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Abstract

Modeling the dependency between utterances
in a multi-party conversation facilitates the un-
derstanding of conversation more precisely and
holistically. In this paper, we propose a sim-
ple and generic framework for this purpose,
in which the dependency is built on discourse
parsing of utterances. Particularly, we present
two approaches to encoding the dependency,
namely absolute dependency encoding and rel-
ative dependency encoding, and combine them
in Transformers by modifying the computation
of self-attention. To enhance the understand-
ing of utterance dependency, we further intro-
duce a span distance prediction pre-training
task for the proposed model. Experimental re-
sults on four multi-party conversation bench-
marks for different tasks show that this model
successfully boosts the generic performance
of Transformer-based language models. Sys-
tematic studies are conducted to investigate
why utterance dependencies are essential for
multi-party conversation tasks and how they are
learned in a simple and effective framework.

1 Introduction

Most current research on dialog systems focuses
on interactions between two interlocutors such as
a human user and a conversational agent. There
has been a strong need for extending it to multi-
party conversations since numerous scenarios such
as group meetings (Carletta et al., 2005) and on-
line chat room (Uthus and Aha, 2013; Lowe et al.,
2015) naturally involve more than two interlocu-
tors (Traum, 2003). However, it tends to be more
challenging to model multi-party conversations as
there could be multiple threads (topics) ongoing
and complicated dependency existing between ut-
terances. As illustrated in Figure 1, multi-party
conversations often face the challenge of referen-
tial ambiguity and lack coherence between consec-
utive utterances (Li et al., 2020; Jia et al., 2020).

Sam: | use my TV as monitor in living room ] — Thread 1
1 . L 7
and like screensaver playing if not using. —— Thread 2
Tommy: Try commenting
u
>——{out the “v4I” module.
Sam: Comment them out where in xorg?} \
Jessica: Could u help me to m
find a driver for my card?
Tommy: Looking. Should use
5] the r8169 driver URL.
m Tommy: Realtek makes a unix
driver, that may help.
Jessica: Thanks, | am going
[to check that all out.
Tommy: Comment that out in m
your FILEPATH file.

E Question: Where the “v4l” module be commented out? !
| Answer: FILEPATH file :

Figure 1: An example to show that utterance depen-
dency should be modeled to address machine read-
ing comprehension in multi-party conversations. Two
threads occur concurrently in this conversation, leading
to incoherence between consecutive utterances. The
word “that” in red points to the phrase “the v41 module”
is several utterances away from it.

This suggests that it could be beneficial to take
into account structural information when process-
ing multi-party conversations. One very intuitive
idea is to encode utterance dependencies produced
by heuristic rules (Hu et al., 2019) or utterance
dependency parsers (Shi and Huang, 2019).

To this end, modeling utterance dependency with
Transformers (Vaswani et al., 2017) appears to be
quite appealing. Two common implementations
are hierarchical and utterance masking methods.
Hierarchical methods (Hu et al., 2019; Xiao et al.,
2020; Shen et al., 2021) firstly encode each utter-
ance separately and then feed the utterance rep-
resentations into a graph neural network built ac-
cording to utterance dependencies. Nevertheless,
these methods are restricted to tasks that demand
only utterance-level representations and may fall
short in dealing with tasks such as reading compre-
hension that require token representations. On the



other hand, utterance masking methods (Nguyen
et al., 2019; Liu et al., 2021) directly mask those
self-attention weights between utterances that have
no dependency relation. However, our preliminary
empirical evidence (Section 5.3) shows that mask-
ing methods are insensitive to different parsers and
may not really capture the dependency as desired.

In this paper, we propose a simple framework
that aims to endow Transformers with the generic
ability to model utterance dependency. To begin
with, we first acquire the utterance dependencies in
a multi-party conversation with an off-the-shelf ut-
terance dependency parser (Shi and Huang, 2019).
To encode the utterance dependencies, we then pro-
pose absolute dependency encoding that directly
encodes the absolute position of each utterance
in the dependency tree and relative dependency
encoding that encodes the relative dependency dis-
tance of two utterances. The encoded dependency
information is integrated into Transformers by mod-
ifying the computation of self-attention. Without
adding a new module, this framework can be easily
applied to a wide range of Transformer-based lan-
guage models and multi-party conversation tasks.
Besides, to enhance the understanding of utterance
dependency, we further introduce a span distance
prediction pre-training task for the proposed frame-
work. It serves as a complement to previous lan-
guage modeling tasks to make the model better
comprehend utterance dependency.

We implement the new framework in pre-trained
language models RoBERTa (Liu et al., 2019) and
BART (Lewis et al., 2020) and evaluate them on
four multi-party conversation benchmark tasks, in-
cluding utterance-level emotion detection, relation
extraction, machine reading comprehension, and
abstractive summarization. Experimental results
show that this framework successfully boosts the
performance of the two models on all the tasks.
Besides, several conclusions can be drawn. First,
while the two encoding implementations can both
learn utterance dependency, the effect of relative de-
pendency encoding is more significant, serving as
an inductive bias for conversation modeling. Sec-
ond, for the new pre-training task, updating only
parameters related to utterance dependency while
freezing the rest is more effective than updating the
whole set of model parameters. Third, with explicit
utterance dependency modeling, language models
such as ROBERTa cause fewer inference errors than
with only implicit patterns within utterances.

