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Abstract

Real-world audio is often degraded by numerous factors. This work presents an
audio restoration model tailored for high-res (44.1kHz) music. Our model, Audio-
to-Audio Schrodinger Bridges (A2SB), is capable of both bandwidth extension
(predicting high-frequency components) and inpainting (re-generating missing
segments). Critically, it is end-to-end — requiring no vocoder to predict waveform
outputs, able to restore hour-long audio inputs, and trained on permissively licensed
music data. A°SB is capable of achieving state-of-the-art bandwidth extension and
inpainting quality on several out-of-distribution music test sets. Code and model:
https://github.com/NVIDIA/diffusion-audio—-restoration.

1 Introduction

Real world audio is subject to numerous degradation factors such as recording devices, data com-
pression, and online transfers — resulting in low sampling rate and content loss. These problems are
usually ill-posed [Narayanaswamy et al., 2021, Moliner et al., 2023] and solved with data-driven
generative models. Bandwidth extension methods have been proposed to up-sample the audio [Lee
and Han, 2021, Liu et al., 2022, Serra et al., 2022, Moliner and Viliméiki, 2022, Shuai et al., 2023,
Yu et al., 2023, Kim et al., 2024, Liu et al., 2024, Ku et al., 2024, Yun et al., 2025], and inpainting
methods have been developed to predict segments where audio is missing [Marafioti et al., 2019,
2020, Borsos et al., 2022, Liu et al., 2023b, Moliner and Vilimiki, 2023, Asaad et al., 2024]. Many
of these methods are task-specific, designed for the speech domain, or trained to only restore the
degraded magnitude — which requires an additional vocoder to transform the restored magnitude into
a waveform. Our work investigates high-res (44.1kHz) music restoration, a more challenging task
than speech restoration in terms of typical bandwidth. We aim to tackle bandwidth extension and
inpainting in a single model and also to build an end-to-end trainable generative model for audio
restoration without using a separate vocoder or a codec. To achieve this, we adopt the Schrodinger
Bridge framework [De Bortoli et al., 2021, Chen et al., 2021, Liu et al., 2023a, Albergo et al., 2023]
as it is suitable for translation tasks where a part of the source and target samples are well aligned.
We name our model A2SB: Audio-to-Audio Schrodinger Bridges.

We first curate a dataset that is both expansive enough to cover most genres of music of interest and
being permissively licensed. We collected and filtered permissively licensed music data from public
datasets, leading to 2.3K hours in total. As data quality varies significantly across datasets, we adopt
the common pre-training and fine-tuning approach [Ouyang et al., 2022].

To support both restoration tasks in a single model within the Schrodinger Bridge formulation [Liu
et al., 2023a, Albergo et al., 2023], we frame both tasks as the generative spectrogram inpainting task:
bandwidth extension as inpainting the high-frequency part of the spectrogram along the frequency
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Figure 1: A%SB targets music restoration with a focus on inpainting and bandwidth extension, each
corresponding to a specific corruption pattern in spectrogram. The model is then trained to fit the
diffusion Schrédinger Bridge process from the corrupted distribution to the clean distribution.

axis, and audio inpainting as frame inpainting along the time axis. The rest of the spectrogram should
exactly match the input.

Finally, we train an end-to-end model without using a vocoder or a codec. While prior works found
success training directly on the complex spectrogram for speech enhancement [Richter et al., 2023,
Juki€ et al., 2024, Ku et al., 2024], we find this ineffective in our use case. We use a factorized audio
representation with power compression of the magnitude and trigonometric representation of the
phase. We additionally apply phase orthogonalization based on the solution of the Procrustes problem
to ensure that the generated phase values are consistent. Unlike vocoder-based prior works [Liu et al.,
2024, 2023b], it allows us to restore only the magnitude while preserving the original phase values.

Our model outperforms state-of-the-art baselines on several out-of-distribution test sets. We also
demonstrate the effectiveness of our factorized audio representation, phase orthogonalization, and
inference methods which could produce coherently restored outputs for hour-long sequences.

2 Method

Our A’SB is an end-to-end approach for music restoration at 44.1kHz requiring no pre-trained
vocoder or audio codec. We first convert the audio to a factorized spectrogram representation
(see Section 2.1). We then train a Schrodinger Bridge model for music restoration based on Liu
et al. [2023a], with specific alterations for handling our audio representation (see Section 2.2). For
notation, let X € [—1,1]* be the 1-D raw waveform of clean audio with length L, and X; be the
audio representation that we will use in the Schrodinger Bridge model at time ¢ with respect to the
stochastic process. We ignore the subscript ¢ when there is no ambiguity.

