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ABSTRACT

Diffusion models, originally developed for generative tasks, are increasingly
showing promise in discriminative vision tasks like segmentation. Several studies
have showcased their adaptability, with diffusion-based generalized frameworks
simplifying complex architectures by unifying various components. Despite their
architectural elegance, these models often face performance gaps when compared
to established GAN and transformer-based methods. This paper delves into the
limitations of diffusion models, particularly observing their tendency to priori-
tize recall over precision. To address this, we introduce a novel inference-time
noise scheduling strategy that dynamically adjusts noise during the reverse dif-
fusion process. Crucially, this method requires no additional training of the dif-
fusion model. Our strategy significantly enhances precision with minimal recall
reduction for pre-trained models. This leads to an improved Panoptic Quality
(PQ) of 52.7 on the COCO validation dataset. While still trailing top perform-
ing transformer-based methods, our approach improves the panoptic segmenta-
tion benchmark among generalized diffusion-based frameworks by 1.5%. We also
show our approach enhances panoptic segmentation in adverse weather. Further-
more, we validate its versatility in text-to-image generation, achieving an X-IQE
image-text alignment score of 4.6 on DrawBench, improving the baseline score of
3.6. Our method provides a flexible and effective tool for optimizing task-specific
performance and enhancing the utility of diffusion models across both generative
and discriminative applications, all without requiring retraining.

1 INTRODUCTION

Diffusion-based models have emerged as a powerful paradigm in computer vision, achieving state-
of-the-art performance in generative tasks such as image synthesis, inpainting, and super-resolution
(Rombach et al., 2022; Dhariwal & Nichol, 2021; Saharia et al., 2022b). Their ability to model com-
plex data distributions has recently sparked interest in applying diffusion models to dense prediction
tasks, including depth estimation (He et al., 2024; Ke et al., 2024), image segmentation (Tan et al.,
2022; Qiu et al., 2024), object detection (Chen et al., 2023a; Wang et al., 2024), and panoptic seg-
mentation (Van Gansbeke & De Brabandere, 2024; Xu et al., 2023). However, despite their promise,
diffusion-based approaches still lag behind discriminative models in terms of overall performance
on dense prediction benchmarks.

For instance, the generalized diffusion-based panoptic segmentation framework currently achieves
a Panoptic Quality (PQ) of 51.9 on the COCO validation dataset. This is significantly lower than
Mask DINO, a state-of-the-art transformer-based model that achieves a PQ of 59.5 (Li et al., 2023).
Similarly, in semantic segmentation, the best diffusion-based model achieves an mIoU of 52.8 (Tan
et al., 2022), whereas transformer-based models like BEiT (Wang et al., 2023b) reach an mIoU of
62.8. These performance gaps raise an important question: Why do diffusion models lag behind
their transformer-based counterparts in dense prediction tasks, and how can we close this gap?

A fundamental difference between transformer-based and diffusion-based dense predictors lies in
their underlying modeling approach. Transformer-based models, such as Mask DINO, are discrimi-
native, they directly map an input image to its segmentation labels using a DETR-style transformer

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

decoder, without explicitly modeling the data distribution. Diffusion-based models, in contrast, are
generative in nature, they learn the entire data distribution and generate dense predictions by itera-
tively refining a noisy input. This distinction has key implications for performance:

• Diffusion models inherently prioritize recall (Table 1), as they explore diverse possible
segmentations by modeling the underlying data distribution.

• However, this comes at the cost of precision, as diffusion models can introduce spurious
predictions, leading to lower Panoptic Quality compared to discriminative methods.

In this paper, we systematically investigate the cause of low precision in diffusion-based panoptic
segmentation. Our key observation is that while the diffusion model’s recall is naturally high, its pre-
cision is limited due to the inherent stochasticity in the reverse process. For example, Mask2Former
(Cheng et al., 2022), a non-diffusion transformer model for panoptic segmentation, has a preci-
sion value of 80.4 compared to our diffusion baseline (Van Gansbeke & De Brabandere, 2024)
which has a precision of 76.1. To address this shortcoming, we propose a novel inference-time
noise scheduling strategy that biases the diffusion process towards more deterministic and struc-
tured predictions, thereby improving precision while maintaining recall. With noise fine-tuning, our
framework achieves 1.5% improvement in Panoptic Quality over the current state-of-the-art-method
among generalized frameworks on COCO Lin et al. (2014) dataset. We validate the method’s sen-
sitivity by testing PQ on unseen ADE20K dataset 6 and also experimenting with different levels of
synthetic image degradation on the COCO validation dataset5.3.

