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Abstract

Reinforcement learning (RL) has demonstrated strong potential in training large
language models (LLMs) capable of complex reasoning for real-world problem
solving. More recently, RL has been leveraged to create sophisticated LLM-based
search agents that adeptly combine reasoning with search engine use. While the
use of RL for training search agents is promising, the optimal design of such
agents remains not fully understood. In particular, key factors—such as (1) reward
formulation, (2) the choice and characteristics of the underlying LLM, and (3) the
role of the search engine in the RL process—require further investigation. In this
work, we conduct comprehensive empirical studies to systematically investigate
these and offer actionable insights. We highlight several key findings: format
rewards are effective in improving final performance, whereas intermediate retrieval
rewards have limited impact; the scale and initialization of the LLM (general-
purpose vs. reasoning-specialized) significantly influence RL outcomes; and the
choice of search engine plays a critical role in shaping RL training dynamics and
the robustness of the trained agent during inference. These establish important
guidelines for successfully building and deploying LLM-based search agents in
real-world applications.

1 Introduction

Large language models (LLMs) [57] have demonstrated exceptional performance across a range
of natural language processing tasks, including question answering [26], summarization [56], and
open-ended text generation [8]. Recently, inspired by developments such as DeepSeek-R1 [9], rein-
forcement learning (RL) [14, 39] has been increasingly applied to LLMs to unlock more advanced
reasoning capabilities [45]. LLMs trained via RL have shown strong performance in tasks requiring
logical reasoning [49] and visual understanding [55], with promising applications emerging in spe-
cialized domains such as finance [25] and medicine [19]. However, these models often remain limited
to self-contained reasoning and lack the ability to interact with external environments or leverage
external tools. To address this, recent work has explored using RL to train LLMs as interactive agents,
capable of engaging with external environments and invoking tools, as demonstrated in multi-turn
game tasks [44] and user interface control tasks [24, 48].

A key agentic application for LLMs is search, where models decompose complex problems, perform
multi-turn reasoning, and iteratively interact with search engines to retrieve relevant information.
Prior work has explored prompt-based approaches [11, 41] and supervised fine-tuning (SFT) methods
[3, 34] to equip LLMs with search capabilities. However, these approaches face key limitations:
LLMs typically lack strong search proficiency from pretraining alone, and SFT requires costly manual
annotation of intermediate reasoning trajectories, making it challenging to scale. In contrast, recent
studies [4, 13, 37, 58] demonstrate that RL with outcome-based rewards offers an effective alternative
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for training LLMs to perform reasoning and search in an interleaved manner—forming what is
referred to as an LLM-based search agent. This training paradigm enhances the model’s ability
to interact with search engines while eliminating the need for explicit supervision of intermediate
reasoning steps, thus enabling scalable and more flexible agent learning.

While recent RL-based methods have demonstrated the potential to train effective LLM-based search
agents, several key questions remain underexplored: (1) How does reward design affect search
agent training? Although prior work [13] shows that outcome-based rewards alone can activate
reasoning and search capabilities, it is unclear whether auxiliary rewards such as format rewards
(which signal adherence to the agentic action format [9]) or intermediate retrieval rewards (which
iteratively incentivize outcome-relevant retrievals [22]) can further enhance performance. (2) How
does the backbone LLM influence RL dynamics? As suggested by [6], the choice of the base model is
critical. Factors such as model scale (e.g., 3B vs. 32B) and type (e.g., general-purpose vs. reasoning-
specialized) can significantly impact the learning dynamics. (3) How does the search engine choice
affect the learned agent? This includes understanding how the quality of different search engines
influence RL training dynamics and whether the resulting agent remains robust when the retrieval
system is changed at inference time.

In this paper, we conduct comprehensive empirical studies to address the aforementioned research
questions. Our key findings are summarized as follows: (1) Reward Design. We observe that
incorporating a format reward significantly improves performance, particularly when training from a
base LLM rather than an instruction-tuned one. In contrast, intermediate retrieval rewards do not yield
consistent performance improvements, suggesting limited utility. (2) Underlying LLM Backbone.
General-purpose LLMs outperform reasoning-specialized LLMs in RL settings, likely due to the
latter’s weaker instruction-following capabilities at the early stages of training. Furthermore, scaling
up the backbone model generally enhances final performance, although with diminishing returns. (3)
Search Engine Choice. The quality of the search engine used during training strongly influences RL
dynamics. Training with a non-informative search engine (e.g., random noise) leads the agent to avoid
retrieval altogether, while a weak engine (e.g., BM25 [33]) results in frequent but less efficient search
calls. In contrast, strong engines (e.g., dense retrievers) yield more stable learning. At inference
time, the search agent is generally robust to diverse retrieval systems, and stronger search engines
consistently lead to better downstream performance.

2 Related Works

2.1 Large Language Models and Reinforcement Learning

RL [14, 39] offers a principled framework for sequential decision-making, where an agent optimizes
its behavior by interacting with an environment and maximizing cumulative rewards. In the context
of LLM tuning, RL was popularized by Reinforcement Learning from Human Feedback (RLHF)
[12, 17, 28], which first trains a reward model from human preference data [20] and then fine-tunes
the policy LLM via Proximal Policy Optimization (PPO). While PPO enables high-quality alignment,
it incurs significant computational overhead due to iterative optimization steps. Recent efforts to
strike a better balance include Group Relative Policy Optimization (GRPO) [35], which removes the
dependency on a learned value function by leveraging group-based baseline estimation, and RLOO
[2], a simplified variant of REINFORCE [47] tailored for LLM training. More recently, DAPO
[53] extends GRPO by introducing four key innovations tailored for large-scale LLM reinforcement
learning: clip-higher reward capping, dynamic sampling for adaptive data efficiency, a token-level
objective for finer-grained supervision, and overlong reward shaping to handle extended sequences.
In parallel, VAPO [54] builds upon PPO by proposing a value-model-augmented framework, incor-
porating value pretraining, a decoupled Generalized Advantage Estimator (GAE), and an auxiliary
language modeling loss on positive examples to improve credit assignment and stability. While these
advancements have significantly enhanced the scalability and efficiency of RL-based LLM tuning,
their application to LLM-driven search and reasoning tasks remains underexplored, highlighting a
critical direction for future exploration.

2.2 Large Language Models as Search Agents

LLMs [1, 40, 57] have demonstrated strong reasoning capabilities [9] but often struggle with halluci-
nations and insufficient domain-specific knowledge [21, 29]. To address these, recent efforts explore
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integrating LLMs with search engines to enable dynamic access to external knowledge. A prominent
direction is to treat search engines as interactive tools that LLMs can call during inference [34]. This
search-as-a-tool paradigm allows models to iteratively formulate queries, retrieve relevant content,
and revise their responses based on external evidence [41]. Prompt-based methods such as IRCoT
[41] and ReAct [52] enable interleaved reasoning and retrieval, while Toolformer [34] and self-RAG
[3] uses supervised fine-tuning to learn when and how to call a search engine. However, these methods
often depend on high-quality demonstration data, which is difficult to scale. As an alternative, RL.
offers a scalable and data efficient solution. Inspired by [9], recent works [4, 13, 37, 58] show that
LLMs can acquire complex reasoning and search behaviors through RL only using outcome-based
rewards. Despite this promise, there is still a lack of in-depth empirical study of different design
choices in RL for LLM search agents.

