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Abstract

Incorporating human context into language001
models is the next frontier for human-centered002
natural language processing. Currently, two003
pre-training methods exist: group-wise at-004
tributes (e.g., over-45-year-olds) or individual005
traits. Group attributes are coarse — not all 45-006
year-olds write the same way — while model-007
ing individual traits allows for a more personal-008
ized representation, but requires more complex009
modeling and data. So far, it is unclear which010
pre-training approach benefits what tasks. We011
compare pre-training models with human con-012
text via 1) group attributes, 2) individual users,013
and 3) a combined approach on 5 user- and014
document-level tasks. We find that pre-training015
with both group and individual features signifi-016
cantly improves the two user-level regression017
tasks like age estimation and personality as-018
sessment. Pre-training on individual users sig-019
nificantly improves the three document-level020
classification tasks like stance and topic detec-021
tion. It even does well for downstream tasks022
without historical user data. Our results suggest023
both approaches have specific use cases, open-024
ing new avenues for human-centered language025
modeling.026

1 Introduction027

Language varies between people. To capture this028

notion, two strands of human-centered Natural Lan-029

guage Processing (NLP) emerged to model the030

people behind the language. The first approach031

focuses on the group context, building on the soci-032

olinguistic notion of specific socio-demographic033

attributes influencing the language of a particular034

group. These socio-demographic attributes include035

age, gender (Volkova et al., 2013; Hovy, 2015),036

location (Kulkarni et al., 2016; Garimella et al.,037

2017), personality (Schwartz et al., 2013; Lynn038

et al., 2017), and more. The second approach fo-039

cuses on building personalized language models040

(PLMs) that target individualistic contexts (King041

Figure 1: Pre-training a language model with no human
context, with socio-demographic group attribute, with
individual traits, and with both group and individual
traits.

and Cook, 2020; Delasalles et al., 2019), and latent 042

attributes inferred from an individual’s historical 043

language (Matero et al., 2021; Soni et al., 2022) to 044

better model the user. 045

While these two strands have advanced human- 046

centered NLP, we still do not understand their 047

relative strengths, complementarity, and impact 048

on different tasks (Soni et al., 2023): People are 049

not defined by their group membership alone 050

(Orlikowski et al., 2023), but individual traits 051

might not generalize. We compare the downstream 052

performance of models pre-trained with the two 053

approaches as well as their combination. We 054

answer the following broader research questions: 055

(RQ1): How can we incorporate group and/or 056

individual human context into pre-training? 057

(RQ2): How does pre-training with different 058

human contexts differ in terms of downstream 059

performance for different tasks? 060

061

We use the monolingual socio-demographically 062

adapted model from Hung et al. (2023) and the 063

HaRT model from Soni et al. (2022) for group 064

and individual human contexts, respectively. For 065

a model trained with both individual and group 066

human context, we use a multi-task learning PLM 067
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based on HaRT to create GRIT, in two variants:068