Our scheduling approach also demonstrates broader applicability across diverse generative tasks.
For text-to-image generation on the DrawBench (Saharia et al., 2022a) dataset, we achieve a sig-
nificantly improved explainable Image Quality Evaluation (X-IQE) (Chen et al., 2023c) Image-Text
Alignment score of 4.6, compared to the Stable Diffusion 1.5 baseline of 3.6. This further vali-
dates that our new strategy leads to more deterministic results, suggesting similar benefits for other
complex vision problems.

Our contributions are threefold:

• We demonstrate that diffusion-based segmentation is inherently recall-centric.
• We propose a novel inference-time noise scheduling strategy that improves the precision of

diffusion models for panoptic segmentation.
• We show the wider applicability of using the noise schedule as an inference-time knob to

optimize pre-trained diffusion models for both generative and dense prediction tasks.

2 RELATED WORK

2.1 CONDITIONAL DIFFUSION MODELS

Conditional diffusion models are widely employed for image generation and dense prediction tasks.
For image generation, conditioning is typically provided by a text prompt (Ramesh et al., 2022;
Zhang et al., 2023). In dense prediction tasks, the conditioning takes the form of an input image for
which the dense prediction is required. This conditioning guides the model to generate the relevant
output. The diffusion model consists of a forward process for training and a reverse process that is
utilized for inference.

The forward diffusion process is defined as follows:

q(xt|xt−1, c) = N (xt;
√
αt xt−1 + f(c), (1− αt)I) , (1)

where αt is the variance scheduling term, and f(c) is a function (e.g., implemented via cross-
attention or concatenation) that injects the conditioning information (such as segmentation cues)
into the process using the conditioning latent c.

A noisy sample at any timestep t can be expressed as:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (2)

with the cumulative product defined as ᾱt =
∏t

s=1 αs.
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The reverse process recovers x0 from xt by iterative denoising while being conditioned on c:

pθ(xt−1 | xt, c) = N (xt−1;µθ(xt, t, c), Σθ(xt, t, c)) , (3)

where ϵθ(xt, t, c) is a denoising network that predicts the added noise given xt and condition c. The
predicted noise is then used to compute the mean µθ(xt, t, c) according to the DDPM parameteriza-
tion, while Σθ(xt, t, c) denotes the (fixed or learned) variance of the reverse process.

2.2 PANOPTIC SEGMENTATION

Panoptic Segmentation (Kirillov et al., 2019) combines semantic and instance segmentation. It in-
volves assigning each pixel a semantic label for things like car, grass etc. as well as an instance id
to differentiate between different instances of the same class. This creates a comprehensive under-
standing of the image required for tasks like autonomous navigation, robotics and satellite imaging.
Panoptic Segmentation is measured using the Panoptic Quality(PQ) metric defined as follows:

PQ =

∑
(p,q)∈TP

IoU(p, q)

|TP |+ 1
2 |FP |+ 1

2 |FN |
(4)

where, True Positives (TP) is the set of correctly matched predicted p and ground-truth q segments
with IoU > 0.5. False Positives (FP) are predicted segments that do not match any ground-truth seg-
ment. False Negatives (FN) are ground-truth segments that do not match any prediction. IoU(p, q)
is the Intersection-over-Union between matched pairs.

There are several research works on panoptic segmentation. Many of them are extensions of previous
research on segmentation and object detection. Panoptic segformer (Li et al., 2022) uses multi-
level feature aggregation, and a query-based instance segmentation head to extend segformer (Xie
et al., 2021) semantic segmentation architecture for panoptic segmentation. Mask DINO (Li et al.,
2023) extends the DINO (Caron et al., 2021) object detection framework using an additional mask
prediction branch for panoptic segmentation. Mask2Former (Cheng et al., 2022) proposes a masked
attention based transformer architecture where the cross-attention is constrained by a mask for a
generalized segmentation framework. Chen et al. (2023b) propose a method to perform panoptic
segmentation on both images and videos using a transformer based architecture.

