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Abstract

Parameter-Efficient Fine-Tuning (PEFT) and001
Retrieval-Augmented Generation (RAG) have002
become popular methods for adapting large lan-003
guage models while minimizing compute re-004
quirements. In this paper, we apply PEFT meth-005
ods (P-tuning, Adapters, and LoRA) to a modi-006
fied Retrieval-Enhanced Transformer (RETRO)007
and a baseline GPT model across several sizes,008
ranging from 823 million to 48 billion parame-009
ters. We show that RETRO models outperform010
GPT models in zero-shot settings due to their011
unique pre-training process but GPT models012
have higher performance potential with PEFT.013
Additionally, our study indicates that 8B param-014
eter models strike an optimal balance between015
cost and performance and P-tuning lags behind016
other PEFT techniques. We further provide017
a comparative analysis of between applying018
PEFT to an Instruction-tuned RETRO model019
and base RETRO model. This work presents020
the first comprehensive comparison of various021
PEFT methods integrated with RAG, applied022
to both GPT and RETRO models, highlighting023
their relative performance.024

1 Introduction025

Pre-trained large language models have made026

a demonstrable impact across applications in027

academia and industry. Many use cases, however,028

require LLMs adapted to specific tasks and unique029

information but lack the resources for extensive re-030

training. To address this, Parameter-Efficient Fine-031

Tuning (PEFT) (Han et al., 2024) and Retrieval-032

Augmented Generation (RAG) (Gao et al., 2023)033

have become popular methods due to their effective-034

ness and efficiency, inspiring new lines of research.035

PEFT has been proven to be a comparable substi-036

tute to Supervised Fine-Tuning (SFT) by achieving037

competitive performance at a fraction of the num-038

ber of updated parameters (Han et al., 2024). In039

this paper we select P-tuning (Liu et al., 2023),040
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Figure 1: Average GPT vs RETRO scores of six datasets
across model sizes of 823M to 48B parameters.

Adapter modules (Houlsby et al., 2019) and Low- 041

Rank Adaptation (LoRA) (Hu et al., 2021) as rep- 042

resentative PEFT methods. P-tuning involves train- 043

ing continuous prompt embeddings to guide output 044

for specific tasks without modifying base model 045

parameters. Adapters operate by training fully con- 046

nected layers inserted throughout the base model 047

while keeping the remaining parameters frozen. 048

LoRA employs a similar strategy but further de- 049

composes the inserted layers into low-rank matri- 050

ces, enhancing efficiency. 051

Retrieval-augmented generation (RAG) im- 052

proves model quality by incorporating external 053

knowledge through mechanisms like BM-25 or TF- 054

IDF (Robertson et al., 2009), online web search 055

(Page et al., 1999), or trained dense retriever mod- 056

els (Karpukhin et al., 2020). Any LLM can be trans- 057

formed into a retrieval-augmented model by con- 058
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catenating retrieved sources with the input query,059

