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Abstract

Modeling the dependency between utterances001
in a multi-party conversation facilitates the un-002
derstanding of conversation more precisely and003
holistically. In this paper, we propose a sim-004
ple and generic framework for this purpose,005
in which the dependency is built on discourse006
parsing of utterances. Particularly, we present007
two approaches to encoding the dependency,008
namely absolute dependency encoding and rel-009
ative dependency encoding, and combine them010
in Transformers by modifying the computation011
of self-attention. To enhance the understand-012
ing of utterance dependency, we further intro-013
duce a span distance prediction pre-training014
task for the proposed model. Experimental re-015
sults on four multi-party conversation bench-016
marks for different tasks show that this model017
successfully boosts the generic performance018
of Transformer-based language models. Sys-019
tematic studies are conducted to investigate020
why utterance dependencies are essential for021
multi-party conversation tasks and how they are022
learned in a simple and effective framework.023

1 Introduction024

Most current research on dialog systems focuses025

on interactions between two interlocutors such as026

a human user and a conversational agent. There027

has been a strong need for extending it to multi-028

party conversations since numerous scenarios such029

as group meetings (Carletta et al., 2005) and on-030

line chat room (Uthus and Aha, 2013; Lowe et al.,031

2015) naturally involve more than two interlocu-032

tors (Traum, 2003). However, it tends to be more033

challenging to model multi-party conversations as034

there could be multiple threads (topics) ongoing035

and complicated dependency existing between ut-036

terances. As illustrated in Figure 1, multi-party037

conversations often face the challenge of referen-038

tial ambiguity and lack coherence between consec-039

utive utterances (Li et al., 2020; Jia et al., 2020).040

Sam: I use my TV as monitor in living room 

and like screensaver playing if not using.

Tommy: Try commenting 

out the “v4l” module.

Jessica: Could u help me to

find a driver for my card?

Sam: Comment them out where in xorg?

Tommy: Looking. Should use 

the r8169 driver URL.

Tommy: Realtek makes a unix 

driver, that may help.

Jessica: Thanks, I am going 

to check that all out.

Tommy: Comment that out in 

your FILEPATH file.

Question: Where the “v4l” module be commented out?

Answer: FILEPATH file

u1

u2

u3

u4

u5

u6

u7

u8

Thread 1

Thread 2

Figure 1: An example to show that utterance depen-
dency should be modeled to address machine read-
ing comprehension in multi-party conversations. Two
threads occur concurrently in this conversation, leading
to incoherence between consecutive utterances. The
word “that” in red points to the phrase “the v4l module”
is several utterances away from it.

This suggests that it could be beneficial to take 041

into account structural information when process- 042

ing multi-party conversations. One very intuitive 043

idea is to encode utterance dependencies produced 044

by heuristic rules (Hu et al., 2019) or utterance 045

dependency parsers (Shi and Huang, 2019). 046

To this end, modeling utterance dependency with 047

Transformers (Vaswani et al., 2017) appears to be 048

quite appealing. Two common implementations 049

are hierarchical and utterance masking methods. 050

Hierarchical methods (Hu et al., 2019; Xiao et al., 051

2020; Shen et al., 2021) firstly encode each utter- 052

ance separately and then feed the utterance rep- 053

resentations into a graph neural network built ac- 054

cording to utterance dependencies. Nevertheless, 055

these methods are restricted to tasks that demand 056

only utterance-level representations and may fall 057

short in dealing with tasks such as reading compre- 058

hension that require token representations. On the 059
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other hand, utterance masking methods (Nguyen060