2 Related Work

In this section, we briefly review related work on
utterance dependency in multi-party conversations
and its combination with Transformers.

2.1 Utterance Dependency

Utterance dependency in multi-party conversations,
which represents the linguistic relations from one
utterance to another, has drawn increasing attention
from the community in recent years. Asher et al.
(2016) released the first annotated dataset, STAC,
for utterance dependency parsing in multi-party
conversations. Li et al. (2020) proposed Molweni
which consists of two subtasks, namely utterance
dependency parsing and machine reading compre-
hension. In the meantime, several utterance depen-
dency parsers have been developed. Afantenos et al.
(2015) proposed a two-stage method based on Max-
imum Spanning Tree (MST). On top of Afantenos
et al. (2015), Perret et al. (2016) replaced the MST
with Integer Linear Programming (ILP). Shi and
Huang (2019) proposed a deep sequential model
for dependency parsing in multi-party dialogues,
which is the current state of the art for this task.
Note that utterance dependency parsing is also
referred to as discourse parsing in some literature.
We avoid using this term to distinguish utterance
dependency parsing from document discourse pars-
ing (Braud et al., 2017), a task to parse constituency
relations rather than dependency relations.

2.2 Utterance Dependency in Transformers

Considerable efforts have been devoted to com-
bining utterance dependency of certain types with
Transformers (Vaswani et al., 2017). GSN (Hu
et al., 2019) firstly encodes each utterance with
an utterance encoder and then feeds the utterance
representations into an utterance-level graph net-
work constructed based on speaker relations. DAG-
ERC (Shen et al., 2021) is similar to GSN but
builds the graph network based on manual rules.
Xiao et al. (2020) proposed a hierarchical Trans-
former structure, in which the attention weights of
a document-level Transformer are synthesized by
discourse information. Jia et al. (2020) proposed
to extract several threads from the dialogue his-
tory according to dependency relations and encode
each thread with an individual Transformer. Re-
cently, Liu et al. (2021) directly masked the atten-
tion weights between irrelative utterances in Trans-
formers while encoding the whole conversation.



Unlike the above efforts, we intend to develop a
simple and generic framework to model utterance
dependency in multi-party conversations without
any customized structure for various multi-party
conversation tasks. In particular, we explore two
encoding schemes of utterance dependency and
implement them in Transformer-based models by
modifying the computation of self-attention. This
generic nature makes it applicable to a wide range
of pre-trained language models. Moreover, we in-
troduce a span distance prediction pre-training task
for the framework to enhance its understanding of
utterance dependency, which serves as a comple-
ment to canonical language modeling objectives.

3 Methodology

In this section, we first formulate the concept of
utterance dependency and then present our two
approaches to encoding utterance dependency and
the pre-training task of span distance prediction.

3.1 Utterance Dependency

A multi-party conversation can be formulated as
a sequence of utterances U = {ug,uy,...,un—1},
where NV is the number of utterances in this con-
versation. Each utterance u; comprises a sequence
of tokens uttered by a speaker, while the set of
speakers for the utterances is denoted as S. These
utterances are concatenated into a sequence as in-
put to our model, where a function I(7) is defined
to map the ¢th token in the input to its utterance.

As illustrated in Figure 1, utterance dependency
provides structural information of some kind in
multi-party conversations and can be defined by
linguistic relations from one utterance to another.
For example, these relations may include comment,
elaboration, contrast, and explanation (Asher et al.,
2016). Nevertheless, for the sake of simplicity, we
only consider the connectivity of two utterances in
this work while ignoring their relation type. For-
mally, the utterance dependency for a conversation
is represented by a set £ of directed relations in
the form of u; — ;. To extract these relations, an
utterance dependency parser is applied:

& = Parser({ug, u1,...,un—1},S). (D

The utterance dependency parser forces each
utterance to point to exactly one of its preceding
utterances in the same conversation. Correspond-
ingly, the parsing result of the conversation natu-
rally forms a tree structure with ug as its root node.
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Figure 2: Demonstration of (a) utterance dependency,
(b) absolute dependency encoding, and (c) relative de-
pendency encoding. While (b) shows how to convert
utterance dependency to a tree and then implement ab-
solute utterance dependency encoding, (c) shows a sub-
graph of (a) and part of the relative utterance distances.

3.2 Utterance Dependency Encoding

Previous works (Yang et al., 2019; Raffel et al.,
2019; Chen et al., 2021) have shown that using
a positional bias term in each Transformer self-
attention computation to represent the position in-
formation can improve model performance. We
adopt a similar idea to encode the utterance de-
pendency in multi-party conversations at the token
level. Specifically, for each attention head in the
Transformer layers, the attention score between the
tth and jth tokens in the input is computed as:

.’L‘ZWqW];rl'JT + aij;

Sij = 3
’ Vd

2

where wiWqW,;r .ZL']T is the original attention term
in Transformer (Vaswani et al., 2017), x; and x;
are token representations, and a;; is our utterance
dependency bias term to represent the degree of
utterance dependency for the ith and jth tokens.
In the following, we investigate two approaches of
absolute dependency encoding and relative depen-
dency encoding to compute this bias term.



