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Abstract

Reinforcement learning (RL) has demonstrated strong potential in training large1

language models (LLMs) capable of complex reasoning for real-world problem2

solving. More recently, RL has been leveraged to create sophisticated LLM-based3

search agents that adeptly combine reasoning with search engine use. While the4

use of RL for training search agents is promising, the optimal design of such5

agents remains not fully understood. In particular, key factors—such as (1) reward6

formulation, (2) the choice and characteristics of the underlying LLM, and (3) the7

role of the search engine in the RL process—require further investigation. In this8

work, we conduct comprehensive empirical studies to systematically investigate9

these and offer actionable insights. We highlight several key findings: format10

rewards are effective in improving final performance, whereas intermediate retrieval11

rewards have limited impact; the scale and initialization of the LLM (general-12

purpose vs. reasoning-specialized) significantly influence RL outcomes; and the13

choice of search engine plays a critical role in shaping RL training dynamics and14

the robustness of the trained agent during inference. These establish important15

guidelines for successfully building and deploying LLM-based search agents in16

real-world applications.17

1 Introduction18

Large language models (LLMs) [57] have demonstrated exceptional performance across a range19

of natural language processing tasks, including question answering [26], summarization [56], and20

open-ended text generation [8]. Recently, inspired by developments such as DeepSeek-R1 [9], rein-21

forcement learning (RL) [14, 39] has been increasingly applied to LLMs to unlock more advanced22

reasoning capabilities [45]. LLMs trained via RL have shown strong performance in tasks requiring23

logical reasoning [49] and visual understanding [55], with promising applications emerging in spe-24

cialized domains such as finance [25] and medicine [19]. However, these models often remain limited25

to self-contained reasoning and lack the ability to interact with external environments or leverage26

external tools. To address this, recent work has explored using RL to train LLMs as interactive agents,27

capable of engaging with external environments and invoking tools, as demonstrated in multi-turn28

game tasks [44] and user interface control tasks [24, 48].29

A key agentic application for LLMs is search, where models decompose complex problems, perform30

multi-turn reasoning, and iteratively interact with search engines to retrieve relevant information.31

Prior work has explored prompt-based approaches [11, 41] and supervised fine-tuning (SFT) methods32

[3, 34] to equip LLMs with search capabilities. However, these approaches face key limitations:33

LLMs typically lack strong search proficiency from pretraining alone, and SFT requires costly manual34

annotation of intermediate reasoning trajectories, making it challenging to scale. In contrast, recent35

studies [4, 13, 37, 58] demonstrate that RL with outcome-based rewards offers an effective alternative36
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for training LLMs to perform reasoning and search in an interleaved manner—forming what is37

referred to as an LLM-based search agent. This training paradigm enhances the model’s ability38

to interact with search engines while eliminating the need for explicit supervision of intermediate39

reasoning steps, thus enabling scalable and more flexible agent learning.40

While recent RL-based methods have demonstrated the potential to train effective LLM-based search41

agents, several key questions remain underexplored: (1) How does reward design affect search42

agent training? Although prior work [13] shows that outcome-based rewards alone can activate43

reasoning and search capabilities, it is unclear whether auxiliary rewards such as format rewards44

(which signal adherence to the agentic action format [9]) or intermediate retrieval rewards (which45

iteratively incentivize outcome-relevant retrievals [22]) can further enhance performance. (2) How46

does the backbone LLM influence RL dynamics? As suggested by [6], the choice of the base model is47

critical. Factors such as model scale (e.g., 3B vs. 32B) and type (e.g., general-purpose vs. reasoning-48

specialized) can significantly impact the learning dynamics. (3) How does the search engine choice49

affect the learned agent? This includes understanding how the quality of different search engines50

influence RL training dynamics and whether the resulting agent remains robust when the retrieval51

system is changed at inference time.52

In this paper, we conduct comprehensive empirical studies to address the aforementioned research53

questions. Our key findings are summarized as follows: (1) Reward Design. We observe that54

incorporating a format reward significantly improves performance, particularly when training from a55

base LLM rather than an instruction-tuned one. In contrast, intermediate retrieval rewards do not yield56

consistent performance improvements, suggesting limited utility. (2) Underlying LLM Backbone.57

General-purpose LLMs outperform reasoning-specialized LLMs in RL settings, likely due to the58

latter’s weaker instruction-following capabilities at the early stages of training. Furthermore, scaling59

up the backbone model generally enhances final performance, although with diminishing returns. (3)60

Search Engine Choice. The quality of the search engine used during training strongly influences RL61

dynamics. Training with a non-informative search engine (e.g., random noise) leads the agent to avoid62

retrieval altogether, while a weak engine (e.g., BM25 [33]) results in frequent but less efficient search63

calls. In contrast, strong engines (e.g., dense retrievers) yield more stable learning. At inference64

time, the search agent is generally robust to diverse retrieval systems, and stronger search engines65

consistently lead to better downstream performance.66

2 Related Works67

2.1 Large Language Models and Reinforcement Learning68

RL [14, 39] offers a principled framework for sequential decision-making, where an agent optimizes69

its behavior by interacting with an environment and maximizing cumulative rewards. In the context70

of LLM tuning, RL was popularized by Reinforcement Learning from Human Feedback (RLHF)71

[12, 17, 28], which first trains a reward model from human preference data [20] and then fine-tunes72

the policy LLM via Proximal Policy Optimization (PPO). While PPO enables high-quality alignment,73

it incurs significant computational overhead due to iterative optimization steps. Recent efforts to74

strike a better balance include Group Relative Policy Optimization (GRPO) [35], which removes the75

dependency on a learned value function by leveraging group-based baseline estimation, and RLOO76

[2], a simplified variant of REINFORCE [47] tailored for LLM training. More recently, DAPO77

[53] extends GRPO by introducing four key innovations tailored for large-scale LLM reinforcement78

learning: clip-higher reward capping, dynamic sampling for adaptive data efficiency, a token-level79

objective for finer-grained supervision, and overlong reward shaping to handle extended sequences.80

In parallel, VAPO [54] builds upon PPO by proposing a value-model-augmented framework, incor-81

porating value pretraining, a decoupled Generalized Advantage Estimator (GAE), and an auxiliary82

language modeling loss on positive examples to improve credit assignment and stability. While these83

advancements have significantly enhanced the scalability and efficiency of RL-based LLM tuning,84

their application to LLM-driven search and reasoning tasks remains underexplored, highlighting a85

critical direction for future exploration.86

2.2 Large Language Models as Search Agents87

LLMs [1, 40, 57] have demonstrated strong reasoning capabilities [9] but often struggle with halluci-88

nations and insufficient domain-specific knowledge [21, 29]. To address these, recent efforts explore89
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integrating LLMs with search engines to enable dynamic access to external knowledge. A prominent90

direction is to treat search engines as interactive tools that LLMs can call during inference [34]. This91

search-as-a-tool paradigm allows models to iteratively formulate queries, retrieve relevant content,92

and revise their responses based on external evidence [41]. Prompt-based methods such as IRCoT93

[41] and ReAct [52] enable interleaved reasoning and retrieval, while Toolformer [34] and self-RAG94

[3] uses supervised fine-tuning to learn when and how to call a search engine. However, these methods95

often depend on high-quality demonstration data, which is difficult to scale. As an alternative, RL96

offers a scalable and data efficient solution. Inspired by [9], recent works [4, 13, 37, 58] show that97

LLMs can acquire complex reasoning and search behaviors through RL only using outcome-based98

rewards. Despite this promise, there is still a lack of in-depth empirical study of different design99

choices in RL for LLM search agents.100

3 Preliminary101

Reasoning-Search Interleaved LLM Agent (i.e., LLM-based Search Agent) [13, 36]. We consider102

an agentic LLM that performs interleaved, multi-turn reasoning and search engine interactions. In each103

iteration, the LLM-based search agent first engages in reasoning to analyze the current context and104

identify what additional information is needed. It then formulates a search query to retrieve relevant105

external information, which is incorporated into the context for subsequent reasoning. This iterative106

process continues until the model determines that sufficient information has been gathered to produce107

a final answer. The overall interaction follows a multi-turn reasoning–search loop: reasoning →108

search → context → reasoning → search → ... → reasoning → answering. To facilitate this process109

[52], the reasoning steps are enclosed within <think> </think>, search queries are wrapped in110

<search> </search>, retrieved information is inserted into <information> </information>,111

and the final answer is placed within <answer> </answer>.112

RL for Training an LLM-based Search Agent. In [13, 58], they propose an RL objective to113

explicitly incorporate a search engine R during optimization for LLM search agent training. The114

objective is formalized as:115

max
πθ

Ex∼D, y∼πθ(·|x;R) [rϕ(x, y)]− βDKL [πθ(y | x;R) ∥πref(y | x;R)] , (1)

where πθ denotes the trainable policy, πref is a fixed reference model, rϕ represents the reward116

function, and DKL denotes the KL divergence. Here, x are sampled from the dataset D, and y denote117

the output sequence interleaving reasoning steps with search engine retrievals.118

In contrast to prior approaches that generate rollouts exclusively from the model πθ(· | x) [28, 31],119

[13, 58] augment the generation process by interleaving retrievals via πθ(· | x;R), which can be120

interpreted as πθ(· | x)
⊗

R, where
⊗

denotes a retrieval-reasoning composition.121

The reward function rϕ serves as the primary optimization signal. [13, 58] employ a rule-based122

reward system focusing exclusively on final outcome rewards, which evaluate the correctness of123

the final answer. In factual reasoning tasks, correctness is assessed using exact string match (EM)124

evaluation: rϕ(x, y) = EM(apred, agold), where apred is the predicted final answer extracted from the125

model’s response y, and agold is the ground-truth answer. In other words,126

rϕ(x, y) =

{
1 if apred = agold,

0 if apred ̸= agold,
(2)

Although prior methods have demonstrated strong performance, there remains a notable gap in127

empirical studies systematically evaluating key design choices—specifically, the effectiveness of128

different reward formulations, the influence of underlying LLM characteristics, and the impact of129

search engine selection—on the reinforcement learning process for training search agents.130

4 RL Rewards for LLM-based Search Agents131

In [13, 58], an outcome-driven reward (i.e., string exact match) is employed through the RL process132

to guide the LLM on learning the reasoning and interleaved search engine calling functionality.133

However, in search scenarios, the LLMs need to follow a specific format in order to call the search134

engine (i.e., format reward) and the relevance of the intermediate search results can also guide the135

LLM on generating the proper queries (i.e., intermediate retrieval reward).136
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Table 1: Empirical study of the format reward. Outcome only refers to the RL variant with only the
outcome reward. Base/Instruct refer to the version of the underlying LLM. λf = 0.2 for 3B/14B and
λf = 0.4 for 7B. The best performance is set in bold. †/⋆ represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Avg.