et al., 2019; Liu et al., 2021) directly mask those061

self-attention weights between utterances that have062

no dependency relation. However, our preliminary063

empirical evidence (Section 5.3) shows that mask-064

ing methods are insensitive to different parsers and065

may not really capture the dependency as desired.066

In this paper, we propose a simple framework067

that aims to endow Transformers with the generic068

ability to model utterance dependency. To begin069

with, we first acquire the utterance dependencies in070

a multi-party conversation with an off-the-shelf ut-071

terance dependency parser (Shi and Huang, 2019).072

To encode the utterance dependencies, we then pro-073

pose absolute dependency encoding that directly074

encodes the absolute position of each utterance075

in the dependency tree and relative dependency076

encoding that encodes the relative dependency dis-077

tance of two utterances. The encoded dependency078

information is integrated into Transformers by mod-079

ifying the computation of self-attention. Without080

adding a new module, this framework can be easily081

applied to a wide range of Transformer-based lan-082

guage models and multi-party conversation tasks.083

Besides, to enhance the understanding of utterance084

dependency, we further introduce a span distance085

prediction pre-training task for the proposed frame-086

work. It serves as a complement to previous lan-087

guage modeling tasks to make the model better088

comprehend utterance dependency.089

We implement the new framework in pre-trained090

language models RoBERTa (Liu et al., 2019) and091

BART (Lewis et al., 2020) and evaluate them on092

four multi-party conversation benchmark tasks, in-093

cluding utterance-level emotion detection, relation094

extraction, machine reading comprehension, and095

abstractive summarization. Experimental results096

show that this framework successfully boosts the097

performance of the two models on all the tasks.098

Besides, several conclusions can be drawn. First,099

while the two encoding implementations can both100

learn utterance dependency, the effect of relative de-101

pendency encoding is more significant, serving as102

an inductive bias for conversation modeling. Sec-103

ond, for the new pre-training task, updating only104

parameters related to utterance dependency while105

freezing the rest is more effective than updating the106

whole set of model parameters. Third, with explicit107

utterance dependency modeling, language models108

such as RoBERTa cause fewer inference errors than109

with only implicit patterns within utterances.110

2 Related Work 111

In this section, we briefly review related work on 112

utterance dependency in multi-party conversations 113

and its combination with Transformers. 114

2.1 Utterance Dependency 115

Utterance dependency in multi-party conversations, 116

which represents the linguistic relations from one 117

utterance to another, has drawn increasing attention 118

from the community in recent years. Asher et al. 119

(2016) released the first annotated dataset, STAC, 120

for utterance dependency parsing in multi-party 121

conversations. Li et al. (2020) proposed Molweni 122

which consists of two subtasks, namely utterance 123

dependency parsing and machine reading compre- 124

hension. In the meantime, several utterance depen- 125

dency parsers have been developed. Afantenos et al. 126

(2015) proposed a two-stage method based on Max- 127

imum Spanning Tree (MST). On top of Afantenos 128

et al. (2015), Perret et al. (2016) replaced the MST 129

with Integer Linear Programming (ILP). Shi and 130

Huang (2019) proposed a deep sequential model 131

for dependency parsing in multi-party dialogues, 132

which is the current state of the art for this task. 133

Note that utterance dependency parsing is also 134

referred to as discourse parsing in some literature. 135

We avoid using this term to distinguish utterance 136

dependency parsing from document discourse pars- 137

ing (Braud et al., 2017), a task to parse constituency 138

relations rather than dependency relations. 139

2.2 Utterance Dependency in Transformers 140

Considerable efforts have been devoted to com- 141

bining utterance dependency of certain types with 142

Transformers (Vaswani et al., 2017). GSN (Hu 143

et al., 2019) firstly encodes each utterance with 144

an utterance encoder and then feeds the utterance 145

representations into an utterance-level graph net- 146

work constructed based on speaker relations. DAG- 147

ERC (Shen et al., 2021) is similar to GSN but 148

builds the graph network based on manual rules. 149

Xiao et al. (2020) proposed a hierarchical Trans- 150

former structure, in which the attention weights of 151

a document-level Transformer are synthesized by 152

discourse information. Jia et al. (2020) proposed 153

to extract several threads from the dialogue his- 154

tory according to dependency relations and encode 155

each thread with an individual Transformer. Re- 156

cently, Liu et al. (2021) directly masked the atten- 157

tion weights between irrelative utterances in Trans- 158

formers while encoding the whole conversation. 159
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Unlike the above efforts, we intend to develop a160

simple and generic framework to model utterance161

dependency in multi-party conversations without162

any customized structure for various multi-party163

conversation tasks. In particular, we explore two164

encoding schemes of utterance dependency and165

implement them in Transformer-based models by166

modifying the computation of self-attention. This167

generic nature makes it applicable to a wide range168

of pre-trained language models. Moreover, we in-169

troduce a span distance prediction pre-training task170

for the framework to enhance its understanding of171

utterance dependency, which serves as a comple-172

ment to canonical language modeling objectives.173

3 Methodology174

In this section, we first formulate the concept of175

utterance dependency and then present our two176

approaches to encoding utterance dependency and177

the pre-training task of span distance prediction.178

3.1 Utterance Dependency179

A multi-party conversation can be formulated as180

a sequence of utterances U = {u0, u1, ..., uN−1},181

where N is the number of utterances in this con-182

versation. Each utterance ui comprises a sequence183

of tokens uttered by a speaker, while the set of184

speakers for the utterances is denoted as S. These185

utterances are concatenated into a sequence as in-186

put to our model, where a function I(i) is defined187

to map the ith token in the input to its utterance.188

As illustrated in Figure 1, utterance dependency189

provides structural information of some kind in190

multi-party conversations and can be defined by191

linguistic relations from one utterance to another.192

For example, these relations may include comment,193

elaboration, contrast, and explanation (Asher et al.,194

2016). Nevertheless, for the sake of simplicity, we195

only consider the connectivity of two utterances in196

this work while ignoring their relation type. For-197

mally, the utterance dependency for a conversation198

is represented by a set E of directed relations in199

the form of ui → uj . To extract these relations, an200

utterance dependency parser is applied:201

E = Parser({u0, u1, ..., uN−1},S). (1)202

The utterance dependency parser forces each203

utterance to point to exactly one of its preceding204

utterances in the same conversation. Correspond-205

ingly, the parsing result of the conversation natu-206

rally forms a tree structure with u0 as its root node.207

𝑢0 𝑢1 𝑢2 𝑢3 𝑢4

(a) Utterance dependency

𝐸(𝑢0) = 0

𝐸(𝑢1) = 0; 0

𝐸(𝑢2) = 0; 1

𝐸(𝑢3) = 0; 0; 0

𝐸(𝑢4) = 0; 2

𝑢0

𝑢1 𝑢2

𝑢3

𝑢4

(b) Absolute encoding

𝑑 𝑢0, 𝑢0 = 1

𝑑 𝑢1, 𝑢0 = 1

𝑑 𝑢0, 𝑢1 = −1

𝑑 𝑢2, 𝑢1 = ∞

𝑑 𝑢3, 𝑢0 = 2

𝑢0

𝑢1

𝑢2

𝑢3

(c) Relative encoding

Figure 2: Demonstration of (a) utterance dependency,
(b) absolute dependency encoding, and (c) relative de-
pendency encoding. While (b) shows how to convert
utterance dependency to a tree and then implement ab-
solute utterance dependency encoding, (c) shows a sub-
graph of (a) and part of the relative utterance distances.