3 Preliminary

Reasoning-Search Interleaved LLM Agent (i.e., LLM-based Search Agent) [13, 36]. We consider
an agentic LLM that performs interleaved, multi-turn reasoning and search engine interactions. In each
iteration, the LLM-based search agent first engages in reasoning to analyze the current context and
identify what additional information is needed. It then formulates a search query to retrieve relevant
external information, which is incorporated into the context for subsequent reasoning. This iterative
process continues until the model determines that sufficient information has been gathered to produce
a final answer. The overall interaction follows a multi-turn reasoning—search loop: reasoning —
search — context — reasoning — search — ... — reasoning — answering. To facilitate this process
[52], the reasoning steps are enclosed within <think> </think>, search queries are wrapped in
<search> </search>, retrieved information is inserted into <information> </information>,
and the final answer is placed within <answer> </answer>.

RL for Training an LL.M-based Search Agent. In [13, 58], they propose an RL objective to
explicitly incorporate a search engine R during optimization for LLM search agent training. The
objective is formalized as:

H}T%XE:EN'D,yNﬂg(-lm;R) [T¢(£L’, y)] - B]D)KL [7T0(y | xZ; R) || ﬂ—l’ef(y | LL‘,RH ) (1)

where 7y denotes the trainable policy, 7 is a fixed reference model, r, represents the reward
function, and Dy; denotes the KL divergence. Here, « are sampled from the dataset D, and y denote
the output sequence interleaving reasoning steps with search engine retrievals.

In contrast to prior approaches that generate rollouts exclusively from the model 7y (- | x) [28, 31],
[13, 58] augment the generation process by interleaving retrievals via my (- | 2; R), which can be
interpreted as my (- | ) @ R, where Q) denotes a retrieval-reasoning composition.

The reward function r4 serves as the primary optimization signal. [13, 58] employ a rule-based
reward system focusing exclusively on final outcome rewards, which evaluate the correctness of
the final answer. In factual reasoning tasks, correctness is assessed using exact string match (EM)
evaluation: 74(x,y) = EM(apred, Ggold), Where apreq is the predicted final answer extracted from the
model’s response y, and aglq is the ground-truth answer. In other words,

1 if apreq = Qgold;s
ro(w,y) = { o ©)
P 0 if Gpred 7£ Qgold,

Although prior methods have demonstrated strong performance, there remains a notable gap in
empirical studies systematically evaluating key design choices—specifically, the effectiveness of
different reward formulations, the influence of underlying LLM characteristics, and the impact of

search engine selection—on the reinforcement learning process for training search agents.

4 RL Rewards for LLM-based Search Agents

In [13, 58], an outcome-driven reward (i.e., string exact match) is employed through the RL process
to guide the LLM on learning the reasoning and interleaved search engine calling functionality.
However, in search scenarios, the LLMs need to follow a specific format in order to call the search
engine (i.e., format reward) and the relevance of the intermediate search results can also guide the
LLM on generating the proper queries (i.e., intermediate retrieval reward).
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Table 1: Empirical study of the format reward. Outcome only refers to the RL variant with only the
outcome reward. Base/Instruct refer to the version of the underlying LLM. Ay = 0.2 for 3B/14B and

Ay = 0.4 for 7B. The best performance is set in bold. t /* represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQT TriviaQA* PopQA* HotpotQAT 2wiki* Musique* Bamboogle*  Avg.

Qwen2.5-3B-Base/Instruct

Outcome only (base) ~ 0.406  0.587 0.435 0.284 0.273 0.049 0.088 0.303
ppo . _ V- formatreward 0428  0.607 0459 0371 0387 _ 0150 = 0323 0389
Outcome only (instruct)  0.341 0.545 0378 0.324 0.319 0.103 0.264 0.325
w. formatreward 0356  0.557 0.393 0.327 0.314 0.122 0.266 0.334
77777 Outcome only (base) ~ 0.421 0583 0413 0297 0274 0066 0128 0312
GRPO . _ Vformatrvard _ 0429 0602 0435 0372 0383 0048 0307 0382
Outcome only (instruct)  0.397 0.565 0.391 0.331 0.310 0.124 0.232 0.336
w. formatreward  0.346  0.552 0.371 0.297 0.300 0.098 0.266 0.319

Qwen2.5-7B-Base/Instruct

Outcome only (base) 0.480 0.638 0.457 0.433 0.382 0.196 0.432 0.431
ppo . _ W formatrevard | 0488 0644 0469 0436 0412 0187 0403 0434
Outcome only (instruct)  0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385
w. format reward 0.383 0.593 0.399 0.376 0.317 0.151 0.371 0.370
77777 Outcome only (base) 0395 0560 0388 0326 0297 0125 0360 0350
GRPO . _ Vlormatrovard _ 0458 063 0442 0412 0404 0180 041l 0420
Outcome only (instruct)  0.429 0.623 0.427 0.386 0.346 0.162 0.400 0.396
w. format reward 0.393 0.609 0.397 0.367 0.344 0.147 0.387 0.378

Qwen2.5-14B-Base/Instruct

Outcome only (base) 0.486 0.676 0.480 0.468 0.470 0.241 0.528 0.479
PPO - 7W.7f07rmi1l rfwgrti B 1).47997 B 9.67807 o 07.47727 _ 70.74572 o 70.47317 _ 7027157 o 70116% o 07.45797
Outcome only (instruct) 0.424 0.660 0.442 0.436 0.379 0.210 0.480 0.433
w. format reward 0.449 0.682 0.466 0.447 0.422 0.224 0.500 0.456
77777 Outcome only (base) ~ 0.415  0.680 0488 0451 0461 0230 0508 0462
GRPO . _ W formatrovard _ 0.50 0693 0500 0481 0488 0261 __ 0SI6 0491
Outcome only (instruct) 0.482 0.667 0.434 0.429 0.424 0.191 0.492 0.446
w. format reward 0.488 0.677 0.482 0.455 0.470 0.211 0.516 0.471

4.1 Format Reward

Motivation. When training an LLM-based search agent capable of reasoning and invoking external
search engines, it is common to adopt the reasoning-action-observation workflow [52], where relevant
content is wrapped within special tokens such as <think> </think>, <search> </search>, and
<information> </information>. For instance, if the LLLM fails to correctly format its search
queries using <search> </search>, it cannot successfully trigger the search engine and retrieve the
external information needed for problem solving. Thus, adhering to the prescribed format is critical
for ensuring the effectiveness of the search agent. In this section, we explore how incorporating a
format reward influences the RL training process of a search agent.

Experimental Design. In addition to the outcome reward defined in [13, 58], we introduce a format
reward, resulting in the final reward function r¢(x, y):

1 if Gpred = QAgold A fformat(y) = True,

T¢(aj, y) = L=y %f pred = Qgold /\ frormat (y) i False, 3)
As if aprea 7 Ggota A f format () = True,
0 if Qpred 7é Ggold /\ fformat(y) = False,

where froma(+) verifies whether the response y follows the correct reasoning-action-observation
format, including the appropriate use of special tokens. We assign a reward of Ay when the LLM
generates an incorrect answer in the correct format, and a reward of 1 — Ay when the answer is correct
but the format is incorrect. Details of the forma(-) implementation are provided in Appendix C. We
follow [13] for the training and testing datasets and use exact match as the outcome reward. Detailed
experimental settings can be found in Appendix G.1.
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(a) Training reward (Af) (b) Ay sensitivity analysis (c) Training reward (\,) (d) A, sensitivity analysis

Figure 1: Empirical analyses on format reward and intermediate retrieval reward. (a) Training
reward curves with varying format reward scaling factors (Af); larger Ay values lead to faster
convergence. (b) Impact of A; on final model performance; a small ¢ is ineffective, while an
excessively large Ay may cause overfitting to format reward. (c) Training reward curves under
different intermediate retrieval reward scaling factors (\,); varying A, has limited effect on
learning dynamics. (d) Effect of A, on final model performance; increasing A, degrades performance,
suggesting that intermediate retrieval rewards are unnecessary, as the outcome reward sufficiently
encourages effective query formulation. (LLM: Qwen2.5-7B-Base; RL Algorithm: PPO)

Results. Table 1 reports results across various datasets, LLM sizes, and RL algorithms. Detailed
studies on Ay using Qwen2.5-7B-Base and PPO are presented in Figures 1(a) and (b). We summarize
the key findings as follows: (1) Adding a format reward consistently improves final model perfor-
mance, particularly for base LLMs. This is because base LLMs lack strong instruction-following
capabilities for search engine invocation, and the format reward helps mitigate this limitation. (2)
Format reward accelerates RL convergence; larger Ay values lead to faster convergence by explicitly
guiding the model to issue correctly formatted search queries and interpret results effectively. (3) The
choice of Ay significantly impacts final performance. While a small A is ineffective, an excessively
large Ay may cause overfitting, ultimately degrading final performance.