Qwen2.5-3B-Base/Instruct

PPO

Outcome only (base) 0.406 0.587 0.435 0.284 0.273 0.049 0.088 0.303
w. format reward 0.428 0.607 0.459 0.371 0.387 0.150 0.323 0.389

Outcome only (instruct) 0.341 0.545 0.378 0.324 0.319 0.103 0.264 0.325
w. format reward 0.356 0.557 0.393 0.327 0.314 0.122 0.266 0.334

GRPO

Outcome only (base) 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312
w. format reward 0.429 0.602 0.435 0.372 0.383 0.148 0.307 0.382

Outcome only (instruct) 0.397 0.565 0.391 0.331 0.310 0.124 0.232 0.336
w. format reward 0.346 0.552 0.371 0.297 0.300 0.098 0.266 0.319

Qwen2.5-7B-Base/Instruct

PPO

Outcome only (base) 0.480 0.638 0.457 0.433 0.382 0.196 0.432 0.431
w. format reward 0.488 0.644 0.469 0.436 0.412 0.187 0.403 0.434

Outcome only (instruct) 0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385
w. format reward 0.383 0.593 0.399 0.376 0.317 0.151 0.371 0.370

GRPO

Outcome only (base) 0.395 0.560 0.388 0.326 0.297 0.125 0.360 0.350
w. format reward 0.458 0.632 0.442 0.412 0.404 0.180 0.411 0.420

Outcome only (instruct) 0.429 0.623 0.427 0.386 0.346 0.162 0.400 0.396
w. format reward 0.393 0.609 0.397 0.367 0.344 0.147 0.387 0.378

Qwen2.5-14B-Base/Instruct

PPO

Outcome only (base) 0.486 0.676 0.480 0.468 0.470 0.241 0.528 0.479
w. format reward 0.499 0.680 0.472 0.452 0.431 0.215 0.468 0.459

Outcome only (instruct) 0.424 0.660 0.442 0.436 0.379 0.210 0.480 0.433
w. format reward 0.449 0.682 0.466 0.447 0.422 0.224 0.500 0.456

GRPO

Outcome only (base) 0.415 0.680 0.488 0.451 0.461 0.230 0.508 0.462
w. format reward 0.500 0.693 0.500 0.481 0.488 0.261 0.516 0.491

Outcome only (instruct) 0.482 0.667 0.434 0.429 0.424 0.191 0.492 0.446
w. format reward 0.488 0.677 0.482 0.455 0.470 0.211 0.516 0.471

4.1 Format Reward137

Motivation. When training an LLM-based search agent capable of reasoning and invoking external138

search engines, it is common to adopt the reasoning-action-observation workflow [52], where relevant139

content is wrapped within special tokens such as <think> </think>, <search> </search>, and140

<information> </information>. For instance, if the LLM fails to correctly format its search141

queries using <search> </search>, it cannot successfully trigger the search engine and retrieve the142

external information needed for problem solving. Thus, adhering to the prescribed format is critical143

for ensuring the effectiveness of the search agent. In this section, we explore how incorporating a144

format reward influences the RL training process of a search agent.145

Experimental Design. In addition to the outcome reward defined in [13, 58], we introduce a format146

reward, resulting in the final reward function rϕ(x, y):147

rϕ(x, y) =


1 if apred = agold ∧ fformat(y) = True,
1− λf if apred = agold ∧ fformat(y) = False,
λf if apred ̸= agold ∧ fformat(y) = True,
0 if apred ̸= agold ∧ fformat(y) = False,

(3)

where fformat(·) verifies whether the response y follows the correct reasoning-action-observation148

format, including the appropriate use of special tokens. We assign a reward of λf when the LLM149

generates an incorrect answer in the correct format, and a reward of 1−λf when the answer is correct150

but the format is incorrect. Details of the fformat(·) implementation are provided in Appendix C. We151

follow [13] for the training and testing datasets and use exact match as the outcome reward. Detailed152

experimental settings can be found in Appendix G.1.153
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Figure 1: Empirical analyses on format reward and intermediate retrieval reward. (a) Training
reward curves with varying format reward scaling factors (λf ); larger λf values lead to faster
convergence. (b) Impact of λf on final model performance; a small λf is ineffective, while an
excessively large λf may cause overfitting to format reward. (c) Training reward curves under
different intermediate retrieval reward scaling factors (λr); varying λr has limited effect on
learning dynamics. (d) Effect of λr on final model performance; increasing λr degrades performance,
suggesting that intermediate retrieval rewards are unnecessary, as the outcome reward sufficiently
encourages effective query formulation. (LLM: Qwen2.5-7B-Base; RL Algorithm: PPO)

Results. Table 1 reports results across various datasets, LLM sizes, and RL algorithms. Detailed154

studies on λf using Qwen2.5-7B-Base and PPO are presented in Figures 1(a) and (b). We summarize155

the key findings as follows: (1) Adding a format reward consistently improves final model perfor-156

mance, particularly for base LLMs. This is because base LLMs lack strong instruction-following157

capabilities for search engine invocation, and the format reward helps mitigate this limitation. (2)158

Format reward accelerates RL convergence; larger λf values lead to faster convergence by explicitly159

guiding the model to issue correctly formatted search queries and interpret results effectively. (3) The160

choice of λf significantly impacts final performance. While a small λf is ineffective, an excessively161

large λf may cause overfitting, ultimately degrading final performance.162

4.2 Intermediate Retrieval Reward163

Motivation. Beyond the outcome reward, which directly evaluates the correctness of the final answer164

after multiple search interactions, it is possible to incorporate intermediate retrieval rewards that assess165

the quality of the retrieved documents during each search step [22]. By assigning positive rewards to166

cases where relevant information is retrieved, the LLM can be encouraged to generate higher-quality167

queries that yield more relevant retrieval results [22]. We investigate whether introducing intermediate168

retrieval rewards benefits the RL training process of LLM-based search agents.169

Experimental Design. Building upon the outcome reward from [13, 58] and the format reward170

introduced in Section 4.1, we incorporate a retrieval correctness component, resulting in the following171

final reward function rϕ(x, y):172

rϕ(x, y) =



1 if apred = agold ∧ fformat(y) = True,
1− λf if apred = agold ∧ fformat(y) = False,
λf + λr if apred ̸= agold ∧ fformat(y) = True ∧ fret(y) = True,
λf if apred ̸= agold ∧ fformat(y) = True ∧ fret(y) = False,
0 if apred ̸= agold ∧ fformat(y) = False,

(4)

where fret(·) determines whether the retrieved documents are relevant to the ground truth answer. The173

retrieved information can only be extracted when the rollout sequence follows the desired format, as174

described in Section 4.1 and the purpose of the intermediate retrieval reward is to provide a positive175

learning signal even when the final answer is incorrect. Thus, we introduce an additional reward term176

λr when apred ̸= agold ∧ fformat(y) = True. In our experiments, we focus on short-form QA datasets,177

so we apply substring exact match as fret(·), following [11, 23], to evaluate whether ground truth178

appears in retrieved passages. Under this setting, even if LLM fails to generate correct final answer,179

it can still receive a positive reward for issuing effective queries that retrieve relevant documents.180

Detailed experimental settings can be found in Appendix G.2.181

Results. Performance comparisons with and without intermediate retrieval rewards are presented in182

Table 2. The effect of varying λr is illustrated in Figures 1(c) and (d). Key observations include: (1)183

Adding intermediate retrieval rewards does not significantly improve final performance for either PPO184

5



Table 2: Study of the intermediate retrieval reward. λr = 0.1. The best performance is set in bold.
†/⋆ represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Avg.

Qwen2.5-3B-Base

PPO
w.o. retrieval reward 0.428 0.607 0.459 0.371 0.387 0.150 0.323 0.389
w. retrieval reward 0.405 0.567 0.407 0.326 0.330 0.104 0.242 0.340

GRPO
w.o. retrieval reward 0.429 0.602 0.435 0.372 0.383 0.148 0.307 0.382
w. retrieval reward 0.434 0.605 0.433 0.379 0.378 0.142 0.323 0.385

Qwen2.5-7B-Base

PPO
w.o. retrieval reward 0.488 0.644 0.469 0.436 0.412 0.187 0.403 0.434
w. retrieval reward 0.472 0.629 0.452 0.436 0.402 0.180 0.363 0.419

GRPO
w.o. retrieval reward 0.458 0.632 0.442 0.412 0.404 0.180 0.411 0.420
w. retrieval reward 0.453 0.628 0.450 0.416 0.375 0.164 0.387 0.410

Table 3: Performance of general LLM and reasoning LLM trained with RL on search agent task. The
best performance is set in bold. †/⋆ represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Avg.

