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ABSTRACT

Federated learning (FL) collaboratively trains deep models on decentralized
clients with privacy constraint. The aggregation of client parameters within a com-
munication round suffers from the “client drift” due to the heterogeneity of client
data distributions, resulting in unstable and slow convergence. Recent works typ-
ically impose regularization based on the client parameters to reduce the local
aggregation heterogeneity for optimization. However, we argue that they gener-
ally neglect the inter-communication heterogeneity of data distributions (“period
drift”), leading to deviations of intra-communication optimization from the global
objective. In this work, we aim to calibrate the local aggregation under “client
drift” and simultaneously approach the global objective under “period drift”.
To achieve this goal, we propose a learning-based aggregation strategy, named
FEDPA, that employs a Parameterized Aggregator rather than non-adaptive tech-
niques (e.g., federated average). We frame FEDPA within a meta-learning setting,
where aggregator serves as the meta-learner and the meta-task is to aggregate the
client parameters to generalize well on a proxy dataset. Intuitively, the meta-
learner is task-specific and could thereby acquire the meta-knowledge, i.e., cali-
brating the parameter aggregation from a global view and approaching the global
optimum for generalization.

1 INTRODUCTION

Federated Learning (FL) McMahan et al. (2017) has been an emerging privacy-preserving machine
learning paradigm to collaboratively train a shared model on a decentralized manner without sharing
private data. In FL, clients independently train the shared model over their private data, and the
server aggregates the uploaded model parameters periodically until convergence. In FL Kairouz
et al. (2021), a key challenge hindering effective model aggregation lies in the heterogeneous data
of clients Zhao et al. (2018), especially in cross-device (as opposed to cross-silo) FL with a large
amount of clients (e.g. mobile devices). Wherein, vanilla FL algorithms, such as federated averaging
(FEDAVG) McMahan et al. (2017), based on averaging the parameters of candidate clients, would
suffer from bad convergence and performance degradation.

Existing works Hsu et al. (2019); Li et al. (2020); Karimireddy et al. (2021) depict the non-iid trap
as weight divergence Zhao et al. (2018) or client drift Karimireddy et al. (2021). To cope with it,
they typically impose regularization in local optimization at each communication round such that
the intra-round heterogeneity can be reduced. However, we argue that existing methods generally
neglect the heterogeneity among different communication rounds, and the round-specific regulariza-
tion would inevitably fall into a local optimum. Specifically, in cross-device FL, the sampled clients
to be aggregated might involve different data distributions among different communication rounds.
As such, the optimization direction estimated in a single round might deviate from that estimated
with all clients, eventually amplifying the the aggregation bias1, and resulting in bad convergence
even oscillation. For simplicity, we term this challenge as “period drift”, and provide empirical
evidence in real-wolrd datasets (c.f. Figure 1).

1In ecological studies, aggregation bias is the expected difference between effects for the group and effects
for the individual.
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Figure 1: Period drift in FL. In the left figure, we give a example of a 10-class classification task
with label distribution skew Kairouz et al. (2021). We consider three degrees of non-iidness by
setting the dirichlet hyperparameter α = 1/0.1/0.01 Hsu et al. (2019), and display the distribution
difference of five communication rounds within a 5 × 3 grid. The colored blocks in the histogram
represent the amount of data of different labels that belongs to the selected 10 clients of 100 clients.
In a subfigure (i.e. within a communication round), client drift is exhibited by different colors,
while in a column, the period drift can be presented by the length of bars. Period drift becomes
more obvious as increasing the degree of non-iid (smaller α). In the right figure, we illustrates
the trajectory of FL, where the direction with period drift may deviates from the global optimum,
resulting in slow convergence and oscillation, and how FEDPA calibrates and controls the trajectory
of FL.