3.2 Utterance Dependency Encoding 208

Previous works (Yang et al., 2019; Raffel et al., 209

2019; Chen et al., 2021) have shown that using 210

a positional bias term in each Transformer self- 211

attention computation to represent the position in- 212

formation can improve model performance. We 213

adopt a similar idea to encode the utterance de- 214

pendency in multi-party conversations at the token 215

level. Specifically, for each attention head in the 216

Transformer layers, the attention score between the 217

ith and jth tokens in the input is computed as: 218

sij =
xiWqW

⊤
k x⊤j + aij√
d

, (2) 219

where xiWqW
⊤
k x⊤j is the original attention term 220

in Transformer (Vaswani et al., 2017), xi and xj 221

are token representations, and aij is our utterance 222

dependency bias term to represent the degree of 223

utterance dependency for the ith and jth tokens. 224

In the following, we investigate two approaches of 225

absolute dependency encoding and relative depen- 226

dency encoding to compute this bias term. 227
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3.2.1 Absolute Dependency Encoding228

Absolute utterance dependency encoding is based229

on the absolute position of an utterance in the de-230

pendency tree. For utterance ui, its absolute depen-231

dency encoding is defined as the concatenation of232

its parent’s absolute dependency encoding and its233

ranking among its siblings in temporal order:234

E(ui) =

{
0, i = 0

E(P (ui));R(ui), Otherwise
(3)235

where P (·) denotes the parent utterance of an ut-236

terance, E(·) is the absolute dependency encoding237

of an utterance, and R(·) is the ranking of an utter-238

ance among its siblings. The symbol “;” is used to239

represent the concatenation of two encodings. In240

Figure 2(b), we present an example to show how to241

encode absolute utterance dependency.242

We then derive the absolute dependency repre-243

sentation of a token via a trainable embedding layer:244

245

pi = Embeda(E(uI(i))). (4)246

Finally, the attention score with absolute utter-247

ance dependency encoding can be re-computed as:248

249

saij =
xiWqW

⊤
k x⊤j + piW

a
q W

a⊤
k p⊤j√

d
, (5)250

where W a
q and W a

k are trainable weight matrices.251

3.2.2 Relative Dependency Encoding252

We take the distance between two utterances in the253

dependency tree to implement the relative utterance254

dependency encoding. Specifically, the distance255

from ui to uj , denoted as d(ui, uj), is determined256

by the length of the path from ui to uj in the tree.257

We also define the reverse distance from uj to ui258

as the negative length of this path. If such a path259

does not exist, both d(ui, uj) and d(uj , ui) are set260

to ∞. Especially, we define d(ui, ui) = 1 for any261

i, assuming that each utterance is self-dependent.262

Figure 2(c) presents an example of how to compute263

the relative utterance distance. Moreover, if two264

utterances are located far away from each other265

in the tree, their interaction is weak and can be266

considered as no dependency relation for simplicity.267

To this end, we clip the utterance distance to get268

the final relative utterance dependency encoding:269

d̂(ui, uj) =

{
d(ui, uj), |d(ui, uj)| ≤ τ

∞, otherwise
(6)270

where τ is the threshold used to clip the dependency271

distance, which is a tunable hyperparameter.272

The relative dependency representation between 273

tokens ui and uj is obtained by feeding the rela- 274

tive dependency encoding of their corresponding 275

utterances through a trainable embedding layer: 276

rij = Embedr(d̂(uI(i), uI(j))). (7) 277

The attention score in Equation (2) with relative 278

utterance dependency encoding is re-computed as: 279

srij =
xiWqW

⊤
k x⊤j +W r⊤rij√

d
, (8) 280

where W r is a trainable weight matrix. 281

3.3 Pre-training for Dependency Encoding 282

Following common practice, it would be desirable 283

to further pre-train the model on a dependency- 284

related task to better initialize its parameters for 285

utterance dependency encoding. Xu et al. (2021) 286

proposed to pre-train a language model by predict- 287

ing the syntax distance of two tokens to enhance 288

its understanding of syntax information. In our sce- 289

nario of utterance dependency, however, the depen- 290

dency distance between two tokens can be easily 291

inferred from the dependency distance of neighbor- 292

ing tokens, making this task trivial to train. 293

To address this, we propose to pre-train the 294

model via a span distance prediction task. Specif- 295

ically, for the input sequence we first randomly 296

sample several pairs of text spans whose lengths 297

follow a Poisson distribution. Then, for each pair 298

of spans, the model is trained to predict the depen- 299

dency distance between any pair of tokens from 300

the two spans based on the output hidden states of 301

the last encoder layer. Since the distances between 302

tokens within a pair of spans are unknown, they 303

cannot easily be inferred from surrounding tokens. 304

As a result, the model is expected to understand 305

utterance dependency better after the pre-training. 306

Language models such as RoBERTa (Liu et al., 307

2019) have been well pre-trained on large-scale cor- 308

pora, which are impossible to find for multi-party 309

conversations. To avoid forgetting the original pre- 310

trained parameters of these models catastrophically, 311

we opt to update only the parameters related to ut- 312

terance dependency encoding, i.e., W a
q ,W

a
k , W r, 313

and the embedding layers of utterance dependency, 314

while conducting our pre-training. Besides, to en- 315

hance the association of utterance dependency with 316

language, we combine the span distance prediction 317

objective and the original language modeling objec- 318

tive(s) while optimizing these language models.1 319

1Details of implementation are given in Appendix A.
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4 Experimental Setup320