2.1 Magnitude-Phase Factorized Audio Representation

The short-time Fourier transformation (STFT) representation of X, S = STFT(X ), is a complex
matrix in CV*W  where N is the number of frequency subbands and W is the number of overlapping
STFT frames. 2 For simplicity, we can represent the complex values with their real and imaginary
parts [Re(S),Im(S)], leading to the two-channel spectrogram S € RN*Wx2 While existing
vocoder-free methods directly model this two-channel representation [Richter et al., 2023, Jukié
et al., 2024, Wu et al., 2024], we factorize S into magnitude and phase components of the STFT in
our method. We find that separating them is necessary for the following reasons: (1) magnitudes in
adjacent frequency bands are strongly correlated, but this is less true for phase; (2) the periodicity
of phase makes fitting to it a more challenging task; and (3) Phase-magnitude factorization isolates
complications from fitting to the phase from affecting magnitude estimation. As such, we factorize
S into magnitude A; ; = (/S7; | + 57, ,, and phase O, ; = atan2(S; j 2, S ;1) represented via
cos(©;, ;) and sin(©; ;), forming the final representation X; ; = (Af ;, cos(©; ;),sin(©; ;)) where
our compression exponent p is empirically set to 0.25. Our experiments analyze the relative stability
of this representation, which is also seen in works such as [Peer and Gerkmann, 2022].

2.2 Music Restoration with Schrodinger Bridges

We train a Schrodinger Bridge model on the three-channel representation X described above. Fol-
lowing Liu et al. [2023a], we let X, € RY*W 3 be the clean sample inputs, and X; be degraded

*We assume a 44.1kHz sampling rate, with hop size = 512, window length = 2048, and FFT bins = 2048. We
train with W = 256, which corresponds to about 2.97 seconds of audio.



Table 1: Bandwidth extension results on CCMixter. See full results in Appendix B.

Method \ Cutoff = 4kHz Cutoff = 8kHz Cutoff = 12kHz
| LSD| SiSpect ViSQOLt LSDJ  SiSpect ViSQOL+ LSDJ  SiSpect  ViSQOL
AudioSR | 2.00 12.50 2.746 1.86 14.93 3.097 1.75 18.35 3.510
CQTDIff | 2.01 14.67 1.970 2.06 15.88 1.860 2.10 16.34 1.850
IBAR 1.64 7.11 2.373 1.41 10.46 2.604 1.36 7.86 2.744
A’SB | 1.85 18.00 2.851 1.62 23.39 3.438 1.45 29.26 4.211
Table 2: Inpainting results on CCMixter. See full results in Appendix C.
Method Gap = 300ms Gap = 500ms Gap = 1000ms
| LSD]  SiSpect ViSQOL+ LSDJ  SiSpect ViSQOLt LSDJ  SiSpect  ViSQOL
MAID 0.129 13.34 4.556 0.205 10.67 4.462 0.394 7.11 4.235
CQTDIff | 1.305 11.16 4.486 1.293 9.01 4.403 1.266 5.95 4.126
IBAR 0.384 10.89 4.466 0.415 9.36 4.378 0.504 6.56 4.186
A’SB | 0.086 15.21 4.630 0.134 12.31 4.547 0.259 8.48 4.352
Table 3: Human evaluation on bandwidth ext. Table 4: Human evaluation results on inpainting.
Method | MOS (bandwidth extension) Method | MOS (inpainting)
\ AAM CCMixter MTD \ AAM CCMixter MTD
GT | 436+£0.04 4.394+0.05 4.26+0.04 GT | 4414005 4.36+0.04 4.38+0.05
AudioSR | 3.65+0.08 3.67+0.08 3.7240.10 MAID 3.27+0.10 3.284+0.10 3.33+£0.10
CQTDIff | 3.85+0.08 3.10+0.12  2.99 £ 0.10 CQTDIff | 3.594+0.08 3.64+0.09 3.63 =+ 0.09
IBAR 3.80 £0.07 2.96+0.13 3.75+0.07 IBAR 3.70+£0.08 3.69+0.08 3.96 =+ 0.07
A’SB | 417+£0.06 4.17+£0.06 3.96 £ 0.06 A’SB | 4.00£0.07 3.85+£0.08 4.09 £ 0.06

samples. We focus on bandwidth extension and inpainting, both of which can be formulated as the
masking corruption similar to image inpainting. Let M € B~ W 3 be the boolean mask for masking,
where B = {0, 1}. For bandwidth extension, M; ; , = 1 fori > N’, where N’ refers to the highest
subband in the degraded audio. N’ is randomly sampled from subbands representing frequencies
above 4kHz. For inpainting, M; ; , = 1 for W7 < j < W», where W7 and W, refer to the starting
and ending frame of missing audio. Following Liu et al. [2023b], we randomly sample W; and W,
such that the inpainting gap is uniform between 0.1 and 1.6 seconds. For a mask M, we define X; as

X1 =XoO (1 —M)+nm ©M, ey

where © refers to the element-wise product and gy ~ N(0,02,1) in order to define a Gaussian
pdeg(X 1|Xo) for the masked area in our audio representation. If Ml = 1 and og; = 1, the Schrédinger
Bridge degenerates to an unconditional diffusion model where X is Normally distributed.

3 Experiments

Baselines. For the bandwidth extension and inpainting tasks, we consider three baselines: conditional
diffusion models, an inverse method, and an instruction-based method. The conditional diffusion
baselines are AudioSR [Liu et al., 2024] for bandwidth extension and MAID [Liu et al., 2023b] for
inpainting. The inverse method baseline is COTDiff [Moliner et al., 2023], with modifications for
44.1kHz (see A.9). We train our own 44kHz instruction-based audio restoration baseline (/BAR)
with our settings and data, given that Audit [Wang et al., 2023], the existing instruction-based model,
supports only 16kHz. IBAR uses the instruction templates from Audit for both restoration tasks.
Additional details provided in A.9.