DeepSeek-R1-Distill-Qwen-7B
PPO 0.389 0.542 0.402 0.334 0.326 0.122 0.290 0.344
GRPO 0.061 0.155 0.068 0.098 0.194 0.010 0.113 0.100

Qwen2.5-7B-Base
PPO 0.488 0.644 0.469 0.436 0.412 0.187 0.403 0.434
GRPO 0.458 0.632 0.442 0.412 0.404 0.180 0.411 0.420

or GRPO. This may be attributed to the outcome reward already providing sufficient learning signal185

for generating effective queries, as a successful search engine call that retrieves relevant information186

directly contributes to producing the correct answer and receiving a positive reward. In contrast,187

the substring EM-based intermediate retrieval reward may overly constrains the retrieval trajectory188

and thus deviates the naturally learned trajectory from the outcome reward. (2) Varying λr has189

limited impact on learning dynamics. Increasing λr consistently leads to degraded performance,190

suggesting that intermediate retrieval rewards are unnecessary. The outcome reward alone is sufficient191

to encourage effective query formulation and downstream task success.192

5 The Impact of Underlying Backbone LLM193

In this section, we study how the choice of the LLM influences RL training for LLM-based search194

agents. Our investigation centers on two key characteristics of the base LLM: (1) type (i.e., general-195

purpose vs. reasoning-optimized), and (2) scale (i.e., 3B, 7B, 14B, and 32B).196

5.1 Study of LLM types197

Motivation. Effective training of LLM-based search agents via RL requires the LLM to possess198

two fundamental capabilities: instruction following and reasoning. Instruction following enables199

the model to learn how to properly issue search engine calls in the correct format, while reasoning200

equips the model to analyze retrieved information and solve complex problems. However, it remains201

underexplored whether general-purpose or reasoning-specialized LLMs provide a more suitable202

foundation for RL-based training.203

Experimental Design. We follow the experimental setup in [13] and conduct RL training on two204

LLM variants: (1) Qwen2.5-7B-Base [50], a general-purpose 7B parameter pretrained LLM, and (2)205

DeepSeek-R1-Distill-Qwen-7B [9], a 7B reasoning-specialized model distilled from DeepSeek-R1.206

Both models are trained under identical conditions to ensure a fair comparison. Detailed experimental207

settings and results on 14B LLMs can be found in Appendix G.3 and F.208
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Figure 2: The study of underlying pretrained LLM for development of LLM-based search agents
with RL. (a) Training reward with different type of LLMs - general-purpose LLM (Qwen2.5-7B-
Base) and reasoning LLM (DeepSeek-R1-Distill-Qwen-7B). We observe that general-purpose LLM
performs better than reasoning LLMs with both PPO and GRPO. (b) # of Search engine calls with
different type of LLMs: General LLM learns to call the search engine faster than the reasoning
LLM. This potentially stems from the fact the general LLMs are better for following instructions. (c)
Training reward with different size of LLMs: Larger LLMs can lead to higher training reward.
(d) Test accuracy with different size of LLMs: On the challenging Bamboogle dataset [30], the
performance increases consistently as the LLM size increases.

Results. The training reward and search engine call frequency curves are presented in Figures 2(a)209

and 2(b), respectively. Final performance results are summarized in Table 3. We observe the following210

key findings: (1) The RL training process is more stable and effective when initialized with the211

general-purpose LLMs compared to the reasoning-specialized ones. This suggests that the general-212

purpose ones already possess sufficient basic reasoning capabilities to support the search agent task213

without requiring specialized pretraining. (2) The reasoning LLM struggles to initiate search engine214

calls during the early stages of training, leading to insufficient exploration. In the absence of positive215

reward signals from successful rollouts involving search, the model fails to consistently learn to216

engage with the search engine. This behavior primarily stems from the reasoning LLMs’ limited217

instruction-following capabilities, which hinder their ability to learn the correct format for invoking218

the search API. (3) While the reasoning LLMs eventually learn to perform interleaved reasoning and219

retrieval when trained with PPO, this progress is slow and gradual. In contrast, training with GRPO220

leads to training collapse. We attribute this to PPO’s lower variance and more stable policy updates,221

which better support the complex exploration required for search-augmented reasoning tasks.222

5.2 The Scale Up of LLM-based Search Agent223

Motivation. Prior work has demonstrated that LLM capabilities improve predictably with increased224

model size, as described by scaling laws [10, 15]. However, it remains unclear whether similar scaling225

behavior holds when LLMs are further RL-tuned as search agents. Specifically, does increasing226

model size consistently improve the agent’s ability to reason and interact with search engines?227

Experimental Design. We evaluate scaling laws using RL with both outcome-based rewards and228

additional format rewards, as introduced in Section 4.1. Following the experimental setup in [13],229

we train Qwen2.5 models of varying sizes (3B, 7B, 14B, 32B) on the NQ and HotpotQA training230

datasets using the GRPO algorithm. We use a fixed learning rate of 5× 10−7, and evaluate on the231

out-of-distribution Bamboogle dataset. Detailed experimental settings can be found in Appendix G.4.232

Results. As shown in Figure 2(c), the training reward consistently improves with increasing LLM233

size, indicating that larger models are better able to learn effective reasoning and search engine usage.234

The corresponding inference performance is presented in Figure 2(d). While test performance also235

improves with model size, the rate of improvement diminishes. This suggests that the search agent236

task, unlike pure language modeling, relies less on parametric knowledge stored in large LLMs, and237

more on effective external information acquisition through retrieval.238

6 Improved LLM-based Search Agents with Stronger Search Engines239

The choice of search engine plays a critical role in determining retrieval quality, which in turn240

influences both the RL training dynamics and the inference-time performance of the LLM-based241

search agent. During training, higher-quality search engines that provide more relevant information242

can encourage the agent to achieve its objectives with fewer search calls, as the retrieved content more243
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Table 4: Final performance with different search engine for both training and inference. The best
performance is set in bold. (LLM: Qwen2.5-7B-Base; RL: PPO)
Engine NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

Recall EM Recall EM Recall EM Recall EM Recall EM Recall EM Recall EM Recall EM

Random 0.000 0.237 0.000 0.494 0.000 0.177 0.000 0.217 0.000 0.269 0.000 0.058 0.000 0.234 0.000 0.241
BM25 0.216 0.341 0.445 0.607 0.255 0.322 0.273 0.404 0.216 0.370 0.076 0.137 0.061 0.280 0.176 0.352
E5 (HNSW) 0.436 0.468 0.509 0.621 0.304 0.366 0.237 0.372 0.146 0.287 0.092 0.137 0.104 0.400 0.261 0.379
E5 (Exact) 0.462 0.481 0.561 0.638 0.423 0.457 0.276 0.433 0.198 0.382 0.098 0.196 0.107 0.424 0.304 0.430

0.25 0.30 0.35 0.40 0.45
Recall

0.18
0.20
0.22
0.24
0.26
0.28
0.30

Pr
ec

is
io

n

BM25
E5 (HNSW)
E5 (Exact)

(a) Search engine performance

0 50 100 150 200 250 300 350 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n 
Re

w
ar

d

Random
BM25
E5 (HNSW)
E5 (Exact)

(b) Training reward

0 50 100 150 200 250 300 350 400
Step

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

#
 S

ea
rc

h 
Ca

ll

Random
BM25
E5 (HNSW)
E5 (Exact)

(c) # Search calls

Figure 3: Effect of Search Engine Choice on RL Training Dynamics. (a) Retrieval Quality Ranking:
E5 (Exact) > E5 (HNSW) > BM25 > Random. (b) Training Stability and Performance: Stronger
search engines (e.g., E5 Exact, E5 + HNSW) lead to more stable training and higher final performance,
while weaker engines (e.g., Random, BM25) achieve suboptimal outcomes. (c) Search Engine
Usage Behavior: With Random Noise, the agent quickly learns to avoid using the search engine.
With BM25, the agent gradually increases search calls to compensate for limited retrieval quality.
With E5, the agent issues search calls more strategically, reflecting more efficient search behavior.

effectively supports reasoning and decision-making. In contrast, lower-quality search engines that244

return less relevant information may lead the agent to either over-rely on its internal knowledge or245

issue multiple search queries to compensate for inadequate results. At inference time, the quality of246

the retrieved information directly impacts the agent’s ability to generate accurate and useful responses.247

In the following sections, we systematically investigate the effects of search engine choice on both248

the training and inference stages of search-augmented LLMs.249

6.1 Training with Different Search Engines.250

Motivation. During RL training, the LLM-based agent learns to interact with the search engine and251

receive positive reward feedback while it solves problems using the retrieved relevant information. A252

strong search engine provides more relevant results, leading to consistent positive outcome rewards.253

Consequently, the LLM learns to solve problems with fewer search calls. In contrast, a weak search254

engine discourages reliance on retrieval or forces the agent to issue multiple search queries to255

compensate for low-quality results. We empirically investigate how different search engines influence256

the RL training dynamics of an LLM-based search agent.257

Experimental Design. We conduct experiments using the Qwen2.5-7B-Base model as the LLM and258

Proximal Policy Optimization (PPO) as the RL algorithm. Four search engine configurations are259

explored with the Wikipedia-18 corpus [16]: (1) Random Noise: Returns randomly selected passages260

for a given query. (2) BM25 [33]: A sparse retrieval method based on exact token matching and term261

frequency. (3) E5 (HNSW) [27, 42]: A dense retrieval method that encodes queries and passages262

into semantic embeddings, using dot product similarity for matching. HNSW provides efficient263

approximate nearest neighbor (ANN) search at the cost of some accuracy. (4) E5 (Exact Match)264

