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Abstract

Medical event prediction produces patient’s potential diseases
given their visit history. It is personalized yet requires an in-
depth understanding of domain knowledge. Existing works
integrate clinical knowledge into the prediction with tech-
niques like concept embedding, patient records as knowledge
graphs, and external knowledge bases, leaving the knowl-
edge obtained through the pretraining of modern Large Lan-
guage Models untouched. We introduce MERA, a clinical
event prediction model that bridges pertaining natural lan-
guage knowledge with medical code. We apply contrastive
learning on a predicted ranking list for task-specialized op-
timization. With concept memorization through fine-tuning,
we equip the LLM with an in-depth understanding to recall
the natural language definitions for medical code during in-
ference. Experimental results on MIMIC datasets show that
MERA outperforms state-of-the-art models.

1 Introduction
Electronic Health Records, which store patient status and
diagnoses made by physicians associated with timestamps,
represent valuable domain expertise and clinical operation
patterns (Caufield et al. 2019). The diagnosis judgments are
made by clinicians based on their medical knowledge, which
is largely acquired from years-long education grounded in
textbooks and literature, as well as their years of accumu-
lated experience, often implicit and mined in large-scale
clinical data. Medical event prediction aims to predict fu-
ture patient events given their history (Morid, Sheng, and
Dunbar 2023). The events are normally presented in medi-
cal code format, such as ICD-9 disease codes, with a large
candidate space to choose from (13,000 disease candidates
in ICD-9) (?). A reliable medical event prediction system en-
ables efficiency improvement for hospital operations, early
warning of potential diseases for patients (Rochefort, Buck-
eridge, and Forster 2015), optimized clinical resource and
facility allocation (Yadav et al. 2013), and better risk esti-
mation for sustainable insurance (Hsu et al. 2016).

There are two significant challenges for medical event
prediction, which have motivated many existing works but
have still not been solved. First, what would be the best prac-
tice to introduce domain-specific clinical knowledge into the
model? Existing works create concept initial embeddings
from disease names, or enrich patient representation with

external disease ontology. But there is still a significant gap
between the primary knowledge modality, i.e. natural lan-
guage, with the model’s hidden representation. Second, how
can we deal with the large candidate space when producing
future event predictions and exploit the supervision signals
that could be induced from the candidate space? Existing
works mainly consider the task as a k-way classification task
where k is the number of possible medical events that could
happen and then apply binary cross entropy loss for each
medical code. The dependencies among candidates and the
structure of the medical code ontology are mostly ignored.

Generative Language Models (LM), especially recently
introduced Large Language Models (LLM), are trained to
predict the next token, follow task instructions, and align
with human preference. These models excel in language un-
derstanding and reasoning capabilities, as shown in their
performance on science-based benchmarks. Additionally,
the LLMs absorb a large amount of knowledge mined in lit-
erature and online corpus during the pretraining stage. How-
ever, there is still an underexplored field of using LLM for
medical event prediction due to the aforementioned gap be-
tween natural language and medical code and the gap be-
tween the token-level optimization process and the outcome-
level large candidate output space. These challenges hin-
der the application of generative LM to diagnosis prediction
tasks, while the state-of-the-art models are still graph neural
network-based without full utilization of natural language
knowledge (Yang et al. 2023; Wu et al. 2023; An et al. 2023).
There are works that use transformer-based LM for clinical
outcome prediction, but they either have a heavy focus on
using natural language medical notes as input (Niu et al.
2024; Wang et al. 2023), or discard the pretrained knowl-
edge (Rasmy et al. 2021; Pang et al. 2021; Li et al. 2023).