In this work, we set the goal of debiasing model aggregation under client drift and period drift in
a unified framework. The key to this problem is to have an adaptive approximation of parameter
calibration towards the global objective f McMahan et al. (2017), which is, however, non-trivial
to go beyond the local view and approach the optimum based on solely the intra-communication
client parameters (c.f. Figure 1). To bridge the gap, we introduce a learning-based framework,
where a parameterized aggregator takes the intra-communication client parameters into considera-
tion, and learns to calibrate the direction of aggregated parameters. Technically, we propose a novel
aggregation strategy, named FEDPA, which frames the learning-to-aggregate procedure as a meta-
learning setting Ravi & Larochelle (2016); Andrychowicz et al. (2016). In particular, the aggregator
is considered as a meta-learner that is learning to aggregate the parameters of clients into a proxy
model that could generalize well on a proxy dataset. The aggregation process at each communica-
tion round refers to one meta-task. The meta-knowledge refers to how to capture the global view
under the client/period drift, alleviate the aggregation bias, and calibrate the aggregated parameters
towards the optimum.

2 RELATED WORK

Federated learning with non-iid data Federated Learning with non-iid Data The performance of
federated learning often suffers from the heterogeneous data located over multiple clients. (Zhao
et al., 2018) demonstrates that the accuracy of federated learning reduces significantly when models
are trained with highly skewed non-iid data, which is explained by weight divergence. (Li et al.,
2020) proposes FEDPROX that utilizes a proximal term to deal with heterogeneity. (Li et al., 2021b)
provides comprehensive data partitioning strategies to cover the typical non-iid data scenarios. Fed-
Nova (Wang et al., 2020) puts insight on the number of epochs in local updates and proposes a
normalized averaging scheme to eliminate objective inconsistency. FedBN (Li et al., 2021c) focuses
on the feature shift non-iid in FL, and proposes to use local batch normalization to alleviate the
feature shift before averaging models.
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Meta Learning Meta learning is a branch of machine learning in which automated learning algo-
rithms, whose major objective is to use such information to understand how automated learning may
become flexible in handling learning problem, thus improving the performance of existing learning
algorithms or learning the learning algorithm itself. Meta learning is to solve a problem known as
learning to learn (Pramling, 2012), and has shown its effectiveness in reinforcement learning (Xu
et al., 2018), few-shot learning (Nichol et al., 2018), image classification (Ravi & Larochelle, 2016).
Andrychowicz et al. (Andrychowicz et al., 2016) propose to replace hand-designed update rules
with a learned update rule and adopts deep neural networks to train a meta learner by means of an
optimizer-optimizee setup, and each component is learnt iteratively using gradient-descent. Also,
Ravi (Ravi & Larochelle, 2016) proposes an LSTM meta-learner to learn an optimization procedure
as a model for few-shot image classification. Finn et al. propose a Model-agnostic meta-learning
(MAML) method (Finn et al., 2017) that does not impose a constraint on the architecture of the
learner. Then, derived from MAML, Reptile (Nichol et al., 2018) simplifies the its learning process
by conducting first-order gradient updates on the meta-learner.

Federated Meta Learning Meta learning plays important roles in federated learning from differ-
ent aspects, including but not limited to fast adaption, continual learning, personalization, robust-
ness, and computing or communication efficiency. Jiang et al. (Jiang et al., 2019) point out that
the setting of MAML, where one optimizes for a fast, gradient-based, few-shot adaptation to a het-
erogeneous distribution of tasks, has a number of similarities with the objective of personalization
for FL, and observe that conventional FEDAVG can be interpreted as a meta learning algorithm. Li
(Li et al., 2021a) proposes Meta-HAR that train a shared embedding network can generalize to any
individual users, achieving robust learning and personalization. Fallah et al. (Fallah et al., 2020)
studies a personalized variant of the federated learning, whose goal is to find an initial shared model
that current or new users can easily adapt to their local dataset by performing one or a few steps
of gradient descent with respect to their own data. Lin (Lin et al., 2020b) designs a novel feder-
ated learning framework for rating prediction (RP) for mobile environments, and employ a meta
recommender (MR) module to generate private item embeddings and a RP model based on the col-
laborative vector. We list other methods that adopt meta learning to federated learning. Recently,
(Shamsian et al., 2021) proposes learning a central hypernetworks that acts on client representation
vectors for generating personalized models. (Yao et al., 2019) presents FEDMETA that using a proxy
dataset for unbiased model aggregation by meta update on server. However, this method updates the
global model by directly training on proxy dataset. In our experiments, it has risks at overfitting on
proxy dataset.