provided it fits within the model’s context window.060

Xu et al. (2023) found that retrieval significantly061

improves GPT model quality on long context tasks,062

reducing the "lost in the middle" effect (Liu et al.,063

2024) and offering inherent efficiency benefits.064

Alternatively, there exist multiple works065

(Borgeaud et al., 2022; Guu et al., 2020; Izacard066

et al., 2023; Nakano et al., 2021) that have inte-067

grated retrieval as part of model pretraining or fine-068

tuning to notable success when compared to typical069

GPT models despite being a much lesser explored070

domain. RETRO (Borgeaud et al., 2022) is of par-071

ticular interest due to its unique approach of incor-072

porating a retrieval module directly into the trans-073

former architecture via a chunked-cross attention074

mechanism and ability to scale to trillions of to-075

kens resulting in reduced perplexity. Subsequently,076

Wang et al. (2023b) showed that RETRO at sizes077

up to 9.5 billion parameters largely outperforms078

GPT on specific knowledge-intensive tasks. Fur-079

thermore, Wang et al. (2023a) illustrated that when080

scaled up to 48 billion parameters and instruction-081

tuned, RETRO performed better than equivalent082

GPT models on several question answering, read-083

ing comprehension and summarization tasks.084

In this paper we continue the exploration of085

RETRO versus GPT through the lens of parameter086

efficient finetuning. We apply P-tuning, Adapter087

modules and LoRA to multiple tasks with retrieval088

for both RETRO and GPT models. To our knowl-089

edge, this paper provides the first in-depth com-090

parison of various Parameter Efficient Fine-Tuning091

integrated with Retrieval-Augmented Generation,092

uniquely applied to both GPT and RETRO models.093

2 Related Work094

In this section we focus on recent work that com-095

bine finetuning with retrieval. A comprehensive096

survey (Gao et al., 2023) synthetized multiple com-097

parative studies on PEFT and RAG, underscor-098

ing the potential benefits of combining these ap-099

proaches as a promising direction for future inves-100

tigation. There are multiple works that provide101

methods to combine RAG with fine-tuning to im-102

prove accuracy (Zhang et al., 2024a,b; Rangan and103

Yin, 2024). Multiple studies have explored the com-104

parison between fine-tuning and retrieval. Lakatos105

et al. (2024) and Ovadia et al. (2023) reported im-106

proved accuracy using RAG over fine-tuning GPT107

models, while also noting suboptimal results when108

combining the two methods. Gupta et al. (2024) 109

demonstrated improved outcomes by integrating 110

both approaches for specific agriculture and geog- 111

raphy tasks. Additionally, Soudani et al. (2024) 112

compared the efficacy of these methods, including 113

full and QLoRA fine-tuning (Dettmers et al., 2024), 114

in low-frequency entity question-answering tasks. 115

These studies collectively suggest the need for 116

comprehensive investigation into multiple PEFT 117

techniques combined with RAG and maintain re- 118

trieval pretrained LLMs with PEFT to be unex- 119

plored, thereby motivating our research. 120

3 Experimental Setup 121

3.1 Datasets 122

To cover several task categories, we use six datasets 123

suited to benefit from retrieval and finetuning. 124

We select Natural Questions (NQ) (Kwiatkowski 125

et al., 2019), TriviaQA (TQA) (Joshi et al., 2017), 126

NarrativeQA (NQA) (Kočiskỳ et al., 2018) and 127

Qasper (Dasigi et al., 2021) for document ques- 128

tion answering, QuALITY (Pang et al., 2021) for 129

multiple-choice question answering, and QMSum 130

(Zhong et al., 2021) for query-based summariza- 131

tion (see detail statistics in Appendix B). Each of 132

these datasets contain necessary external knowl- 133

edge that must be filtered via retrieval and response 134

behaviour that encourages finetuning. Following 135

the official metrics, we use F1 score for evaluat- 136

ing document QA, exact match for mutliple-choice 137

QA and the geometric mean of ROUGE-1/2/L (Lin, 138

2004) for summarization. 139

3.2 Models 140

In order to undertand the effect of model scales, 141

we use base GPT models of sizes 823M (Ex- 142

tra Small), 2.25B (Small), 8.5B (Medium), 22B 143

(Large), and 43B (Extra Large), as introduced in 144

Wang et al. (2023a), which were pretrained on a 145

massive dataset of 1.2 trillion tokens. We employ 146

the corresponding RETRO models from the same 147

work as the foundation for our retrieval pretrained 148

LLM experiments. Notably, the RETRO architec- 149

ture features an encoder that extracts neighbors 150

from an external database, which increases the to- 151

tal model size to 877M, 2.47B, 9.5B, 24B, and 48B, 152

respectively. Wang et al. (2023a) found ablating 153

the encoder after pretraining led to comparable re- 154

sults. In our paper we include it so that adapter 155

modules and LoRA layers are added throughout 156

decoder and encoder components. For more on the 157
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NQ TQA NQA QASPER QUALITY QMSUM AVERAGE
GPT RETRO GPT RETRO GPT RETRO GPT RETRO GPT RETRO GPT RETRO GPT RETRO

Extra Small

Zero-shot 2.95 8.28 9.99 19.26 7.07 4.87 9.00 10.79 0.38 0.48 9.83 7.78 6.54 8.58
P-tuning 24.74 7.60 63.63 24.61 16.74 6.69 24.54 11.94 24.59 17.45 18.25 13.63 28.75 13.65
Adapter 38.48 23.69 67.99 59.60 17.76 15.42 23.52 20.96 24.26 25.93 19.74 14.42 31.96 26.67
LoRA 37.09 22.13 67.31 59.02 18.08 15.81 23.54 19.85 24.93 25.65 19.27 13.79 31.70 26.04