To tackle these challenges, we propose MERA, an LLM
for medical event prediction with medical code understand-
ing and rich supervision over the output space. The patient’s
history diagnosis results are formulated as linear sequences
and the LLM is expected to produce the probability distribu-
tion for the diagnosis result for the next visit. Different from
the ordinary decoding process and token-level optimization,
we produce the event prediction result from the probabilities
distribution of producing corresponding tokens. We apply
contrastive learning to force the model to distinguish true di-
agnosis events from false ones. The contrastive learning pro-



cess is extended to multiple levels in the hierarchical organi-
zation of the medical code definitions. The model is learned
to distinguish the true events from a pool of potential out-
comes while the pool is getting more relevant to the true
events. To equip the LM with an understanding of the med-
ical code, we fine-tune the LM to memorize the mapping
between medical code and their definitions.

We validate the effectiveness of our method in diagnosis
prediction tasks on MIMIC-III and MIMIC-IV datasets. We
observe that MERA yields significant improvement to the
existing state-of-the-art medical event prediction model.

2 Method
2.1 Task Formulation
The diagnoses for patients are represented with the ICD-
9 code ontology O defined by domain experts, containing
medical codes {c1, c2, ..., c∣O∣} where ∣O∣ is the total number
of codes. The codes are organized as a tree structure where
the codes are leaf nodes. For each medical code c, it is part
of the code groups {gc1, ..., g

c
depth(O)} according to its an-

cestors from the most coarse 1st level to the finest depth(O)
level. There is also a one-to-one mapping between the code
c and its natural language definition defc. For example,
the medical code 250.23 stands for “Diabetes with hy-
perosmolarity, type I [juvenile type], uncontrolled”. It be-
longs to a top-level group for all “Endocrine, Nutritional,
and Metabolic Diseases and Immunity Disorders”, and fur-
ther belongs to the 2nd-level disease group, “Diabetes mel-
litus” and fine-grained disease group “type I uncontrolled
diabetes”. Given an electronic health records collection con-
taining medical records for n patients {P1, P2, ..., Pn}, pa-
tient history diagnosis can be articulated as a sequence of
admission instances {V Pi

1 , V Pi

2 , ..., V Pi

T } for a patient Pi

where T is the number of existing visits. For a particular visit
Vj , the medical judgment made by clinicians as a result of
the visit is an unordered set of diagnosis {dVj

1 , d
Vj

2 , ..., d
Vj
m }

in the format of m unique ICD-9 code (d ∈ O).
For the diagnosis prediction task, We aim to predict the

diagnosis for the potential next visit VT+1 by selecting from
the medical code ontology O, which can be described as
fdp ∶ {V1, V2, . . . , VT } → VT+1. For the heart failure pre-
diction task, which can be described as a binary classifica-
tion function fhf ∶ {V1, V2, . . . , VT }→ 0,1, we are more fo-
cused and aims to predict whether a patient would encounter
heart failure in any of the future visits.

2.2 Overview of MERA

MERA takes an existing large language model LM pre-
trained with a natural language corpus. The model takes the
input sequence expressing the patient’s history seqhistory
and outputs a probability distribution over the possible next
token P (wo

1 ∣ seqhistory).
There are three steps involved as a pipeline: 1) Training

the model to memorize medical codes used to represent the
diagnoses; 2) Training the model to learn causal and tempo-
ral relations between visits and intra-visit patterns from pa-
tient diagnosis; 3) During inference, performing autoregres-

sive generation to produce diagnosis prediction result given
an unseen patient history input.

2.3 Medical Concept Memorization
To bridge medical codes on O and the natural language
knowledge learned through pertaining, we fine-tune LM on
synthetic question-answering pairs to create a memorization
of the code and natural language definition mapping.

Bidirectional code and definition memorization. For
each code ci and the natural language definition defci , we
create two input-output pairs. The first pair prompts the LM
with the question “What is the definition of ICD-9 code ci”
and the target answer of “defci” to train the model recall def-
inition given code. The second pair helps the model memo-
rize the mapping reversely by asking “What is the ICD-9
code with the definition of defci” with an expected answer
of “ci”. Note that we only apply loss on the completion given
the input question while not requiring the model to learn the
process of the reconstruction of the code or definition.