4.2 Intermediate Retrieval Reward

Motivation. Beyond the outcome reward, which directly evaluates the correctness of the final answer
after multiple search interactions, it is possible to incorporate intermediate retrieval rewards that assess
the quality of the retrieved documents during each search step [22]. By assigning positive rewards to
cases where relevant information is retrieved, the LLM can be encouraged to generate higher-quality
queries that yield more relevant retrieval results [22]. We investigate whether introducing intermediate
retrieval rewards benefits the RL training process of LLM-based search agents.

Experimental Design. Building upon the outcome reward from [13, 58] and the format reward
introduced in Section 4.1, we incorporate a retrieval correctness component, resulting in the following
final reward function r4(z, y):

1 if aprea = agola A frormat(y) = True,
1- /\f if Qpred = QAgold A fformat(y) False,
re(2,y) = S Af + A if Gpred 7# Ggold A frormat(y) = True A fre(y) = True, 4)
)\f if Qpred 7£ Ggold /\ fformat(y) True A fret(y) = False,
0 if Qpred 7é Qgold A fformat( ) = False,

where fe () determines whether the retrieved documents are relevant to the ground truth answer. The
retrieved information can only be extracted when the rollout sequence follows the desired format, as
described in Section 4.1 and the purpose of the intermediate retrieval reward is to provide a positive
learning signal even when the final answer is incorrect. Thus, we introduce an additional reward term
Ar When apreq 7 Ggold A ftormat(y) = True. In our experiments, we focus on short-form QA datasets,
so we apply substring exact match as f(-), following [11, 23], to evaluate whether ground truth
appears in retrieved passages. Under this setting, even if LLM fails to generate correct final answer,
it can still receive a positive reward for issuing effective queries that retrieve relevant documents.
Detailed experimental settings can be found in Appendix G.2.

Results. Performance comparisons with and without intermediate retrieval rewards are presented in
Table 2. The effect of varying A, is illustrated in Figures 1(c) and (d). Key observations include: (1)
Adding intermediate retrieval rewards does not significantly improve final performance for either PPO



185
186
187
188
189
190
191
192

193

194
195
196

197

198
199
200
201
202

204
205

207
208

Table 2: Study of the intermediate retrieval reward. A, = 0.1. The best performance is set in bold.
T /* represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQT TriviaQA* PopQA* HotpotQAT 2wiki* Musique* Bamboogle* Avg.

Qwen2.5-3B-Base

PPO w.o. retrieval reward  0.428 0.607 0.459 0.371 0.387 0.150 0.323 0.389
w. retrieval reward 0.405 0.567 0.407 0.326 0.330 0.104 0.242 0.340
) ER;07 w.o. retrieval reward 0429 0602 0435 0372 0383 0148 0307 0382
w. retrieval reward 0.434 0.605 0.433 0.379 0.378 0.142 0.323 0.385
Qwen2.5-7B-Base
’E; (; © wo. retrieval reward 0488 0.644 0469 0436 0412 0187 0403 0434
w. retrieval reward 0.472 0.629 0.452 0.436 0.402 0.180 0.363 0.419
) G};& w.o. retrieval reward  0.458  0.632 0442 0412 0404 0180 0411 0420
w. retrieval reward 0.453 0.628 0.450 0.416 0.375 0.164 0.387 0.410

Table 3: Performance of general LLM and reasoning LLM trained with RL on search agent task. The
best performance is set in bold. T /* represents in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQT TriviaQA* PopQA* HotpotQAT 2wiki* Musique* Bamboogle*  Avg.

DeepSeek-R1-Distill-Qwen-7B

PPO 0.389 0.542 0.402 0.334 0.326 0.122 0.290 0.344
GRPO 0.061 0.155 0.068 0.098 0.194 0.010 0.113 0.100

Qwen2.5-7B-Base

PPO 0.488 0.644 0.469 0.436 0.412 0.187 0.403 0.434
GRPO 0.458 0.632 0.442 0.412 0.404 0.180 0.411 0.420

or GRPO. This may be attributed to the outcome reward already providing sufficient learning signal
for generating effective queries, as a successful search engine call that retrieves relevant information
directly contributes to producing the correct answer and receiving a positive reward. In contrast,
the substring EM-based intermediate retrieval reward may overly constrains the retrieval trajectory
and thus deviates the naturally learned trajectory from the outcome reward. (2) Varying A, has
limited impact on learning dynamics. Increasing A, consistently leads to degraded performance,
suggesting that intermediate retrieval rewards are unnecessary. The outcome reward alone is sufficient
to encourage effective query formulation and downstream task success.

S The Impact of Underlying Backbone LLM

In this section, we study how the choice of the LLM influences RL training for LLM-based search
agents. Our investigation centers on two key characteristics of the base LLM: (1) type (i.e., general-
purpose vs. reasoning-optimized), and (2) scale (i.e., 3B, 7B, 14B, and 32B).

5.1 Study of LLM types

Motivation. Effective training of LLM-based search agents via RL requires the LLM to possess
two fundamental capabilities: instruction following and reasoning. Instruction following enables
the model to learn how to properly issue search engine calls in the correct format, while reasoning
equips the model to analyze retrieved information and solve complex problems. However, it remains
underexplored whether general-purpose or reasoning-specialized LLMs provide a more suitable
foundation for RL-based training.

Experimental Design. We follow the experimental setup in [13] and conduct RL training on two
LLM variants: (1) Qwen2.5-7B-Base [50], a general-purpose 7B parameter pretrained LLM, and (2)
DeepSeek-R1-Distill-Qwen-7B [9], a 7B reasoning-specialized model distilled from DeepSeek-R1.
Both models are trained under identical conditions to ensure a fair comparison. Detailed experimental
settings and results on 14B LLMs can be found in Appendix G.3 and F.
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Figure 2: The study of underlying pretrained LLM for development of LLM-based search agents
with RL. (a) Training reward with different type of LLMs - general-purpose LLM (Qwen2.5-7B-
Base) and reasoning LLM (DeepSeek-R1-Distill-Qwen-7B). We observe that general-purpose LLM
performs better than reasoning LLMs with both PPO and GRPO. (b) # of Search engine calls with
different type of LLMs: General LLM learns to call the search engine faster than the reasoning
LLM. This potentially stems from the fact the general LLMs are better for following instructions. (c)
Training reward with different size of LLMs: Larger LLMs can lead to higher training reward.
(d) Test accuracy with different size of LLMs: On the challenging Bamboogle dataset [30], the
performance increases consistently as the LLM size increases.