3.2.1 Absolute Dependency Encoding

Absolute utterance dependency encoding is based
on the absolute position of an utterance in the de-
pendency tree. For utterance u;, its absolute depen-
dency encoding is defined as the concatenation of
its parent’s absolute dependency encoding and its
ranking among its siblings in temporal order:

0, i=0

E(ui) :{ E(P(u;)); R(u;), Otherwise ©)

where P(-) denotes the parent utterance of an ut-
terance, F(+) is the absolute dependency encoding
of an utterance, and R(-) is the ranking of an utter-
ance among its siblings. The symbol “;” is used to
represent the concatenation of two encodings. In
Figure 2(b), we present an example to show how to
encode absolute utterance dependency.

We then derive the absolute dependency repre-
sentation of a token via a trainable embedding layer:

pi = Embed, (E(up)))- 4)

Finally, the attention score with absolute utter-
ance dependency encoding can be re-computed as:

EAUAUA a;JT + piW;W,ngjT
Sij = \/g , )

where W' and W} are trainable weight matrices.

3.2.2 Relative Dependency Encoding

We take the distance between two utterances in the
dependency tree to implement the relative utterance
dependency encoding. Specifically, the distance
from u; to u;, denoted as d(u;, u;), is determined
by the length of the path from u; to u; in the tree.
We also define the reverse distance from u; to u;
as the negative length of this path. If such a path
does not exist, both d(u;, ;) and d(u;, u;) are set
to oo. Especially, we define d(u;,u;) = 1 for any
1, assuming that each utterance is self-dependent.
Figure 2(c) presents an example of how to compute
the relative utterance distance. Moreover, if two
utterances are located far away from each other
in the tree, their interaction is weak and can be
considered as no dependency relation for simplicity.
To this end, we clip the utterance distance to get
the final relative utterance dependency encoding:

ooy d(uiy ), ld(ug ) <7
d(ui; uj) = { 00, otherwise

(6)

where 7 is the threshold used to clip the dependency
distance, which is a tunable hyperparameter.

The relative dependency representation between
tokens u; and u; is obtained by feeding the rela-
tive dependency encoding of their corresponding
utterances through a trainable embedding layer:

Tij = EmbedT(d(u](Z-), Ul(j)))- (7)
The attention score in Equation (2) with relative
utterance dependency encoding is re-computed as:

o .quW];r.%;r + WTTTZ']'
i \/& ’

where W is a trainable weight matrix.

®)

3.3 Pre-training for Dependency Encoding

Following common practice, it would be desirable
to further pre-train the model on a dependency-
related task to better initialize its parameters for
utterance dependency encoding. Xu et al. (2021)
proposed to pre-train a language model by predict-
ing the syntax distance of two tokens to enhance
its understanding of syntax information. In our sce-
nario of utterance dependency, however, the depen-
dency distance between two tokens can be easily
inferred from the dependency distance of neighbor-
ing tokens, making this task trivial to train.

To address this, we propose to pre-train the
model via a span distance prediction task. Specif-
ically, for the input sequence we first randomly
sample several pairs of text spans whose lengths
follow a Poisson distribution. Then, for each pair
of spans, the model is trained to predict the depen-
dency distance between any pair of tokens from
the two spans based on the output hidden states of
the last encoder layer. Since the distances between
tokens within a pair of spans are unknown, they
cannot easily be inferred from surrounding tokens.
As a result, the model is expected to understand
utterance dependency better after the pre-training.

Language models such as RoBERTa (Liu et al.,
2019) have been well pre-trained on large-scale cor-
pora, which are impossible to find for multi-party
conversations. To avoid forgetting the original pre-
trained parameters of these models catastrophically,
we opt to update only the parameters related to ut-
terance dependency encoding, i.e., W;, Wy, Wr,
and the embedding layers of utterance dependency,
while conducting our pre-training. Besides, to en-
hance the association of utterance dependency with
language, we combine the span distance prediction
objective and the original language modeling objec-
tive(s) while optimizing these language models. !

"Details of implementation are given in Appendix A.



4 Experimental Setup

We evaluate the proposed framework on four multi-
party conversation benchmarks. In this section, we
first introduce the experimental setup.

4.1 Dependency Parser

We employ the state-of-the-art utterance depen-
dency parser Deep Sequential (Shi and Huang,
2019) to parse a multi-party conversation. This
parser makes a sequential scan of utterances to pre-
dict the connections and relation types between
utterances and uses them to build a discourse struc-
ture incrementally. To train this parser, we combine
the two datasets of STAC (Asher et al., 2016) and
Molweni-DP (Li et al., 2020) into a larger dataset.