Evaluation setup. We evaluate all models on several 44.1kHz out-of-distribution (OOD) test sets:
AAM (synthetic music) [Ostermann et al., 2023], CCMixter (remixed music) i Liutkus et al. [2014] ,
and MTD (classical) [Zalkow et al., 2020] (see A.2 for details). Our bandwidth extension evaluation
follows Liu et al. [2024] and evaluates cutoff frequencies: 4kHz, 8kHz, and 12kHz. We resample
the ground truth audio to twice the cutoff frequency and use it as the input to all models. For the
inpainting evaluation, we mask a fixed-length (300ms, 500ms, 1000ms) segment every 5 seconds.
We then run the model with its receptive field centered on each masked region to inpaint the missing

*https://ccmixter.org/
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content. For objective evaluation metrics, we report (1) Log-spectral distance (LSD) [Erell and
Weintraub, 1990], a spectrogram distance metric; (2) Scale-invariant spectrogram-to-noise ratio
(SiSpec) [Liu et al., 2021], a signal-to-noise ratio metric; and (3) ViSQOL [Chinen et al., 2020], an
objective perceptual quality metric. Full details are provided in Appendix A.10. We additionally train
and evaluate all models on the Maestro dataset [Hawthorne et al., 2019], and further evaluate with the
F score of MIDI transcriptions. We conduct human evaluation on the bandwidth extension (cutoff
= 4kHz) and inpainting (gap = 1000ms) experiments due to the limitations of objective metrics. For
each test dataset, we randomly select fifty segments and ask human listeners to rate the output quality
based on how close they sound compared to the ground truth and report Mean Opinion Scores (MOS).

3.1 Bandwidth Extension Results

We show one of the bandwidth extension objective
results in Table 1 and full objective results in Ap-
pendix B. The subjective results for cutoff = 4kHz
are in Table 3. A?SB achieves better SiSpec in most
cases, indicating it has the best signal-to-noise ratio
(SNR), or the least noise up to a scale transformation.

Significantly better ViSQOL and MOS indicates our 0 pn 55 810 10-12

model has much better perceptual quality. Frequency Range (kHz)
‘ —A— Ground truth —l— A’SB (Factorized) —@— A’SB (STFT)

15 Average magnitude of output spectrogram on CCMixter
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Mean Magnitude

Appendix D shows qualitative samples of different
bandwidth extension baselines. AudioSR often has ar-  pjoyre 2: We compare the mean spectrogram

tifacts around the cutoff frequency (Figures 9 and 10), magnitude of outputs from models trained
and sometimes hallucinates implausible percussion ith either the 2-channel STFT or 3-channel
sounds in higher frequencies (Figure 8). CQTDIff  f;c(orized representation, demonstrating that
usually has worse overall quality. IBAR occasion- jointly modeling phase and magnitude with-

ally has incoherent generations or fails to produce ;¢ uncoupling may result in inaccurate mag-
a meaningful output. A’SB generates better quality nitudes.

overall, produces coherent and consistent content,
and maintains the original tempo with fewer implausible hallucinations on beats or percussions.

3.2 Inpainting Results

We show one of the inpainting objective results in Table 2 and full objective results in Appendix
C. The subjective results for gap = 1000ms are in Table 4. A’SB achieves consistently better
evaluation results in all objective and subjective metrics. This is likely because inpainting has an
easier context:synthesized-content ratio than bandwidth extension. Appendix E shows qualitative
samples of different inpainting baselines, where we can see that A>’SB has more consistent outputs
compared to that of baselines.

3.3 Necessity of Factorized Audio Representation

We find that the 3 channeled factorized representation leads to a better fit of the magnitude spectrogram
than the two-channel complex representation (S in Section 2.1). In Figure 2 and Figure 19 in Appendix
G, we report the average magnitude at different frequency bands. Results indicate that the complex
representation poorly estimates magnitude in all frequency bands. In contrast, our three-channel
factorized representation leads to similar magnitude mass compared to ground truth. We provide
further qualitative analysis in Appendix G.

4 Conclusion and Future Work

This paper presents A°SB, an 12SB-based novel audio restoration model for music bandwidth extension
and inpainting at 44.1kHz. We present an end-to-end solution that requires no vocoder or codec,
while also supporting long audio sequence processing through MultiDiffusion. We also curated a
collection of permissively licensed high quality music data to train our model. Extensive experiments
show that A2SB achieves the state-of-the-art quality on several out-of-distribution test sets, validating
the effectiveness and generalization ability of our model.
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A Details on Methodology

A.1 Training Datasets

In detail, the fine-tuning set includes: FMA [Defferrard et al., 2016], Medley-solos-DB [Lostanlen
and Cella, 2016], MTG-Jamendo [Bogdanov et al., 2019], Musan [Snyder et al., 2015], Music
Instrument [Mutlu, 2024], MusicNet [Thickstun et al., 2017], and Slakh [Manilow et al., 2019].

The pre-training set additionally includes: CLAP-Freesound [Wu et al., 2023], GTZAN [Sturm,
2013], MusicCaps [Agostinelli et al., 2023], NSynth [Engel et al., 2017], PianoTriads [Roberts,
2022].