We evaluate the proposed framework on four multi-321

party conversation benchmarks. In this section, we322

first introduce the experimental setup.323

4.1 Dependency Parser324

We employ the state-of-the-art utterance depen-325

dency parser Deep Sequential (Shi and Huang,326

2019) to parse a multi-party conversation. This327

parser makes a sequential scan of utterances to pre-328

dict the connections and relation types between329

utterances and uses them to build a discourse struc-330

ture incrementally. To train this parser, we combine331

the two datasets of STAC (Asher et al., 2016) and332

Molweni-DP (Li et al., 2020) into a larger dataset.333

4.2 Conversation Benchmarks334

Our conversation benchmarks include:2335

MELD (Poria et al., 2019) is a benchmark for336

utterance-level emotion classification. The evalua-337

tion metric for this benchmark is F1 score.338

DialogRE (Yu et al., 2020) is a benchmark for339

relation extraction (RE), which predicts the rela-340

tion type between two arguments. The evaluation341

metrics are precision (P), recall (R), and F1 score.342

Molweni-MRC (Li et al., 2020) is a benchmark343

for reading comprehension (MRC), which identi-344

fies the answer span for a question. The evaluation345

metrics are exactly-match score (EM) and F1 score.346

SAMSum (Gliwa et al., 2019) is a benchmark347

for abstractive summarization in multi-party con-348

versations. The evaluation metrics for this bench-349

mark are Rouge-1, Rouge-2, and Rouge-L.350

4.3 Pre-trained Language Models351

For the discriminative tasks of ERC, RE and MRC,352

we employ RoBERTA-base (Liu et al., 2019) as353

the base model. For the generative task of sum-354

marization, we employ BART-base (Lewis et al.,355

2020). We first initialize the model parameters356

with weights released by Huggingface3 and then357

conduct our pre-training and fine-tuning on down-358

stream tasks. The corpus for our pre-training is the359

combination of the four conversation benchmarks,360

the STAC and Molweni-DP corpora, and an open-361

source corpus (Choi et al., 2020) collected from the362

TV show Friends. The consolidated corpus con-363

tains 41,227 conversations and 442,539 utterances.364

2Details of the four datasets are given in Appendix B.
3RoBERTa: https://huggingface.co/

roberta-base, BART: https://huggingface.
co/facebook/bart-base

4.4 Baseline Methods 365

We employ several strong baselines for comparison, 366

including some combining utterance dependencies: 367

RoBERTa (Liu et al., 2019) and BART (Lewis 368

et al., 2020) are the two base models used to imple- 369

ment our framework without utterance dependency. 370

RoBERTahr first encodes each utterance with 371

RoBERTa and then feeds utterance representations 372

into a directed acyclic graph network (Thost and 373

Chen, 2021) constructed in the same way as our 374

work. This hierarchical structure does not apply to 375

MRC and summarization. 376

RoBERTamask/BARTmask masks the self- 377

attention weight of two tokens whose dependency 378

distance exceeds a threshold τ as defined in Section 379

3.2.2. 380

RoBERTaabs/RoBERTarel/BARTabs/BARTrel 381

is RoBERTa/BART with our absolute utterance 382

dependency encoding or relative utterance depen- 383

dency encoding. They are initialized from the 384

original RoBERTa/BART and directly fine-tuned 385

on downstream tasks without further pre-training. 386

RoBERTaabs+sdp / RoBERTarel+sdp / 387

BARTabs+sdp / BARTrel+sdp is our proposed 388

models further pre-trained via the span distance 389

prediction task as described in Section 3.3. 390

5 Results and Analysis 391

We report the experimental results on the four 392

benchmark tasks and conduct in-depth analyses. 393

5.1 Results on ERC, RE and MRC 394

The experimental results on MELD, DialogRE and 395

Molweni-MRC are reported in Table 1. We ob- 396

serve that RoBERTaabs and RoBERTarel, which en- 397

code utterance dependency, outperform RoBERTa 398

and other existing baseline models considerably, 399

confirming the effectiveness of the two encoding 400

strategies. After pre-training with span distance 401

prediction, the two models see further considerable 402

improvement on these benchmarks, also verifying 403

the effectiveness of this pre-training task. Besides, 404

the results show that relative utterance dependency 405

encoding generally outperforms absolute utterance 406

dependency encoding. 407

5.2 Results on Summarization 408

The results of conversation summarization on 409

SAMSum are reported in Table 2. Note that we 410

only add utterance dependency encoding in the 411
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Method
MELD DialogRE Molweni-MRC
F1 (σ) P (σ) R (σ) F1 (σ) EM (σ) F1 (σ)

RoBERTa 61.01 (0.31) 62.50 (0.59) 61.50 (0.59) 61.99 (0.30) 52.47 (0.65) 66.45 (0.67)

RoBERTahr 61.44 (0.08) 50.53 (2.75) 41.57 (3.14) 45.43 (1.12) - -
RoBERTamask 61.45 (0.56) 60.14 (0.39) 51.19 (0.47) 55.31 (0.44) 53.20 (0.76) 67.08 (0.61)

RoBERTaabs 62.38 (0.37) 64.56 (1.49) 62.48 (1.25) 63.47 (0.06) 53.86 (0.85) 67.93 (0.50)

RoBERTarel 62.21 (0.26) 64.45 (0.86) 63.65 (0.14) 64.04 (0.38) 54.25 (0.28) 68.62 (0.58)

RoBERTaabs+sdp 62.72 (0.24) 65.47 (1.43) 62.19 (1.22) 63.77 (0.33) 53.69 (0.22) 68.25 (0.52)

RoBERTarel+sdp 62.92 (0.28) 65.99 (0.70) 62.96 (0.48) 64.46 (0.16) 55.03 (0.55) 68.95 (0.28)

Table 1: Overall results on MELD, DialogRE and Molweni-MRC, where σ represents standard deviation.