4.2 Conversation Benchmarks

Our conversation benchmarks include:>
MELD (Poria et al., 2019) is a benchmark for
utterance-level emotion classification. The evalua-
tion metric for this benchmark is F1 score.
DialogRE (Yu et al., 2020) is a benchmark for
relation extraction (RE), which predicts the rela-
tion type between two arguments. The evaluation
metrics are precision (P), recall (R), and F1 score.
Molweni-MRC (Li et al., 2020) is a benchmark
for reading comprehension (MRC), which identi-
fies the answer span for a question. The evaluation
metrics are exactly-match score (EM) and F1 score.
SAMSum (Gliwa et al., 2019) is a benchmark
for abstractive summarization in multi-party con-
versations. The evaluation metrics for this bench-
mark are Rouge-1, Rouge-2, and Rouge-L.

4.3 Pre-trained Language Models

For the discriminative tasks of ERC, RE and MRC,
we employ RoBERTA-base (Liu et al., 2019) as
the base model. For the generative task of sum-
marization, we employ BART-base (Lewis et al.,
2020). We first initialize the model parameters
with weights released by Huggingface® and then
conduct our pre-training and fine-tuning on down-
stream tasks. The corpus for our pre-training is the
combination of the four conversation benchmarks,
the STAC and Molweni-DP corpora, and an open-
source corpus (Choi et al., 2020) collected from the
TV show Friends. The consolidated corpus con-
tains 41,227 conversations and 442,539 utterances.
?Details of the four datasets are given in Appendix B.
*RoBERTa: https://huggingface.co/

roberta-base, BART: https://huggingface.
co/facebook/bart-base

4.4 Baseline Methods

We employ several strong baselines for comparison,
including some combining utterance dependencies:

RoBERTa (Liu et al., 2019) and BART (Lewis
et al., 2020) are the two base models used to imple-
ment our framework without utterance dependency.

RoBERTa,,. first encodes each utterance with
RoBERTa and then feeds utterance representations
into a directed acyclic graph network (Thost and
Chen, 2021) constructed in the same way as our
work. This hierarchical structure does not apply to
MRC and summarization.

RoBERTa,,, ../ BART,, s+ masks the self-
attention weight of two tokens whose dependency
distance exceeds a threshold 7 as defined in Section
3.2.2.

RoBERTa,;;/RoBERTa,..;/BART ,;,s/BART,.;
is RoBERTa/BART with our absolute utterance
dependency encoding or relative utterance depen-
dency encoding. They are initialized from the
original ROBERTa/BART and directly fine-tuned
on downstream tasks without further pre-training.

RoBERTa,;;+sdp / RoBERTa,+sdp /
BART;s+sdp / BART,.;+sdp is our proposed
models further pre-trained via the span distance
prediction task as described in Section 3.3.

5 Results and Analysis

We report the experimental results on the four
benchmark tasks and conduct in-depth analyses.

5.1 Results on ERC, RE and MRC

The experimental results on MELD, DialogRE and
Molweni-MRC are reported in Table 1. We ob-
serve that RoOBERTa,;; and RoBERTa,..;, which en-
code utterance dependency, outperform RoBERTa
and other existing baseline models considerably,
confirming the effectiveness of the two encoding
strategies. After pre-training with span distance
prediction, the two models see further considerable
improvement on these benchmarks, also verifying
the effectiveness of this pre-training task. Besides,
the results show that relative utterance dependency
encoding generally outperforms absolute utterance
dependency encoding.

5.2 Results on Summarization

The results of conversation summarization on
SAMSum are reported in Table 2. Note that we
only add utterance dependency encoding in the


https://huggingface.co/roberta-base
https://huggingface.co/roberta-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base

Method MELD DialogRE Molweni-MRC
F1 (o) P (o) R (o) F1 (o) EM (o) F1 (o)
RoBERTa 61.01 (0.31) | 62.50 (0.59) | 61.50 (0.59) | 61.99 (0.30) | 52.47 (0.65) | 66.45 (0.67)
RoBERTay,, 61.44 (0.08) | 50.53 (2.75) | 41.57 (3.14) | 45.43 (1.12) - -
RoBERTa,,,45% 61.45 (0.56) | 60.14 (0.39) | 51.19 (0.47) | 55.31 (0.44) | 53.20 (0.76) | 67.08 (0.61)
RoBERTa,;, 62.38 (0.37) | 64.56 (1.49) | 62.48 (1.25) | 63.47 (0.06) | 53.86 (0.85) | 67.93 (0.50)
RoBERTa,.; 62.21 (0.26) | 64.45 (0.86) | 63.65 (0.14) | 64.04 (0.38) | 54.25 (0.28) | 68.62 (0.58)
RoBERTaps+sdp | 62.72 (0.24) | 65.47 (1.43) | 62.19 (1.22) | 63.77 (0.33) | 53.69 (0.22) | 68.25 (0.52)
RoBERTa,.;+sdp | 62.92 (0.28) | 65.99 (0.70) | 62.96 (0.48) | 64.46 (0.16) | 55.03 (0.55) | 68.95 (0.28)

Table 1: Overall results on MELD, DialogRE and Molweni-MRC, where o represents standard deviation.