Small

Zero-shot 11.65 18.77 29.88 38.42 7.07 7.12 12.31 12.42 0.00 1.01 12.35 9.25 12.21 14.50
P-tuning 39.27 18.58 70.31 61.13 19.98 15.13 24.75 20.34 22.77 24.11 18.76 14.61 32.64 25.65
Adapter 42.29 23.68 73.21 64.91 21.40 18.10 27.29 20.55 24.93 25.07 20.17 15.03 34.88 27.89
LoRA 39.27 28.06 72.34 64.59 20.98 17.90 24.83 21.28 25.79 24.69 20.31 14.46 33.92 28.50

Medium

Zero-shot 23.67 24.11 51.00 52.17 8.90 6.39 9.01 10.04 1.44 0.14 11.28 9.15 17.55 17.00
P-tuning 45.52 24.18 77.00 67.94 24.50 19.02 33.31 24.20 32.74 31.93 20.37 15.40 38.91 30.44
Adapter 46.71 43.01 78.05 71.35 24.30 20.51 32.53 25.90 40.84 31.98 20.03 15.61 40.41 34.65
LoRA 46.81 42.11 78.26 70.75 25.17 20.42 31.84 24.48 41.56 32.41 21.47 15.30 40.85 34.24
Fine-tuning 41.34 29.79 79.82 68.84 22.33 19.37 49.67 23.53 37.01 33.56 21.95 15.29 42.02 31.73

Large

Zero-shot 25.37 31.43 48.68 60.30 13.92 7.98 8.73 10.52 2.97 1.87 6.30 9.33 17.66 20.24
P-tuning 45.20 15.78 78.33 73.22 25.21 21.58 34.24 24.50 47.65 39.93 20.07 15.00 41.78 31.67
Adapter 47.48 44.43 79.68 73.57 26.37 22.03 32.12 26.09 46.74 38.06 20.81 15.22 42.20 36.57
LoRA 47.33 44.48 79.79 73.63 25.85 21.49 32.25 25.21 42.62 39.31 21.67 15.02 41.58 36.53

Extra Large

Zero-shot 26.97 33.49 44.71 62.87 11.89 10.07 11.58 13.38 3.07 0.96 7.65 9.99 17.65 21.79
P-tuning 47.27 24.53 80.27 74.38 27.09 22.48 34.08 24.93 57.19 38.06 21.17 15.53 44.51 33.32
Adapter 49.68 46.41 81.64 75.10 26.94 22.24 33.94 26.38 54.65 42.62 21.19 15.71 46.82 38.08
LoRA 49.21 44.53 81.87 74.92 27.31 22.16 31.98 27.49 49.19 39.65 22.77 15.73 43.72 37.41

Table 1: A comprehensive comparison between GPT vs RETRO on six datasets. Bold indicates the better result in
each head-to-head comparison.