[42]: A dense retrieval method using exact embedding matching without approximation, ensuring265

the highest retrieval accuracy. The retrieval performance of these methods follows the ranking: E5266

(Exact) > E5 (HNSW) > BM25 > Random, as shown in Figure 3(a). Detailed experimental settings267

and case studies can be found in Appendix G.5 and H.268

Results. The training reward curves and final test performance under different search engine settings269

are presented in Figure 3(c) and Table 4. We observe the following trends: (1) Training with stronger270

search engines (e.g., E5 (Exact) and E5 (HNSW)) results in more stable RL training and better271

final performance. (2) Training with weaker search engines (e.g., Random and BM25) leads to272

suboptimal final performance. The search engine call frequency during training is illustrated in273
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Table 5: Retriever generalization results across datasets and test retrievers. (Qwen2.5-7B-Base, PPO)
Train / Test Search Engine BM25 E5 (HNSW) E5 (Exact) Google Search

Bambg GPQA SimpleQA Bambg GPQA SimpleQA Bambg GPQA SimpleQA Bambg GPQA SimpleQA

BM25 0.280 0.273 0.243 0.432 0.293 0.159 0.424 0.323 0.259 0.496 0.313 0.540

E5 (HNSW) 0.240 0.298 0.270 0.400 0.288 0.169 0.440 0.273 0.254 0.528 0.333 0.603

E5 (Exact) 0.312 0.313 0.249 0.400 0.298 0.196 0.424 0.288 0.265 0.560 0.293 0.603

Average 0.277 0.295 0.254 0.411 0.293 0.175 0.429 0.295 0.259 0.528 0.313 0.582

Figure 3(d), revealing: (1) With Random Noise, the agent quickly learns to avoid using the search274

engine, as the retrieved information does not contribute to problem-solving. (2) With BM25, the275

agent gradually increases the number of search engine calls. Since BM25 offers limited retrieval276

quality, the agent needs to issue multiple, refined queries to obtain relevant information. (3) With E5277

(a stronger retriever), the agent learns to utilize the search engine judiciously, making a reasonable278

number of calls to acquire the necessary information efficiently.279

6.2 Inference with Different Search Engines.280

Motivation. In practical scenarios, certain search engines may be unsuitable for integration during281

RL training due to empirical constraints such as accessibility, cost, or API limitations. In such cases,282

it becomes necessary to train the agent using one search engine while employing a different one283

during inference. This raises important research questions: (1) To what extent does the difference284

in search engines between training and inference affect model performance? (2) Does utilizing a285

stronger search engine at inference lead to improved downstream performance?286

Experimental Design. Following the training setup in [13], we investigate these questions by training287

the LLM-based search agent using three different search engines: (1) BM25 [33], (2) E5 [42] with288

approximate nearest neighbor (ANN) search implemented via HNSW [27], and (3) E5 with exact289

search. During inference, we additionally include the online Google Search API1 as a stronger290

retrieval system. To study the importance of the search engine in challenging scenarios, we construct291

a combined benchmark consisting of 512 samples. This benchmark includes the full Bamboogle292

test set [30] (Bambg), the complete GPQA-diamond dataset [32] (GPQA), and a randomly sampled293

subset from SimpleQA [46]. Detailed experimental settings can be found in Appendix G.6.294

Results. As shown in Table 5, we observe the following: (1) LLM search agents trained with a295

specific search engine demonstrate strong generalization capabilities when evaluated with different296

search engines during inference. (2) Leveraging a more powerful search engine at inference time297

(e.g., Google Search) consistently and significantly leads to improved performance, highlighting the298

importance of high-quality retrieval in downstream applications.299

More studies on long-form generation tasks with outcome drive RL and data scaling study can be300

found in Appendix D and E, respectively.301

7 Conclusion302

In this work, we conduct comprehensive empirical studies on key design factors in training LLM-303

based search agents using reinforcement learning. Our investigation reveals that format rewards304

play an important role in certain scenarios, while intermediate retrieval rewards provide limited305

benefit and may not consistently improve the learning process. We demonstrate that the choice of the306

underlying LLM (whether a general-purpose model or one specialized for reasoning) and its scale307

significantly affect the final agent’s performance. Additionally, the selection of the search engine308

plays a non-trivial role in shaping both the RL training dynamics and the robustness of the agent309

during inference. These insights offer practical guidance for developing more capable and reliable310

LLM-based search agents, paving the way for their deployment in real-world applications. Interesting311

future directions include exploring more advanced reward modeling techniques, such as learned312

reward functions and preference-based feedback, as well as studying the agentic behaviors acquired313

through RL in broader scenarios, including tool use and software engineering.314

1https://developers.google.com/custom-search/v1/overview
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A Limitations483

In this work, we conduct an empirical investigation into the use of reinforcement learning (RL)484

for training LLM-based search agents. Our study focuses on three key factors that influence the485

effectiveness of RL in this context: (1) reward formulation, (2) the choice and characteristics of486

the underlying language model, and (3) the role and quality of the search engine. However, our487

analysis is primarily confined to search-based agent scenarios. While this provides valuable insights488

into the challenges and design choices for RL in retrieval-augmented reasoning, it does not fully489

generalize to other classes of LLM-based agents. In particular, RL for more complex and open-ended490

agent behaviors—such as those exhibited by data science assistants, software engineering agents, or491

multi-tool task planners—remains underexplored. These domains may require more sophisticated492

reward structures, long-horizon credit assignment, and multi-step decision-making policies that go493

beyond the scope of search-oriented tasks. We leave a more comprehensive study of RL in broader494

agentic settings as an important future work direction.495

B Positive and Negative Societal Impacts496

Our work aims to improve the efficiency and reliability of large language model (LLM)-based agents497

by leveraging reinforcement learning to optimize their interaction with external tools such as search498

engines. On the positive side, this line of research can enhance the capabilities of LLMs in high-stakes499

domains like scientific research, education, and healthcare, where accurate information retrieval and500

reasoning are critical. By making LLM-based agents more effective at querying and utilizing external501

knowledge sources, our approach has the potential to reduce hallucinations, improve transparency,502

and increase user trust in AI systems. However, as with all advances in powerful LLM-based agents,503

there are potential negative impacts. Improved autonomy in tool usage may lead to unintended misuse,504

such as generating convincing but misleading information or automating complex tasks without505

sufficient human oversight. Moreover, the deployment of search-augmented agents could exacerbate506

access disparities if such technologies are restricted to proprietary systems. Careful consideration507

of ethical deployment, transparency in agent decision-making, and equitable access to advanced AI508

capabilities is essential to mitigate these risks.509

C Format Reward Code510

In this section, we provide the code to judge whether the rollout sequence is in a desired format for a511

search agent.512

Listing 1: Format Reward Code.
513

def is_valid_sequence(text):514

# Find the position of "<|im_start|>assistant" with potential515

whitespace516

assistant_pattern = r" <\|im_start\|>assistant\s*"517

assistant_match = re.search(assistant_pattern , text)518

519

if not assistant_match:520

return False , "Missing assistant marker"521

522

# Extract the content after the assistant marker523

start_pos = assistant_match.end()524

content = text[start_pos :]525

526

# Check for balanced tags527

tags_to_check = ["think", "search", "information", "answer"]528

for tag in tags_to_check:529

opening_count = len(re.findall(f" <{tag}>", content))530

closing_count = len(re.findall(f" </{tag}>", content))531

if opening_count != closing_count:532

return False , f"Mismatch in {tag} tags: {opening_count}533

opening vs {closing_count} closing tags"534

535
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# Now check for proper sequence pattern and no extraneous content536

537

# 1. First split the content by any tags we recognize538

split_pattern = r"( </?(?: think|search|information|answer) >)"539

parts = re.split(split_pattern , content)540

541

# 2. Keep track of the current position in the expected sequence542

state = "start" # start -> think -> search -> information ->543

think -> ... -> answer -> end544

545

# 3. Check each part546

for i, part in enumerate(parts):547

# Skip empty parts548

if not part.strip ():549

continue550

551

# Check if this is a tag552

if re.match(r" </?(?: think|search|information|answer)>", part):553

# This is a tag , check if it’s valid in the current state554

if part == "<think >" and state in ["start", "information"555

]:556

state = "in_think"557

elif part == "</think >" and state == "in_think":558

state = "after_think"559

elif part == "<search >" and state == "after_think":560

state = "in_search"561

elif part == "</search >" and state == "in_search":562

state = "after_search"563

elif part == "<information >" and state == "after_search":564

state = "in_information"565

elif part == "</information >" and state == "in_information566

":567

state = "information"568

elif part == "<answer >" and state == "after_think":569

state = "in_answer"570

elif part == "</answer >" and state == "in_answer":571

state = "end"572

else:573

return False , f"Unexpected tag {part} in state {state}574

"575

else:576

# This is content , check if it’s valid in the current577

state578

if state in ["in_think", "in_search", "in_information", "579

in_answer"]:580

# Content is allowed inside tags581

pass582

elif state in ["start", "after_think", "after_search", "583

information"]:584

# Only whitespace is allowed between tags585

if part.strip():586

return False , f"Unexpected content ’{part.strip()587

}’ between tags (state: {state })"588

else:589

return False , f"Unexpected content in state {state}"590

591

# Check final state592

if state != "end":593

return False , f"Incomplete sequence , ended in state {state}"594

595

return True , "Valid sequence format"596
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D Reward for Long-form Answers597