Method Rouge-1 (0) Rouge-2 (¢) Rouge-L (o) Update | Method | MELD DialogRE Molweni-MRC
BART 50.15 0.36)  25.48 (0.09)  46.00 (0.18) None None 62.21 64.04 68.62
BART, sk 50.74 (0.16)  25.76 (0.14)  46.40 (0.08) mlm 62.00 63.84 67.97
BART g5 51.24 (0.10)  26.13 (0.10)  46.85 (0.09) all sdp 62.28 63.77 68.17
BART,; 51.29 (0.03) 26.14 0.08) 47.13 (0.10) mlm 62.47 63.91 68.67
BART 45 + sdp | 51.50 (0.04) 26.18 (0.03)  47.04 (0.04) partial tdp 62.58 64.21 68.77
BART,; + sdp | 51.98 (0.18) 26.48 (0.04) 47.45 (0.06) sdp 62.92 64.46 68.95

Table 2: Overall results on SAMSum, where o repre-
sents standard deviation.

Result on MRC (F1)

Parser ‘ ROBERTa,4s | ROBERTa,; | ROBERTa st

MST (70.4) 67.11 67.46 67.21
Sequential (82.5) 67.43 67.84 66.97
Ground truth (100) 67.93 68.62 67.08

Table 3: Experimental results on Molweni-MRC with
utterance dependency generated by different parsers.
Scores in brackets are the corresponding F1 score for
utterance dependency parsing on the Molweni-MRC
test set.

encoder layers of BART. Nevertheless, the perfor-
mance of BART is still improved with our method,
which implies that this seq-to-seq Transformer
model understands the structural information in
the input conversations and leads to better quality
for generated texts. Besides, as the results in the
discriminative tasks, a similar conclusion is that the
performance of relative utterance dependency en-
coding is better than absolute utterance dependency
encoding.

After further pre-training on span distance pre-
diction, the performance of our BART-ABS and
BART-REL are also improved, indicating that span
distance prediction is also effective in seq-to-seq
language models.

5.3 Quality of Utterance Dependency

We analyze how utterance dependency affects the
performance of our models by using different ut-
terance dependency results. The Molweni-MRC
dataset is chosen for this experiment because it

Table 4: F1 scores for RoBERTa,..; with different fur-
ther pre-training methods on MELD, DialogRE and
Molweni-MRC. The results at the first content line of
the table represent RoBERTa,.; without further pre-
training.

has ground truth utterance dependencies for each
conversation. Three different sets of dependency
results are evaluated, namely the ground truth de-
pendency and the dependencies extracted by Deep
Sequential parser and MST parser (Afantenos et al.,
2015), respectively.

We observe that both our RoBERTa,;, and
RoBERTa,.; suffer performance degradation due
to the deterioration of quality of utterance depen-
dency. This implies twofold. First, our proposed
methods can indeed learn how to encode utterance
dependency and use it to solve the MRC task. Sec-
ond, good quality of utterance dependency helps
solve MRC tasks.

We also conduct experiments with
RoBERTa,,,sk- However, the performance
does not show a clear trend with the quality of
utterance dependency. Therefore, we suspect the
masking strategies may not be sensitive enough
to utterance dependency and they can hardly
represent the dependency as desired.

5.4 Variants of Pre-training Methods

We conduct experiments on RoBERTa,..; to inves-
tigate the effects of different pre-training methods
on our collected corpus.* Our analysis is based on

*The results for ROBERTa,; are in Appendix D
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Figure 3: An example of the scores of bias terms added on the self-attention score computed by segment encoding,
absolute dependency encoding and relative dependency encoding. Each index in the above heatmaps represents
an utterance from ug to ug. The utterance dependencies in the above heatmaps are {u; — ug, ug — ug, uz —
U1, Uy — Uz, Us —> U3, Ug — Us }. More visualization cases are provided in the Appendix F.

Methods ‘ MELD DialogRE Molweni-MRC
RoBERTa 61.01 61.99 66.45
RoBERTa,., | 61.95 62.04 67.86
RoBERTa,,; | 62.38 63.47 67.93
RoBERTa,.; | 62.21 64.04 68.62

Table 5: F1 scores on MELD, DialogRE and Molweni-
MRC. RoBERTa,., denotes the segment encoding
method introduced by Chen et al. (2021).

two aspects. First, we compare the strategies of
updating all the model parameters (all) and updat-
ing only the parameters related to utterance depen-
dency (partial). Second, we compare different pre-
training tasks, including mask language modeling
(mlm), our pre-training task (sdp), and replacing
span distance prediction with token distance pre-
diction (tdp) introduced by Xu et al. (2021). The
results are shown in Table 4.

One observation from the results is that when up-
dating all the model parameters, the performance
is worse than that without pre-training. This is
inconsistent with previous works that in-domain
pre-training can improve model performance in
downstream tasks (Sun et al., 2019; Gururangan
et al., 2020). We think this is due to that we add
new parameters with random initialization to the
original RoOBERTa. In this case, when updating the
new parameters and original parameters together,
the model converges to a point that is neither gen-
eralized in language representation nor fitted with
utterance dependency.