GRITage is adapted to the authors’ age, and GRITope069

to their inferred personality trait (openness). We070

test all systems on five user- and document-level071

tasks.072

Note that because we focus on empirically com-073

paring pre-training group and individual traits in074

PLMs, we cannot compare to large language mod-075

els like GPT4, which do not support stratification076

to either attribute via pre-training. Recent stud-077

ies have explored methodologies like user-adapters078

(Zhong et al., 2021), and user-centric prompting (Li079

et al., 2023) to include human context into models.080

In contrast, we focus specifically on comparing the081

impact of pre-training LMs with different human082

contexts.083

We find that PLM pre-trained on individuals084

and group features enhances 2 user-level regres-085

sion tasks: age estimation and personality assess-086

ment from multiple user documents. These user-087

level tasks focus on individual people. Our find-088

ings that they are best modeled as a combination089

of their group attributes and unique characteris-090

tics conforms with the notion that a person is a091

mix of both. Document-level categorization tasks,092

like stance detection, are more personal than group093

based. A PLM pre-trained on individual human094

context alone improves 3 document-level classifi-095

cation tasks.096

By their very nature, models of this kind touch097

upon sensitive user information. For this reason,098

we take a responsible release strategy, making only099

the code for the comparisons publicly available100

and the exact splits of the TrustPilot and Stance101

datasets used. We build on top of the publicly102

available code for HaRT and Hung et al. (2023).103

We acquired the model and data in a secure manner104

from the authors of Soni et al. (2022) and TrustPilot105

data splits from the authors of Hung et al. (2023).106

For more information about the model and data,107

see Sections 3 and 4. For a discussion of the ethical108

implications of the model and data, see Ethical109

Considerations section.110

Contributions. (1) We compare pre-training111

several language models with individual users,112

group socio-demographic features, and both113

traits.114

(2) We evaluate the three specific pre-training115

strategies on five downstream tasks: two116

multi-document user-level regression (personality-117

openness evaluation and age estimation) and three118

single document-level classification tasks (stance 119

detection, topic detection, and age category predic- 120

tion). 121

(3) We find that the two user-level regression 122

tasks perform better when pre-trained with both 123

strategies (GRIT) and the three single document- 124

level tasks perform better on fine-tuning a language 125

model pre-trained with individual context alone 126

(HaRT). 127

2 Integrating Human Context in PLMs 128

For our comparison, we use three systems repre- 129

senting the paradigms of pre-training with human 130

context (Figure 1). We want to tease apart the 131

contributions of 1) grouping people, 2) modeling 132

individual users, and 3) modeling both group and 133

individual human contexts. As noted earlier, we fo- 134

cus on recent approaches for pre-training language 135

models with the additional human context. 136

Pre-training with group context. We build on 137

Hung et al. (2023), a recent model to explore de- 138

mographic adaptation in transformer-based PLMs. 139

They use bidirectional auto-encoder-based PLMs 140

to inject demographic knowledge in a multi-task 141

learning setup where they also train masked lan- 142

guage modeling (MLM) and classify the gender or 143

age of an author. They use the multilingual reviews 144

dataset with demographic labels from Trustpilot1 145

(Hovy, 2015). They evaluate multiple text clas- 146

sification tasks, including demographic attribute 147

classification, sentiment analysis, and topic detec- 148

tion. We use the US-English subset of the Trust- 149

pilot data for topic detection (TD) under the age 150

categories and for age attribute classification (AC) 151

(more details in section 4). We compare to the 152

results from Hung et al. (2023) with monolingual 153

BERT on a US-English dataset with out-of-domain 154

demographic (age) specialization. Out-of-domain 155

data is the Blogs authorship corpus (Schler et al., 156

2006), and in-domain means Trustpilot corpus. To 157

be consistent and fair in comparing with other hu- 158

man context pre-training paradigms, we choose the 159

monolingual model and eliminate the confounds 160

from domain specialization. 161

Pre-training with individual human context. 162

Soni et al. (2022) introduced human language mod- 163

eling (HuLM) in pre-trained LMs. I.e., pre-training 164

a regular language modeling but including a dy- 165

namic individual human context vector derived 166

from the authors’ historical texts. This vector cap- 167

1https://www.trustpilot.com/
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tures the human states in which the text was gener-168