3 NOISE AS A KNOB

Diffusion models are designed to learn the underlying distribution of training data and generate
panoptic segmentation labels by progressively denoising a noisy input. These models typically
rely on a conditional image input to guide the denoising process toward semantically meaningful
outputs. In contrast, transformer-based models process an input image in a fully discriminative
manner, directly predicting segmentation labels without the need for iterative refinement. This often
results in deterministic outputs. A fundamental distinction between these two paradigms lies in
their inference mechanisms. Diffusion models employ a stochastic sampling process, introducing
variability in their predictions, which can enhance diversity but may also lead to inconsistencies.
In contrast, transformer-based architectures generate segmentation outputs in a single forward pass,
ensuring deterministic and stable predictions.

3.1 MODIFYING THE DIFFUSION REVERSE PROCESS

Prior work (Singh et al., 2022; Ahn et al., 2024; Ho & Salimans, 2022) shows that increasing the
noise level during sampling encourages the model to rely more heavily on conditioning signals. In
parallel, Kingma et al. (2021) demonstrate that the variational lower bound of diffusion models is
largely invariant to small perturbations of the noise schedule, except through the signal-to-noise
ratio (SNR) near the trajectory endpoints. Motivated by these findings, we design an inference-time
modification that raises the noise levels in the mid-trajectory while keeping the endpoints close to
the training schedule. This requires no retraining and biases the model toward more deterministic,
condition-driven reconstructions.

3
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Figure 1: Impact of λ (equation 6) on the Noise Schedule of diffusion process. It can be observed that
the modified noise schedule has more noise and less signal, compared to the original schedule. In the
original schedule, structural details such as the giraffe outline remain partially visible due to a higher
signal-to-noise ratio at intermediate timesteps. In contrast, the modified schedule introduces more
noise, suppressing these high SNR features and making the conditional input more influential in
guiding the denoising process. The difference is particularly evident in the zoomed-in images, where
background structures(e.g. the yellow region) are less discernible under the modified schedule.

At each reverse step, the clean sample is reconstructed from the noisy state xt as

x̂0(xt, t, c) =
xt −

√
1− ᾱt ϵθ(xt, t, c)√

ᾱt
, (5)

where ϵθ(xt, t, c) is the condition-aware noise prediction. We modify this step by replacing ᾱt with
ᾱλ
t :

x̂
(λ)
0 (xt, t, c) =

xt√
ᾱλ
t

−
√
1− ᾱλ

t√
ᾱλ
t

ϵθ(xt, t, c). (6)

Effect on SNR: Substituting Eq. 2 into Eq. 5, the reconstruction error becomes

x̂0 − x0 =

√
1− ᾱt√
ᾱt

(ϵ− ϵθ). (7)

Hence, the effective signal-to-noise ratio is

SNRt =
Var[x0]

Var
[√

1−ᾱt√
ᾱt

(ϵ− ϵθ)
] ∝ ᾱt

1− ᾱt
. (8)

Our modification (Eq. 6) leads to a modified SNR as follows,

SNR(λ)
t ∝ ᾱλ

t

1− ᾱλ
t

. (9)

For λ > 1, we have ᾱλ
t < ᾱt, and therefore

SNR(λ)
t < SNRt. (10)

This reduced SNR amplifies the role of the model’s noise prediction ϵθ(xt, t, c). As ᾱλ
t decreases,

the scaling factor
√

1−ᾱλ
t√

ᾱλ
t

(Eq. 6) grows, making the reconstruction increasingly dependent on
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correcting the injected noise. This forces the reverse process to rely more strongly on condition-
aligned predictions, yielding reconstructions with higher precision but reduced diversity. Note that
towards the denoising trajectory endpoints ᾱt is close to either 0 or 1 so the scaling by λ has minimal
impact on its value. This aligns with the analysis of Kingma et al. (2021) and keeps the SNR at
endpoints similar to the original schedule.