Method Rouge-1 (σ) Rouge-2 (σ) Rouge-L (σ)

BART 50.15 (0.36) 25.48 (0.09) 46.00 (0.18)

BARTmask 50.74 (0.16) 25.76 (0.14) 46.40 (0.08)

BARTabs 51.24 (0.10) 26.13 (0.10) 46.85 (0.09)

BARTrel 51.29 (0.03) 26.14 (0.08) 47.13 (0.10)

BARTabs + sdp 51.50 (0.04) 26.18 (0.03) 47.04 (0.04)

BARTrel + sdp 51.98 (0.18) 26.48 (0.04) 47.45 (0.06)

Table 2: Overall results on SAMSum, where σ repre-
sents standard deviation.

Parser
Result on MRC (F1)

RoBERTaabs RoBERTarel RoBERTamask

MST (70.4) 67.11 67.46 67.21
Sequential (82.5) 67.43 67.84 66.97
Ground truth (100) 67.93 68.62 67.08

Table 3: Experimental results on Molweni-MRC with
utterance dependency generated by different parsers.
Scores in brackets are the corresponding F1 score for
utterance dependency parsing on the Molweni-MRC
test set.

encoder layers of BART. Nevertheless, the perfor-412

mance of BART is still improved with our method,413

which implies that this seq-to-seq Transformer414

model understands the structural information in415

the input conversations and leads to better quality416

for generated texts. Besides, as the results in the417

discriminative tasks, a similar conclusion is that the418

performance of relative utterance dependency en-419

coding is better than absolute utterance dependency420

encoding.421

After further pre-training on span distance pre-422

diction, the performance of our BART-ABS and423

BART-REL are also improved, indicating that span424

distance prediction is also effective in seq-to-seq425

language models.426

5.3 Quality of Utterance Dependency427

We analyze how utterance dependency affects the428

performance of our models by using different ut-429

terance dependency results. The Molweni-MRC430

dataset is chosen for this experiment because it431

Update Method MELD DialogRE Molweni-MRC
None None 62.21 64.04 68.62

all
mlm 62.00 63.84 67.97
sdp 62.28 63.77 68.17

partial
mlm 62.47 63.91 68.67
tdp 62.58 64.21 68.77
sdp 62.92 64.46 68.95

Table 4: F1 scores for RoBERTarel with different fur-
ther pre-training methods on MELD, DialogRE and
Molweni-MRC. The results at the first content line of
the table represent RoBERTarel without further pre-
training.

has ground truth utterance dependencies for each 432

conversation. Three different sets of dependency 433

results are evaluated, namely the ground truth de- 434

pendency and the dependencies extracted by Deep 435

Sequential parser and MST parser (Afantenos et al., 436

2015), respectively. 437

We observe that both our RoBERTaabs and 438

RoBERTarel suffer performance degradation due 439

to the deterioration of quality of utterance depen- 440

dency. This implies twofold. First, our proposed 441

methods can indeed learn how to encode utterance 442

dependency and use it to solve the MRC task. Sec- 443

ond, good quality of utterance dependency helps 444

solve MRC tasks. 445

We also conduct experiments with 446

RoBERTamask. However, the performance 447

does not show a clear trend with the quality of 448

utterance dependency. Therefore, we suspect the 449

masking strategies may not be sensitive enough 450

to utterance dependency and they can hardly 451

represent the dependency as desired. 452

5.4 Variants of Pre-training Methods 453

We conduct experiments on RoBERTarel to inves- 454

tigate the effects of different pre-training methods 455

on our collected corpus.4 Our analysis is based on 456

4The results for RoBERTaabs are in Appendix D
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(a) Segment encoding
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(b) Absolute dependency encoding
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(c) Relative dependency encoding

Figure 3: An example of the scores of bias terms added on the self-attention score computed by segment encoding,
absolute dependency encoding and relative dependency encoding. Each index in the above heatmaps represents
an utterance from u0 to u6. The utterance dependencies in the above heatmaps are {u1 → u0, u2 → u1, u3 →
u1, u4 → u2, u5 → u3, u6 → u2}. More visualization cases are provided in the Appendix F.

Methods MELD DialogRE Molweni-MRC
RoBERTa 61.01 61.99 66.45
RoBERTaseg 61.95 62.04 67.86
RoBERTaabs 62.38 63.47 67.93
RoBERTarel 62.21 64.04 68.62

Table 5: F1 scores on MELD, DialogRE and Molweni-
MRC. RoBERTaseg denotes the segment encoding
method introduced by Chen et al. (2021).