ated. It also adds coherence to texts generated169

by the same author. They introduce a Human-170

aware Recurrent Transformer (HaRT), an autore-171

gressive PLM for human language modeling. They172

evaluate the effect of individual human context173

on language modeling and multiple user-level and174

document-level downstream tasks. We use the re-175

sults from HaRT on the user-level tasks, age esti-176

mation and personality (openness) assessment, and177

on a document-level task, stance detection, for our178

comparisons study.179

Pre-training with both group and individual hu-180

man context. We train a PLM to integrate both181

individual and group human context in language182

modeling pre-training. We extend HaRT by pre-183

dicting an additional human group attribute in a184

dynamic muti-task learning setup similar to Hung185

et al.. To facilitate comparison, we combine the186

pre-training inducing the individual human con-187

text through the author’s language and inject the188

group context by predicting a group attribute of the189

author.190

We choose downstream tasks from both prior191

works (Soni et al., 2022; Hung et al., 2023) to com-192

pare our three language models pre-trained with193

different levels of human contexts: two user-level194

regression tasks and three single document-level195

classification task.196

3 Models197

3.1 Pre-training with individual human198

context199

HaRT. Soni et al. (2022) introduced HaRT to200

incorporate individual human context into PLMs.201

They use a 12-layered autoregressive GPT-2 based202

architecture with a modified self-attention compu-203

tation at layer 2. This modification to the query204

vector now includes the individual human context205

via a dynamic user-state vector.206

Q IN
i = W T

q [H
(IN−1 )
i ;Ui−1 ]207

where IN is the insert layer (layer 2), Qi is the208

query vector under computation, Hi is the hidden209

states vector, and Ui−1 is the user-state vector de-210

rived from the previous block of language seen211

from the user. All the text from a user is processed212

in the same forward pass with recurrent processing213

of blocks of fixed-length (1024) tokens chunked214

after temporally ordering the social media posts by215

created time. The user state is recurrently updated216

using the hidden states from layer 11 and computed 217

as follows: 218

Ui = tanh(WUUi−1 +WHH(E)) 219

where, E is the extract layer (layer 11), Ui is the 220

updated user-state vector, Ui−1 is the user-state vec- 221

tor from the previous block, and HE is the hidden 222

states vector from layer 11. This formulation of 223

updating the user-state vector extends the previ- 224

ous user-state vector information with the current 225

language block’s information. 226

HULM pre-training task. HaRT is pre-trained 227

for the human language modeling (HULM) task 228

defined as predicting the next token given the pre- 229

vious tokens while conditioning on previous user 230

state U1:t−1 (Soni et al., 2022) . 231

Pr(Wt|Ut−1) =
n∏

i=1

Pr(wt,i|wt,1:i−1,U1:t−1) 232

This is translated into a pre-training objective to 233

maximize: 234

∏
a∈Users

|Ba|∏
t=1

|B(a)
t |∏

i=1

Pr(wt,i|wt,1:i−1, B
(a)
1:t−1) 235

where, wt,i is the ith token in the tth block (B(a)
t ) 236

for user a. The tokens from the previous blocks 237

are represented using HaRT’s recurrently updated 238

user-state vector. Soni et al. use cross-entropy loss 239

for the HULM objective. 240

3.2 Pre-training with group human context 241

BERTDS and BERTage-MLM. Hung et al. (2023) 242

explore socio-demographic adapted BERT models 243

to inject group human context into PLMs. We use 244

the names BERTDS and BERTage-MLM to denote their 245

demographic (age) specialization using the multi- 246

task learning setup and demographic adaptation 247

with masked language modeling respectively. 248

Multi-Task Learning. Hung et al. (2023) train 249

for domain adaptation using the masked language 250

modeling (Lmlm) loss and for classifying demo- 251

graphic category using the binary cross-entropy 252

loss (Ldem). To account for the homoscedastic 253

uncertainty (Kendall et al., 2018) of losses, they 254

adopt a dynamic MTL objective for training with 255

group human context. Homoscedastic uncertainty 256

is a task-dependent weighting to derive a multi-task 257

loss function that can optimally learn the weights 258

and balance the impact of multiple loss functions. 259
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This approach accounts for the different scales260