3 METHODOLOGY

The aim of typical federated learning is to learn a shared model over decentralized data. In the
federated setting, data cannot be collected in central server and should be locally fixed on various
devices, to protect data privacy. FEDAVG is a typical FL method that aggregates local model updates
using a weighted averaging strategy, i.e.,wglobal ←

∑K
k=1

nk

n wk. However, FEDAVG suffers from a
severe accuracy degradation issue in the non-iid case, i.e. P(x, y) ∼ Pk(x, y) ̸= Pj . In this section,
we explore the non-iid problem of typical FEDAVG , and propose a novel framework based on meta
learning to deal with it.

3.1 TYPICAL FEDERATED LEARNING SETUP

FEDAVG is to learn a single shared model over decentralized data to minimize the global objective
f(w) = 1

n

∑n
i=1 fi(w) in the distributed manner. The objective is the sum of the loss function of

all private data Dprivate, that independently generated by a distinct distribution Pk(x, y) from K
clients. The union of decentralized private data forms the training dataset of FL. To minimize the
global objective, FEDAVG starts with copying the global model parameters wk

t ∈ Rd by a set of
candidate clients, and each candidate then conducts local update that optimizes the local objective
by gradient decent method for several epochs:

Fk(w
k
t ) =

1

nk

∑
i∈Pk

fi(w
k
t ), wk

t ← wk
t − η∇Fk

(
wk

t ,Dk
private

)
, (1)
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where Fk(w
k
t ) is the local objective of the k-th client, nk is the number of local samples, η is the

local learning rate, and ∇Fk

(
wk

t

)
∈ Rd is the gradient vector. After a period of local updates,

clients transmit local model parameters wk
t to the server, who then aggregates these parameters by

weighted averaging:

wglobal
t+1 ←

K∑
k=1

nk

n
wk

t , (2)

where wglobal
t+1 is the parameters of the global model. Repeat this training process until the global

model gets convergence, and the shared global model are collaboratively trained without sharing
private data.

However, the expectation EPk
[Fk(w)] ̸= f(w) since the data distribution of the k-th client may be

different with that of any j-th client (Pk ̸= Pj ̸= Poverall), as well as the overall data distribution
in the non-iid setting, leading to client drift (or weight divergence). In spite of some works Li et al.
(2020); Karimireddy et al. (2021) that deal with this, they do not considered the problem of “period
drift”, that is, the data distribution of randomly selected candidate clients of the t-th communication
round are different with that of the t+ 1-th communication round, as well as the overall distribution
(Pt(x, y) ̸= Pt+1(x, y) ̸= Poverall). It will also lead to bad convergence.

3.2 PARAMETERIZED FEEDBACK AGGREGATOR

In this section, we introduce the proposed FEDPA , and explain how it deals with the aggregation
bias (client drift as well as period drift), and implement it within a meta learning framework.

Inspired by control theory, we naturally consider federated learning as a dynamic system Haddad &
Chellaboina (2011), where we regard model parameters wt as system states. Actually, the training
process of FEDAVG is an autonomous system that without control, and its differential equations
(1)(2) can be written as follows 2:

wt+1 = g(wt)

=
1

K

K∑
k=1

wk
t =

1

K

K∑
k=1

(wt −∆wk
t ).

(3)

where g(wt) includes the model parameters wt and the local update ∆wk
t that minimizes Fk(w

k
t ) for

several epochs, as well as parameters averaging, who determines the trajectory of model parameters
wt. However, due to the non-iid data, the objective Fk(w

k
t ) of selected candidates could be an

arbitrarily poor approximation to the global objective f(wt), resulting in aggregation bias (client
drift and period drift). Our idea is to control the local update approaching to the optimum by adding
a control variable uk

t for each client, intervening the trajectory of FL. We formulate the controlled
system gc(wt) as follows:

wt+1 = gc(wt)

