the translation vector between Σs and
ΣT

a by input data in TABLE I. Measured values (Rm and
tm) and truth values (Rt and tt) are given in TABLE II. The
initially solved measured value Rm is not strictly orthogonal,
so we use Schmidt’s method to make it orthogonal. And

Rm −Rt =

 0.046 0.017 0.032
0.038 −0.039 −0.066
−0.064 −0.008 −0.018

 ,

tm − tt =

 0.1
0.6
−0.5

 .

It is shown that the measured values are close to the truth
values.

TABLE II
THE OUTPUT DATA.

Type Variable Value

Measured
values

Rm

−0.373 0.923 0.094
0.905 0.340 0.257
0.205 0.181 −0.962


tm

[
27.1 79.6 41.5

]T
Truth
values

Rt

−0.419 0.906 0.062
0.867 0.379 0.323
0.269 0.189 −0.944


tt

[
27.0 79.0 42.0

]T
Experiment 2.

Assignments: This experiment is in line with the previous
one. The output data in Experiment 1 are served as known
conditions in this experiment and another vertex of the cabinet
is served as observed point (µ in Theorem 2). Therefore,
for the data in Theorem 2, what we know ahead are R,
t (that is Rm and tm in TABLE II), ys, Γ and τ (see



TABLE I), and what we collect are l(0) and lT . Here,
l(0) and lT are, respectively,

[
0.863 0.505 0.002

]T and[
0.678 0.735 0.017

]T
.

Result: Substitute above input data to equations (3), then
we can calculate the coordinate of the point µ. Here mea-
sured value xµ,m and truth value xµ,t are, respectively,[
2.1 89.9 41.1

]T
and

[
0 97 45

]T
. And

xµ,m − xµ,t =
[
2.1 −7.1 −3.9

]T
.

The measured value is not so close to the truth value, since
for our 3D lidar, it is hard to measure the positions of the
expected points exactly.

Experiment 3.
Assignments: This experiment is also in line with Experi-

ment 1. µ in Theorem 3 is represented by µ1 in Theorem 1,
and it moves 36 units along the x-axis of Σs. Therefore, for
the data in Theorem 3, what we know ahead are σ (that
is

[
36 0 0

]T), R, t (that is Rm and tm in TABLE II),
ys (see TABLE I), and what we collect are l0 and lT .
Here, l0 and lT are, respectively,

[
0.315 0.911 0.265

]T
and

[
0.115 0.959 0.260

]T
.

Result: Substitute above input data to equations (4), then we
can calculate the coordinate of point µ. Measured value xµ,m

and truth value xµ,t are, respectively,
[
33.2 −1.9 1.4

]T
and

[
36 0 0

]T
. And

xµ,m − xµ,t =
[
−2.8 −1.9 1.4

]T
.

It is concluded that the measured value is close to the truth
value.

V. CONCLUSIONS

This study is based on the assumption that the agent can
only access the angle information of the surroundings and
can not obtain the distance information. First, when the agent
is with the sensing ability to know their own motion, we
propose a method to solve the position and attitude of the agent
in surroundings via four non-coplanar points. Second, with
the obtained position and attitude of the agent, we propose
a method to localize the objects in the surroundings via
the motion of the agent. Finally, we extend the developed
methods and establish a way to localize two objects with
known relative position by agent. The proposed methods are
achieved by solving the linear algebraic equations and are easy
to iteratively correct, thus it suitable for the situation where
rapid attitude orientation is needed.
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