across multiple losses.261

L̃t =
1

2σ2
mse

Lt + log σt262

Hung et al. minimize the sum of both the uncer-263

tainty adjusted losses: ˜Lmlm + ˜Ldem.264

3.3 Pre-training with both individual and265

group human context266

GRIT. GRoup and Individual HaRT is a LM pre-267

trained for the HuLM task and a (continuous) socio-268

demographic attribute prediction regression task in269

a multi-task learning setup. The PLM uses the270

user-state vectors to predict the socio-demographic271

attribute of the user.272

Pr(attribute|U)273

Because of compute limitations, we chunk a274

user’s language history into blocks and process275

them in a single forward pass. Each block of text276

from a user results in a user-state vector. We use277

the average of the user-state vectors from each non-278

padded block of texts from an author to compute279

their final user-state representation. This repre-280

sentation is layer-normed and linearly transformed281

before making a continuous-valued prediction for282

the specific attribute.283

We pre-train one model for the continuous at-284

tribute age (GRITage) and one for the continuous285

attribute personality type openness (GRITope), re-286

spectively. The models train on a regression loss287

for the attribute prediction regression tasks using288

mean squared error (Lmse), and a classification loss289

for the HULM task using cross-entropy loss (Lce).290

Similar to Hung et al. (2023), we account for the291

homoscedastic uncertainty (Kendall et al., 2018) of292

losses. We use the joint loss for a continuous and293

discrete output as derived in Kendall et al. (2018)294

and compute our joint objective as follows:295

1

σ2
ce

Lce +
1

2σ2
mse

Lmse + log σce + log σmse296

where, σce and σmse are the variances of the task-297

specific losses.298

In practice, we use log variance for numerical299

stability and use the adjusted loss calculation as300

follows:301

exp−ηce Lce + ηce +
1

2
(exp−ηmse Lmse + ηmse)302

where ηx = log σ2
x. We let σce and σmse be learn- 303

able parameters for the model. We do not halve the 304

log-term of the cross-entropy loss since we found 305

it to perform better with our multi-task learning 306

experiments. 307

Pre-training data. We use a subset of the pre- 308

training data for HaRT, consisting of the demo- 309

graphics and personality information. This subset 310

contains the Facebook posts from Park et al. (2015) 311

as used by Soni et al.. Our dataset is consistent with 312

the inclusion criteria for HaRT to ensure moderate 313

language history for each user: we include English 314

posts from users with at least 50 total posts and at 315

least 1000 words. This dataset consists of just over 316

63,000 unique users, which we split into a training 317

dataset consisting of messages from 56,930 users, 318

a development dataset that consists of messages 319

from 1836 users that were not part of the training 320

set, and a test set of messages from a separate set 321

of 4438 users that are neither in training nor the 322

development set. To evaluate the human attribute 323

prediction in GRITope, we use a subset of the test 324

set consisting of messages from 1745 users to ac- 325

commodate for questionnaire reliability. We use 326

the Facebook posts for the HULM task and the 327

demographic and personality scores of consenting 328

Facebook users (Kosinski et al., 2013) for the hu- 329

man attribute prediction task. 330

Training. We use HaRT’s pre-trained weights as 331

the base weights for GRIT and randomly initialize 332

the newly introduced weights for human attribute 333

prediction. GRIT is trained on our pre-training 334

dataset using the 5e-5 learning rate after experi- 335

menting with a few learning rates, including that 336

used for HaRT’s pre-training. Following HaRT, 337

and due to computing limitations, each training in- 338

stance is capped to 8 blocks of 1024 tokens each, 339

with train batch size as 1 per device and evalua- 340

tion batch size as 20 per device, trained over 2 341

GPUs for eight epochs. We explored multiple joint 342

losses before resorting to the homoscedastic loss 343

computation. Since HaRT caps to 4 train blocks 344

for user-level downstream tasks, we also pre-train 345

GRITage and GRITope with four training blocks. 346

3.4 Fine-Tuning 347

We fine-tune GRIT and HaRT for downstream 348

document-level tasks. Each downstream task has 349

a separate fine-tuned model that is initialized with 350

the respective model’s pre-trained parameters and 351

trained using the respective downstream task labels 352
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and an appropriate loss function. We also use the353