base models, we refer readers to the original work.158

3.3 Retrieval159

We follow Wang et al. (2023a); Xu et al. (2023)160

to use Dragon+ (Lin et al., 2023) as a retriever.161

Dragon+ is a dual encoder model that consists of162

a query encoder and a context encoder. We first163

chunk each context document with 100 words, and164

then encode both the questions and all chunks inde-165

pendently with corresponding encoders. The most166

relevant 5 chunks, ranked by the dot product of167

the question embedding and chunk embedding, are168

retrieved as neighbors. For GPT models, they are169

concatenated together (following the left to right or-170

der from the most relevant to least relevant) as the171

context of the prompt for generation. For RETRO172

models, they interact with the question during gen-173

eration through chunked cross-attention.174

3.4 Parameter Efficient Fine-Tuning175

We implement P-tuning in RETRO akin to GPT.176

Virtual tokens are added to the beginning of the177

decoder. Based on the design of chunked cross-178

attention (Wang et al., 2023a), left padding is179

added to ensure the length of input (virtual tokens180

+ context + question) is a multiple of chunk size.181

Adapter and LoRA layers are inserted within the182

transformer blocks in both RETRO and GPT at183

the feedforward and attention layers. In RETRO184

they are also inserted in the transformer encoder 185

ingesting the retrieved neighbors. We provide addi- 186

tional hyperparameter tuning, resource utilization 187

and prompt template details in Appendix A. 188

4 Results 189

4.1 Main Results 190

Table 1 shows the comprehensive comparison be- 191

tween GPT and RETRO models across five sizes 192

and six datasets. From this table we observe: 193

(1) RETRO is generally better than GPT at 194

zero-shot settings. This superiority stems from 195

its unique pre-training approach. By learning to 196

extract salient information from retrieved text and 197

integrate it into its generation process, RETRO de- 198

velops the capability to harness relevant contextual 199

knowledge, ultimately leading to its good zero- 200

shot performance. In contrast, GPT relies on an 201

auto-regressive loss during pre-training, focusing 202

on accurately predicting next tokens without the 203

benefit of external retrievals. As a result, GPT’s 204

ability to learn context-aware question-answering 205

is limited to the presence of relevant data within 206

the pre-training corpus, resulting in significantly 207

less targeted training compared to RETRO. 208

(2) Both RETRO and GPT models exhibit satu- 209

ration points on these datasets around the 8B mark, 210

with a similar pattern emerging between the two 211

models, albeit with RETRO performing less well. 212
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This can be seen in Figure 1 and suggests that, for a213

specific task, a medium-sized PEFT model strikes214

the optimal balance between cost and performance,215

making it a sweet spot for many applications.216

(3) For GPT models, P-tuning performs worse at217

smaller models (<=8B), but it performs as good or218

better than LoRA and Adapter at the large model219

sizes. This difference is visualized in Figure 2 and220

Figure 3 (Appendix C). However, for RETRO mod-221

els, P-tuning generally under performs the other222

PEFT methods across all model sizes.223

(4) The performance ceiling for PEFT-tuned224

models is significantly higher for GPT compared225

to RETRO as seen in Figure 4 (Appendix C). For226

example, using medium-sized models, the aver-227

age score of LoRA with GPT is 40.85, while with228

RETRO it is 34.24. This disparity suggests that229

GPT has more room for improvement with PEFT230

tuning. This phenomenon can also be possibly231

explained by the two different pre-training strate-232

gies. Since GPT has been less targeted on retrieval-233

augmented generation during pre-training, it opens234

a larger room for improvement during fine-tuning.235

(5) We also conduct full fine-tuning on medium-236

sized GPT and RETRO models. For GPT model,237

we find that full fine-tuning achieves slightly better238

performance than PEFT on average, with a notable239

exception on the QASPER dataset, where the dif-240

ference is more pronounced and full fine-tuning241

yields significantly better results. In contrast, for242

RETRO model, full fine-tuning generally performs243

worse than PEFT, demonstrating the effectiveness244

of PEFT. These findings are consistent with the245

observations of Hu et al. (2021).
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Figure 2: Comparison of Extra Large GPT and RETRO
results averaged across 6 datasets.

246

4.2 Comparing to Instruction-tuned RETRO 247

Instruction tuning post retrieval-augmented pre- 248

training (Wang et al., 2023a) has been demon- 249

strated to improve zero-shot performance on 250

RETRO models. A natural thought is that whether 251

Instruction-tuned RETRO (I-RETRO) serve as a 252

better foundation for applying PEFT compared 253

to the base RETRO. To investigate this, we addi- 254

tionally apply PEFT to a medium-sized I-RETRO 255

model and show overall results in Table 2 and more 256

granular results in Table 4 (Appendix C). Our find- 257

ings reveal that while I-RETRO exhibits improved 258

performance in the zero-shot setting, it has limited 259

scope for further improvement using PEFT. Even 260

with substantial hyperparameter tuning, the average 261

scores across six datasets, using each of the three 262

PEFT methods, demonstrate an approximately 10% 263

gap between I-RETRO and base RETRO. We hy- 264

pothesize that conceptually both models should be 265

tunable to similar performance but will leave that 266

exploration to future work. 267

Average QA QUALITY QMSUM Average

I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO

Zero-shot 27.65 23.79 3.35 0.14 11.04 9.15 20.83 17.00

P-tuning 23.25 47.18 16.68 31.93 15.88 15.40 20.75 30.44

Adapter 22.64 52.75 29.87 31.98 15.06 15.16 22.58 34.65

LoRA 26.53 52.80 24.21 32.41 15.40 15.30 24.29 34.24

Table 2: Instruction-tuned RETRO evaluation results.