If only updating the parameters related to utter-
ance dependency, all the pre-training tasks can lead
to a performance gain on RoBERTa,.;. This indi-
cates that updating only the newly added param-
eters is potentially better than updating all model
parameters. Besides, the performance of the three

pre-training tasks generally satisfies that mlm <
tdp < sdp, which means that designing an addi-
tional loss focusing on utterance dependency is
helpful for initializing parameters related to utter-
ance dependency encoding, while our span distance
prediction is more effective than token distance pre-
diction.

5.5 Does Utterance Dependency Encoding
Only Segment the Conversations?

Since our proposed utterance dependency encod-
ing assigns the same absolute encoding for tokens
within the same utterance or the same relative en-
coding for token pairs within the same utterance
pair, we can consider that it also plays a certain
role in helping Transformers to learn how to seg-
ment the input conversation. Therefore, we want
to figure out whether the performance improve-
ment of our method truly stems from the utterance
dependency or it is just because it can segment
the conversation. We carry out experiments on
the three discriminative tasks to compare utterance
dependency encoding with the segment encoding
method introduced by Chen et al. (2021). To make
a fair comparison, the parameters of all compared
models are initialized from the original RoBERTa-
base and directly fine-tuned on the downstream
tasks, without further pre-training. The results are
reported in Table 5.

We note that the segment encoding method
(RoBERTa,.,) can also boost the performance of
RoBERTa. However, our proposed RoBERTa,
and RoBERTa,..; outperform RoBERTa,,. This in-
dicates that the Transformer-based model equipped
with our utterance dependency encoding can obtain
a more comprehensive insight into conversations



» Tokenekie: How do | search for commands using wildcard?
\_ fosco_: Many ways, Is FILEPATH or Is FILEPATH for
| example

*~ Istarnes: Or type part of the command then press tab

) gkslvrwolf: How do | get FILEPATH manager
/" to use a different icon?

_jason: Probably need to edit the icon them

, ziroday: Hmm, okay. What version of
(" Ubuntu?
o slerder: Thanks. Is dpkg for installing things?
- ziroday: Yep, apt is a fronted to dpkg

Question: What is the other way to search for command?

Question: How does gkslvrwolf use the different icon?

Question: What’s the use of dpkg do?

RoBERTa: Is FILEPATH or Is FILEPATH X RoBERTa: FILEPATH manager X RoBERTa: apt is a fronted X
RoBERTa-REL: type part of the command then press tab ¢/ RoBERTa-REL: edit the icon (4 RoBERTa-REL: installing things 4
Case #1 Case #2 Case #3

Figure 4: Three test cases in Molweni-MRC, illustrating the common errors made by RoOBERTa when making
reasoning and how our proposed method can rectify these errors by using utterance dependency.

rather than merely understanding the segment in-
formation. In Figure 3, we show an example of
the scores of the bias term computed by different
encoding methods. The figures show that our rel-
ative utterance dependency encoding imposes a
direct and accurate inductive bias about utterance
dependency on the model, which means that the
attention weight between two tokens should also
be decided by the dependency between the corre-
sponding utterances. In contrast, we can hardly
tell what the model has learned by segment encod-
ing and absolute utterance dependency encoding.
This phenomenon confirms our intuition that rel-
ative utterance dependency encoding does learn
the utterance dependency, which explains why its
outperforms other methods including absolute ut-
terance dependency encoding.

5.6 Case Study

In Figure 4, we present some cases to show more
clearly why the model with our proposed utter-
ance dependency encoding can surpass the original
RoBERTa. We find that RoOBERTa tends to make
reasoning only based on language patterns in con-
versations. For example, the question in Case #1
is “What is the other way ...”. RoOBERTa finds the
answer with the pattern of “... or ...” in the sec-
ond utterance. In Case #2 the question is “How
does ... use the different icon””, when RoBERTa
finds the answer based on the pattern “get ... to ...”
in the first utterance, without considering the true
meaning of this utterance. The same situation hap-
pens in Case #3 where RoBERTa finds an answer
based on the pattern of “... to ...” for the question
with “What is the use of ...”. On the contrary, in
the given three cases, our RoOBERTa,..; makes rea-
soning based on the question-answer dependency
between utterances, and yields correct results. This
indicates that our proposed methods can rectify the
erroneous reasoning behavior of ROBERTa by con-

sidering utterance dependency. These cases also
show that utterance dependency is essential to solve
some tasks on multi-party conversations.

6 Conclusion

In this paper, we designed a simple and generic
framework to enhance the modeling of utterance
dependency in Transformers to facilitate the un-
derstanding of conversations. Particularly, we pro-
pose absolute utterance encoding and relative ut-
terance dependency encoding and combine them
in Transformers by modifying the computation of
self-attention. We also propose a pre-training task
of span distance prediction to endow an utterance
dependency-aware initialization. Experiments on
four multi-party conversation benchmarks show
that this framework is able to boost the generic per-
formance of Transformer-based language models.
With the results of further analyses, we show that
utterance dependency is helpful for multi-party con-
versations, and our proposed methods can indeed
learn to model utterance dependency and use it to
solve tasks. We also discover a partial updating
strategy which is more helpful than updating all
model parameters in our further pre-training. We
consider that we still have not exploited the full
potential of utterance dependency, in future works,
we will explore the way to use the relations types
of utterance dependency and combine utterance
dependency with other essential factors in conver-
sation.
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A Implementation details for span
distance prediction