historical language of a user where available for354

any of the downstream tasks. We use the last pre-355

dicted token’s representation to predict the label356

in document-level classification tasks. We experi-357

mented with fine-tuning GRIT for user-level regres-358

sion tasks in multiple ways, including 1) similar359

to HaRT, by using the averaged user-state vectors360

from GRIT, 2) same as previous but fine-tuning361

only the history module, attribute prediction mod-362

ule, and the downstream task head, 3) freezing all363

the parameters of GRIT and fine-tuning the human364

attribute prediction module alone. However, we365

found continued training as described in section366

3.5 to perform best.367

We used the Optuna framework (Akiba et al.,368

2019) for hyperparameter search, closely following369

the experimental settings in Soni et al..370

3.5 Transfer Learning371

We experiment with continuing pre-training GRIT372

models for each group attribute. To this end, we373

pre-train GRITage capped to 4 training blocks and374

use this pre-trained model to continue MTL with375

the HULM task and predict personality (openness).376

We do the same for GRITope and continued MTL377

with predicting age.378

4 Experiments379

Our research goal is to compare the downstream380

performance of models pre-trained with human381

contexts in three forms: socio-demographic group382

factors, individual traits, and combined. To this end,383

we evaluate performances of the models defined384

in Section 3 on two user-level regression tasks:385

predicting age and a personality score (openness),386

and on three single document-level classification387

tasks: stance detection, topic detection, and age388

classification. We also compare against GPT-2HLC389

from Soni et al. (2022) as a PLM adapted to the390

social media domain but devoid of human context.391

4.1 User Level Regression Tasks392

We compare GRIT, HaRT, and GPT-2HLC on age es-393

timation and personality (openness) assessment394

(Kosinski et al., 2012; Park et al., 2015). These395

social scientific tasks require predicting continu-396

ous outcomes for a user given multiple documents397

written by them. We use the same data splits as398

used by Soni et al. (2022) for evaluating HaRT and399

GPT-2HLC400

We use the pre-trained GRITage and GRITope di-401

rectly to evaluate on the test sets for age estima- 402

tion and personality assessment, respectively. We 403

further evaluate these models on the test sets for 404

personality assessment and age estimation, respec- 405

tively, after continuing training for these tasks, as 406

described in section 3.5. 407

We use the results from Soni et al. (2022) for 408

HaRT and GPT-2HLC which are directly comparable 409

to GRIT models trained on the same data splits 410

and metrics. Soni et al. fine-tuned the recurrence 411

module of the pre-trained HaRT model for the tasks 412

of age estimation and personality assessment using 413

the average of user-states from non-padded blocks 414

of texts from an author, resulting in two fine-tuned 415

models. Similarly, they fine-tune the last two layers 416

of the pre-trained GPT-2HLC model for these tasks. 417

Since GPT-2HLC can not handle all text from a user 418

in one pass, they average the predictions across all 419

user messages corresponding to the same label for 420

each message. 421

4.2 Document-Level Classification Tasks 422

We compare different models for stance detection 423

vs. topic detection and age classification. These 424

tasks classify a single input document (tweet mes- 425

sage or a review) a user writes into label categories. 426

For stance detection, we also use the historical 427

messages of a user where available, as in Soni et al. 428

(2022). We do not have the user information or any 429

user historical language available for the other two 430

tasks, so we evaluate on the single document input. 431

All models process the input document(s) and 432

feed the layer-normed last non-padded token repre- 433

sentation to the classification layer to classify the 434

document into label categories. Only GRIT and 435

HaRT incorporate user information and the histor- 436

ical language (where available). The other two 437

models can only use the input document without a 438

hierarchical structure to make the predictions. We 439

compare with the results from Soni et al. (2022) 440

and Hung et al. (2023) wherever applicable and 441

fine-tune all the parameters of the respective pre- 442

trained models and the classification heads for other 443

task-model combinations using the standard cross- 444

entropy loss. 445

Stance Detection Given a single annotated tweet, 446

this task predicts a user’s stance as in favor of, 447

against, or neutral towards one of the five targets: 448

atheism, climate change as a real concern, femi- 449

nism, Hillary Clinton, and legalization of abortion. 450

We fine-tune the models under comparison for each 451
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target separately. We report average of weighted452

F1 scores with three labels across all five targets.453

We use Soni et al. (2022)’s train/dev/test split over454

SemEval 2016 dataset (Mohammad et al., 2016).455

HaRT and GRIT models maintain the temporal456

accuracy by using only the messages posted ear-457

lier than the labeled messages from the extended458

dataset (Lynn et al., 2019) as a user’s historical459

language. We compare the results of fine-tuned460

GPT-2HLC, HaRT (Soni et al., 2022), and fine-tuned461

GRITage and GRITope.462

Topic Detection We use the US subset of the463

TrustPilot reviews dataset (Hovy, 2015) from two464

age groups: below 35 or above 45 2. Given a465

single review, this task predicts the review top-466

ics from five categories: Flights, Online market-467

place, Fitness & Nutrition, Electronics, and Hotels.468

We use the same train, development, and test set469

splits as Hung et al. (2023) to eliminate any skew470

in the demographically-conditioned label distribu-471

tion. We report and compare macro-F1 scores from472

BERTage-MLM and BERTDS (Hung et al., 2023) with473

fine-tuned GPT-2HLC, HaRT, GRITage and GRITope.474

Demographic Attribute Classification We use475

the same subset of the TrustPilot dataset as for topic476

detection and the same train, development, and477

test splits from Hung et al. (2023). Given a single478

review, this task predicts the age group binary label479

(<35 years old or >45 years old). Age categories480

are equally represented in each set. We report and481

compare macro-F1 scores from BERTage-MLM and482

BERTDS (Hung et al., 2023) with fine-tuned GPT-483

2HLC, HaRT, GRITage and GRITope.484

4.3 Human Language Modeling485

To compare the effects of individual and group fac-486

tors on language modeling performance, we evalu-487

ate on the test set from the pre-trained data splits.488

We report and compare perplexity scores from the489

pre-trained GPT-2 (GPT-2frozen), GPT-2HLC, HaRT,490

GRITage and GRITope for the human language mod-491

eling task.492

5 Results and Discussion493

We report results for all the tasks here, discussing494

their respective impacts from pre-training LMs495

with individual human context, group context, and496

both individual and group context.497

2As suggested by Hovy (2015), this split of the age
ranges results in roughly equally-sized data sets and is non-
contiguous, avoiding fuzzy boundaries.