5 Conclusion 268

This study explores Parameter-Efficient Fine- 269

Tuning (PEFT) methods applied to Retrieval- 270

Augmented Generation (RAG) models, comparing 271

GPT and RETRO architectures. RETRO gener- 272

ally outperforms GPT in zero-shot settings due 273

to their pre-training process that integrates exter- 274

nal retrieval, enhancing contextual understanding. 275

However, GPT models show a higher performance 276

potential with PEFT, indicating more room for 277

improvement during fine-tuning. Both RETRO 278

and GPT models perform optimally around the 8B 279

parameter mark, balancing cost and performance. 280

While P-tuning is effective in larger models, it lags 281

behind other methods in smaller models, particu- 282

larly for RETRO. Applying PEFT to Instruction- 283

tuned RETRO yields limited improvement com- 284

pared to base RETRO, suggesting a saturation point 285

in leveraging pre-training and fine-tuning bene- 286

fits. Our comprehensive analysis offers valuable 287

insights for optimizing large language models with 288

PEFT and RAG to the community. 289
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Limitations290

Due to the breadth of experiments covered in this291

work we had to prioritze certain experiments over292

others. This resulted in us using only the medium293

sized GPT and RETRO models for additional fine-294

tuning and Instruction tuning experiments. We295

believe these results generalize to the other model296

sizes but leave that to be validated in future work.297

Potential Risks298

The environmental impact associated with training299

and fine-tuning large models is not negligable as it300

involves substantial computational resources and301

energy consumption. While PEFT aims to alleviate302

this by reducing the number of tunable parameters,303

works like ours still require significant compute to304

distinguish which methods are more promising.305
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A Details on Experimental Setup 460

A.1 Hyperparameter Tuning 461

We conducted hyperparemter search by selectively 462

modifying number of virtual tokens among the val- 463

ues of 40, 50, 90 and 100, Adapter/LoRA dimen- 464

sions 16, 32 or 64 and learning rates 1e-4 to 1e-6. 465

A.2 Resource Utilization 466

In our experiments, we used up to 16 compute 467

nodes, each with 8 A100-80GB SXM GPUs. When 468

model is smaller, we increased the data parallelism 469

size, using tools in NeMo framework. 470

A.3 Prompt Template 471

The template we used to present context to GPT 472

models is as follows. 473

title: {title} 474

source: {source} 475

title: {title} 476

source: {source} 477

title: {title} 478

source: {source} 479

title: {title} 480

source: {source} 481

title: {title} 482

source: {source} 483

484

Question: {question} Answer: The answer is 485

B Dataset Statistics 486

NQ TQA NQA QASPER QUALITY QMSUM

Train 79168 78785 44002 2053 2018 1005
Validation 8757 8837 11001 514 505 252
Test 3610 11313 5859 1726 2086 272

Table 3: Number of samples in train/validation/test split
for each dataset.

C Supplementary Figures and Tables 487
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Figure 3: GPT vs RETRO comparisons on Extra Small and Medium sized models.
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Figure 4: GPT vs RETRO seperate method comparisons.

NQ TQA NQA QASPER QUALITY QMSUM Average

I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO I-RETRO RETRO

Zero-shot 30.39 24.11 53.25 52.17 12.23 6.39 14.72 10.04 3.35 0.14 11.04 9.15 20.83 17.00

P-tuning 19.55 24.18 41.95 67.94 20.17 19.02 11.34 24.20 16.68 31.93 15.88 15.40 20.75 30.44

Adapter 18.81 43.01 38.83 71.35 20.30 20.51 12.64 25.90 29.87 31.98 15.06 15.16 22.58 34.65

LoRA 21.56 42.11 47.89 70.75 19.23 20.42 17.45 24.48 24.21 32.41 15.40 15.30 24.29 34.24

Table 4: Full results with Instruction-tuned RETRO. Bold indicates the better result in each head-to-head comparison.
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