two aspects. First, we compare the strategies of457

updating all the model parameters (all) and updat-458

ing only the parameters related to utterance depen-459

dency (partial). Second, we compare different pre-460

training tasks, including mask language modeling461

(mlm), our pre-training task (sdp), and replacing462

span distance prediction with token distance pre-463

diction (tdp) introduced by Xu et al. (2021). The464

results are shown in Table 4.465

One observation from the results is that when up-466

dating all the model parameters, the performance467

is worse than that without pre-training. This is468

inconsistent with previous works that in-domain469

pre-training can improve model performance in470

downstream tasks (Sun et al., 2019; Gururangan471

et al., 2020). We think this is due to that we add472

new parameters with random initialization to the473

original RoBERTa. In this case, when updating the474

new parameters and original parameters together,475

the model converges to a point that is neither gen-476

eralized in language representation nor fitted with477

utterance dependency.478

If only updating the parameters related to utter-479

ance dependency, all the pre-training tasks can lead480

to a performance gain on RoBERTarel. This indi-481

cates that updating only the newly added param-482

eters is potentially better than updating all model483

parameters. Besides, the performance of the three484

pre-training tasks generally satisfies that mlm ≤ 485

tdp ≤ sdp, which means that designing an addi- 486

tional loss focusing on utterance dependency is 487

helpful for initializing parameters related to utter- 488

ance dependency encoding, while our span distance 489

prediction is more effective than token distance pre- 490

diction. 491

5.5 Does Utterance Dependency Encoding 492

Only Segment the Conversations? 493

Since our proposed utterance dependency encod- 494

ing assigns the same absolute encoding for tokens 495

within the same utterance or the same relative en- 496

coding for token pairs within the same utterance 497

pair, we can consider that it also plays a certain 498

role in helping Transformers to learn how to seg- 499

ment the input conversation. Therefore, we want 500

to figure out whether the performance improve- 501

ment of our method truly stems from the utterance 502

dependency or it is just because it can segment 503

the conversation. We carry out experiments on 504

the three discriminative tasks to compare utterance 505

dependency encoding with the segment encoding 506

method introduced by Chen et al. (2021). To make 507

a fair comparison, the parameters of all compared 508

models are initialized from the original RoBERTa- 509

base and directly fine-tuned on the downstream 510

tasks, without further pre-training. The results are 511

reported in Table 5. 512

We note that the segment encoding method 513

(RoBERTaseg) can also boost the performance of 514

RoBERTa. However, our proposed RoBERTaabs 515

and RoBERTarel outperform RoBERTaseg. This in- 516

dicates that the Transformer-based model equipped 517

with our utterance dependency encoding can obtain 518

a more comprehensive insight into conversations 519

7



……

Tokenekie: How do I search for commands using wildcard?

fosco_: Many ways, ls FILEPATH or ls FILEPATH for 

example

lstarnes: Or type part of the command then press tab
……

Question: What is the other way to search for command?

RoBERTa: ls FILEPATH or ls FILEPATH

RoBERTa-REL: type part of the command then press tab ✔


Case #1

……

qkslvrwolf: How do I get FILEPATH manager 

to use a different icon?

_jason: Probably need to edit the icon them

……

Question: How does qkslvrwolf use the different icon?

RoBERTa: FILEPATH manager

RoBERTa-REL: edit the icon ✔


Case #2

……

ziroday: Hmm, okay. What version of 

Ubuntu?

slerder: Thanks. Is dpkg for installing things?

……

Question: What’s the use of dpkg do?

RoBERTa: apt is a fronted

RoBERTa-REL: installing things ✔


Case #3

ziroday: Yep, apt is a fronted to dpkg

Figure 4: Three test cases in Molweni-MRC, illustrating the common errors made by RoBERTa when making
reasoning and how our proposed method can rectify these errors by using utterance dependency.

rather than merely understanding the segment in-520

formation. In Figure 3, we show an example of521

the scores of the bias term computed by different522

encoding methods. The figures show that our rel-523

ative utterance dependency encoding imposes a524

direct and accurate inductive bias about utterance525

dependency on the model, which means that the526

attention weight between two tokens should also527

be decided by the dependency between the corre-528

sponding utterances. In contrast, we can hardly529

tell what the model has learned by segment encod-530

ing and absolute utterance dependency encoding.531

This phenomenon confirms our intuition that rel-532

ative utterance dependency encoding does learn533

the utterance dependency, which explains why its534

outperforms other methods including absolute ut-535

terance dependency encoding.536

5.6 Case Study537

In Figure 4, we present some cases to show more538

clearly why the model with our proposed utter-539

ance dependency encoding can surpass the original540

RoBERTa. We find that RoBERTa tends to make541

reasoning only based on language patterns in con-542

versations. For example, the question in Case #1543

is “What is the other way ...”. RoBERTa finds the544

answer with the pattern of “... or ...” in the sec-545

ond utterance. In Case #2 the question is “How546

does ... use the different icon”, when RoBERTa547

finds the answer based on the pattern “get ... to ...”548

in the first utterance, without considering the true549

meaning of this utterance. The same situation hap-550

pens in Case #3 where RoBERTa finds an answer551

based on the pattern of “... to ...” for the question552

with “What is the use of ...”. On the contrary, in553

the given three cases, our RoBERTarel makes rea-554

soning based on the question-answer dependency555

between utterances, and yields correct results. This556

indicates that our proposed methods can rectify the557

erroneous reasoning behavior of RoBERTa by con-558

sidering utterance dependency. These cases also 559

show that utterance dependency is essential to solve 560

some tasks on multi-party conversations. 561

6 Conclusion 562

In this paper, we designed a simple and generic 563

framework to enhance the modeling of utterance 564

dependency in Transformers to facilitate the un- 565

derstanding of conversations. Particularly, we pro- 566

pose absolute utterance encoding and relative ut- 567

terance dependency encoding and combine them 568

in Transformers by modifying the computation of 569

self-attention. We also propose a pre-training task 570

of span distance prediction to endow an utterance 571

dependency-aware initialization. Experiments on 572

four multi-party conversation benchmarks show 573

that this framework is able to boost the generic per- 574

formance of Transformer-based language models. 575

With the results of further analyses, we show that 576

utterance dependency is helpful for multi-party con- 577

versations, and our proposed methods can indeed 578

learn to model utterance dependency and use it to 579

solve tasks. We also discover a partial updating 580

strategy which is more helpful than updating all 581

model parameters in our further pre-training. We 582

consider that we still have not exploited the full 583

potential of utterance dependency, in future works, 584

we will explore the way to use the relations types 585

of utterance dependency and combine utterance 586

dependency with other essential factors in conver- 587

sation. 588
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A Implementation details for span753