=
1

K

K∑
k=1

(wt −∆wk
t (1− uk

t )) =
1

K

K∑
k=1

(wt −∆wk
t (1− h(wt,∆wk

t , ϕ)))
(4)

where we define u = h(·, ϕ) as the controller of ∆wk
t , parameterized by ϕ, who takes the model

parameters wt and ∆wk
t as inputs. Now, we package the averaging operator and the controller as the

aggregator, and define the aggregation function as aggr(wt,∆Wt, ϕ) =
1
K

∑K
k=1(wt −∆wk

t (1 −
h(wt,∆wk

t , ϕ))), where ∆Wt = {∆wk
t } is the set of local updates of t-th candidates. Finally, the

differential equation is formulated as:

wt+1 = aggr(wt,∆Wt, ϕ). (5)

The question now is how can we get an effective aggregator to debias model aggregation? We
implement it within a meta learning framework. Inspired by Andrychowicz et al. (2016); Ravi &

2In fact, the number of samples of clients nk is usually unknown to server, thus we set nk
n

as 1
K

.
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Figure 2: Relations of FEDPA , dynamic system and meta learning. The left figure shows the
pipeline of FEDPA , including local updates, model aggregation and the aggregator of training. We
explain the process of FL as a dynamic process of wt, and the trajectory of wt should be con-
trolled towards global optimum due to the aggregation bias (client drift and period drift). Thus,
the performance of aggregated model on the proxy dataset is the target in the control loop, and the
parameterized aggregator is the controller, shown in the middle figure. To achieve the training of
aggregator (controller), we frame it within a meta learning setting, where the aggregator is a meta
learner that helps the aggregated model (learner) to achieve good performance on the proxy dataset.

Larochelle (2016), clients in FL can be regarded as learners whose their privacy data are considered
as support set. At the meantime, the aggregator is a meta-learner, and we utilize a set of proxy data
as query set. The Relations of FEDPA , dynamic system and meta learning are shown in Figure 3.2.

The training of aggregator is implemented by testing the performance of an aggregated model on the
proxy dataset. At each communication round, the server receives and aggregates clients’ parameters
into a proxy model, and then evaluates the performance of proxy model on the proxy dataset. We
assume that the better performance proxy model has, the better aggregator becomes. Thus, we can
optimize the aggregator by the objective as follows:

min
ϕ

f(wproxy,Dproxy),

where wproxy = aggr(wt,∆Wt.ϕ).
(6)

For the model parameters w with m layers w = {w1···m}, the parameters of aggregator ϕ con-
sist of two sets of input dense layers and one set of output layers ϕ = {ϕw in

1···m, ϕ∆w in
1···m , ϕout

1···m}.
Considering the dimension explosion problem (ϕ ∈ Rd×d if w ∈ Rd), we design the network
with the bottleneck architecture, mapping the parameters to a low-dimension space, and finally re-
store the output to the original dimension. For example, we first respectively input {w1···m} and
{∆w1···m} (with dimensions d1···m) into the dense layers {ϕw in

1···m} and {ϕ∆w in
1···m }, and output two

low-dimension hidden states hw
1···m, h∆w

1···m (with dimensions p1···m = log2(d1···m) + 1). We then
concatenate {hw

1···m, h∆w
1···m} and finally input it into output dense layers {ϕout

1···m} to restore the orig-
inal dimension, becoming the control variable uk

t :

uk
t = h(ϕ,wk

t )

= dense(concat(dense(w1···m, ϕw in
1···m), dense(∆w1···m, ϕ∆w in

1···m ))ϕout
1···m),

(7)

and note that all these operators are layer-wisely for each local model wk
t .

The whole process shows in algorithm 1. At the training stage, just like the usual FL, 1) the server
randomly samples a set of candidates Kt and starts clients local update and upload their updated
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Algorithm 1 FEDPA : require the global model wt, the proxy dataset Dproxy on server, the clients
indexed by k and their local model wk

t and private dataset Dk
private, the local learning rate ηl, the

number of local epochs El and the number of epochs for training aggregator Eg , and the total
number of rounds T .
Server executes:

1: initialize the global model w0

2: for each round t = 0, 1, 2, . . . , T do
3: randomly sample a set of candidate clients K
4: at the meantime:
5: a) ∆Wt ← ClientsUpdate(wt, K),
6: b) update the aggregator by equation 6 for Eg epochs}
7: wt+1 = aggr(wt,∆Wt, ϕ)
8: end for