Coding ontology structure memorization. Besides the
short-term memorization, memorization through fine-tuning
enables us to embed dependency information among codes
in LM . For each category level 1..depth(O) on the ICD-9
code ontology O, the curated pairs map the code to its cate-
gory, such as (“What is the first-level category of the ICD-9
code 998.51?”, “Injury and Poisoning.”).

2.4 Capturing Inter-visit Relations
The second phase of fine-tuning aims to equip the model
with temporal and causal understanding among diagnoses
across patient visits. Given a patient history for patient
Pi, {V Pi

1 , V Pi

2 , ..., V Pi

T }, we create a sequence of tokens
Seqhistory to represent the history as input of LM . Diagno-
sis medical codes within a visit Vi are concatenated to form
a token segment for a visit and the visit segments are further
concatenated with a separator phrase to indicate a new visit.

Input sequence perturbation. The order of patient vis-
its is crucial to convey the causal and dependent relation as
the diagnosis in a later visit is conditioned on the previous
diagnosis. However, the order of diagnosis codes within a
particular visit does not matter as they are made simultane-
ously. An ideal medical event model should preserve the first
kind of order while ignoring the second. To achieve this goal
with a sequential LM, we propose to create multiple variants
of the input patient history sequence. Each variant keeps the
same visit order but shuffles the diagnosis code within each
visit. By observing the data instances with shuffled order and
the same target distribution, we teach the LM to ignore the
order of diagnosis code with a model-agnostic design.

Optimization on ranking. After observing the input se-
quence of patient history, LM is expected to output
the probability distribution of the first diagnosis code
P (wo

1 ∣ seqhistory) of the upcoming visit VT+1. Ordinary
language modeling applies cross-entropy loss on the prob-
ability of predicting the correct next token. We further pro-
vide fine-grained supervision on the probability distribu-
tion of the new token. The code candidate space includes



Figure 1: The model design of MERA.

{c1, c2, ..., c∣O∣}. There is ∣pos∣ diseases that do happen in
the next visit {cpos1 , cpos2 , ..., cpos

∣pos∣
} and ∣neg∣ diagnosis that

is not included in the next visit {cneg1 , cneg2 , ..., cneg
∣neg∣
} among

all code candidates (∣pos∣+ ∣neg∣ = ∣O∣). We obtain the prob-
ability of predicting each code candidate as the next token
P (wo

1 ∣ seqhistory) = {p1, p2, ..., p∣O∣} by applying a soft-
max over the logits of all candidate codes. We then apply
the training objective to the probability distribution.

Label space-driven hierarchical contrastive learning.
We design training objectives to equip the model to identify
the positive diagnosis among a group of candidate diagnoses
sharing similar properties. With such a design, the model is
forced to learn the subtle differences among similar diseases
and specifically optimize itself for the diagnosis capability
for various granularity of the decision space. For a particular
i-th category level on the output candidate space O, we iden-
tify positive diagnosis codes that do appear in the next visit.
We then apply InfoNCE loss (Oord, Li, and Vinyals 2018;
Ma et al. 2021; Meng et al. 2021) shown below to parameter-
ize the model to identify the correct diagnosis among all the
same-category candidates. The produced loss for each sub-
group is then added across different subgroups of the same
ontology level and then further aggregated by the sum over
different ontology levels.

2.5 Modeling Intra-visit Dependencies
Besides training the model to reason between visits, there
are many implicit, unspoken rules and dependencies mined
in the large pool of diagnoses within each visit. For exam-
ple, among the same group of similar diseases, the clinician
normally only chooses the most representative code for the
patient’s status; some diseases might suppress or correlate
with the appearance of other diseases. Without modeling
the intra-visit dependencies, we ignore real-life clinic op-
eration patterns, which could lead the model to yield similar
but unrealistic diagnosis predictions. The diagnosis predic-
tion made for a specific visit should consider other diagnoses
for the same visit. To model the intra-visit dependencies, we
create multiple teaching forcing training instances, each in-
cluding a segment of the target diagnosis sequence to simu-
late the diagnosis process that partial diagnosis decisions are
provided. For each instance, we include k diagnosis in the
target diagnosis list VT+1 where k ∈ {0, .., ∣VT+1∣} in the end
of the input sequence seqhistory. We then apply contrastive
learning over the ranking list of the probability distribution
of the next output token P (wo

k+1 ∣ seqhistory ∶ w
o
1, ...,w

o
k).