distance prediction754

When implementing our span distance prediction,755

for an input sequence with length l, we randomly756

sample ⌊l/10⌋ pairs of spans, the lengths of which757

are sampled in a Poisson distribution with λ = 10.758

We denote the set of sampled pair of spans as S,759

each pair of spans as (s1, s2), the corresponding 760

indices of the tokens in the spans as s11, s12, ...s1l1 761

and s21, s22, ...s1l2 . The loss function of span dis- 762

tance prediction is computed as: 763

Lsdp = −
∑

(s1,s2)∈S

s1l1∑
i=s11

s2l2∑
j=s2

d̂ij log(dij) (9) 764

Where dij is the predicted distance between ith and 765

jth tokens in the input text and d̂ij is the ground- 766

truth distance. 767

The final loss function for our further pre- 768

training task is the sum of Lsdp and the loss func- 769

tion for language modeling: 770

L = Lsdp + Llm (10) 771

For pre-training RoBERTarel, since the input 772

relative utterance dependency encodings are also 773

relative distances between tokens, to avoid leak- 774

ing of labels, we adopt a mask strategy for the 775

distances within the sampled spans, specifically, 776

we randomly mask 80% of the distances, and 10% 777

are replaced by a random distance, and 10% are 778

remained as the same. 779

We carried out the further pre-training tasks on 4 780

NVIDIA GeForce RTX 3090 GPUs. The batch size 781

is set 16, learning rate is set to 5e-5. We further pre- 782

train the models on our collected corpus for 20000 783

steps, with the first 4000 steps as warm-up steps. 784

The best checkpoints for the down-stream tasks are 785

selected among the checkpoints at 5000, 10000, 786

15000 and 20000 steps, based on the performance 787

on the validation set of the downstream tasks. 788

B Implementation Details for 789

Downstream Tasks 790

In this section we introduce the implementation 791

details for four downstream tasks in this paper. 792

B.1 Implementation Details for MELD 793

Train Dev Test
# Conversations 1038 114 280

# Utterances 9989 1109 2610

Table 6: Statistics for MELD.
The statistics for MELD are shown in Table 6. 794

In MELD, models are ask to predict the emo- 795

tion of each utterance. There are 7 emotion la- 796

bels including neutral, happiness, surprise, sad- 797

ness, anger, disgust, and fear. When predict- 798

ing the emotion of ut, the model input is the 799
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special token <s> followed by the concatena-800

tion of utterances from u0 to ut, and utterances801

are separated by special token </s>, namely802

{<s> u0 </s> u1... ut−1 </s> ut}. We take803

the hidden state of the <s> at the last encoder layer804

as the final representation of the predicted sample,805

and pass it to a multi-layer perceptron (MLP) to806

get the final prediction y. The models are trained807

on minimizing the cross-entropy loss:808

L = − 1

M

M∑
i=1

ŷi log(yi) (11)809

Where M is the number of samples, yi is the model810

predicted emotion, and ŷi is the ground-truth label.811

B.2 Implementation Details for DialogRE812

Train Dev Test
# Conversations 1073 358 357

# Utterances 14024 4685 4420
# Argument pairs 5997 1914 1862

Table 7: Statistics for DialogRE.
The statistics for DialogRE are shown in Table813

7.814

In DialogRE, given a conversation context815

{u0, u1, ..., uN−1} and two arguments a1, a2, mod-816

els are asked to predict the potential relation types817

between a1 and a2. DialogRE is a multi-label818

classification task, there are 37 types of relations,819

including 36 regular relations and 1 relation as820

no relation. The model input for DialogRE is821

the special token <s> followed by the concate-822

nation of utterances from u0 to uN−1 and two823

arguments a1, a2, the utterances and arguments824

are separated by special token </s>, namely825

{<s> u0 </s> u1... uN−1</s> a1 </s> a2}. It826

is worth noting that since the two arguments are827

in the model input, we need to design their utter-828

ance dependency encoding. The method is quite829

straightforward, specifically, for absolute utterance830

dependency encoding, we give the two arguments831

a special absolute utterance dependency encoding832

that is different from the utterances, and for relative833

utterance dependency encoding, we set the relative834

dependency distance between arguments and all835

utterances as 1.836

We take the hidden state of the <s> at the last837

encoder layer as the final representation of the pre-838

dicted sample, and pass it to 37 separated MLPs,839

each MLP will predict a yc ∈ {0, 1}, which repre- 840

sents whether there is relation type c between the 841

two arguments or not. The models are trained on 842

minimizing the cross-entropy loss: 843

L = − 1

M

M∑
i=1

37∑
c=1

ŷci log(y
c
i ) (12) 844

Where M is the number of samples, yci is the model 845

predicted label for relation type c, and ŷci is the 846

ground-truth label for relation type c. 847

B.3 Implementation Details for 848

Molweni-MRC 849

Train Dev Test
# Conversations 8771 883 100

# Utterances 77374 7823 845
# Questions 24682 2513 2871

Table 8: Statistics for Molweni-MRC.
The statistics for Molweni-MRC are shown in 850