3.2 ANALOGY TO CLASSIFIER-FREE GUIDANCE (CFG)

This mechanism is analogous to the widely known technique of Classifier Free Guidance (CFG).
CFG strengthens the influence of the conditional input (like a text prompt or an image) by pushing
the prediction away from an unconditional noise estimate and further towards the conditional one.
The effect of the scaling parameter λ can be seen as an implicit guidance scale. In standard CFG, a
guidance scale explicitly pushes the output to be more relevant to the condition. In Noise as a Knob,
increasing λ > 1 implicitly amplifies the influence of the conditional signal c that is embedded in
the network’s prediction ϵθ(xt, t, c). By re-weighting the reconstruction formula, the method forces
each denoising step to rely more heavily on the learned, condition-specific part of its prediction.
This stronger guidance leads to more deterministic and structured outputs that are better aligned
with the conditional input.

4 EXPERIMENT SETUP

We test our approach with the panoptic segmentation architecture called LDMSeg (Van Gansbeke
& De Brabandere, 2024). It is a generalized framework for dense prediction developed on top of the
popular stable diffusion architecture. The latent space size is [B, 4, 512, 512] where B is the batch
size. The output has 128 channels to reconstruct 128 instances in a scene. The model was trained
using the COCO (Common Objects in Context) (Lin et al., 2014) training dataset. COCO dataset is
a widely used for tasks like object detection and panoptic segmentation. It has 80 object categories
that include humans, animals, household items, vehicles etc. The training set has 118000 images
and validation consists of 5000 images with annotated labels for panoptic segmentation.

We utilize the pre-trained model provided in LDMSeg and modify its inference noise schedule with
varying λ for our experiments. We do not conduct any kind of training or fine-tuning. The main
focus for these tests is to measure precision, recall and Panoptic Quality. Note that it is a standard
practice in previous panoptic segmentation research to evaluate performance using a class agnostic
panoptic quality metric on the coco validation dataset. Most of the research works including our
baseline approaches (Van Gansbeke & De Brabandere, 2024; Wang et al., 2023b;a) also do the
same. Our results are shown is Table 1.

For simulating Haze on COCO validation set, we utilize the method described in (Agarwal et al.,
2025; Liu et al., 2022). The hazy images can be synthesized using the atmospheric scattering model
(Cantor, 1978; Narasimhan & Nayar, 2002) as follows:

J(x) = I(x)t(x) +A(1− t(x)), (11)

where, J(x) is the hazy image, I(x) is the original clean image, A is the global atmospheric light
whose value is set to 0.5, and t(x) is the medium transmission map. The transmission map is
computed based on the atmospheric scattering coefficient β and scene depth d(x):

t(x) = e−βd(x) (12)

d(x) = −0.04ρ+
√
max(rows, cols) (13)

where ρ denotes the Euclidean distance of the pixel from the image center, and rows and cols corre-
spond to the dimensions of the image. Atmospheric scattering coefficient β can be varied to obtain
different levels of haze. We add 3 different levels of haze on the COCO dataset with β values of
0.05, 0.10 and 0.15 and compute the performance. All our experiments used a slurm cluster node
with 8 Nvidia A100 GPUs with memory of 80GB. The batch size was set to 32.
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To demonstrate the generalization of our approach to generative tasks, we applied the inference
schedule modification to the text-to-image generation using Stable Diffusion 1.5 (SD1.5) on Draw-
Bench (Saharia et al., 2022a) dataset. Note that SD1.5 is known for stronger text-image alignment
compared to newer versions. DrawBench is a challenging dataset specifically designed to evaluate
text-to-image diffusion models, introduced by Google Research. It consists of 200 prompts designed
to test a model’s ability to understand and generate complex textual instructions. We compare the
different schedules using explainable image quality evaluation (X-IQE) (Chen et al., 2023c) which
uses MiniGPT-4 to evaluate text-to-image models on Fidelity, Alignment and Aesthetics.

5 RESULTS

5.1 PRECISION RECALL STATISTICS WITH THE MODIFIED NOISE SCHEDULE

Table 1: Comparison of precision, recall, and panoptic quality on the COCO validation dataset at
different values of λ. (∗) λ = 1.0 represents the baseline using the original training noise schedule,
showing the highest recall. For λ values greater than 1.0, precision consistently increases while
recall experiences only a small reduction. Note the highest precision is observed at λ = 1.5. The
optimal Panoptic Quality (PQ) of 52.7 is achieved at λ = 1.3.