For the positive diagnosis code for the k + 1-th output di-
agnosis token, we consider all diagnoses in VT+1 except
wo

1, ...,w
o
k as those diagnoses have been predicted in pre-

vious output steps.

2.6 Autoregressive Decoding during Inference
After the two fine-tuning stages, learning the mapping be-
tween medical code and natural language knowledge and
learning inferring diagnosis, the produced LM can be used
to perform inference for unseen patient history. Given the
seqhistory, LM performs autoregressive decoding to output
the discrete diagnosis label with the highest probability in
the ranking list for each output step until the end-of-sentence
token is generated.

3 Experiments
3.1 Experimental Setup
Datasets. We use MIMIC-III (Johnson et al. 2016) and
MIMIC-IV (Johnson et al. 2023) EHR datasets containing
patient records to evaluate the effectiveness of MERA. They
are large, de-identified, and publicly available collections of
medical records collected at the Beth Israel Deaconess Med-
ical Center in Boston, Massachusetts, USA. The MIMIC-III
dataset focuses on the patients who are eventually admit-
ted to ICU, and the MIMIC-IV dataset includes both ICU
patients and other patients. We conduct data preprocessing
following previous works (Yang et al. 2023; Lu, Han, and
Ning 2022). We keep the patients with more than one visit
in the datasets. We use the full ICD-9 code (instead of a sim-
plified and higher-level code, which makes the task easier)
to represent the diagnosis. To avoid data duplication during
the overlapping time range between the two datasets, only
the information of patients from MIMIC-IV with multiple
visits between 2013 and 2019 was used. They are randomly
split based on patients into training, validation and testing
sets. For MIMIC-III and IV, the training, validation, and test
sets contain 6000, 493, and 1000 patients, and 8000, 1000,
and 1000 patients respectively. For patient history, we use
the last visit as the label, while the earlier visit is input.

Evaluation metrics. For diagnosis prediction, we report
the weighted F1 score and Recall@k metrics, where k is the
number of top-ranked predicted diseases to consider. The
weighted F1 score measures the accuracy of disease pre-
diction by calculating the harmonic mean of precision and
recall. They are both higher, the better. For heart failure pre-
diction, we report AUC, which measures the area under the



# Model
Diagnosis Prediction Heart Failure

MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

w-F1 R@10 R@20 w-F1 R@10 R@20 AUC F1 AUC F1
RNN/CNN and attention-based models

1 Deepr 18.87 24.74 33.47 24.08 26.29 33.93 81.36 69.54 88.43 61.36
2 Dipole 19.35 24.98 34.02 23.69 27.38 35.48 82.08 70.35 88.69 66.22
3 Timeline 20.46 25.75 34.83 25.26 29.00 37.13 82.34 71.03 87.53 66.07
4 RETAIN 20.69 26.13 35.08 24.71 28.02 34.46 83.21 71.32 89.02 67.38
5 HiTANet 21.15 26.02 35.97 24,92 27.45 36.37 82.77 71.93 88.10 68.21

Graph-based models
6 G-BERT 19.88 25.86 35.31 24.49 27.16 35.86 81.50 71.18 87.26 68.04
7 GRAM 21.52 26.51 35.80 23.50 27.29 36.36 83.55 71.78 89.61 68.94
8 CGL 21.92 26.64 36.72 25.41 28.52 37.15 84.19 71.77 89.05 69.36
9 MCDP - 28.30 39.60 - 25.80 36.10 - - - -

10 Chet 22.63 28.64 37.87 26.35 30.28 38.69 86.14 73.08 90.83 71.14
11 KGxDP 27.35 30.98 41.29 30.38 34.19 43.47 86.57 74.74 95.66 79.87

Fine-tuned Transformer-based models
12 MERA (LLaMA-7B) 32.77 35.94 47.48 39.26 38.77 51.61 89.49 77.21 97.26 82.31

Table 1: Performance comparison with baselines (%).