We carefully examined all data licenses in these datasets and only selected the permissively licensed
audio to train our model (i.e., we removed data that are NC, ND, SA, or under unknown licenses,
etc.). As aresult, the pre-training dataset has 2.3K hours and the fine-tuning dataset has 1.5K hours.

A.2 Evaluation Datasets

Here, we provide more detailed information on our evaluation datasets:

1. AAM (synthetic music) [Ostermann et al., 2023]: we randomly select 93 test samples for
evaluation. Duration of samples is approximately two to three minutes.

2. CCMixter (remixed music) i: we use the same set as Liutkus et al. [2014]. Duration of
samples is approximately between one and six minutes.

3. MTD (classical) [Zalkow et al., 2020]: we randomly select 200 test samples for evaluation.
Duration of samples is between 10 seconds and 1 minute.

A.3 Architecture

Our model closely follows the conditional UNet architecture as commonly used in prior works
[Ronneberger et al., 2015, Dhariwal and Nichol, 2021, Liu et al., 2023a], with some modifications.
Notably, absolute positional embedding layers were replaced with 2-D rotary position embedding
(RoPE) [Su et al., 2024]. Further, we use an additional conditioning variable C' € RNV*W via absolute
positional embeddings. C' only varies in the frequency axis: C; ; = 4, 1 <4 < N. This allows the
model to strongly condition on the frequency, while maintaining translational equivariance along the
temporal axis in the spectrogram.

In terms of the neural network configuration, there are five up-sampling and down-sampling layers,
each having two residual blocks. The hidden channels are [128, 256, 512, 768, 1024, 2048]. Both
input and output have three channels to match the 3-channel factorized representation, except in the
case of the STFT baseline in 3.3. The diffusion step embedding dimension is 128, following Kong
et al. [2021]. The network has 565M parameters.

A.4 Two-Stage Training

We follow the common pre-training and fine-tuning approach for stable large scale training [Ouyang
et al., 2022]. During pre-training, we train our Schrodinger Bridge model from scratch on 2.3K
hours of training data. We use bf16 for more efficient training. During fine-tuning, we train on a
1.5K-hour high quality subset and use fp32, ensuring the model produces clean and meaningful
sound for corrupted parts.

During fine-tuning, we adopt the ¢-range partitioning strategy from Balaji et al. [2022]: we fine-tune
separate models on different ¢ intervals, each initialized from the same pre-trained checkpoint. This
leads to models specialized in different noise level ranges. We choose the intervals that partition
noise level ranges between o and 7. In 2-partitioning, the intervals are ¢ € (0, 3] and ¢ € [§,1]; in
4-partitioning, the intervals are t € (0, 7175, t € [5a75, 5], t € [5,1 — 53], and t € [1 — 75, 1].
During sampling, we use the corresponding checkpoint based on the exact ¢.

*nttps://ccmixter.org/


https://ccmixter.org/

All results presented in the main experiments section correspond to a 2-partioning, as we found
diminishing returns using 4-partitioning. Full ablation testing on the impact of partitioning levels is
included in the result tables later on in the appendix.

A.5 Sampling

The sampling algorithm given X directly follows the diffusion model [Ho et al., 2020]. Let At be a

step size where ﬁ is an integer referring to the number of sampling steps. There is an analytic form

for the posterior (see proof of Proposition 3.3 in Liu et al. [2023a]):

(Ao?)Xo + 02X, (Ac?)o? 7
Ac?+o02 "Act+oi )’

p(thAt‘Xth) :N< )

where Ao? = 07 — 0?_,,. During sampling, the X is replaced with the current estimate X, =

X; — o1e(Xy, t). Then, repeating (2) for ﬁ steps yields the final output.

A.6 Long Audio Sampling with MultiDiffusion

Algorithm 1 MultiDiffusion sampling at step ¢

1: Input: Xfull ¢ RVXW™'x3 ¢ 1 h ¢(.)

2: C,V ¢ 0 e RN¥W™'x3

3: 70

4: while j + W < Wil do

5: XfatCh XAl 5+ W

6 V[jij+ W) Vg j+ W+ e(XPM 1)

7: Cl,j:j+W ]|« Clj:j+W,:]+1

8: j—j3+h

9: Qutput: Vo C > Element-wise divide

In practice, the audio we would like to up-sample or inpaint may be much longer than our training
segment length. This is similar to the panorama generation problem in image generation, which
could be solved by MultiDiffusion [Bar-Tal et al., 2023]. Inspired by their approach, we apply
MultiDiffusion to extend our sampling process to variable length. Our algorithm is follows Algorithm
2 in Bar-Tal et al. [2023], where our condition is the degraded audio.

Formally, let Xfull ¢ RV XWHIX3 pe o degraded sample of variable length that we would like to
up-sample or inpaint. Our trained model (-, ) can process inputs of size N x W x 3 where W
corresponds to 256 STFT frames (2.97 seconds). At diffusion time ¢, we compute the model’s output
on the full sample e( X[ ¢) as follows. We process our input X"!! with a sliding window of width
W and shifting the position by a hop size h < W (typically 128 for 50% overlap) until all of X is
processed. Outputs in overlapping areas are uniformly averaged, though other weighting functions
are topic of future work [Polyak et al., 2024]. Cyclic padding is used to ensure the last input window
has a full temporal width of .