ClientsUpdate:
1: for each client k ∈ K in parallel do
2: download: wk

t ← wt

3: for each epoch e = 1, 2, . . . , El do
4: Conduct local update: wk

t ← wk
t − ηl∇Fk

(
wk

t ,Dk
private

)
5: end for
6: upload: ∆wk

t ← wt − wk
t

7: end for
8: ∆Wt = {∆wk

t }

model parameters ∆Wt back to server; 2) the server aggregates all these parameters into a new
global model by equation 5, and start next generation of 1); 2) at the meantime (during clients local
update), the server trains the aggregator by equation 6; 3) repeat these steps until FL stops. By
learning the ϕ, the aggregator can capture the ability of calibrating and controlling the aggregated
parameters in a global view to a better direction towards optimum, that solves aggregation bias
(client drift and period drift).

4 EXPERIMENTS

4.1 SETUP

Datasets and models. We evaluate FEDPA with different state-of-the-art FL methods on both CV
and recommendation dataset. For CV dataset, we use FEMNIST3 Caldas et al. (2018), consisting
of 671,585 training examples and 77,483 test samples of 62 different classes including 10 digits, 26
lowercase and 26 uppercase images with 28x28 pixels, handwritten by 3400 users. It is an image
classification task, and we use the lightweight model LeNet5 LeCun et al. (1998). For recommen-
dation dataset, we use MovieLens 1M 4Harper & Konstan (2015) (including 1,000,209 ratings by
unidentifiable 6,040 users on 3,706 movies. It is a click-through rate (CTR) task, and we use the
popular DIN Zhou et al. (2018) model. For performance evaluation, we follow a widely used leave-
one-out protocol Muhammad et al. (2020). For each user, we hold out their latest interaction as
testset and use the remaining data as trainset, and binarize the user feedback where all ratings are
converted to 1, and negative instances are sampled 4:1 for training and 99:1 for test times the amount
of positive ones.

Federated learning settings. Note that the datasets we use (both FEMNIST and MovieLens 1M)
have “natural” non-iid distribution since we can splite the dataset by userid, i.e. image data are
handwritten by different users and movies are rated by different users. Beside, we use the Dirichlet
distribution Hsu et al. (2019) to simulate the label distribution skew setting for FEMNIST, where
the hyperparameter α controls the degree of non-iidness. The smaller α, the more degree of non-iid
distribution. For FL training, we set totally T = 100 communication rounds, and sample 10% of all

3https://github.com/TalwalkarLab/leaf/tree/master/data/femnist (BSD-2-Clause license)
4https://grouplens.org/datasets/movielens/ (license)
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clients per round and each client trains El = 5 epochs at local update, using Adam optimizer Kingma
& Ba (2014) with learning rate ηl = 0.01. In our proposed FEDPA , we use the proxy dataset that
are randomly sampled 1% from training data for all tasks. As for the training of the aggregator, we
set Eg = 5 for MovieLens and Eg = 30 for FEMNIST, with learning rate ηg = 0.001.

Baselines. FEDPA is a server-side method that improves the model aggregation, thus we compare
FEDPA with 1) the vanilla FL method FEDAVG McMahan et al. (2017), 2) a client-side FL method
FEDPROX Li et al. (2020), 3) a server-side FL method without using proxy data FEDAVGM Hsu
et al. (2019), 4) a server-side FL method without using proxy data FEDOPT Reddi et al. (2020),
5) a server-side FL method with proxy data FEDDF Lin et al. (2020a), 6) a server-side federated
meta learning method with proxy data FEDMETA Yao et al. (2019). Note that FEDPA is to solve
the slow convergence of training, thus we omit other excellent FL method involving meta learning
designed for model initialization or fast adaption Chen et al. (2018), for personalization Shamsian
et al. (2021); Fallah et al. (2020).

Evaluation Metrics. For image classification task, model performance in our experiments are
measured by the widely used top-1 accuracy. For CTR task, model performance are measured
by some popular metrics: area under curve (AUC), Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG):

AUC =

∑
x0∈DT

∑
x1∈DF

1 [f (x1) < f (x0)]

|DT | |DF |
,

HitRate@K =
1

|U|
∑
u∈U

1 (Ru,gu ≤ K) ,

NDCG@K =
∑
u∈U

1

|U|
21(Ru,gu≤K) − 1

log2 (1 (Ru,gu ≤ K) + 1)
,

where U is the user set, 1 is the indicator function, Ru,gu is the rank generated by the model for the
ground truth item gu and f is the model to be evaluated and DT , DF is the positive and negative
sample sets in testing data.