When implementing our span distance prediction,
for an input sequence with length [, we randomly
sample |//10] pairs of spans, the lengths of which
are sampled in a Poisson distribution with A = 10.
We denote the set of sampled pair of spans as S,

10

each pair of spans as (s1, s2), the corresponding
indices of the tokens in the spans as s11, S12, ...511;
and sa1, S22, ...51;,. The loss function of span dis-
tance prediction is computed as:

511y S21y

Lop=— Y, > > dijlog(dy)

(s1,82)€S 1=511 J=52

®

Where d;; is the predicted distance between ith and
jth tokens in the input text and a?l-j is the ground-
truth distance.

The final loss function for our further pre-
training task is the sum of L4, and the loss func-
tion for language modeling:

L= Esdp + Elm (10)

For pre-training RoOBERTa,.;, since the input
relative utterance dependency encodings are also
relative distances between tokens, to avoid leak-
ing of labels, we adopt a mask strategy for the
distances within the sampled spans, specifically,
we randomly mask 80% of the distances, and 10%
are replaced by a random distance, and 10% are
remained as the same.

We carried out the further pre-training tasks on 4
NVIDIA GeForce RTX 3090 GPUs. The batch size
is set 16, learning rate is set to Se-5. We further pre-
train the models on our collected corpus for 20000
steps, with the first 4000 steps as warm-up steps.
The best checkpoints for the down-stream tasks are
selected among the checkpoints at 5000, 10000,
15000 and 20000 steps, based on the performance
on the validation set of the downstream tasks.

B Implementation Details for
Downstream Tasks

In this section we introduce the implementation
details for four downstream tasks in this paper.

B.1 Implementation Details for MELD

\ Train \ Dev \ Test
# Conversations | 1038 114 280
# Utterances 9989 | 1109 | 2610

Table 6: Statistics for MELD.
The statistics for MELD are shown in Table 6.

In MELD, models are ask to predict the emo-
tion of each utterance. There are 7 emotion la-
bels including neutral, happiness, surprise, sad-
ness, anger, disgust, and fear. When predict-
ing the emotion of u;, the model input is the
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special token <s> followed by the concatena-
tion of utterances from ug to u;, and utterances
are separated by special token </s>, namely
{<s> up </s> uj... wg—1 </s> u;}. We take
the hidden state of the <s> at the last encoder layer
as the final representation of the predicted sample,
and pass it to a multi-layer perceptron (MLP) to
get the final prediction y. The models are trained
on minimizing the cross-entropy loss:

1 M
L=—7 Z;y log(y:) (11)

Where M is the number of samples, ¥; is the model
predicted emotion, and ; is the ground-truth label.

B.2 Implementation Details for DialogRE

‘ Train ‘ Dev ‘ Test

# Conversations 1073 358 357
# Utterances 14024 | 4685 | 4420
# Argument pairs | 5997 | 1914 | 1862

Table 7: Statistics for DialogRE.

The statistics for DialogRE are shown in Table
7.

In DialogRE, given a conversation context
{ug, u1, ..., un—1} and two arguments a1, ag, mod-
els are asked to predict the potential relation types
between a; and as. DialogRE is a multi-label
classification task, there are 37 types of relations,
including 36 regular relations and 1 relation as
no relation. The model input for DialogRE is
the special token <s> followed by the concate-
nation of utterances from ug to uy_1 and two
arguments a1, as, the utterances and arguments
are separated by special token </s>, namely
{<s>wugp </s>uj...uny_1</s> a1 </s>az}. It
is worth noting that since the two arguments are
in the model input, we need to design their utter-
ance dependency encoding. The method is quite
straightforward, specifically, for absolute utterance
dependency encoding, we give the two arguments
a special absolute utterance dependency encoding
that is different from the utterances, and for relative
utterance dependency encoding, we set the relative
dependency distance between arguments and all
utterances as 1.

We take the hidden state of the <s> at the last
encoder layer as the final representation of the pre-
dicted sample, and pass it to 37 separated MLPs,
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each MLP will predict a y¢ € {0, 1}, which repre-
sents whether there is relation type c between the
two arguments or not. The models are trained on
minimizing the cross-entropy loss:

M 37

L= 3> jelos(y)

i=1 c=1

12)

Where M is the number of samples, 5 is the model
predicted label for relation type c, and S is the
ground-truth label for relation type c.

B.3 Implementation Details for
Molweni-MRC

‘ Train ‘ Dev ‘ Test
8771 883 100
77374 | 7823 | 845
24682 | 2513 | 2871

# Conversations
# Utterances
# Questions

Table 8: Statistics for Molweni-MRC.

The statistics for Molweni-MRC are shown in
Table 8.