Motivation. It is demonstrated that rule-based outcome rewards are effective for training LLM-based598

search agents [13, 58]. However, their evaluation primarily focuses on short-form QA tasks, where599

answer correctness can be reliably measured using exact string matching. In real-world applications,600

many queries require long-form, open-ended answers, where evaluating correctness is inherently601

more subjective. We investigate whether rule-based outcome rewards remain effective in training602

LLM search agents for long-form QA tasks.603

Experimental Design. We conduct experiments on two long-form QA datasets: ASQA [38] and604

ELI5 [5]. Models are trained on the ASQA training set and evaluated on its development set605

for in-distribution performance. Out-of-distribution performance is evaluated on the ELI5 dataset.606

Following common practice, we use the F1 score as the rule-based evaluation metric for both training607

and evaluation. Experiments are conducted on both Qwen2.5-3B-Base and Qwen2.5-7B-Base models.608

We compare against several baselines, including Direct Inference (with instruct LLMs), RAG [7]609

(with instruct LLMs), and R1 [9]. Notably, R1 represents an LLM, trained using the RL approach610

from DeepSeek-R1 with the same training data (ASQA training set). We also explore a variant611

of [13, 58] that incorporates the format reward, denoted as “SEARCH-R1 w. Outcome + Format612

reward”.613

Table 6: Study on long-form question answering tasks.
Methods Qwen2.5-3b Qwen2.5-7b Qwen2.5-14b

ASQA ELI5 Avg. ASQA ELI5 Avg. ASQA ELI5 Avg.

Direct 0.251 0.199 0.225 0.303 0.201 0.252 0.289 0.199 0.244
RAG 0.301 0.193 0.247 0.317 0.202 0.259 0.285 0.193 0.239
R1 0.424 0.275 0.350 0.437 0.280 0.358 0.444 0.278 0.361
SEARCH-R1 w. Outcome + Format reward (PPO) 0.480 0.261 0.370 0.471 0.256 0.363 0.442 0.260 0.351
SEARCH-R1 w. Outcome + Format reward (GRPO) 0.492 0.272 0.382 0.504 0.275 0.390 0.501 0.273 0.387

Results. Performance comparisons are shown in Table 6. We observe that “SEARCH-R1 w. Outcome614

+ Format reward” achieves competitive results on long-form QA tasks, demonstrating the effectiveness615

of rule-based outcome rewards with format rewards even in complex, open-ended scenarios. This616

suggests that RL guided by the proposed rewards remains a viable strategy for training search-617

augmented LLMs, even when the evaluation objective shifts from short-form to long-form answer618

generation.619

E Study of Data Scaling620

Motivation. Although RL has shown strong potential in training LLM-based search agents [13],621

the impact of training data size on the RL process remains underexplored. While recent work has622

shown that extremely small datasets can be sufficient for reasoning-oriented RL with LLMs [43], it623

is unclear whether similar data efficiency holds in agentic RL settings, where models must learn to624

reason and interact with external tools in an interleaved manner.625

Experimental Design. Following [13], we use the training sets from NQ [18] and HotpotQA [51] as626

our full training set. To investigate the effect of training data size, we construct subsets of varying627

sizes by randomly sampling k examples from the full dataset, where k ∈ 1, 10, 100, 1000, 10000. We628

conduct experiments using the Qwen2.5-3B-Base model and evaluate both PPO and GRPO as the629

underlying reinforcement learning algorithms.630

Results. We present the training reward dynamics and the number of search engine calls across631

varying training data sizes in Figure 4. The final performance of LLM-based search agents trained632

with different dataset sizes is reported in Table 7. The results reveal several key observations: (1)633

Increasing the size of the training dataset generally leads to improved performance, particularly on634

more complex multi-hop question answering tasks such as HotpotQA and 2Wiki. (2) Smaller datasets635

lead to faster convergence and higher training rewards, which is likely attributable to overfitting. (3)636

For PPO, training with a single example fails to induce meaningful search behavior, while using 10637

examples results in unstable training. In contrast, training with 100 or 1,000 examples enables the638
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Table 7: Final performance with different size of training data. D is the training data. The best
performance is set in bold. †/⋆ represents in-domain/out-domain datasets. (LLM: Qwen2.5-3B-Base)

Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Avg.

PPO
|D| = 1 0.121 0.339 0.119 0.141 0.211 0.017 0.056 0.143
|D| = 10 0.339 0.509 0.379 0.236 0.237 0.048 0.081 0.261
|D| = 100 0.372 0.549 0.382 0.262 0.279 0.063 0.161 0.295
|D| = 1000 0.431 0.599 0.446 0.348 0.355 0.136 0.298 0.373
|D| = 10000 0.430 0.594 0.445 0.369 0.383 0.155 0.315 0.384

GRPO
|D| = 1 0.107 0.287 0.115 0.124 0.202 0.019 0.089 0.134
|D| = 10 0.338 0.515 0.361 0.236 0.223 0.043 0.089 0.258
|D| = 100 0.367 0.529 0.414 0.265 0.302 0.079 0.194 0.307
|D| = 1000 0.421 0.594 0.437 0.363 0.364 0.149 0.315 0.377
|D| = 10000 0.435 0.599 0.435 0.365 0.379 0.137 0.306 0.379
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Figure 4: Data scaling effects in RL training for search agents. (a) Training reward under PPO
with varying dataset sizes: Smaller training sets result in faster convergence and higher training
rewards, likely due to overfitting. (b) Number of search engine calls under PPO: Training with a
single example fails to induce search behavior, while 10 samples lead to unstable learning. In contrast,
using 100 or 1,000 samples enables the model to learn stable search behavior, and training with
10,000 samples further improves performance. (c) Training reward under GRPO with varying
dataset sizes: Similar to PPO, smaller datasets yield faster convergence and higher rewards, again
suggesting potential overfitting. (d) Number of search engine calls under GRPO: A single training
sample is insufficient for search behavior to emerge, whereas larger datasets facilitate stable learning
of search interactions.

model to learn stable search behavior, and performance continues to improve with 10,000 examples.639

Similar trends are observed under GRPO training.640

F More Studies on LLM Types641

In addition to the 7B model analysis in Section 5.1, we further investigate the impact of LLM642

initialization on RL performance using 14B-scale models. Specifically, we compare Qwen2.5-14B-643

Base as a general-purpose LLM and DeepSeek-R1-Distill-Qwen-14B as a reasoning-specialized LLM,644

evaluating both under PPO and GRPO training. The results, summarized in Table 8 and Figure 5,645

yield the following observations: (1) RL training is more stable and effective when initialized from the646

general-purpose LLM, suggesting that such models possess sufficient general reasoning capabilities647

to support the search agent task, even without reasoning-specific pretraining. (2) Although the648

reasoning-specialized LLM eventually learns to perform interleaved reasoning and retrieval with PPO649

and GRPO, the general-purpose LLM consistently achieves higher final performance—likely due to650

its stronger ability to generate effective search queries.651
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Table 8: LLM type study with 14B LLMs. The best performance is set in bold. †/⋆ represents
in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQ† TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆ Avg.

DeepSeek-R1-Distill-Qwen-14b
PPO 0.475 0.634 0.465 0.401 0.363 0.211 0.476 0.432
GRPO 0.305 0.613 0.332 0.285 0.276 0.092 0.347 0.321

Qwen2.5-14b-Base
PPO 0.499 0.680 0.472 0.452 0.431 0.215 0.468 0.459
GRPO 0.500 0.693 0.500 0.481 0.488 0.261 0.516 0.491
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Figure 5: The study of underlying pretrained LLM for development of search agents with RL. (a)
Training reward with different type of LLMs - general-purpose LLM (Qwen2.5-14B-Base) and
reasoning LLM (DeepSeek-R1-Distill-Qwen-14B). We observe that general-purpose LLM performs
better than reasoning LLMs with both PPO and GRPO. (b) # of Search engine calls with different
type of LLMs: Both the general-purpose LLM and the reasoning-specialized LLM demonstrate the
ability to learn when to call the search engine. However, the general-purpose LLM achieves better
final performance, potentially due to its superior capability in formulating effective search queries.

G Experimental Settings652

In this section, we detail the experimental settings used in the studies presented in Sections 4, 5, 6.653

G.1 Section 4.1654

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and655

HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1 × 10−6 for656

Qwen2.5-3B and Qwen2.5-7B, and 5 × 10−7 for Qwen2.5-14B. The critic LLM learning rate is657

fixed at 1× 10−5 across all model sizes. For GRPO training, we use a policy LLM learning rate of658

5× 10−7 for all models. The RL training batch size is set to 512, and the rollout temperature is fixed659

at 1. For GRPO, we set the group size to 5. Each model is trained for up to 600 steps, with early660

stopping triggered if training collapse is observed based on the reward curve. For the results reported661

in Table 1, we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All662

training jobs are conducted on a node equipped with 8 NVIDIA H100 GPUs. We conduct a grid663

search over λf ∈ 0.2, 0.4, 0.6, 0.8 and select the best-performing value for each model: 0.2 for 3B,664

0.4 for 7B, and 0.2 for 14B. We adopt E5 (exact) as the retriever and return the top-3 passages (each665

contains about 200 tokens).666

G.2 Section 4.2667

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and668

HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1× 10−6 for both669

Qwen2.5-3B and Qwen2.5-7B. The critic LLM learning rate is fixed at 1× 10−5 across all model670

sizes. For GRPO training, we use a policy LLM learning rate of 5× 10−7 for both models. The RL671
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training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO, we set the group672

size to 5. Each model is trained for up to 600 steps, with early stopping triggered if training collapse673

is observed based on the reward curve. For the results reported in Table 1, we use either the final674

checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are conducted on a675

node equipped with 8 NVIDIA H100 GPUs. Based on the findings in Section 4.1, we fix λf to 0.2676

for the 3B model and 0.4 for the 7B model. We then perform a grid search over λr ∈ 0.1, 0.3, 0.5677

and select the best-performing value for each model, which is 0.1 for both 3B and 7B. We adopt E5678