Results. The training reward and search engine call frequency curves are presented in Figures 2(a)
and 2(b), respectively. Final performance results are summarized in Table 3. We observe the following
key findings: (1) The RL training process is more stable and effective when initialized with the
general-purpose LLMs compared to the reasoning-specialized ones. This suggests that the general-
purpose ones already possess sufficient basic reasoning capabilities to support the search agent task
without requiring specialized pretraining. (2) The reasoning LLM struggles to initiate search engine
calls during the early stages of training, leading to insufficient exploration. In the absence of positive
reward signals from successful rollouts involving search, the model fails to consistently learn to
engage with the search engine. This behavior primarily stems from the reasoning LLMs’ limited
instruction-following capabilities, which hinder their ability to learn the correct format for invoking
the search API. (3) While the reasoning LLMs eventually learn to perform interleaved reasoning and
retrieval when trained with PPO, this progress is slow and gradual. In contrast, training with GRPO
leads to training collapse. We attribute this to PPO’s lower variance and more stable policy updates,
which better support the complex exploration required for search-augmented reasoning tasks.

5.2 The Scale Up of LLM-based Search Agent

Motivation. Prior work has demonstrated that LLM capabilities improve predictably with increased
model size, as described by scaling laws [10, 15]. However, it remains unclear whether similar scaling
behavior holds when LLMs are further RL-tuned as search agents. Specifically, does increasing
model size consistently improve the agent’s ability to reason and interact with search engines?

Experimental Design. We evaluate scaling laws using RL with both outcome-based rewards and
additional format rewards, as introduced in Section 4.1. Following the experimental setup in [13],
we train Qwen2.5 models of varying sizes (3B, 7B, 14B, 32B) on the NQ and HotpotQA training
datasets using the GRPO algorithm. We use a fixed learning rate of 5 x 10~7, and evaluate on the
out-of-distribution Bamboogle dataset. Detailed experimental settings can be found in Appendix G.4.

Results. As shown in Figure 2(c), the training reward consistently improves with increasing LLM
size, indicating that larger models are better able to learn effective reasoning and search engine usage.
The corresponding inference performance is presented in Figure 2(d). While test performance also
improves with model size, the rate of improvement diminishes. This suggests that the search agent
task, unlike pure language modeling, relies less on parametric knowledge stored in large LLMs, and
more on effective external information acquisition through retrieval.

6 Improved LL.M-based Search Agents with Stronger Search Engines

The choice of search engine plays a critical role in determining retrieval quality, which in turn
influences both the RL training dynamics and the inference-time performance of the LLM-based
search agent. During training, higher-quality search engines that provide more relevant information
can encourage the agent to achieve its objectives with fewer search calls, as the retrieved content more
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Table 4: Final performance with different search engine for both training and inference. The best

performance is set in bold. (LLM: Qwen2.5-7B-Base; RL: PPO)

Engine NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.
Recall EM Recall EM Recall EM Recall EM Recal EM Recall EM Recall EM Recall EM
Random 0.000 0.237 0.000 0.494 0.000 0.177 0.000 0.217 0.000 0.269 0.000 0.058 0.000 0.234 0.000 0.241
BM25 0.216 0.341 0.445 0.607 0.255 0.322 0.273 0404 0.216 0370 0.076 0.137 0.061 0.280 0.176 0.352
E5 (HNSW) 0.436 0.468 0.509 0.621 0.304 0.366 0.237 0.372 0.146 0.287 0.092 0.137 0.104 0.400 0.261 0.379
ES (Exact)  0.462 0.481 0.561 0.638 0.423 0.457 0.276 0.433 0.198 0.382 0.098 0.196 0.107 0.424 0.304 0.430
0.30{ . BM25 = 0.5 351+ Random
0.28 E5 (HNSW) . _30 BM25
c o6l 4 ES (Exact) ‘;:"'4 T 2.5 —— E5 (HNSW)
oY ——
3 0.24 gO.S e eeedlaak -§z.o o E5 (Exact)
1 o2 —— Random 815
& 0.22 g BM25 w0
0.20 Foa —+— E5 (HNSW) * 05
0.18 o 0.0 —— E5 (Exact) 0.0 \
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Recall
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(a) Search engine performance
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Step

(b) Training reward
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(c) # Search calls

Figure 3: Effect of Search Engine Choice on RL Training Dynamics. (a) Retrieval Quality Ranking:
E5 (Exact) > E5 (HNSW) > BM25 > Random. (b) Training Stability and Performance: Stronger
search engines (e.g., ES Exact, ES + HNSW) lead to more stable training and higher final performance,
while weaker engines (e.g., Random, BM25) achieve suboptimal outcomes. (c) Search Engine
Usage Behavior: With Random Noise, the agent quickly learns to avoid using the search engine.
With BM25, the agent gradually increases search calls to compensate for limited retrieval quality.
With ES, the agent issues search calls more strategically, reflecting more efficient search behavior.

effectively supports reasoning and decision-making. In contrast, lower-quality search engines that
return less relevant information may lead the agent to either over-rely on its internal knowledge or
issue multiple search queries to compensate for inadequate results. At inference time, the quality of
the retrieved information directly impacts the agent’s ability to generate accurate and useful responses.
In the following sections, we systematically investigate the effects of search engine choice on both
the training and inference stages of search-augmented LLMs.

6.1 Training with Different Search Engines.

Motivation. During RL training, the LLM-based agent learns to interact with the search engine and
receive positive reward feedback while it solves problems using the retrieved relevant information. A
strong search engine provides more relevant results, leading to consistent positive outcome rewards.
Consequently, the LLM learns to solve problems with fewer search calls. In contrast, a weak search
engine discourages reliance on retrieval or forces the agent to issue multiple search queries to
compensate for low-quality results. We empirically investigate how different search engines influence
the RL training dynamics of an LLM-based search agent.

Experimental Design. We conduct experiments using the Qwen2.5-7B-Base model as the LLM and
Proximal Policy Optimization (PPO) as the RL algorithm. Four search engine configurations are
explored with the Wikipedia-18 corpus [16]: (1) Random Noise: Returns randomly selected passages
for a given query. (2) BM2S5 [33]: A sparse retrieval method based on exact token matching and term
frequency. (3) E5 (HNSW) [27, 42]: A dense retrieval method that encodes queries and passages
into semantic embeddings, using dot product similarity for matching. HNSW provides efficient
approximate nearest neighbor (ANN) search at the cost of some accuracy. (4) ES (Exact Match)
[42]: A dense retrieval method using exact embedding matching without approximation, ensuring
the highest retrieval accuracy. The retrieval performance of these methods follows the ranking: ES
(Exact) > ES (HNSW) > BM25 > Random, as shown in Figure 3(a). Detailed experimental settings
and case studies can be found in Appendix G.5 and H.

Results. The training reward curves and final test performance under different search engine settings
are presented in Figure 3(c) and Table 4. We observe the following trends: (1) Training with stronger
search engines (e.g., ES (Exact) and ES (HNSW)) results in more stable RL training and better
final performance. (2) Training with weaker search engines (e.g., Random and BM25) leads to
suboptimal final performance. The search engine call frequency during training is illustrated in
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Table 5: Retriever generalization results across datasets and test retrievers. (Qwen2.5-7B-Base, PPO)

Train / Test Search Engine BM25 ES5 (HNSW) ES (Exact) Google Search

Bambg GPQA SimpleQA Bambg GPQA SimpleQA Bambg GPQA SimpleQA Bambg GPQA SimpleQA

BM25 0.280 0.273 0243 0432 0293 0.159 0424 0323 0259 0496 0313  0.540
E5 (HNSW) 0.240 0.298 0270 0400 0.288  0.169 0440 0273 0254 0.528 0.333  0.603
ES (Exact) 0.312 0313 0249 0400 0298 0.196 0424 0288  0.265 0.560 0.293  0.603
Average 0277 0.295 0254 0411 0293  0.175 0429 0.295 0259 0528 0.313  0.582

Figure 3(d), revealing: (1) With Random Noise, the agent quickly learns to avoid using the search
engine, as the retrieved information does not contribute to problem-solving. (2) With BM25, the
agent gradually increases the number of search engine calls. Since BM25 offers limited retrieval
quality, the agent needs to issue multiple, refined queries to obtain relevant information. (3) With ES
(a stronger retriever), the agent learns to utilize the search engine judiciously, making a reasonable
number of calls to acquire the necessary information efficiently.