Implementation The experiments are implemented with PyTorch. We simulate the FL environ-
ment including clients and run all experiments on a deep learning a server with NVIDIA Tesla V100.

4.2 ANALYSIS

Visualize the impact of period drift. We conduct this experiments on the FEMNIST dataset with
three degrees of non-iidness, that we set the dirichlet hyperparameter α = 1/0.1/0.01. The top
three figures visualize the degree of non-iidness with different α. We select 10 candidates from
3400 clients, and show the label distribution of the 10-digits labels among 62 classes for the 20
earliest communication rounds. From left to right, we show that the size of points becomes more
diverse both within the same communication round and between different communication rounds,
that exhibits client drift and period drift, respectively. For the bottom three figures, we show the
impact of period drift by five curves for each setting. The FL training becomes more difficult as
increasing the degree of non-iidness. Especially note the setting of “iid each round”. To show the
impact of period drift, we manually eliminate the impact of client drift by shuffling the data of
selected candidates at each communication round, to force the data become iid. The figures show
that not only the client drift, period drift will lead to slow convergence and oscillating, and proposed
FEDPA can achieve fast and steady convergence especially with smaller α.

The performance on MovieLens. We conduct this experiment on the MovieLens 1M dataset,
which is naturally non-iid, and evaluate it by auc, hit@5, hit@10, ndcg@5, ndcg@10. As Table
4.2 shown, our proposed FEDPA outperforms alternatives on most metrics. Due to the well trained
aggregator, our FEDPA has the fastest convergence than other sota methods. Methods that without
proxy dataset, have low convergence because samples of CTR task is kind of strong non-iid since
each user have distinct user profiles like userid, age, sex and so on. Besides, each user rates limited
movies, which leads to a few amount of embedding table in the model being updated. For methods

7



Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

= 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

= 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

= 0.01

La
be

ls

Communication Rounds

Client
0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

= 1

alpha_1_fedavg
alpha_1_fedavg_iid_iid_each_round
alpha_1_fedprox
alpha_1_fedpa
iid_fedavg

0 20 40 60 80 100
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

= 0.1

alpha_0.1_fedavg
alpha_0.1_fedavg_iid_iid_each_round
alpha_0.1_fedprox
alpha_0.1_fedpa
iid_fedavg

0 20 40 60 80 100
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
c

= 0.01

alpha_0.01_fedavg
alpha_0.01_fedavg_iid_each_round
alpha_0.01_fedprox
alpha_0.01_fedpa
iid_fedavg

Figure 3: The impact of Period drift. This experiments is on the FEMNIST dataset with three
degrees of non-iidness. For the top figures, we select 10 clients and choose the 10-digits labels. In
each scatter plot, the x axis is twenty communication rounds and the y axis is ten labels. A specified
point is a specified client has samples that of a specified label at a specified communication round,
whose size means the number of samples and color means the client it belongs to. The size of points
becomes more diverse within the same communication round or between different communication
rounds, that exhibits client drift and period drift, respectively. For the bottom figures, we show the
impact of period drift by five curves for each setting. As the figures show, not only the client drift,
period drift will lead to slow convergence, especially with smaller α.

that use proxy dataset, comparing with FEDPA , FEDDF and FEDMETA have limited performance
but have different results and for different reasons. FEDDF has no advantage for the CTR task since
the model is of a logistic regression that only has one output, thus FEDDF can hardly benefit from
ensemble distillation on proxy dataset. FEDPA can achieve higher performance than other methods
since it can get into a smaller optimum since FEDPA can deal with the period drift, which has
different objectives at different communication round even around global optimum.