We also study the GPU memory usage with MultiDiffusion enabled in our model, which we found
we could make relatively efficient. We consider the bandwidth extension experiment with a cutoff
frequency of 4kHz, and use the no-partitioning model to record GPU memory usage. > We demon-
strate the results versus input audio length in Figure 3. The slope shows the memory usage from
the cached vector fields in MultiDiffusion, which could be further optimized by moving them to the
CPU after computing the vector field for each patch int. The results indicate that our model can
up-sample several minutes of audio on a common gaming GPU with ~ 10G memory and over an
hour on a professional GPU with > 50G memory. We may obtain more memory reduction as well as
acceleration by using TensorRT i and custom CUDA kernels Z

Note that for partitioned models, we could move unused checkpoints to CPU for each ¢-range.

*https://github.com/NVIDIA/TensorRT

"https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html#
custom-ops—landing-page
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Figure 3: GPU memory usage verses input audio length (in minutes) at inference time with MultiDif-
fusion enabled. The GPU memory is recorded for the bandwidth extension experiment with a cutoff
frequency at 4kHz. The results show that our model can up-sample several minutes of audio on a
common gaming GPU and over an hour on a professional GPU.

A.7 Waveform Synthesis with Phase Orthogonalization

All operations defined in Section 2.1 are invertible and should allow us to recover the original 1-D
waveform signal almost exactly. We can reconstruct the two-channel spectrogram .S from X with:

S:’i,j,l = i,j,z'(Xi,j,1)1/p_ 3)
Sije =Xijs (Xijn)le

Then, applying the inverse STFT with the same STFT parameters yields the waveform.

However, when sampling from our trained neural network, we cannot guarantee that the unconstramed
model outputs [X; j 2, X; ;3] satisfy the trigonometric representation of phase: X? ot X 2

This could manifest as an additional scaling of the reconstructed spectrogram .5, which is undesnable
To alleviate this issue, we use phase orthogonalization to map [X ; 2, X; ;3] to the last-squares-
nearest valid configuration. This is in part inspired by the analysis in Levinson et al. [2020] for
learning 3D rotations, though we require only the 2D rotations in our case. Furthermore, the least-
squares optimality of SVD orthogonalization is ideal for the removal of small amounts of Gaussian
noise, making it compatible with the Gaussian diffusion process. Approaches such as Chen and
Lipman [2023] can also guarantee proper roration values, but we find our approach to be simple and
practical enough for our use case.

Let Rl ; € R?*2 be a noisy estimate of a rotation matrix at spectrogram coordinate (7, j), which is
constructed with

~ X P9 _X i3
R = .7, 65,3 | 4
" {Xi,m Xij2 @
We then compute its nearest valid configuration in least squares as follows:
svDO*(R; ;) = argmin ||R;; — Ri;|%, Q)

R; ; ESO(?)

where SO(2) is the orthogonal group in two dimensions. Note that for any 2 x 2 matrix A, we have
the following solution [Levinson et al., 2020, Schénemann, 1966]:

svDOT(A) = UX'V, where ¥ = diag(1,det(UV ")), (6)

where A = UXV is the SVD decomposition. Applying SVD to Ri, j yields

1A 1
U= (X7j0+X7,3) 2R ;5= (X}, +X};3)° V=1 @)

And therefore, the solution is
SVDO+(R1-7]-) = (Xiz,j,Z + Xiz,j,s)féf%i,j (8)



as det(UV ") = 1. Then, the orthogonalized phase estimation allows us to reconstruct the spectro-
gram with

Sij = (Xij1)Y? - (svDOT(R; ;). )
We further compute the minimum residual as

Errphase-ortno(Xij) = HSVD0+(R' i) — R Ri % )
= (( — (X720 +X73) 7%) 1R 5%
:((1 (X2J2+ng37%>2 J2+X”3) (10
zg(gxaz%,x”3)z—1>2

We additionally note that manifold generative models such as Chen and Lipman [2023] could also
address this issue without orthogonalization, yet we find our approach simple and effective enough
and therefore leave this approach for future work.

A.8 Necessity of Phase Orthogonalization

We study the impact of applying phase orthogonalization, where we find that the model’s output
are sufficiently close to being proper rotations and require only small adjustments. In Figure 4, we
visualize the distribution of the phase orthogonalization error Errphase-ortho (X;,;) in (10) at different
frequency bands. In detail, we consider the bandwidth extension task with cutoff = 4kHz. We take
the generated part (above 4kHz) of the output spectrogram and uniformly split it into 9 bins along the
frequency axis. We then plot the distribution of Errphase-orho Values within each bin.

We note that orthogonalization error is very small (the average error is around the order of 107°),
indicating that our model is able to learn the proposed audio representation very well. Only a small
fraction (< .1%) of the spectrogram may have larger phase orthogonalization error (up to 1.5),
which will be corrected by phase orthogonalization. Overall, the phase orthogonalization provides
the necessary guarantee to ensure proper STFT inversion, while likely having nominal impact on
perceptual quality given the scale of its adjustments.