λ Precision Recall PQ
0.8 70.6 52.8 49.3
0.9 74.2 53.8 51.1
1.0∗ 76.1 54.2 51.9
1.1 77.4 54.2 52.4
1.2 78.3 54.1 52.6
1.3 78.9 53.8 52.7 (+1.5%)

1.4 79.1 53.4 52.5
1.5 79.8 (+4.9%) 52.9 52.5

We first conduct experiments with COCO validation dataset with the modified diffusion inference
de-noising schedule. We test the effect of different values of λ on precision, recall and panoptic
quality metric. The results are shown in Table 1. Having λ value less than 1 (0.8 and 0.9), leads to
reduction in both precision and recall as well as have a lower panoptic quality score than the original
schedule. For λ values greater than 1, there is improvement in the precision score with slightly lower
recall. The best panoptic quality of 52.7 is obtained at λ = 1.3. If we look at λ values more than
1.3, the precision increases further but the recall reduces and it leads to lower panoptic quality.

5.2 PANOPTIC QUALITY PERFORMANCE COMPARISON

Table 2: This table presents the comparison of our approach with the SOTA methods on Panop-
tic Quality(PQ) metric on COCO validation dataset for class agnostic panoptic segmentation. We
can see that our modified inference noise schedule based method outperforms all the generalist ap-
proaches. It sets a new benchmark for diffusion model based Panoptic Segmentation.

Framework Backbone #Params Image Size PQ
Specialist Approches:
Mask2Former Swin-L 216M 1024x1024 57.8
kMax-DeepLab ConvNeXt 232M 1281x1281 58.1
Mask Dino Swin-L 223M 1024x1024 59.4
Generalist Approches:
Painter ViT-Large 370M 448x448 41.3
UViM ViT-Large 939M 1280x1280 45.8
Pix2Seq-D ResNet 94.5M 1024x1024 50.3
LDMSeg UNet (Diffusion) 851M 512x512 51.9
Ours UNet (Diffusion) 851M 512x512 52.7
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We evaluate the effectiveness of our modified inference noise schedule by comparing it against
state-of-the-art (SOTA) methods on the COCO validation dataset. The quantitative results are sum-
marized in Table 2. Our proposed approach, utilizing a rescaled inference noise schedule with a
scaling factor λ = 1.3, achieves a Panoptic Quality (PQ) score of 52.7, surpassing existing general-
ist methods. This result highlights the effectiveness of our inference-time optimization in improving
segmentation performance without requiring additional training. However, as expected, specialized
task-specific models continue to outperform generalist approaches, benefiting from domain-specific
optimizations and additional training strategies.

5.3 SENSITIVITY TO DIFFERENT LEVELS OF HAZY DEGRADATION

Figure 2: Comparison of segmentation quality using the baseline noise schedule (λ = 1.0) and the
modified schedule (λ = 1.3) across varying haze levels β on COCO validation images. Segment
color assignment is arbitrary. Notice that the baseline schedule tends to over-segment, introducing
spurious regions evident in the horse image at β = 0.15 and in all teddy bear examples, where parts
appear in different colors. The modified schedule reduces these artifacts.

Table 3: Comparison of Panoptic Quality(PQ) on COCO simulated hazy dataset with different levels
of haze (β). (∗) The original training noise schedule is with λ = 1.0. Tweaking λ improves PQ at
different degradation levels.