(exact) as the retriever and return the top-3 passages (each contains about 200 tokens).679

G.3 Section 5.1680

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and681

HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1× 10−6 for both682

Qwen2.5-7B and DeepSeek-R1-Distill-Qwen-7B. The critic LLM learning rate is fixed at 1× 10−5683

across all model sizes. For GRPO training, we use a policy LLM learning rate of 5× 10−7 for both684

models. The RL training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO,685

we set the group size to 5. Each model is trained for up to 600 steps, with early stopping triggered if686

training collapse is observed based on the reward curve. For the results reported in Table 1, we use687

either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are688

conducted on a node equipped with 8 NVIDIA H100 GPUs. We set λf as 0.2 and λr as 0 for all the689

experiment. We adopt E5 (exact) as the retriever and return the top-3 passages (each contains about690

200 tokens).691

G.4 Section 5.2692

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and693

HotpotQA training sets. For GRPO training, we use a policy LLM learning rate of 5× 10−7 for all694

models. The RL training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO,695

we set the group size to 5. Each model is trained for up to 600 steps, with early stopping triggered if696

training collapse is observed based on the reward curve. For the results reported in Table 1, we use697

either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are698

conducted on a node equipped with 8 NVIDIA H100 GPUs. We set λf as 0.2 for all the experiment.699

We adopt E5 (exact) as the retriever and return the top-3 passages (each contains about 200 tokens).700

G.5 Section 6.1701

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and702

HotpotQA training sets. We adopt Qwen2.5-7B-Base as the LLM backbone and PPO as the RL703

method. For PPO training, the policy LLM learning rates are set to 1 × 10−6 and the critic LLM704

learning rate is fixed at 1 × 10−5. Each model is trained for up to 600 steps, with early stopping705

triggered if training collapse is observed based on the reward curve. For the results reported in Table 1,706

we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs707

are conducted on a node equipped with 8 NVIDIA H100 GPUs. For BM25, we adopt the Pyserini708

implementation 2 and for E5, we adopt Faiss 3. We adopt “HNSW64” for the ANN setting. We return709

the top-3 passages (each contains about 200 tokens) from each search engine.710

G.6 Section 6.2711

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and712

HotpotQA training sets. We adopt Qwen2.5-7B-Base as the LLM backbone and PPO as the RL713

method. For PPO training, the policy LLM learning rates are set to 1 × 10−6 and the critic LLM714

learning rate is fixed at 1 × 10−5. Each model is trained for up to 600 steps, with early stopping715

triggered if training collapse is observed based on the reward curve. For the results reported in716

Table 1, we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All717

training jobs are conducted on a node equipped with 8 NVIDIA H100 GPUs. For BM25, we adopt718

the Pyserini implementation and for E5, we adopt Faiss. We adopt “HNSW64” for the ANN setting.719

2https://github.com/castorini/pyserini
3https://github.com/facebookresearch/faiss
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Given that Google Search API is expensive, we construct a testing set with 512 samples, including720

full test set from Bamboogle [30] (125 samples), GPQA-Diamond [32] (198 samples) and randomly721

selected 189 samples from SimpleQA [46]. We return the top-3 passages (each contains about 200722

tokens) from each search engine.723

H Case Studies on LLMs Trained with Different Search Engines724

Table 9: Case study A of LLM-based search agent trained with different search engines (i.e., random
noise, BM25, and E5).

Question: Which Hells Angel member stabbed and beat an attendant of the 1969 counterculture-era rock
concert in the United States?
Ground Truth: Alan Passaro
w. random noise:
<think> To answer this question, we need to recall the incident involving the 1969 counterculture-era rock
concert known as Woodstock. The incident in question is the killing of festival security guard Thomas Benson.
The Hells Angel member responsible for the stabbing and subsequent death of Benson is.CompareTag
Stevenson. </think>
<answer> Manson </answer>
w. BM25:
<think> To answer this question, I’ll need to identify the Hells Angel member who was involved in the
stabbing and beating of an attendant at a 1969 counterculture-era rock concert in the United States. I’ll use a
search engine to gather information about this event and the responsible Hells Angel member. </think>
<search> Hells Angel member at 1969 counterculture-era rock concert in the United States </search>
<information> Doc 1(Title: "Altamont Free Concert") and for the negative portrayal of the Angels in the
""Gimme Shelter"" film. The conspirators reportedly used a boat to approach a residence where Jagger was
staying on Long Island, New York, the plot failing when the boat was nearly sunk by a storm. Jagger’s
spokesperson has refused to comment on the matter ... </information>
<think> From the search results, I’ve identified that the 1969 counterculture-era rock concert in question is
the Altamont Free Concert. Now, I need to find out which Hells Angel member was involved in stabbing and
beating an attendant at this concert. </think>
<search> Hells Angel member who stabbed and beat an attendant at Altamont Free Concert </search>
<information> Doc 1(Title: "The Rolling Stones") and former members of the band. Two species,
Petroperla mickjaggeri and Lapisperla keithrichardsi, were placed within a new family Petroperlidae. The
new family was named in honour of the Rolling Stones, derived from the Greek ""petra"" that stands for
""stone"". The scientists referred to the fossils as ""Rolling Stoneflies"". The Rolling Stones’ first concert
was on 12 July 1962 at the Marquee Club in London ... </information>
<think> I have found that a Hells Angel member was responsible for stabbing and beating an attendant at
the 1969 Altamont Free Concert. To identify which specific Hells Angel member is being referred to, I will
search for the individual who committed this act. </think>
<search> individual Hells Angel member who stabbed and beat an attendant at Altamont Free Concert
</search>
<information> Doc 1(Title: "The Rolling Stones") and former members of the band. Two species,
Petroperla mickjaggeri and Lapisperla keithrichardsi, were placed within a new family Petroperlidae. The
new family was named in honour of the Rolling Stones, derived from the Greek ""petra"" that stands for
""stone"". The scientists referred to the fossils as ""Rolling Stoneflies"". The Rolling Stones’ first concert
was on 12 July 1962 at the Marquee Club in London ... </information>
<think> After searching for the individual Hells Angel member who stabbed and beat an attendant at the
Altamont Free Concert, I have identified that the member was "Ronnie Biggs" </think>
<answer> Charlie ISHAM </answer>
w. E5:
<think> I need to find out which Hells Angel member stabbed and beat an attendant of the 1969
counterculture-era rock concert in the United States. I’ll search for it. </think>
<search> which Hells Angel member stabbed and beat an attendant of the 1969 counterculture-era rock
concert in the United States </search>
<information> Doc 1(Title: "Death of Meredith Hunter") Death of Meredith Hunter Meredith Curly
Hunter, Jr. (October 24, 1951 – December 6, 1969) was an 18-year-old African-American teen who was
killed at the 1969 Altamont Free Concert. During the performance by The Rolling Stones, Hunter approached
the stage, and was violently driven off by members of the Hells ... </information>
<think> I found out that during the 1969 Altamont Free Concert, a fan named Meredith Hunter was stabbed
and beaten to death by Hells Angel Alan Passaro. Now I need to provide the answer. </think>
<answer> Alan Passaro </answer>
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Table 10: Case B study of LLM-based search agent trained with different search engines (i.e., random
noise, BM25, and E5).

Question: Jacques Mathou starred in Delicatessen, the 1991 French movie in the style of which celebrated
American animator?
Ground Truth: Terry Gilliam
w. random noise:
<think> To answer this question, we need to consider the animated style of Jacques Mathou’s film "Deli-
catessen." The movie is known ... American animator. Therefore, the celebrated American animator that
"Delicatessen" is in the style of is Tim Burton. </think>
<answer> Tim Burton </answer>
w. BM25:
<think> To find out which celebrated American animator Jacques Mathou starred in the 1991 French movie
"Delicatessen," I will search for information about the movie and its connections ... </think>
<search> Delicatessen 1991 French movie celebrated American animator </search>
<information>Doc 1(Title: "Jean-Pierre Jeunet") Jean-Pierre Jeunet Jean-Pierre Jeunet (; born 3 September
1953) is a French film director, producer, and screenwriter. His films are known to mix elements of fantasy,
reality and science fiction either to create idealized realities or to give relevance to mundane situations ...
</information>
<think> From the search results, I have gathered that "Delicatessen" is a 1991 French movie directed by
Jean-Pierre Jeunet and Marc Caro. The movie is a post-apocalyptic black comedy. To find the ... </think>
<search> Delicatessen celebrated American animator connection </search>
<information> Doc 1(Title: Delicatessen) items such as candy and mints are also usually available. Menus
vary according to regional ethnic diversity. Although urban delis rely on ethnic meats (such as pastrami,
corned beef and salami), supermarket delis rely on meats similar to their packaged meats (primarily ham,
turkey and American bologna) ... </information>
<think> I have found that the movie "Delicatessen" is associated with Jean-Pierre Jeunet, who is a celebrated
film ... for the animator mentioned in the question. </think>
<search> Jacques Mathou Delicatessen American animator </search>
<information> Doc 1(Title: "Betty Blue") going to the publisher’s house, slashes his face. Zorg induces
him to drop charges by threatening him with violence, saying she is the only good thing in his life and she is
all he has. Eddy’s mother dies and the friends go to the funeral in Marvejols. There, Eddy asks Zorg and
Betty if they will live in the dead woman’s house and look after ... </information>
<think> Upon further search, I have found that Jacques Mathou starred in "Delicatessen," but he is not an
animator. The question seems to be focused on an American animator related to "Delicatessen." Since I lack
this information, .." </think>
<answer> Fail to answer </answer>
w. E5:
<think> I need to find out which celebrated American animator Delicatessen, the 1991 French movie, is in
the style of. I’ll search for it. </think>
<search> Delicatessen, the 1991 French movie in the style of which celebrated .. </search>
<information> Doc 1(Title: "Delicatessen (film)") Delicatessen (film) Delicatessen is a 1991 French
post-apocalyptic black comedy film directed by Jean-Pierre Jeunet and Marc Caro, starring Dominique
Pinon and Karin Viard. It was released in North America as ""presented by Terry Gilliam."" In a dilapidated
apartment building in a post-apocalyptic country, food is in short supply ... </information>
<think> I found out that Delicatessen is a 1991 French post-apocalyptic black comedy film directed by
Jean-Pierre Jeunet and Marc Caro. Now I need to find out which celebrated American animator it is in the
style of. </think>
<search> which celebrated American animator is Delicatessen in the style of </search>
<information> Doc 1(Title: "Joseph Barbera") Joseph Barbera Joseph Roland Barbera ( ; ; March 24,
1911 – December 18, 2006) was an American animator, director, producer, storyboard artist, and cartoon
artist, whose film and television cartoon characters entertained millions of fans worldwide for much of the
20th century. He was born to Italian immigrants in New York City, </information>
<think> I found out that Delicatessen is in the style of Terry Gilliam. </think>
<answer> Terry Gilliam </answer>