AAM MTD CCMixter

20-22kHz #—1—F+—— [ S — D ——
18-20kHz
16-18 kHz
14-16kHz —F T——+—————+ | ——
12-14kHz +—1T —F [ S— — ] R — —
10-12kHz +— 11— [ — ] 4+ /M
8-10kHz + ————>F———— [ — — e} 4+

6-8kHz — —F— 3F+—————— B S———

4-6 kHz

1075 10~* 1073 1075 107* 107*? 1075 107* 107?
Errphase—ortho Errphase—ortho Errphase—on.ho

Figure 4: These box-plots visualize the distribution of the (log-scale) phase orthogonalization error
Errphase-ortho in (10) without any orthogonalization correction. The left-most whisker is omitted and
is effectively zero. The right most whisker represents the 99.9-th percentile, where the outlying .01%
is omitted from the graph and may have an error of as high as 1.5. The results indicate that our
model can predict very accurate trigonometric values of phase for most of the time, and the phase
orthogonalization acts primarily as an occasionally necessary safeguard.

A.9 Baselines
For each of the bandwidth extension and inpainting task, we consider three baselines: conditional

diffusion models, inverse method, and instruction-based method. The conditional diffusion baselines
are AudioSR [Liu et al., 2024] for bandwidth extension and MAID [Liu et al., 2023b] for inpainting.
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The inverse method baseline is CQTDiff [Moliner et al., 2023]. Since it is only 22.05kHz, we re-train
a larger 44.1kHz CQTDiff. We increase the depth from six to eight and double the channels to
[64, 128,128, 256, 256, 256, 256, 256, 256], leading to a 5.75x larger model. It is the largest model
we find to have stable training in our experiments. We train our own 44kHz instruction-based audio
restoration baseline (/BAR) with our settings and data, given that Audit [Wang et al., 2023], the
existing instruction-based model, supports only 16kHz. IBAR uses the instruction templates from
Audit for both restoration tasks. We use a numerically optimized diffusion transformer with adaptive
layer norm [Peebles and Xie, 2023, Lee et al., 2024] that cross-attends to mel-spectrograms, the byT5
embedding [Xue et al., 2022], the OT-CFM loss function [Lipman et al., 2022, Tong et al., 2023], and
a 44kHz BigVGAN-v2 vocoder [Lee et al., 2023].

A.10 Objective Evaluation Metrics
We report the following objective evaluation metrics.

* Log-spectral distance (LSD) [Erell and Weintraub, 1990], a spectrogram distance metric
computed as

1 &1 & AN

_ i,J

= 32 v 3 (e i) |
j=1 1=1 1,]

where A is the ground truth magnitude and A the magnitude of the model’s prediction.

* Scale-invariant spectrogram-to-noise ratio (SiSpec) [Liu et al., 2021], a signal-to-noise ratio
metric computed as

, [ (A)]*
SiSpec = 10 - log;g ————————, (12)
[m(A) — A2
where n(A) = (A, A)A/||A||? is the scale invariant normalization of the ground truth

magnitude.

* ViSQOL [Chinen et al., 2020], an objective perceptual quality metric for 48kHz audio,
which measures similarity scores by comparing the spectro-temporal features and maps to
the Mean Opinion Score (MOS) scale between 1 and 5. The ground truth has a score of
4.732.

* For the Maestro dataset, we further report the F; score of MIDI transcriptions using the
mir_eval package [Raffel et al.].
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B Full Objective Results on Bandwidth Extension

Table 5: Bandwidth extension results on AAM (synthetic music).

Method ‘

Cutoff = 4kHz

Cutoff = 8kHz

Cutoff = 12kHz

| LSD]  SiSpect ViSQOL+ LSDJ  SiSpect ViSQOLt LSD| SiSpect  ViSQOL 1
AudioSR [Liu et al., 2024] 2.22 13.73 3.057 1.94 14.61 3.455 1.62 19.93 3.783
CQTDiff [Moliner et al, 2023] | 2.37 19.91 1.926 2.39 22.22 1.928 2.42 22.63 1.965
IBAR 1.38 8.51 2.951 1.16 10.82 3.384 0.99 12.31 4.102
A”SB (no partitioning) 1.40 19.28 3.004 1.15 27.35 3.412 0.99 31.33 3.947
A’SB (2-partitioning) 1.44 23.03 3.248 1.15 28.69 3.706 0.99 31.76 4.231
A?SB (4-partitioning) 1.49 22.59 3.110 1.20 28.46 3.773 1.04 31.67 4.340

Table 6: Bandwidth extension results on CCMixter (remixed music).

Method \ Cutoff = 4kHz Cutoff = 8kHz Cutoff = 12kHz

| LSDJ  SiSpect ViSQOLT LSDJ  SiSpect ViSQOLt LSD]  SiSpect  ViSQOL
AudioSR [Liu et al., 2024] 2.00 12.50 2.746 1.86 14.93 3.097 1.75 18.35 3.510
CQTDiff [Moliner et al., 2023] | 2.01 14.67 1.970 2.06 15.88 1.860 2.10 16.34 1.850
IBAR 1.64 7.11 2.373 1.41 10.46 2.604 1.36 7.86 2.744
AZSB (no partitioning) 1.93 14.05 2.770 1.71 19.95 3.200 1.48 27.17 4.047
A%SB (2-partitioning) 1.85 18.00 2.851 1.62 23.39 3.438 1.45 29.26 4.211
A’SB (4-partitioning) 1.84 17.46 2.657 1.65 23.17 3.430 1.50 29.20 4.234

Table 7: Bandwidth extension results on MTD (classical music).