Model Human
Context

Age
(r)

OPE
(rdis)

GPT-2HLC None 0.839 0.521
HaRT Individual 0.868 0.619
GRITage Ind + Grp 0.890 0.658
GRITope Ind + Grp 0.884 0.643

Table 1: Pearson r for age, disattenuated Pearson r
for openness. Pre-training with individual plus group
context show benefits in estimating age and assessing
personality (openness). Bold = best in column. We find
no statistical difference between GRITage and GRITope

for the task of age estimation. All other results show
statistical significance p < 0.05 using paired t-test.

5.1 Comparisons Study 498

User-Level Regression Tasks. Table 1 shows 499

the two user-level regression task results. We find 500

that just the pre-trained GRIT models for each task 501

perform better than the fine-tuned HaRT model, 502

i.e., pre-trained GRITage better estimates age, and 503

GRITope better assesses personality. Additionally, 504

comparing the transfer learning (Section 3.5) re- 505

sults of GRITage for openness and GRITope for age 506

to the fine-tuned HaRT and GPT-2HLC models, we 507

find the GRIT models to fare better. 508

Note that while GPT-2HLC is a PLM that is 509

adapted to the social-media domain, it is still de- 510

void of human context. HaRT adds pre-training 511

with the individual human context, and GRIT adds 512

pre-training with both group and individual human 513

contexts (Figure 1). As Table 1 shows, there are 514

gains going from GPT-2HLC (no human context) to 515

HaRT (individual human context) and further to 516

GRIT (individual + group human context). This in- 517

dicates that pre-training PLMs with individual and 518

group human context may benefit multi-document 519

user-level regression tasks like the ones we consid- 520

ered. 521

Document-Level Classification Tasks. Table 2 522

shows the results for the 3 document-level classifi- 523

cation tasks: stance detection, topic detection (TD) 524

for 2 age groups (<35 and >45), and demographic 525

attribute classification (AC). We see that task fine- 526

tuned HaRT (individual human context) models 527

performs better on all tasks.. 528

HaRT models inherently have an additional con- 529

text of the individual user and do not treat all inputs 530

as if written by the same user. The tasks considered 531

here relate more to personal opinions and prefer- 532

ences, rather than group-level ones. HaRT model 533
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Model Human
Context

Stance
(F1wtd)

TD (<35)
(F1mac)

TD (>45)
(F1mac)

AC
(F1mac)

GPT-2HLC None 68.6 69.8 65.4 63.9
BERTage-MLM Group - 68.4 64.6 61.9
BERTDS Group - 69.3 65.0 64.1
HaRT Individual 71.1∗ 69.8∗ 65.6 64.3∗

GRITage Ind + Grp 70.8 69.2 64.5 62.7
GRITope Ind + Grp 70.1 66.5 64.8 61.2

Table 2: Weighted F1 for stance detection, macro-F1 for topic detection (TD), and age classification (AC) on
TrustPilot reviews. Pre-training with individual context appear to benefit all tasks. Bold = best in column; ∗ =
statistically significant p < .05 using permutation test between the best performing model (HaRT) and the best
baseline with no individual context (GPT-2HLC). We find no statistical difference between the two for TD (>45).

is well-suited for incorporating such personaliza-534

tion due to its pre-training with individual human535

context. Additionally, the results indicate that the536

models pre-trained with group context (BERTDS)537

fare well in the group-based tasks of topic detec-538

tion and age classification. Whereas, the models539

pre-trained on both individual and group human540

context (GRIT) appears to bring in noise for the541

group-based and personal stance detection tasks542

resulting in a slightly worse performance.543

Further, it is important to note that the individual544

human context (HaRT) derived from the historical545

tweets from the users in the stance detection dataset546

provides for a richer human context. Although, the547

performance is not greatly hurt even if historical548

language is not available for certain tasks (TD and549

AC).550

Perplexity. We also compare the language mod-551

eling capability of the various models. Table 3552

reports perplexity on the test set of 4438 users.553

The frozen GPT-2 performs poorly compared to554

the social media domain adapted GPT-2HLC, HaRT555

(individual human context) models perform best556

while GRIT (individual + group human context)557

models result in a slightly lower perplexity than558

HaRT. GRIT models are pre-trained under a multi-559

task learning setup which most likely is hurting the560

individual task performances, thus resulting in a561

slight dip in the perplexity compared to HaRT. Fur-562

ther, we observe similar trends in perplexity gains563

from GPT-2HLC (no human context) to HaRT (in-564

dividual context) or GRIT (individual plus group565

context) as also demonstrated in Soni et al. (2022).566

5.2 Error Analysis and Disparity567

We conduct an error analysis as a function of a568

socio-demographic group attribute. Specifically,569

Model Human
Context

Test (ppl)