Model Code Acc Definition Acc
MERA (LLaMA-7B) 99% 91%

Table 2: Evaluation of the memorization capabilities for
ICD-9 codes.

receiver operating characteristic curve, and F1 score, which
evaluates the balance between precision and recall.

Baselines. RNN/CNN and attention-based models: RE-
TAIN (Choi et al. 2016) employs two attention mechanisms
to model two-way visit-disease mapping. Dipole (Ma et al.
2017) proposes a bidirectional RNN to address the issue
of lengthy medical visit records. Timeline (Bai et al. 2018)
designs an attention mechanism that combines time inter-
vals and attention weights of each entity. HiTANet (Luo
et al. 2020) employs a hierarchical temporal attention mech-
anism. Deepr (Nguyen et al. 2017) predicts future risks
from medical records by converting records into discrete el-
ement sequences and using a CNN to detect predictive lo-
cal clinical patterns. Graph-based models: GRAM (Choi
et al. 2017) employs the structure of medical ontologies.
G-BERT (Shang et al. 2019) integrates pretrained language
models and fully considers the hierarchical information
found in ICD-9 codes. CGL (Lu et al. 2021) introduces a col-
laborative graph learning model. Chet (Lu, Han, and Ning
2022) computes the diagnosis neighbor and global neigh-
bor for each disease. MCDP (Li and Gao 2022) presents
a methodology that uses hyperbolic space and multi-modal
contrastive loss to preserve the hierarchical structure of di-
agnostic codes. KGxDP (Yang et al. 2023) formulates each
patient as a personalized medical KG, combining medical
KGs with patient admission history.

3.2 Performance of Diagnosis Prediction

We show the performance on the diagnosis prediction
task in Table 1. We observe that the graph-based mod-
els, in general, yield better performance compared with the
RNN/CNN-based sequential model. The best-performing
baseline would be the KGxDP model, which uses GNN to
introduce spatial features and utilizes G-BERT pretraining
knowledge to initialize the initial representation of the GNN.

We observe that our proposed model MERA achieves sig-
nificantly better performance for both diagnosis prediction
and heart failure prediction tasks for both datasets. There is
an almost 9-point higher weighted F1 score and more than
8-point higher recall@20 for MIMIC-IV.

3.3 Performance of Memorization

We further evaluate whether the trained model, after the
medical concept memorization fine-tuning, can recall the
medical code given definition sentences or recall the defini-
tion sentences given the ICD-9 code. We report code accu-
racy and definition accuracy in Table 2, and the model has to
produce the exact same code and definition to count as a hit.
We observe that the LM can remember the code-definition
mapping almost perfectly, indicating the effectiveness of our
proposed memorization technique.

4 Conclusion
By integrating domain-specific clinical knowledge and
addressing the complexities of a large candidate space,
MERA bridges the gap between natural language processing
and medical code understanding. Our rigorous validation
of MIMIC datasets has established MERA as a leading
approach for medical event prediction.



Ethical Considerations
The trained diagnosis prediction model inherits bias from
multiple sources, including pre-training corpus, medical
records distribution used for fine-tuning and more. The
model should be fully evaluated before it is considered to
be deployed in real clinical scenarios. The outcome of the
diagnosis prediction model should not be used to serve as a
factor to trace the discrimination label for specific diseases.
Hospitals and insurance companies should not use the pre-
dicted diagnosis as the reason or motivation to change their
service to patients.

Reproducibility Statement
Our code will be released along with the published paper.
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