Method ‘ Cutoff = 4kHz Cutoff = 8kHz Cutoff = 12kHz

| LSDL  SiSpect ViSQOLt LSD  SiSpect ViSQOLt LSD]  SiSpect  ViSQOL %
AudioSR [Liu et al., 2024] 1.75 21.74 3.391 1.81 27.26 3.226 1.85 28.97 3.150
CQTDiff [Moliner et al, 2023] | 1.74 10.62 1.747 1.63 17.42 1.777 1.57 21.62 2.000
IBAR 1.12 12.31 2.995 0.92 12.94 3.525 0.85 13.08 3.843
AZSB (no partitioning) 1.33 25.51 2.557 1.05 33.10 3.201 0.87 35.34 3.936
A?SB (2-partitioning) 1.29 28.15 3.101 1.07 34.36 3.718 0.88 35.97 4.200
A?SB (4-partitioning) 1.77 27.56 3.446 1.59 34.25 3.829 1.51 36.07 4.274

Table 8: Bandwidth extension results on Maestro (classical piano music with MIDI).

Cutoff = 4kHz

Cutoff = 8kHz

Cutoff = 12kHz

Method

LSD|  SiSpec T Fi1 1 LSD |  SiSpec T Fi1 1 LSD | SiSpec 1 Fi 1
CQTDiff [Moliner et al., 2023] 1.154 31.49 0.761 1.137 32.99 0.772 1.129 33.33 0.774
IBAR 0.769 12.69 0.769 0.688 12.22 0.757  0.616 13.48 0.770
A”SB (4-partitioning) 0.773 34.32 0.910 0.659 41.69 0.910 0.545 42.60 0.910
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C Full Objective Results on Inpainting

Table 9: Inpainting results on AAM (synthetic music).

Method \ Gap = 300ms Gap = 500ms Gap = 1000ms

| LSD]  SiSpect ViSQOL+ LSDJ  SiSpect ViSQOLt LSD| SiSpect  ViSQOL 1
MAID [Liu et al., 2023b] 0.139  14.37 4.570 0.208  11.42 4.504 0.378 7.74 4.305
CQTDiff [Moliner et al, 2023] | 1.516  14.37 4.502 1.510  11.13 4.457 1.494 7.17 4.219
IBAR 0.512 8.67 4.231 0.420 9.66 4.383 0.525 6.88 4.204
A”SB (no partitioning) 0.081  17.10 4.660 0.128  12.72 4.592 0.257 7.90 4.432
A%SB (2-partitioning) 0.077  17.89 4.666 0.122  13.95 4.601 0.238 9.31 4.442
A”SB (4-partitioning) 0.076  18.36 4.673 0.121  13.96 4.613 0.238 9.16 4.465

Table 10: Inpainting results on CCMixter (remixed music).

Method \ Gap = 300ms Gap = 500ms Gap = 1000ms

| LSDJ  SiSpect ViSQOLT LSDJ  SiSpect ViSQOLt LSD]  SiSpect  ViSQOL
MAID [Liu et al., 2023b] 0.129  13.34 4.556 0.205  10.67 4.462 0.394 7.11 4.235
CQTDiff [Moliner et al, 2023] | 1.305  11.16 4.486 1.293 9.01 4.403 1.266 5.95 4.126
IBAR 0.384  10.89 4.466 0.415 9.36 4.378 0.504 6.56 4.186
A”SB (no partitioning) 0.088  13.83 4.625 0.139  10.68 4.537 0.274 6.61 4.336
A’SB (2-partitioning) 0.086  15.21 4.630 0.134  12.31 4.547 0.259 8.48 4.352
A’SB (4-partitioning) 0.086  14.89 4.632 0.135  11.88 4.549 0.261 7.96 4.358

Table 11: Inpainting results on MTD (classical music).

Method | Gap = 300ms Gap = 500ms Gap = 1000ms

| LSDL  SiSpect ViSQOLt LSD  SiSpect ViSQOLt LSD]  SiSpect  ViSQOL %
MAID [Liu et al., 2023b] 0.139 9.86 4.406 0.223 7.29 4.285 0.430 3.79 4.044
CQTDiff [Moliner et al, 2023] | 0.846 8.84 4.411 0.855 5.82 4.252 0.877 1.26 3.963
IBAR 0.293  13.62 4.136 0.306  11.71 4.109 0.346 7.93 4.030
A”SB (no partitioning) 0.073  17.83 4.641 0.106  13.87 4.562 0.201 7.80 4.347
A’SB (2-partitioning) 0.071  18.28 4.650 0.103  14.74 4.572 0.187 9.94 4.376
A’SB (4-partitioning) 0.071  18.43 4.655 0.103  14.73 4.584 0.187 9.40 4.402