GPT-2frozen None 114.82
GPT-2HLC None 36.39
HaRT Individual 28.24
GRITage Ind + Grp 31.77
GRITope Ind + Grp 30.32

Table 3: Comparing perplexity on language modeling
for models trained with individual and group contexts.

we measure GRIT and HaRT for error disparity 570

(Shah et al., 2020) – – a systematic difference in 571

error as a function of demographics as exempli- 572

fied by the “Wall Street Journal Effect” (Hovy and 573

Søgaard, 2015). We analyzed outcome and error 574

disparity on age and openness prediction from both 575

the models with individual context (HaRT) and 576

combined individual plus group context (GRIT). 577

First, we split the task test dataset into different 578

buckets based on the age groups (specifically, <18, 579

18-21, 21-30, 30-45, and >45 years old) of the users 580

in the test set. Then, we compare the performance 581

of our models across these buckets. Results from ta- 582

ble 4 indicate that pre-training with individual and 583

group context together performs better for estimat- 584

ing age across all the age groups, which implies 585

it makes fewer errors as a function of the socio- 586

demographic attribute age. We see similar trends 587

for assessing openness personality (Appendix Ta- 588

bles 6, 8). This suggests that the group attribute 589

prediction maybe acting as a regularizer for models 590

pre-trained with both individual and group contexts, 591

thus aiding the models to make fewer errors across 592

all age buckets. 593

To further confirm, we compute the mean error 594

disparity (MED) as the sum of the differences 595
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Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 1113 0.223 0.394 0.393
18-21 1387 0.230 0.278 0.276
21-30 1557 0.512 0.531 0.519
30-45 695 0.485 0.530 0.520
45+ 248 0.106 0.205 0.180

Table 4: Pearson r for age over five age buckets us-
ing different types of human contexts for error analysis.
Bold indicates best in row. We find no statistical differ-
ence between GRITage and GRITope for buckets 21-30
and 30-45. All other results show statistical significance
p < 0.05 using paired t-test.

Task \Model HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
Age (r) 0.215 0.181 0.185
OPE (rdis) 0.075 0.090 0.072

Table 5: Mean error disparity for age estimation and
openness personality assessment over five age buckets.
Bold indicates best in column (lower is better).