6.2 Inference with Different Search Engines.

Motivation. In practical scenarios, certain search engines may be unsuitable for integration during
RL training due to empirical constraints such as accessibility, cost, or API limitations. In such cases,
it becomes necessary to train the agent using one search engine while employing a different one
during inference. This raises important research questions: (1) To what extent does the difference
in search engines between training and inference affect model performance? (2) Does utilizing a
stronger search engine at inference lead to improved downstream performance?

Experimental Design. Following the training setup in [13], we investigate these questions by training
the LLM-based search agent using three different search engines: (1) BM25 [33], (2) E5 [42] with
approximate nearest neighbor (ANN) search implemented via HNSW [27], and (3) ES with exact
search. During inference, we additionally include the online Google Search API' as a stronger
retrieval system. To study the importance of the search engine in challenging scenarios, we construct
a combined benchmark consisting of 512 samples. This benchmark includes the full Bamboogle
test set [30] (Bambg), the complete GPQA-diamond dataset [32] (GPQA), and a randomly sampled
subset from SimpleQA [46]. Detailed experimental settings can be found in Appendix G.6.

Results. As shown in Table 5, we observe the following: (1) LLM search agents trained with a
specific search engine demonstrate strong generalization capabilities when evaluated with different
search engines during inference. (2) Leveraging a more powerful search engine at inference time
(e.g., Google Search) consistently and significantly leads to improved performance, highlighting the
importance of high-quality retrieval in downstream applications.

More studies on long-form generation tasks with outcome drive RL and data scaling study can be
found in Appendix D and E, respectively.

7 Conclusion

In this work, we conduct comprehensive empirical studies on key design factors in training LLM-
based search agents using reinforcement learning. Our investigation reveals that format rewards
play an important role in certain scenarios, while intermediate retrieval rewards provide limited
benefit and may not consistently improve the learning process. We demonstrate that the choice of the
underlying LLM (whether a general-purpose model or one specialized for reasoning) and its scale
significantly affect the final agent’s performance. Additionally, the selection of the search engine
plays a non-trivial role in shaping both the RL training dynamics and the robustness of the agent
during inference. These insights offer practical guidance for developing more capable and reliable
LLM-based search agents, paving the way for their deployment in real-world applications. Interesting
future directions include exploring more advanced reward modeling techniques, such as learned
reward functions and preference-based feedback, as well as studying the agentic behaviors acquired
through RL in broader scenarios, including tool use and software engineering.

"https://developers.google.com/custom-search/vi/overview
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A Limitations

In this work, we conduct an empirical investigation into the use of reinforcement learning (RL)
for training LLM-based search agents. Our study focuses on three key factors that influence the
effectiveness of RL in this context: (1) reward formulation, (2) the choice and characteristics of
the underlying language model, and (3) the role and quality of the search engine. However, our
analysis is primarily confined to search-based agent scenarios. While this provides valuable insights
into the challenges and design choices for RL in retrieval-augmented reasoning, it does not fully
generalize to other classes of LLM-based agents. In particular, RL for more complex and open-ended
agent behaviors—such as those exhibited by data science assistants, software engineering agents, or
multi-tool task planners—remains underexplored. These domains may require more sophisticated
reward structures, long-horizon credit assignment, and multi-step decision-making policies that go
beyond the scope of search-oriented tasks. We leave a more comprehensive study of RL in broader
agentic settings as an important future work direction.

B Positive and Negative Societal Impacts

Our work aims to improve the efficiency and reliability of large language model (LLM)-based agents
by leveraging reinforcement learning to optimize their interaction with external tools such as search
engines. On the positive side, this line of research can enhance the capabilities of LLMs in high-stakes
domains like scientific research, education, and healthcare, where accurate information retrieval and
reasoning are critical. By making LLM-based agents more effective at querying and utilizing external
knowledge sources, our approach has the potential to reduce hallucinations, improve transparency,
and increase user trust in Al systems. However, as with all advances in powerful LLM-based agents,
there are potential negative impacts. Improved autonomy in tool usage may lead to unintended misuse,
such as generating convincing but misleading information or automating complex tasks without
sufficient human oversight. Moreover, the deployment of search-augmented agents could exacerbate
access disparities if such technologies are restricted to proprietary systems. Careful consideration
of ethical deployment, transparency in agent decision-making, and equitable access to advanced Al
capabilities is essential to mitigate these risks.

C Format Reward Code

In this section, we provide the code to judge whether the rollout sequence is in a desired format for a
search agent.

Listing 1: Format Reward Code.

def is_valid_sequence (text):
# Find the position of "<|im_start|>assistant" with potential
whitespace
assistant_pattern = r"<\|im_start\|>assistant\sx*"
assistant_match = re.search(assistant_pattern, text)

if not assistant_match:
return False, "Missing assistant marker"

# Extract the content after the assistant marker
start_pos = assistant_match.end()
content = text[start_pos:]

# Check for balanced tags
tags_to_check = ["think", "search", "information", "answer"]
for tag in tags_to_check:

opening_count = len(re.findall(f"<{tag}>", content))

closing_count = len(re.findall(f"</{tag}>", content))

if opening_count != closing_count:

return False, f"Mismatch in {tag} tags: {opening_count}
opening vs {closing_count} closing tags"
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# Now check for proper sequence pattern and no extraneous content

# 1. First split the content by any tags we recognize
split_pattern = r"(</?7(7:think|search|information|answer)>)"
parts = re.split(split_pattern, content)

# 2. Keep track of the current position in the expected sequence
state = "start" # start -> think -> search -> information ->
think -> ... -> answer -> end

# 3. Check each part
for i, part in enumerate (parts):
# Skip empty parts
if not part.strip():
continue

# Check if this is a tag
if re.match(r"</7(?:think|search|information|answer)>", part):
# This is a tag, check if it’s valid in the current state

if part == "<think>" and state in ["start", "information"
]:
state = "in_think"
elif part == "</think>" and state == "in_think":
state = "after_think"
elif part == "<search>" and state == "after_think":
state = "in_search"
elif part == "</search>" and state == "in_search":
state = "after_search"
elif part == "<information>" and state == "after_search":
state = "in_information"
elif part == "</information>" and state == "in_information
".
state = "information"
elif part == "<answer>" and state == "after_think":
state = "in_answer"
elif part == "</answer>" and state == "in_answer":
state = "end"
else:

return False, f"Unexpected tag {part} in state {statel}

else:
# This is content, check if it’s valid in the current
state
if state in ["in_think", "in_search", "in_information", "

in_answer"]:
# Content is allowed inside tags
pass
elif state in ["start", "after_think", "after_search", "
information"]:
# Only whitespace is allowed between tags
if part.strip():
return False, f"Unexpected content ’{part.strip()
}’ between tags (state: {state})"
else:
return False, f"Unexpected content in state {statel}"

# Check final state
if state != "end":

return False, f"Incomplete sequence, ended in state {statel}"

return True, "Valid sequence format"
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D Reward for Long-form Answers

Motivation. It is demonstrated that rule-based outcome rewards are effective for training LLLM-based
search agents [13, 58]. However, their evaluation primarily focuses on short-form QA tasks, where
answer correctness can be reliably measured using exact string matching. In real-world applications,
many queries require long-form, open-ended answers, where evaluating correctness is inherently
more subjective. We investigate whether rule-based outcome rewards remain effective in training
LLM search agents for long-form QA tasks.