In Molweni-MRC, given the conversation con-
text {ug, u1, ..., un—1} and a question ¢, the mod-
els are asked to predict the start and end po-
sitions of the answer span in the conversation
context. The model input is the question con-
catenated with the conversation context, namely
{<s>q </s>ug...</s>uy_1}. Similar to Dialo-
gRE, for absolute utterance dependency encoding,
we give the question a special absolute utterance
dependency encoding that is different from the ut-
terances, and for relative utterance dependency en-
coding, we set the relative dependency distance
between question and all utterances as 1.

The models are trained on minimizing the cross-
entropy loss:

M
1 . .
L= —17 E (y; log(y;) + v§ log(yi))  (13)
i=1

Where M is the number of samples, y; and y5
are the model predictions for start position and
end position, respectively, and yAf and gjf are the
ground-truth labels.

B.4 Implementation Details for SAMSum
The statistics for SAMSum are shown in Table 9.

The model input for SAMSum is the
concatenation of utterances, with the ut-
terances  separated by </s>, namely



‘ Train ‘ Dev | Test
# Conversations | 14731 818 819
# Utterances 164505 | 8860 | 9212

Table 9: Statistics for SAMSum.

{<s> Uuo </s> Ur... UN-2 </s> uN_l}.
The models are trained on minimizing the negative
log-likelihood:

M
1
L= _M ; tzlp(yz‘,t|yi,<t) (14)

Where M is the number of samples, y; ; is the tth
token of the generated summary.

B.5 Opverall implementation details

We train the models on downstream tasks with 4
NVIDIA GeForce RTX 2080 Ti GPUs. The hyper-
parameters that can be tuned for model selection
include learning rate, batch size, and the threshold
7 described in Section 3.2.2. The best model is
selected by the hold-out validation on the validation
set. All the experimental results reported in this
paper are achieved by carrying out 3 random tests
and averaging their results.

C Implementation Details for absolute
dependency encoding

When implementing absolute dependency encod-
ing, if we cover all the possible absolute depen-
dency encodings, the size of the memory demanded
for storing the absolute dependency encodings and
the embedding layers will experience exponential
increment as the number of utterances increases.
To tackle this problem, we build a vocabulary for
the absolute dependency encodings appear in the
training set and the validation set for each down-
stream task. When evaluating in the test set, if
an utterance’s absolute dependency encoding can
not be found in the vocabulary, it is marked as a
special UNK encodings, otherwise it is kept as the
same. This method saves memory significantly,
and its coverage rate for the absolute dependency
encodings on test set is acceptable. Specifically, the
coverage rates for the test set of MELD, DialogRE,
Molweni-MRC, SAMSum are 94.03%, 92.56%,
99.32% and 95.34%, respectively.
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D RoBERTa,,, with variants of further
pre-training tasks

In this section we show the results of ROBERTa;¢
with further pre-training tasks introduced in Section
5.4. The results are reported in Table 10. We can
find that the reported results are consistent with the
discoveries made in Section 5.4.

Update | Method | MELD DialogRE Molweni-MRC
None None 62.38 63.47 67.93
all mlm 62.12 63.35 67.38
sdp 62.32 63.43 67.32
mlm 62.42 63.56 68.27
partial tdp 62.59 63.67 68.01
sdp 62.72 63.77 68.25

Table 10: F1 scores for RoBERTa,;, with different
further pre-training methods. The results at the first
content line of the table represent ROBERTa, ;s without
further pre-training.

E Results for comparing with language
models with further language modeling

MELD DialogRE | Molweni-MRC
Method ‘ Fl (o) ‘ Fl () ‘ Fl ()
ROBERTa + Im 61.70 (0.36) | 60.12 (0.93) 67.03 (0.73)
ROBERTas + sdp | 62.72 (0.24) | 63.77 (0.33) 68.25 (0.52)
ROBERTa,.; + sdp | 62.92 (0.28) | 64.46 (0.16) 68.95 (0.28)

Table 11: Experimental results for ERC, RE and MRC.
RoBERTa+Im represents ROBERTa further pre-trained
with the mask language modeling task.

Method ‘ Rouge-1 (0) Rouge-2 (0) Rouge-L (o)
BART + Im 51.18 (0.18)  26.16 (0.26)  46.83 (0.23)
BART s +sdp | 51.50 (0.04) 26.18 (0.03)  47.04 (0.04)
BART,¢; +sdp | 51.98 (0.18)  26.48 (0.04)  47.45 (0.06)

Table 12: Experimental results in conversation summa-
rization. BART+Im represents BART further pre-trained
with the mask language recovering task.

We also compared our methods with the pre-
trained language models further pre-trained by lan-
guage modeling tasks on our collected corpus. The
results are reported in Table 11 and Table 12. As
shown in the results, our methods with our pro-
posed further pre-training task can still outperform
the pre-trained language models with further lan-
guage modeling tasks.

F More visualization for the case in
Section 5.4

We show more visualizations of different layers
and heads for the case described in Section 5.4.
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Figure 8: RoBERTa,., layer_5_head_4
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Figure 9: RoBERTa,;s layer_5_head_4
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Figure 11: RoBERTa,,, layer_11_head_3
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Figure 12: RoBERTa,;s layer_11_head_3
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Figure 13: RoBERTa,.; layer_11_head_3