Table 8. 851

In Molweni-MRC, given the conversation con- 852

text {u0, u1, ..., uN−1} and a question q, the mod- 853

els are asked to predict the start and end po- 854

sitions of the answer span in the conversation 855

context. The model input is the question con- 856

catenated with the conversation context, namely 857

{<s> q </s> u0...</s> uN−1}. Similar to Dialo- 858

gRE, for absolute utterance dependency encoding, 859

we give the question a special absolute utterance 860

dependency encoding that is different from the ut- 861

terances, and for relative utterance dependency en- 862

coding, we set the relative dependency distance 863

between question and all utterances as 1. 864

The models are trained on minimizing the cross- 865

entropy loss: 866

L = − 1

M

M∑
i=1

(ŷsi log(y
s
i ) + ŷei log(y

e
i )) (13) 867

Where M is the number of samples, ysi and yei 868

are the model predictions for start position and 869

end position, respectively, and ŷsi and ŷei are the 870

ground-truth labels. 871

B.4 Implementation Details for SAMSum 872

The statistics for SAMSum are shown in Table 9. 873

The model input for SAMSum is the 874

concatenation of utterances, with the ut- 875

terances separated by </s>, namely 876
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Train Dev Test
# Conversations 14731 818 819

# Utterances 164505 8860 9212

Table 9: Statistics for SAMSum.

{<s> u0 </s> u1... uN−2 </s> uN−1}.877

The models are trained on minimizing the negative878

log-likelihood:879

L = − 1

M

M∑
i=1

l∑
t=1

p(yi,t|yi,<t) (14)880

Where M is the number of samples, yi,t is the tth881

token of the generated summary.882

B.5 Overall implementation details883

We train the models on downstream tasks with 4884

NVIDIA GeForce RTX 2080 Ti GPUs. The hyper-885

parameters that can be tuned for model selection886

include learning rate, batch size, and the threshold887

τ described in Section 3.2.2. The best model is888

selected by the hold-out validation on the validation889

set. All the experimental results reported in this890

paper are achieved by carrying out 3 random tests891

and averaging their results.892

C Implementation Details for absolute893

dependency encoding894

When implementing absolute dependency encod-895

ing, if we cover all the possible absolute depen-896

dency encodings, the size of the memory demanded897

for storing the absolute dependency encodings and898

the embedding layers will experience exponential899

increment as the number of utterances increases.900

To tackle this problem, we build a vocabulary for901

the absolute dependency encodings appear in the902

training set and the validation set for each down-903

stream task. When evaluating in the test set, if904

an utterance’s absolute dependency encoding can905

not be found in the vocabulary, it is marked as a906

special UNK encodings, otherwise it is kept as the907

same. This method saves memory significantly,908

and its coverage rate for the absolute dependency909

encodings on test set is acceptable. Specifically, the910

coverage rates for the test set of MELD, DialogRE,911

Molweni-MRC, SAMSum are 94.03%, 92.56%,912

99.32% and 95.34%, respectively.913

D RoBERTaabs with variants of further 914

pre-training tasks 915

In this section we show the results of RoBERTaabs 916

with further pre-training tasks introduced in Section 917

5.4. The results are reported in Table 10. We can 918

find that the reported results are consistent with the 919

discoveries made in Section 5.4. 920

Update Method MELD DialogRE Molweni-MRC
None None 62.38 63.47 67.93

all
mlm 62.12 63.35 67.38
sdp 62.32 63.43 67.32

partial
mlm 62.42 63.56 68.27
tdp 62.59 63.67 68.01
sdp 62.72 63.77 68.25

Table 10: F1 scores for RoBERTaabs with different
further pre-training methods. The results at the first
content line of the table represent RoBERTaabs without
further pre-training.

E Results for comparing with language 921

models with further language modeling 922

Method
MELD DialogRE Molweni-MRC
F1 (σ) F1 (σ) F1 (σ)

RoBERTa + lm 61.70 (0.36) 60.12 (0.93) 67.03 (0.73)

RoBERTaabs + sdp 62.72 (0.24) 63.77 (0.33) 68.25 (0.52)

RoBERTarel + sdp 62.92 (0.28) 64.46 (0.16) 68.95 (0.28)

Table 11: Experimental results for ERC, RE and MRC.
RoBERTa+lm represents RoBERTa further pre-trained
with the mask language modeling task.

Method Rouge-1 (σ) Rouge-2 (σ) Rouge-L (σ)

BART + lm 51.18 (0.18) 26.16 (0.26) 46.83 (0.23)

BARTabs + sdp 51.50 (0.04) 26.18 (0.03) 47.04 (0.04)

BARTrel + sdp 51.98 (0.18) 26.48 (0.04) 47.45 (0.06)

Table 12: Experimental results in conversation summa-
rization. BART+lm represents BART further pre-trained
with the mask language recovering task.

We also compared our methods with the pre- 923

trained language models further pre-trained by lan- 924

guage modeling tasks on our collected corpus. The 925

results are reported in Table 11 and Table 12. As 926

shown in the results, our methods with our pro- 927

posed further pre-training task can still outperform 928

the pre-trained language models with further lan- 929

guage modeling tasks. 930

F More visualization for the case in 931

Section 5.4 932

We show more visualizations of different layers 933

and heads for the case described in Section 5.4. 934
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Figure 5: RoBERTaseg layer_0_head_0
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Figure 6: RoBERTaabs layer_0_head_0
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Figure 7: RoBERTarel layer_0_head_0
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Figure 8: RoBERTaseg layer_5_head_4
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Figure 9: RoBERTaabs layer_5_head_4
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Figure 10: RoBERTarel layer_5_head_4
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Figure 11: RoBERTaseg layer_11_head_3
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Figure 12: RoBERTaabs layer_11_head_3
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Figure 13: RoBERTarel layer_11_head_3
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