Experimental Design. We conduct experiments on two long-form QA datasets: ASQA [38] and
ELIS [5]. Models are trained on the ASQA training set and evaluated on its development set
for in-distribution performance. Out-of-distribution performance is evaluated on the ELI5 dataset.
Following common practice, we use the F1 score as the rule-based evaluation metric for both training
and evaluation. Experiments are conducted on both Qwen2.5-3B-Base and Qwen2.5-7B-Base models.
We compare against several baselines, including Direct Inference (with instruct LLMs), RAG [7]
(with instruct LLMs), and R1 [9]. Notably, R1 represents an LLM, trained using the RL approach
from DeepSeek-R1 with the same training data (ASQA training set). We also explore a variant
of [13, 58] that incorporates the format reward, denoted as “SEARCH-R1 w. Outcome + Format
reward”.

Table 6: Study on long-form question answering tasks.

Methods Qwen2.5-3b Qwen2.5-7b Qwen2.5-14b

ASQA ELIS Avg. ASQA ELI5S Avg. ASQA ELI5S Avg.

Direct 0.251  0.199 0.225 0.303 0.201 0.252 0.289 0.199 0.244
RAG 0.301 0.193 0.247 0317 0202 0259 0.285 0.193 0.239
R1 0.424  0.275 0350 0437 0280 0358 0444 0.278 0.361

SEARCH-R1 w. Outcome + Format reward (PPO) 0480 0.261 0370 0471 0256 0363 0442 0.260 0.351
SEARCH-R1 w. Outcome + Format reward (GRPO) 0.492 0272 0.382 0.504 0275 0.390 0.501 0.273 0.387

Results. Performance comparisons are shown in Table 6. We observe that “SEARCH-R1 w. Outcome
+ Format reward” achieves competitive results on long-form QA tasks, demonstrating the effectiveness
of rule-based outcome rewards with format rewards even in complex, open-ended scenarios. This
suggests that RL guided by the proposed rewards remains a viable strategy for training search-
augmented LLMs, even when the evaluation objective shifts from short-form to long-form answer
generation.

E Study of Data Scaling

Motivation. Although RL has shown strong potential in training LLM-based search agents [13],
the impact of training data size on the RL process remains underexplored. While recent work has
shown that extremely small datasets can be sufficient for reasoning-oriented RL with LLMs [43], it
is unclear whether similar data efficiency holds in agentic RL settings, where models must learn to
reason and interact with external tools in an interleaved manner.

Experimental Design. Following [13], we use the training sets from NQ [18] and HotpotQA [51] as
our full training set. To investigate the effect of training data size, we construct subsets of varying
sizes by randomly sampling k£ examples from the full dataset, where k& € 1, 10, 100, 1000, 10000. We
conduct experiments using the Qwen2.5-3B-Base model and evaluate both PPO and GRPO as the
underlying reinforcement learning algorithms.

Results. We present the training reward dynamics and the number of search engine calls across
varying training data sizes in Figure 4. The final performance of LLM-based search agents trained
with different dataset sizes is reported in Table 7. The results reveal several key observations: (1)
Increasing the size of the training dataset generally leads to improved performance, particularly on
more complex multi-hop question answering tasks such as HotpotQA and 2Wiki. (2) Smaller datasets
lead to faster convergence and higher training rewards, which is likely attributable to overfitting. (3)
For PPO, training with a single example fails to induce meaningful search behavior, while using 10
examples results in unstable training. In contrast, training with 100 or 1,000 examples enables the
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Table 7: Final performance with different size of training data. D is the training data. The best
performance is set in bold. f /* represents in-domain/out-domain datasets. (LLM: Qwen2.5-3B-Base)

Methods General QA Multi-Hop QA

NQT TriviaQA* PopQA* HotpotQAT 2wiki* Musique* Bamboogle*  Avg.

PPO

“p[=1 0121 0339 0119 0141 0211 0017 0056 0143
IDI=10 0339 0509 0379 0236 0237 0.048 0.081 0.261
|D|=100 0372 0.549 0382 0.262 0279 0.063 0.161 0.295
|D|=1000 0431  0.599 0.446 0348 0355 0.136 0.298 0373
|D|=10000 0430  0.594 0.445 0.369 0383 0155 0.315 0.384
GRPO

“|p[=1 0107 0287 0115 0124 0202 0019 008 0134
ID|=10 0338 0515 0361 0236 0223 0.043 0.089 0.258
|D|=100 0367  0.529 0.414 0.265 0302 0.079 0.194 0307
|D|=1000 0421  0.59 0.437 0363 0364 0.149 0.315 0377
|D|=10000 0.435  0.599 0435 0.365 0379 0.137 0306 0379
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Figure 4: Data scaling effects in RL training for search agents. (a) Training reward under PPO
with varying dataset sizes: Smaller training sets result in faster convergence and higher training
rewards, likely due to overfitting. (b) Number of search engine calls under PPO: Training with a
single example fails to induce search behavior, while 10 samples lead to unstable learning. In contrast,
using 100 or 1,000 samples enables the model to learn stable search behavior, and training with
10,000 samples further improves performance. (c) Training reward under GRPO with varying
dataset sizes: Similar to PPO, smaller datasets yield faster convergence and higher rewards, again
suggesting potential overfitting. (d) Number of search engine calls under GRPO: A single training
sample is insufficient for search behavior to emerge, whereas larger datasets facilitate stable learning
of search interactions.

model to learn stable search behavior, and performance continues to improve with 10,000 examples.
Similar trends are observed under GRPO training.

F More Studies on LLM Types

In addition to the 7B model analysis in Section 5.1, we further investigate the impact of LLM
initialization on RL performance using 14B-scale models. Specifically, we compare Qwen2.5-14B-
Base as a general-purpose LLM and DeepSeek-R 1-Distill-Qwen-14B as a reasoning-specialized LLM,
evaluating both under PPO and GRPO training. The results, summarized in Table 8 and Figure 5,
yield the following observations: (1) RL training is more stable and effective when initialized from the
general-purpose LLM, suggesting that such models possess sufficient general reasoning capabilities
to support the search agent task, even without reasoning-specific pretraining. (2) Although the
reasoning-specialized LLM eventually learns to perform interleaved reasoning and retrieval with PPO
and GRPO, the general-purpose LLM consistently achieves higher final performance—Ilikely due to
its stronger ability to generate effective search queries.
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Table 8: LLM type study with 14B LLMs. The best performance is set in bold. T/* represents
in-domain/out-domain datasets.

Methods General QA Multi-Hop QA

NQ TriviaQA* PopQA* HotpotQAT 2wiki* Musique* Bamboogle*  Avg.

DeepSeek-R1-Distill-Qwen-14b

PPO 0.475 0.634 0.465 0.401 0.363 0.211 0.476 0.432
GRPO 0.305 0.613 0.332 0.285 0.276 0.092 0.347 0.321

Qwen2.5-14b-Base

PPO 0.499 0.680 0.472 0.452 0.431 0.215 0.468 0.459
GRPO 0.500 0.693 0.500 0.481 0.488 0.261 0.516 0.491
0.7 41 —— Deepseek w. PPO
0.6 _ Deepseek w. GRPO
T 3 3| —— Base w. PPO
Sos £ | —— Base w. GRPO
K TS 33 TYrw ) £2
c0.4 —=— Deepseek w. PPO g
E 0.3 Deepseek w. GRPO ®1
—+— Base w. PPO
—— B . GRPO
0.2 ase w 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step
(a) Train Reward (b) # of Search Calls

Figure 5: The study of underlying pretrained LLM for development of search agents with RL. (a)
Training reward with different type of LLMs - general-purpose LLM (Qwen2.5-14B-Base) and
reasoning LLM (DeepSeek-R1-Distill-Qwen-14B). We observe that general-purpose LLM performs
better than reasoning LLMs with both PPO and GRPO. (b) # of Search engine calls with different
type of LLMs: Both the general-purpose LLM and the reasoning-specialized LLM demonstrate the
ability to learn when to call the search engine. However, the general-purpose LLM achieves better
final performance, potentially due to its superior capability in formulating effective search queries.