In Section 6.1, we have shown that LLMs trained with different search engines will learn different725

reasoning and search engine calling patterns. In particular, the LLM trained with random noise will726

learn to not call the search engine since the return from the search engine is not informative; the727

LLM trained with a weak search engine (e.g., BM25) tend to call the search engine multiple times,728

while the LLM trained with a stronger search engine (e.g., E5) can call the search engine in a more729

reasonable pattern.730
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In this section, we would like to show case studies of LLMs trained with different search engine as731

below in Table 9 and Table 10. The inference time search engine is the same to the training time732

search engine.733

From these case studies, we find that during training, higher-quality search engines that provide more734

relevant information can encourage the agent to achieve its objectives with fewer search calls, as the735

retrieved content more effectively supports reasoning and decision-making. In contrast, lower-quality736

search engines that return less relevant information may lead the agent to either over-rely on its737

internal knowledge or issue multiple search queries to compensate for inadequate results.738
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NeurIPS Paper Checklist739

The checklist is designed to encourage best practices for responsible machine learning research,740

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove741

the checklist: The papers not including the checklist will be desk rejected. The checklist should742

follow the references and follow the (optional) supplemental material. The checklist does NOT count743

towards the page limit.744

Please read the checklist guidelines carefully for information on how to answer these questions. For745

each question in the checklist:746

• You should answer [Yes] , [No] , or [NA] .747

• [NA] means either that the question is Not Applicable for that particular paper or the748

relevant information is Not Available.749

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).750

The checklist answers are an integral part of your paper submission. They are visible to the751

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it752

(after eventual revisions) with the final version of your paper, and its final version will be published753

with the paper.754

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.755

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a756

proper justification is given (e.g., "error bars are not reported because it would be too computationally757

expensive" or "we were unable to find the license for the dataset we used"). In general, answering758

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we759

acknowledge that the true answer is often more nuanced, so please just use your best judgment and760

write a justification to elaborate. All supporting evidence can appear either in the main paper or the761

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification762

please point to the section(s) where related material for the question can be found.763

IMPORTANT, please:764

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",765

• Keep the checklist subsection headings, questions/answers and guidelines below.766

• Do not modify the questions and only use the provided macros for your answers.767

1. Claims768

Question: Do the main claims made in the abstract and introduction accurately reflect the769

paper’s contributions and scope?770

Answer: [Yes]771

Justification: We clearly show in abstract and introduction the contribution and scope of our772

paper on empirical studies of RL in LLM-based search agent scenarios.773

Guidelines:774

• The answer NA means that the abstract and introduction do not include the claims775

made in the paper.776

• The abstract and/or introduction should clearly state the claims made, including the777

contributions made in the paper and important assumptions and limitations. A No or778

NA answer to this question will not be perceived well by the reviewers.779

• The claims made should match theoretical and experimental results, and reflect how780

much the results can be expected to generalize to other settings.781

• It is fine to include aspirational goals as motivation as long as it is clear that these goals782

are not attained by the paper.783

2. Limitations784

Question: Does the paper discuss the limitations of the work performed by the authors?785

Answer: [Yes]786
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Justification: The limitation of this paper is discussed in Appendix A.787

Guidelines:788

• The answer NA means that the paper has no limitation while the answer No means that789

the paper has limitations, but those are not discussed in the paper.790

• The authors are encouraged to create a separate "Limitations" section in their paper.791

• The paper should point out any strong assumptions and how robust the results are to792

violations of these assumptions (e.g., independence assumptions, noiseless settings,793

model well-specification, asymptotic approximations only holding locally). The authors794

should reflect on how these assumptions might be violated in practice and what the795

implications would be.796

• The authors should reflect on the scope of the claims made, e.g., if the approach was797

only tested on a few datasets or with a few runs. In general, empirical results often798

depend on implicit assumptions, which should be articulated.799

• The authors should reflect on the factors that influence the performance of the approach.800

For example, a facial recognition algorithm may perform poorly when image resolution801

is low or images are taken in low lighting. Or a speech-to-text system might not be802

used reliably to provide closed captions for online lectures because it fails to handle803

technical jargon.804

• The authors should discuss the computational efficiency of the proposed algorithms805

and how they scale with dataset size.806

• If applicable, the authors should discuss possible limitations of their approach to807

address problems of privacy and fairness.808

• While the authors might fear that complete honesty about limitations might be used by809

reviewers as grounds for rejection, a worse outcome might be that reviewers discover810

limitations that aren’t acknowledged in the paper. The authors should use their best811

judgment and recognize that individual actions in favor of transparency play an impor-812

tant role in developing norms that preserve the integrity of the community. Reviewers813

will be specifically instructed to not penalize honesty concerning limitations.814

3. Theory assumptions and proofs815

Question: For each theoretical result, does the paper provide the full set of assumptions and816

a complete (and correct) proof?817

Answer: [NA]818

Justification: [NA]819

Guidelines:820

• The answer NA means that the paper does not include theoretical results.821

• All the theorems, formulas, and proofs in the paper should be numbered and cross-822

referenced.823

• All assumptions should be clearly stated or referenced in the statement of any theorems.824

• The proofs can either appear in the main paper or the supplemental material, but if825

they appear in the supplemental material, the authors are encouraged to provide a short826

proof sketch to provide intuition.827

• Inversely, any informal proof provided in the core of the paper should be complemented828

by formal proofs provided in appendix or supplemental material.829

• Theorems and Lemmas that the proof relies upon should be properly referenced.830

4. Experimental result reproducibility831

Question: Does the paper fully disclose all the information needed to reproduce the main ex-832

perimental results of the paper to the extent that it affects the main claims and/or conclusions833

of the paper (regardless of whether the code and data are provided or not)?834

Answer: [Yes]835

Justification: We provide the detailed experimental setup to reproduce our empirical studies836

in Appendix G.837

Guidelines:838
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• The answer NA means that the paper does not include experiments.839

• If the paper includes experiments, a No answer to this question will not be perceived840

well by the reviewers: Making the paper reproducible is important, regardless of841

whether the code and data are provided or not.842

• If the contribution is a dataset and/or model, the authors should describe the steps taken843

to make their results reproducible or verifiable.844

• Depending on the contribution, reproducibility can be accomplished in various ways.845

For example, if the contribution is a novel architecture, describing the architecture fully846

might suffice, or if the contribution is a specific model and empirical evaluation, it may847

be necessary to either make it possible for others to replicate the model with the same848

dataset, or provide access to the model. In general. releasing code and data is often849

one good way to accomplish this, but reproducibility can also be provided via detailed850

instructions for how to replicate the results, access to a hosted model (e.g., in the case851

of a large language model), releasing of a model checkpoint, or other means that are852

appropriate to the research performed.853

• While NeurIPS does not require releasing code, the conference does require all submis-854

sions to provide some reasonable avenue for reproducibility, which may depend on the855

nature of the contribution. For example856

(a) If the contribution is primarily a new algorithm, the paper should make it clear how857

to reproduce that algorithm.858

(b) If the contribution is primarily a new model architecture, the paper should describe859

the architecture clearly and fully.860

(c) If the contribution is a new model (e.g., a large language model), then there should861

either be a way to access this model for reproducing the results or a way to reproduce862

the model (e.g., with an open-source dataset or instructions for how to construct863

the dataset).864

(d) We recognize that reproducibility may be tricky in some cases, in which case865

authors are welcome to describe the particular way they provide for reproducibility.866

In the case of closed-source models, it may be that access to the model is limited in867

some way (e.g., to registered users), but it should be possible for other researchers868

to have some path to reproducing or verifying the results.869

5. Open access to data and code870

Question: Does the paper provide open access to the data and code, with sufficient instruc-871

tions to faithfully reproduce the main experimental results, as described in supplemental872

material?873

Answer: [Yes]874

Justification: We provide the detailed experimental setup to reproduce our empirical studies875

in Appendix G. We adopt open-sourced datasets in this paper.876

Guidelines:877

• The answer NA means that paper does not include experiments requiring code.878

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/879

public/guides/CodeSubmissionPolicy) for more details.880

• While we encourage the release of code and data, we understand that this might not be881