λ Original β = 0.05 β = 0.10 β = 0.15
1.0* 51.9 51.0 48.3 41.8
1.1 52.4 51.4 48.5 42.0
1.2 52.6 51.6 48.6 41.8
1.3 52.7 51.5 48.6 41.6
1.4 52.5 51.4 48.3 41.1
1.5 52.5 51.3 48.0 40.2

From our experiments it is clear that our modified inference noise schedule improves the precision
value compared to the baseline. In this experiment, we see how the optimized schedule perform
on different levels on hazy degradation compared to the training schedule. Comparison of Panoptic
Quality on different levels on haze is shown in Table 5.3. We can still see improvement in terms
of Panoptic Quality with modified schedule on different levels of haze. For both β = 0.05 and
β = 0.10, the highest PQ is obtained with λ = 1.2, and λ = 1.3, also providing a boost in
performance for these degradations. At β = 0.15 which is the highest level of degradation, the best
PQ is obtained for λ = 1.1. It can be inferred that as the degradation level increases, the effect of
scaling becomes less prominent and optimum value of λ gets closer and closer to the baseline PQ.
This is substantiated by the fact that at higher degradation levels, objects are often blurred so a high
precision system will discard many detections. In this case, we should rely on a high recall system.

7
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Figure 2 shows segmentation results with modified noise schedule across haze levels (β). As degra-
dation increases, segmentation quality declines in both examples. The baseline schedule (λ = 1)
tends to over-segment, introducing artifacts, clearly visible in the second teddy bear image and the
horse image at β = 0.15. This aligns with its higher recall at the cost of precision. In contrast, the
modified schedule (λ = 1.3) improves precision, producing smoother masks. This trade-off can be
leveraged for task-specific needs.

5.4 RESULTS WITH TEXT TO IMAGE

Table 4: Text-to-Image performance comparison with Stable Diffusion 1.5 on DrawBench Dataset
with modified inference-time noise schedule. We use X-IQE evaluation (Chen et al., 2023c) metrics.
Percentage increase/decrease is calculated relative to the λ = 1.0 baseline.

λ Fidelity Alignment Aesthetics Overall
1.0 4.7 3.6 3.9 12.2
1.1 5.4 (+16.0%) 4.5 (+25.8%) 3.1 (-20.8%) 13.1 (+7.1%)

1.2 5.5 (+17.7%) 4.6 (+28.3%) 3.3 (-14.4%) 13.5 (+10.6%)

Figure 3: Sample images with improved image text matching generated from the DrawBench dataset
prompt (given above) with varying inference noise schedule.

To measure the generalization of using this inference time scheduling, we also tested with the mod-
ified noise schedule on DrawBench Dataset. The results are presented in Table 4. It shows compar-
ison of Fidelity, Image-Text Alignment, Aesthetics and overall X-IQE (eXplainable Image Quality
Evaluation) score. We see that the Alignment score increases with increasing λ, substantiating our
panoptic segmentation results and showing that having more noise in the schedule makes the condi-
tional input more relevant. This comes at the cost of aesthetics.

When we increase λ to 1.1 the Alignment score increases from 3.6 to 4.5 and λ = 1.2 leads to even
higher score of 4.6. Overall Image Quality also improves from 12.2 to 13.5. Figure 3 shows a few
qualitative examples where modified schedule improves the image-text matching. Beyond λ = 1.2
the Aesthetics score drops a lot. Its also visible in the Giraffe image where the Giraffe is now pink
aligning with the prompt but the image looks more cartoonish.

5.5 TESTING WITH ALTERNATIVE NOISE SCHEDULES

In this paper we focused on a specific variation of noise schedule where ᾱ is scaled by power of λ.
We complied with the conditions suggested by Kingma et al. (2021) which says that the inference

8
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Figure 4: Comparison of ᾱ values for different noise scheduling strategies. The baseline is the blue
curve representing the scaled linear schedule. We can see that Squared cosine (Nichol & Dhariwal,
2021) and GeoDiff sigmoid (Hoogeboom et al., 2022) strategies deviate from the baseline.

time noise schedule in the middle of the diffusion process can be modified without breaking the dif-
fusion framework. We also did experiments with other common noise scheduling strategies namely
squared cosine (Nichol & Dhariwal, 2021) and GeoDiff sigmoid (Hoogeboom et al., 2022). In Ta-
ble 5, we can see that using a completely different noise scheduling strategy at inference actually
hampers that model performance. With both Squared cosine and GeoDiff sigmoid denoising, the
performance of the diffusion model becomes worse in all three metrics of precision, recall and PQ
as compared to the scaler linear denoising (same strategy as in training).

Table 5: Comparison of precision, recall and panoptic quality(PQ) on COCO validation dataset
using different inference noise scheduling strategies.