G Experimental Settings
In this section, we detail the experimental settings used in the studies presented in Sections 4, 5, 6.

G.1 Section 4.1

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1 x 10~° for
Qwen2.5-3B and Qwen2.5-7B, and 5 x 10~ 7 for Qwen2.5-14B. The critic LLM learning rate is
fixed at 1 x 10~° across all model sizes. For GRPO training, we use a policy LLM learning rate of
5 x 1077 for all models. The RL training batch size is set to 512, and the rollout temperature is fixed
at 1. For GRPO, we set the group size to 5. Each model is trained for up to 600 steps, with early
stopping triggered if training collapse is observed based on the reward curve. For the results reported
in Table 1, we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All
training jobs are conducted on a node equipped with 8 NVIDIA H100 GPUs. We conduct a grid
search over Ay € 0.2,0.4,0.6, 0.8 and select the best-performing value for each model: 0.2 for 3B,
0.4 for 7B, and 0.2 for 14B. We adopt ES (exact) as the retriever and return the top-3 passages (each
contains about 200 tokens).

G.2 Section 4.2

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1 x 10~ for both
Qwen2.5-3B and Qwen2.5-7B. The critic LLM learning rate is fixed at 1 x 10~> across all model
sizes. For GRPO training, we use a policy LLM learning rate of 5 x 10~7 for both models. The RL
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training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO, we set the group
size to 5. Each model is trained for up to 600 steps, with early stopping triggered if training collapse
is observed based on the reward curve. For the results reported in Table 1, we use either the final
checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are conducted on a
node equipped with 8 NVIDIA H100 GPUs. Based on the findings in Section 4.1, we fix Af to 0.2
for the 3B model and 0.4 for the 7B model. We then perform a grid search over A, € 0.1,0.3,0.5
and select the best-performing value for each model, which is 0.1 for both 3B and 7B. We adopt ES
(exact) as the retriever and return the top-3 passages (each contains about 200 tokens).

G.3 Section 5.1

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. For PPO training, the policy LLM learning rates are set to 1 x 10~ for both
Qwen2.5-7B and DeepSeek-R1-Distill-Qwen-7B. The critic LLM learning rate is fixed at 1 x 107>
across all model sizes. For GRPO training, we use a policy LLM learning rate of 5 x 10~7 for both
models. The RL training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO,
we set the group size to 5. Each model is trained for up to 600 steps, with early stopping triggered if
training collapse is observed based on the reward curve. For the results reported in Table 1, we use
either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are
conducted on a node equipped with 8 NVIDIA H100 GPUs. We set Ay as 0.2 and A, as O for all the
experiment. We adopt E5 (exact) as the retriever and return the top-3 passages (each contains about
200 tokens).

G.4 Section 5.2

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. For GRPO training, we use a policy LLM learning rate of 5 x 10~ for all
models. The RL training batch size is set to 512, and the rollout temperature is fixed at 1. For GRPO,
we set the group size to 5. Each model is trained for up to 600 steps, with early stopping triggered if
training collapse is observed based on the reward curve. For the results reported in Table 1, we use
either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs are
conducted on a node equipped with 8 NVIDIA H100 GPUs. We set A¢ as 0.2 for all the experiment.
We adopt E5 (exact) as the retriever and return the top-3 passages (each contains about 200 tokens).

G.5 Section 6.1

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. We adopt Qwen2.5-7B-Base as the LLM backbone and PPO as the RL
method. For PPO training, the policy LLM learning rates are set to 1 x 1075 and the critic LLM
learning rate is fixed at 1 x 10~°. Each model is trained for up to 600 steps, with early stopping
triggered if training collapse is observed based on the reward curve. For the results reported in Table 1,
we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All training jobs
are conducted on a node equipped with 8 NVIDIA H100 GPUs. For BM25, we adopt the Pyserini
implementation > and for E5, we adopt Faiss *. We adopt “HNSW64” for the ANN setting. We return
the top-3 passages (each contains about 200 tokens) from each search engine.

G.6 Section 6.2

We adopt the same training dataset as used in [13], consisting of the Natural Questions (NQ) and
HotpotQA training sets. We adopt Qwen2.5-7B-Base as the LLM backbone and PPO as the RL
method. For PPO training, the policy LLM learning rates are set to 1 x 1075 and the critic LLM
learning rate is fixed at 1 x 10~°. Each model is trained for up to 600 steps, with early stopping
triggered if training collapse is observed based on the reward curve. For the results reported in
Table 1, we use either the final checkpoint at step 600 or the last checkpoint prior to collapse. All
training jobs are conducted on a node equipped with 8 NVIDIA H100 GPUs. For BM25, we adopt
the Pyserini implementation and for ES, we adopt Faiss. We adopt “HNSW64” for the ANN setting.

2https://github.com/castorini/pyserini
*https://github.com/facebookresearch/faiss
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Given that Google Search API is expensive, we construct a testing set with 512 samples, including
full test set from Bamboogle [30] (125 samples), GPQA-Diamond [32] (198 samples) and randomly
selected 189 samples from SimpleQA [46]. We return the top-3 passages (each contains about 200
tokens) from each search engine.

H Case Studies on LLLMs Trained with Different Search Engines

Table 9: Case study A of LLM-based search agent trained with different search engines (i.e., random

noise, BM25, and ES5).
Question: Which Hells Angel member stabbed and beat an attendant of the 1969 counterculture-era rock
concert in the United States?
Ground Truth: Alan Passaro
w. random noise:
<think> To answer this question, we need to recall the incident involving the 1969 counterculture-era rock
concert known as Woodstock. The incident in question is the killing of festival security guard Thomas Benson.
The Hells Angel member responsible for the stabbing and subsequent death of Benson is.CompareTag
Stevenson. </think>
<answer> Manson </answer>
w. BM25:
<think> To answer this question, I’ll need to identify the Hells Angel member who was involved in the
stabbing and beating of an attendant at a 1969 counterculture-era rock concert in the United States. I’ll use a
search engine to gather information about this event and the responsible Hells Angel member. </think>
<search> Hells Angel member at 1969 counterculture-era rock concert in the United States </search>
<information> Doc 1(Title: "Altamont Free Concert") and for the negative portrayal of the Angels in the
""Gimme Shelter"" film. The conspirators reportedly used a boat to approach a residence where Jagger was
staying on Long Island, New York, the plot failing when the boat was nearly sunk by a storm. Jagger’s
spokesperson has refused to comment on the matter ... </information>

" <think> From the search results, I've identified that the 1969 counterculture-era rock concert in question is
the Altamont Free Concert. Now, I need to find out which Hells Angel member was involved in stabbing and
beating an attendant at this concert. </think>
<search> Hells Angel member who stabbed and beat an attendant at Altamont Free Concert </search>
<information> Doc 1(Title: "The Rolling Stones") and former members of the band. Two species,
Petroperla mickjaggeri and Lapisperla keithrichardsi, were placed within a new family Petroperlidae. The
new family was named in honour of the Rolling Stones, derived from the Greek ""petra"" that stands for
""stone"". The scientists referred to the fossils as ""Rolling Stoneflies"". The Rolling Stones’ first concert
was on 12 July 1962 at the Marquee Club in London ... </information>