Table 12: Inpainting results on Maestro (classical piano music with MIDI).
Method Gap = 300ms Gap = 500ms Gap = 1000ms
LSD|  SiSpec T Fi1 1 LSD |  SiSpec T Fi1 1 LSD | SiSpec 1 Fi 1

MAID [Liu et al., 2023b] 0.700 8.40 0.673  0.831 6.16 0.666  1.156 2.90 0.655
CQTDiff [Moliner etal;, 2023] ~ 0.691  12.24  0.818  0.703 8.53 0.814  0.741 4.38 0.798
IBAR 0.344  12.73  0.803  0.381 9.50 0.795  0.413 6.28 0.786
A’SB (4-partitioning) 0.134  17.03  0.870 0.167  13.33  0.854 0.254 8.45 0.820

15



D More Samples on Bandwidth Extension (Cutoff = 4kHz)
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Figure 5: Qualitative comparison between different bandwidth extension methods with cutoff = 4kHz.
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Figure 6: Qualitative comparison between different bandwidth extension methods with cutoff = 4kHz.
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Figure 7: Qualitative comparison between different bandwidth extension methods with cutoff = 4kHz.
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Ground Truth

3
B
>
9
2
<
S
z
L

b s

15

Time (seconds)

AudioSR

3
B3
>
9
2
@
S
z
o
I

10 15

Time (seconds)

IBAR

3
=
>
9
c
<
S
=
o
I

15
Time (seconds)

Degraded
— 2205
K
2
>
2
o
E
z
L 3
b .
15
Time (seconds)
CQTDiff

Frequency (Mel)

0 5 10 15 20 25
Time (seconds)

A?SB

Frequency (Mel)

15
Time (seconds)

Figure 10: Qualitative comparison between different bandwidth extension methods with cutoff =

4kHz.

18



E More Samples on Inpainting (Gap = 1000 ms)
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Figure 11: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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Figure 12: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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Figure 13: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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Figure 14: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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Figure 15: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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Figure 16: Qualitative comparison between different inpainting methods with inpainting gap = 1 sec.
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F Additional Comparison with Audit
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Figure 17: Qualitative comparison with Audit [Wang et al., 2023] on their demo samples for
bandwidth extension. Note that these samples were not music, but rather sound effects such as car
engines and gunfire. As the provided degraded samples were just under 4kHz (3.7kHz), we use the
AUDIT output with a 4kHz cutoff as input to A>SB instead of retraining our model for a lower cutoff.
Surprisingly A’SB demonstrates strong OOD generalization ability to non-musical sound despite
having trained only on music data.
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G Full Results on Necessity of Factorized Audio Representation
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(a) Comparing audio representations: sample 1.
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(b) Comparing audio representations: sample 2.

Figure 18: Qualitative comparison between A”SB trained with two-channel STFT representation ()
and our proposed three-channel factorized representation. The model trained with the two-channel
STFT representation has artifacts around the cutoff frequency and predicts too much content for
higher frequencies, validating the effectiveness of our three-channel factorized representation.
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Figure 19: We compare the mean spectrogram magnitude of outputs from models trained with
different audio representations: 2-channel STFT and the 3-channel factorized representation. The
results demonstrate that jointly modeling phase and magnitude without uncoupling may result in
overall inaccurate magnitude generations compared to that of the target distribution.
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H Additional Human Evaluation Analysis

We then investigate how accurately the objective metrics could predict perceptual quality (MOS). We
compute the Spearman Correlation between MOS and each objective metric (—LSD, SiSpec, and
ViSQOL) in Table 13. Results indicate all the three objective metrics are moderately correlated with
the MOS metric, but far from perfect.

Table 13: Spearman Correlation between MOS and objective metrics. All p-values are less than
0.001.

Task | —LSD SiSpec ViSQOL
Bandwidth extension (cutoff = 4kHz) | 0.443 0.491 0.450
Inpainting (gap = 1000ms) 0.549 0.461 0.480

We additionally fit linear regression between MOS and objective metrics, and obtain the following
results. For bandwidth extension,

MOS = 3.2158—0.0411xLSD+0.1567 xsign(SiSpec) xlog |SiSpec|4+0.1015x ViSQOL (R* = 0.311).
(13)

For inpainting,

MOS = 4.1775—1.4022x LSD+0.0681 xsign(SiSpec) xlog |SiSpec|+0.0649 x VISQOL (R? = 0.252).
(14)
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I The Effect of Sampling Steps

We study the effect of sampling steps in A>SB. We conduct this experiment on a subset of the MTD
dataset, and consider bandwidth extension with cutoff = 4kHz and inpainting with gap = 1000ms.
The model is the 2-partitioning A°SB. Results are shown in Figures 20 and 21. The results indicate
that A2SB yields almost identical generation quality with different number of sampling steps as low

as 25.
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Figure 20: Objective evaluation results with different sampling steps in A2SB. We evaluate on a subset
of MTD with cutoff = 4kHz. Results indicate A°SB has almost identical quality when we use less

sampling steps.
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Figure 21: Objective evaluation results with different sampling steps in A’SB. We evaluate on a subset
of MTD with inpainting gap = 1000ms. Results indicate A°SB has almost identical quality when we

use less sampling steps.
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