Scheduling Method Precision Recall PQ
Scaled Linear (λ = 1.0) 76.1 54.2 51.9
Squared Cosine 16.2 19.8 13.1
GeoDiff Sigmoid 75.5 52.9 51.0
Scaled Linear (λ = 1.3) 78.9 53.8 52.7

Figure 4 shows how the Squared cosine (Nichol & Dhariwal, 2021) and GeoDiff sigmoid (Hooge-
boom et al., 2022) schedules deviate from the original scaled linear schedule. Unlike the proposed
scaling method, the two new schedules significantly deviate towards the start and end timesteps,
violating the conditions defined by Kingma et al. (2021). There is also deviation in the middle. The
deviation makes the the inference framework move far away from the training conditions resulting
in performance loss. We can see the Squared cosine schedule deviates more from the baseline than
the Geodiff sigmoid schedule and hence has a significantly lower performance in table 5.

6 CONCLUSION

We show that the training noise schedule in diffusion models may be suboptimal for inference. By
modifying the noise schedule at inference time, our method increases precision while maintaining
recall for panoptic segmentation, and also leads to better text-guided image generation. Our ap-
proach allows task-specific tuning and boosts performance without any additional training. It offers
a practical deployment strategy and opens up new directions for improving diffusion based models
through inference time noise scheduling.
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A APPENDIX

A.1 PANOPTIC SEGMENTATION ON UNSEEN ADE20K DATASET

To validate the robustness and sensitivity of the modified noise schedule for the task of Panoptic
Segmentation, we conducted tests on ADE20K (Zhou et al., 2019) dataset. Here, we used the
baseline LDMSeg (Van Gansbeke & De Brabandere, 2024) pre-trained model that was trained on
COCO dataset. Since LDMSeg can predict a maximum of 128 instances so we restricted the number
of instances in ADE20K dataset samples to 128 (labels in ascending order) and ignored rest of the
instances. Note that we do this test to see whether the optimized noise schedule also improve the
performance on unseen data.

Table 6: Comparison of precision, recall and panoptic quality on ADE20K dataset with the original
training noise schedule λ = 1.00 and the modified optimum schedule λ = 1.30. Here also we can
see that we get higher panoptic quality with the optimized schedule.

λ Precision Recall PQ
1.00 67.92 36.84 38.24
1.30 70.82 36.37 38.61

The results are presented in Table 6. Here also, we obtain higher precision of 70.82 and panoptic
quality of 38.61 with the modified inference time noise schedule compared to the baseline precision
of 67.92 and panoptic quality of 38.24 obtained using the training noise schedule. This shows the
robustness of our approach that results in panoptic quality and precision improvements for different
datasets. In addition to our experiments with different levels of haze that are presented in the main
paper, these results validate that performance improvements hold in diverse settings.

A.2 SENSITIVITY OF PROPOSED SCHEDULE WITH DEGRADATION

To further evaluate the sensitivity of our method to test-time degradation, we conduct an experiment
comparing panoptic segmentation masks generated with and without visual degradation. We assess
performance under two different denoising schedules: the original and the modified one. Table 7
presents results on the COCO validation set and its simulated hazy version (β = 0.10) (Agarwal
et al., 2025), evaluated using mIoU and Dice coefficient.

With the original schedule (λ = 1.0), we observe an average mIoU of 0.926 and a Dice coefficient
of 0.962. Under the modified schedule (λ = 1.3), both metrics improve to 0.948 and 0.973, respec-
tively. This demonstrates that the modified denoising schedule yields segmentation results that are
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Table 7: The table shows mean Intersection over Union (mIoU) and Dice coefficient, used to com-
pare the masks obtained from original and degraded images (with haze, β = 0.10) on COCO vali-
dation dataset at different inference noise schedules. The modified schedule achieves higher mIoU
and Dice coefficients, indicating lower sensitivity to image degradation.

Schedule λ = 1.0 λ = 1.3
mIoU 0.926 0.948
Dice 0.962 0.973

more consistent across degraded and non-degraded conditions. This shows that denoising with the
modified schedule is less sensitive to the degradation as compared to the original schedule. These
results prove that modifying the noise schedule do not compromise the robustness of the diffusion
model.
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