" <think> I have found that a Hells Angel member was responsible for stabbing and beating an attendant at
the 1969 Altamont Free Concert. To identify which specific Hells Angel member is being referred to, I will
search for the individual who committed this act. </think>
<search> individual Hells Angel member who stabbed and beat an attendant at Altamont Free Concert
</search>
<information> Doc 1(Title: "The Rolling Stones") and former members of the band. Two species,
Petroperla mickjaggeri and Lapisperla keithrichardsi, were placed within a new family Petroperlidae. The
new family was named in honour of the Rolling Stones, derived from the Greek ""petra"" that stands for

stone"". The scientists referred to the fossils as ""Rolling Stoneflies"". The Rolling Stones’ first concert
was on 12 July 1962 at the Marquee Club in London ... </information>

~ <think> After searching for the individual Hells Angel member who stabbed and beat an attendant at the
Altamont Free Concert, I have identified that the member was "Ronnie Biggs" </think>
<answer> Charlie ISHAM </answer>
w. ES:
<think> I need to find out which Hells Angel member stabbed and beat an attendant of the 1969
counterculture-era rock concert in the United States. I'll search for it. </think>
<search> which Hells Angel member stabbed and beat an attendant of the 1969 counterculture-era rock
concert in the United States </search>
<information> Doc 1(Title: "Death of Meredith Hunter") Death of Meredith Hunter Meredith Curly
Hunter, Jr. (October 24, 1951 — December 6, 1969) was an 18-year-old African-American teen who was
killed at the 1969 Altamont Free Concert. During the performance by The Rolling Stones, Hunter approached
the stage, and was violently driven off by members of the Hells ... </information>

" <think> I found out that during the 1969 Altamont Free Concert, a fan named Meredith Hunter was stabbed -
and beaten to death by Hells Angel Alan Passaro. Now I need to provide the answer. </think>
<answer> Alan Passaro </answer>

" "
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Table 10: Case B study of LLM-based search agent trained with different search engines (i.e., random

noise, BM25, and ES5).
Question: Jacques Mathou starred in Delicatessen, the 1991 French movie in the style of which celebrated
American animator?
Ground Truth: Terry Gilliam
w. random noise:
<think> To answer this question, we need to consider the animated style of Jacques Mathou’s film "Deli-
catessen.” The movie is known ... American animator. Therefore, the celebrated American animator that
"Delicatessen” is in the style of is Tim Burton. </think>
<answer> Tim Burton </answer>
w. BM25:
<think> To find out which celebrated American animator Jacques Mathou starred in the 1991 French movie
"Delicatessen," I will search for information about the movie and its connections ... </think>
<search> Delicatessen 1991 French movie celebrated American animator </search>
<information>Doc 1(Title: "Jean-Pierre Jeunet") Jean-Pierre Jeunet Jean-Pierre Jeunet (; born 3 September
1953) is a French film director, producer, and screenwriter. His films are known to mix elements of fantasy,
reality and science fiction either to create idealized realities or to give relevance to mundane situations ...
</information>

~ <think> From the search resuits, I have gathered that "Delicatessen” is a 1991 French movie directed by
Jean-Pierre Jeunet and Marc Caro. The movie is a post-apocalyptic black comedy. To find the ... </think>
<search> Delicatessen celebrated American animator connection </search>
<information> Doc 1(Title: Delicatessen) items such as candy and mints are also usually available. Menus
vary according to regional ethnic diversity. Although urban delis rely on ethnic meats (such as pastrami,
corned beef and salami), supermarket delis rely on meats similar to their packaged meats (primarily ham,
turkey and American bologna) ... </information>

~ <think> I have found that the movie "Delicatessen" is associated with Jean-Pierre Jeunet, who is a celebrated
film ... for the animator mentioned in the question. </think>
<search> Jacques Mathou Delicatessen American animator </search>
<information> Doc 1(Title: "Betty Blue") going to the publisher’s house, slashes his face. Zorg induces
him to drop charges by threatening him with violence, saying she is the only good thing in his life and she is
all he has. Eddy’s mother dies and the friends go to the funeral in Marvejols. There, Eddy asks Zorg and
Betty if they will live in the dead woman’s house and look after ... </information>

~ <think> Upon further search, I have found that Jacques Mathou starred in "Delicatessen,” but he is not an -
animator. The question seems to be focused on an American animator related to "Delicatessen.” Since I lack
this information, .." </think>
<answer> Fail to answer </answer>
w. ES:
<think> I need to find out which celebrated American animator Delicatessen, the 1991 French movie, is in
the style of. I'll search for it. </think>
<search> Delicatessen, the 1991 French movie in the style of which celebrated .. </search>
<information> Doc 1(Title: "Delicatessen (film)") Delicatessen (film) Delicatessen is a 1991 French
post-apocalyptic black comedy film directed by Jean-Pierre Jeunet and Marc Caro, starring Dominique
Pinon and Karin Viard. It was released in North America as ""presented by Terry Gilliam."" In a dilapidated
apartment building in a post-apocalyptic country, food is in short supply ... </information>

~ <think> I found out that Delicatessen is a 1991 French post-apocalyptic black comedy film directed by
Jean-Pierre Jeunet and Marc Caro. Now I need to find out which celebrated American animator it is in the
style of. </think>
<search> which celebrated American animator is Delicatessen in the style of </search>
<information> Doc 1(Title: "Joseph Barbera") Joseph Barbera Joseph Roland Barbera ( ; ; March 24,
1911 — December 18, 2006) was an American animator, director, producer, storyboard artist, and cartoon
artist, whose film and television cartoon characters entertained millions of fans worldwide for much of the
20th century. He was born to Italian immigrants in New York City, </information>

" <think> I found out that Delicatessen is in the style of Terry Gilliam. </think> =
<answer> Terry Gilliam </answer>

In Section 6.1, we have shown that LLMs trained with different search engines will learn different
reasoning and search engine calling patterns. In particular, the LLM trained with random noise will
learn to not call the search engine since the return from the search engine is not informative; the
LLM trained with a weak search engine (e.g., BM25) tend to call the search engine multiple times,
while the LLM trained with a stronger search engine (e.g., ES) can call the search engine in a more
reasonable pattern.
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In this section, we would like to show case studies of LLMs trained with different search engine as
below in Table 9 and Table 10. The inference time search engine is the same to the training time
search engine.

From these case studies, we find that during training, higher-quality search engines that provide more
relevant information can encourage the agent to achieve its objectives with fewer search calls, as the
retrieved content more effectively supports reasoning and decision-making. In contrast, lower-quality
search engines that return less relevant information may lead the agent to either over-rely on its
internal knowledge or issue multiple search queries to compensate for inadequate results.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly show in abstract and introduction the contribution and scope of our
paper on empirical studies of RL in LLM-based search agent scenarios.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitation of this paper is discussed in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed experimental setup to reproduce our empirical studies
in Appendix G.

Guidelines:

24



839

840
841
842

843
844

845
846
847
848
849
850
851
852
853

854
855
856

857
858
859
860
861
862
863
864
865
866
867
868
869

870

871
872
873

874

875
876

877

878

879
880

882
883
884

885
886
887

888
889
890
891
892

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the detailed experimental setup to reproduce our empirical studies
in Appendix G. We adopt open-sourced datasets in this paper.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental setup to reproduce our empirical studies
in Appendix G.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Each experiment would take several days or even weeks to complete so it is
hard to conduct repeated experiments. However, we ensure consistent random seeds across
all methods, thus avoiding randomness in results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detailed experimental setup to reproduce our empirical studies
in Appendix G.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the NeurIPs Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The positive societal impacts and negative societal impacts are discussed in
Appendix B

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper focuses on LLM-based search agents, with extensive empirical
investigations into training large language models using reinforcement learning.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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