The performance on FEMNIST. We conduct this experiment on the FEMNIST dataset, and we
use four settings to evaluate the performance. As Table 4.2 shown, our proposed FEDPA outper-
forms alternatives. As increasing the degree of non-iidness, proposed method shows little perfor-
mance degradation, comparing to other FL method. FEDPA benefits from the well-trained aggre-
gator that can calibrate model parameters in a global view, which resulting in good performance
at extreme non-iid setting. Compare with other FL methods, FEDPA can achieves fast and steady
convergence, and a better optimum.

The advatages of learning-based FEDPA Because of the “no free lunch” (NFL) theorem, it is
hard to have a perfect method that appropriate to all datasets and scenarios. However, proposed
FEDPA provides a framework that can target to a specific problem. The ability of the aggregator is
from the proxy datasets, which is specific and adaptive to a certain task. The aggregator can learn to
aggregate for different model, datasets and even the non-iidness.

The difference of using proxy dataset. We compare FEDPA with the baselines that using proxy
dataset, FEDDF and FEDMETA . The common ground of these three methods are they all use the
proxy dataset to achieve fast convergence and better performance. However, the way of using proxy
dataset and the reason of how it helps FL are very different. FEDDF uses unlabeled proxy data by
leveraging ensemble distillation, taking advantage of ensembling the diverse model parameters of
clients as well as distilling the logits to achieve consensus. FEDMETA uses proxy dataset by meta
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updating that training global model at each communication round. However, the problem of these
two method is that they have the risks of overfitting on the proxy dataset, since they directly update
the model parameters, even carefully tune the hyperparameter of training epochs and regularization.
Instead, FEDPA does not directly update model parameters but learns a aggregative bias to control
the training process of FL. Thus, FEDPA is more safe than the methods that directly updating model
parameters.

Table 1: The performance on MovieLens 1M
Auc Hit@5 Hit@10 Ndcg@5 Ndcg@10

FEDAVG 0.7482 0.2916 0.4290 0.1901 0.2346
FEDAVGM 0.7482 0.2916 0.4290 0.1901 0.2346
FEDPROX 0.7459 0.2924 0.4298 0.1914 0.2358
FEDOPT 0.7250 0.2967 0.4419 0.1904 0.2374
FEDDF 0.7053 0.2553 0.3623 0.1701 0.2046
FEDMETA 0.7651 0.2930 0.4429 0.1919 0.2404
FEDPA 0.7878 0.3058 0.4382 0.2002 0.2431

Table 2: The performance on FEMNIST
Natural α = 1 α = 0.1 α = 0.01

FEDAVG 0.6909 0.7299 0.7029 0.5427
FEDAVGM 0.6909 0.7299 0.7029 0.5427
FEDPROX 0.6990 0.7360 0.7177 0.5478
FEDOPT 0.6830 0.7295 0.7156 0.5157
FEDDF 0.6921 0.7311 0.6955 0.5271
FEDMETA 0.6967 0.7316 0.7194 0.5617
FEDPA 0.7444 0.7431 0.7261 0.7224

5 PRIVACY CONCERNS

As for the proxy dataset, we understand this is denounced in some situations, since it may violate the
constraint of privacy because there are some scenarios that have no proxy dataset like healthcare.
However, in some scenarios that allows proxy dataset like natural images recognition, item inter-
actions with personal information wiped, proxy dataset can help FL to a large extent Li & Wang
(2019); Lin et al. (2020a); Zhang et al. (2021); Yao et al. (2019) etc. Instead, we encourage the
use of proxy dataset in FL (if exists), since many companies like Google, Facebook remains previ-
ous data at the turning point of legislation for privacy, and how to use the proxy dataset is also an
interesting problem.

6 CONCLUSION

In this work, we provide an another factor to degrade the convergence of cross-device FL, namely,
the period drift. To solve the period drift as well as the client drift, we propose a novel aggregation
strategy, FEDPA , as an alternative of averaging. We analyze the problem in a view of dynamic sys-
tem and frame the training procedure of FEDPA within a meta-learning setting. Experiments show
that the proposed method outperforms other state-of-the-art methods, indicating that the trained ag-
gregator can well capture the ability of aggregating drifted clients’ model parameters. It also has a
global view to alleviate the period drift, by adding a parameter-wise bias for each client to calibrate
and control the aggregated parameters to a better direction towards the optimum.
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