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not882

including code, unless this is central to the contribution (e.g., for a new open-source883

benchmark).884

• The instructions should contain the exact command and environment needed to run to885

reproduce the results. See the NeurIPS code and data submission guidelines (https:886

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.887

• The authors should provide instructions on data access and preparation, including how888

to access the raw data, preprocessed data, intermediate data, and generated data, etc.889

• The authors should provide scripts to reproduce all experimental results for the new890

proposed method and baselines. If only a subset of experiments are reproducible, they891

should state which ones are omitted from the script and why.892
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• At submission time, to preserve anonymity, the authors should release anonymized893

versions (if applicable).894

• Providing as much information as possible in supplemental material (appended to the895

paper) is recommended, but including URLs to data and code is permitted.896

6. Experimental setting/details897

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-898

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the899

results?900

Answer: [Yes]901

Justification: We provide the detailed experimental setup to reproduce our empirical studies902

in Appendix G.903

Guidelines:904

• The answer NA means that the paper does not include experiments.905

• The experimental setting should be presented in the core of the paper to a level of detail906

that is necessary to appreciate the results and make sense of them.907

• The full details can be provided either with the code, in appendix, or as supplemental908

material.909

7. Experiment statistical significance910

Question: Does the paper report error bars suitably and correctly defined or other appropriate911

information about the statistical significance of the experiments?912

Answer: [No]913

Justification: Each experiment would take several days or even weeks to complete so it is914

hard to conduct repeated experiments. However, we ensure consistent random seeds across915

all methods, thus avoiding randomness in results.916

Guidelines:917

• The answer NA means that the paper does not include experiments.918

• The authors should answer "Yes" if the results are accompanied by error bars, confi-919

dence intervals, or statistical significance tests, at least for the experiments that support920

the main claims of the paper.921

• The factors of variability that the error bars are capturing should be clearly stated (for922

example, train/test split, initialization, random drawing of some parameter, or overall923

run with given experimental conditions).924

• The method for calculating the error bars should be explained (closed form formula,925

call to a library function, bootstrap, etc.)926

• The assumptions made should be given (e.g., Normally distributed errors).927

• It should be clear whether the error bar is the standard deviation or the standard error928

of the mean.929

• It is OK to report 1-sigma error bars, but one should state it. The authors should930

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis931

of Normality of errors is not verified.932

• For asymmetric distributions, the authors should be careful not to show in tables or933

figures symmetric error bars that would yield results that are out of range (e.g. negative934

error rates).935

• If error bars are reported in tables or plots, The authors should explain in the text how936

they were calculated and reference the corresponding figures or tables in the text.937

8. Experiments compute resources938

Question: For each experiment, does the paper provide sufficient information on the com-939

puter resources (type of compute workers, memory, time of execution) needed to reproduce940

the experiments?941

Answer: [Yes]942

Justification: We provide the detailed experimental setup to reproduce our empirical studies943

in Appendix G.944
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Guidelines:945

• The answer NA means that the paper does not include experiments.946

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,947

or cloud provider, including relevant memory and storage.948

• The paper should provide the amount of compute required for each of the individual949

experimental runs as well as estimate the total compute.950

• The paper should disclose whether the full research project required more compute951

than the experiments reported in the paper (e.g., preliminary or failed experiments that952

didn’t make it into the paper).953

9. Code of ethics954

Question: Does the research conducted in the paper conform, in every respect, with the955

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?956

Answer: [Yes]957

Justification: We strictly follow the NeurIPs Code of Ethics.958

Guidelines:959

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.960

• If the authors answer No, they should explain the special circumstances that require a961

deviation from the Code of Ethics.962

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-963

eration due to laws or regulations in their jurisdiction).964

10. Broader impacts965

Question: Does the paper discuss both potential positive societal impacts and negative966

societal impacts of the work performed?967

Answer: [Yes]968

Justification: The positive societal impacts and negative societal impacts are discussed in969

Appendix B970

Guidelines:971

• The answer NA means that there is no societal impact of the work performed.972

• If the authors answer NA or No, they should explain why their work has no societal973

impact or why the paper does not address societal impact.974

• Examples of negative societal impacts include potential malicious or unintended uses975

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations976

(e.g., deployment of technologies that could make decisions that unfairly impact specific977

groups), privacy considerations, and security considerations.978

• The conference expects that many papers will be foundational research and not tied979

to particular applications, let alone deployments. However, if there is a direct path to980

any negative applications, the authors should point it out. For example, it is legitimate981

to point out that an improvement in the quality of generative models could be used to982

generate deepfakes for disinformation. On the other hand, it is not needed to point out983

that a generic algorithm for optimizing neural networks could enable people to train984

models that generate Deepfakes faster.985

• The authors should consider possible harms that could arise when the technology is986

being used as intended and functioning correctly, harms that could arise when the987

technology is being used as intended but gives incorrect results, and harms following988

from (intentional or unintentional) misuse of the technology.989

• If there are negative societal impacts, the authors could also discuss possible mitigation990

strategies (e.g., gated release of models, providing defenses in addition to attacks,991

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from992

feedback over time, improving the efficiency and accessibility of ML).993

11. Safeguards994

Question: Does the paper describe safeguards that have been put in place for responsible995

release of data or models that have a high risk for misuse (e.g., pretrained language models,996

image generators, or scraped datasets)?997
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Answer: [NA]998

Justification: [NA]999

Guidelines:1000

• The answer NA means that the paper poses no such risks.1001

• Released models that have a high risk for misuse or dual-use should be released with1002

necessary safeguards to allow for controlled use of the model, for example by requiring1003

that users adhere to usage guidelines or restrictions to access the model or implementing1004

safety filters.1005

• Datasets that have been scraped from the Internet could pose safety risks. The authors1006

should describe how they avoided releasing unsafe images.1007

• We recognize that providing effective safeguards is challenging, and many papers do1008

not require this, but we encourage authors to take this into account and make a best1009

faith effort.1010

12. Licenses for existing assets1011

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1012

the paper, properly credited and are the license and terms of use explicitly mentioned and1013

properly respected?1014

Answer: [NA]1015

Justification: [NA]1016

Guidelines:1017

• The answer NA means that the paper does not use existing assets.1018

• The authors should cite the original paper that produced the code package or dataset.1019

• The authors should state which version of the asset is used and, if possible, include a1020

URL.1021

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1022

• For scraped data from a particular source (e.g., website), the copyright and terms of1023

service of that source should be provided.1024

• If assets are released, the license, copyright information, and terms of use in the1025

package should be provided. For popular datasets, paperswithcode.com/datasets1026

has curated licenses for some datasets. Their licensing guide can help determine the1027

license of a dataset.1028

• For existing datasets that are re-packaged, both the original license and the license of1029

the derived asset (if it has changed) should be provided.1030

• If this information is not available online, the authors are encouraged to reach out to1031

the asset’s creators.1032

13. New assets1033

Question: Are new assets introduced in the paper well documented and is the documentation1034

provided alongside the assets?1035

Answer: [NA]1036

Justification: [NA]1037

Guidelines:1038

• The answer NA means that the paper does not release new assets.1039

• Researchers should communicate the details of the dataset/code/model as part of their1040

submissions via structured templates. This includes details about training, license,1041

limitations, etc.1042

• The paper should discuss whether and how consent was obtained from people whose1043

asset is used.1044

• At submission time, remember to anonymize your assets (if applicable). You can either1045

create an anonymized URL or include an anonymized zip file.1046

14. Crowdsourcing and research with human subjects1047
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Question: For crowdsourcing experiments and research with human subjects, does the paper1048

include the full text of instructions given to participants and screenshots, if applicable, as1049

well as details about compensation (if any)?1050

Answer: [NA]1051

Justification: [NA]1052

Guidelines:1053

• The answer NA means that the paper does not involve crowdsourcing nor research with1054

human subjects.1055

• Including this information in the supplemental material is fine, but if the main contribu-1056

tion of the paper involves human subjects, then as much detail as possible should be1057

included in the main paper.1058

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1059

or other labor should be paid at least the minimum wage in the country of the data1060

collector.1061

15. Institutional review board (IRB) approvals or equivalent for research with human1062

subjects1063

Question: Does the paper describe potential risks incurred by study participants, whether1064

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1065

approvals (or an equivalent approval/review based on the requirements of your country or1066

institution) were obtained?1067

Answer: [NA]1068

Justification: [NA]1069

Guidelines:1070

• The answer NA means that the paper does not involve crowdsourcing nor research with1071

human subjects.1072

• Depending on the country in which research is conducted, IRB approval (or equivalent)1073

may be required for any human subjects research. If you obtained IRB approval, you1074

should clearly state this in the paper.1075

• We recognize that the procedures for this may vary significantly between institutions1076

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1077

guidelines for their institution.1078

• For initial submissions, do not include any information that would break anonymity (if1079

applicable), such as the institution conducting the review.1080

16. Declaration of LLM usage1081

Question: Does the paper describe the usage of LLMs if it is an important, original, or1082

non-standard component of the core methods in this research? Note that if the LLM is used1083

only for writing, editing, or formatting purposes and does not impact the core methodology,1084

scientific rigorousness, or originality of the research, declaration is not required.1085

Answer: [Yes]1086

Justification: This paper focuses on LLM-based search agents, with extensive empirical1087

investigations into training large language models using reinforcement learning.1088

Guidelines:1089

• The answer NA means that the core method development in this research does not1090

involve LLMs as any important, original, or non-standard components.1091

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1092

for what should or should not be described.1093
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