in the performance metric (Pearson correlation for596

age, and disattenuated Pearson correlation for open-597

ness) across each pair of age buckets, that is aver-598

aged by the number of pairs (Shah et al., 2020). A599

lower averaged sum of differences implies lesser er-600

rors as a function of the age groups. Lower MED601

scores for models pre-trained with individual and602

group context in Table 5 support our previous error603

analysis.604

6 Related Work605

Much work in human-centered NLP has focused606

on identifying and evaluating inclusion of human607

context in our models. Initial studies experimented608

with grouping people by socio-demographic fac-609

tors like age or gender (Volkova et al., 2013; Hovy,610

2015) and geographical region (Bamman et al.,611

2014; Garimella et al., 2017) to capture the vari-612

ation in language usage and meaning among dif-613

ferent groups. These works improved sentiment614

analysis, polarity classification, and topic detection.615

Other researchers explored adapting to user fac-616

tors (Lynn et al., 2017), social networks (Huang617

et al., 2014; Radfar et al., 2020), and social me-618

dia attributes (Bamman and Smith, 2015) to im-619

prove downstream tasks like sarcasm detection,620

and toxic language detection. Some studies go621

beyond explicit groups and learning individual rep-622

resentations latently Jaech and Ostendorf (2018); 623

Delasalles et al. (2019) or via historical language 624

Matero et al. (2021). 625

With respect to pre-trained LMs, recent studies 626

have used adapter-based methodology (Li et al., 627

2021; Zhong et al., 2021) to include individual 628

human contexts for downstream tasks. More re- 629

cently, large language models have used user- 630

centric prompting (Li et al., 2023) to include hu- 631

man context and evaluate on personalized and so- 632

cial tasks (Salemi et al., 2023; Choi et al., 2023). 633

However, few studies have explored including hu- 634

man context within the pre-training regime of LMs. 635

Hung et al. (2023) generalize the task-specific 636

EMPATH-BERT (Guda et al., 2021) to create a 637

PLM injected with demographic group information 638

using a dynamic multi-task learning setup. Further, 639

Soni et al. (2022) pre-train a LM with individual hu- 640

man context derived from user language. Our study 641

aims at comparing the impacts of pre-training LMs 642

with individual, or group, or combined individual 643

plus group human context. 644

7 Conclusion 645

NLP benefits from modeling latent human context, 646

such as sociodemographic group traits or individ- 647

ual tendencies. A recent development has been to 648

incorporate this additional human context into the 649

PLMs’ pre-training regimen. However, humans 650

exhibit varying degrees of group and individual 651

characteristics. Learning about the impacts of pre- 652

training with different types of human context will 653

propel us forward in including human context in 654

our base LLMs (Soni et al., 2023). To assess its im- 655

pacts, we compare three types of PLMs pre-trained 656

with sociodemographic group attributes, individ- 657

ual human contexts, or a combination across five 658

user- and document-level tasks. We find that pre- 659

training with individual and group human context 660

improves the two user-level tasks: age and per- 661

sonality prediction. Pre-training with individual 662

human context improves the three single-document 663

classification tasks, including stance and topic de- 664

tection. Pre-training solely on group context helps 665

group-based document classification tasks, though 666

not optimally. Our findings show a promising step 667

towards modeling human context and provide valu- 668

able insights for the NLP community to think of 669

additional strategies for improving models with 670

task-dependent human context in pre-training. 671
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Limitations672

The purpose of our study is to compare the impacts673

of modeling sociodemographic group attributes and674

modeling individual user traits, and we use rele-675

vant models to represent each of the approaches.676

There are likely to be other ways to model these677

approaches and the models we use are only one678

of the ways. Additionally, these models in them-679

selves have limitations like the blocks mechanism680

to process all the text from author induces compute681

requirements resulting in a capping of the number682

of blocks used for training. While it is also unclear683

how many blocks are sufficient to capture the hu-684

man context, and if it is helpful to use the earliest685

language or the most recently used language in the686

capped number of blocks.687

Secondly, some of the datasets (TrustPilot) used do688

not have appropriate user identification or histori-689

cal language to create an individual human context.690

Lastly, as noted earlier, models and data that touch691

upon sensitive user information require an ex-692

tremely responsible usage and limit researchers693

to make them publicly available.694

Ethical Considerations695

Models that incorporate sociodemographic infor-696

mation need to be considered with special scrutiny.697

On the one hand, they have the potential to pro-698

duce fairer and more inclusive results, because they699

can account for human language variation. On700

the other hand, they risk revealing identifying or701

sensitive information, which can lead to profiling702

and stereotyping. These may present opportuni-703

ties for unintended malicious exploitations. For704

example, models that improve demographic groups705

prediction or psychological assessments could be706

used for targeting content for individuals without707

their awareness or consent. Such models may also708

risk release of private information of the research709

participant if trained on private data unchecked710

for exposing identifying information. For this rea-711

son, we take a conservative release strategy. While712

we support open research and reproducibility, data713

and privacy protection take precedence. Thus, we714

will only be releasing the code for our compari-715

son study and the data that does not contain sensi-716

tive information i.e., stance detection datasets and717

TrustPilot datasets for topic detection and attribute718

classification. This is also in accordance with the719

DUA we have received from the authors of the pa-720

pers/models that we employ in our work.721

Our comparison study aims to guide and further 722

speed the growing body of human-centered AI re- 723

search. The models under comparison aim to en- 724

able applicability in the interdisciplinary studies 725

of the human condition leading to helpful tools 726

for psychological health. However, at this point 727

these models are not intended for use in practice 728

and should be evaluated for failures. All user-level 729

tasks presented here were reviewed and approved 730

or exempted by an academic institutional review 731

board (IRB). Our studies are limited to US-English 732

due to comparability reasons. However, similar 733

effects are likely to hold for other languages, and 734

should be evaluated in future work. 735
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Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.627 0.644 0.618
18-21 560 0.557 0.608 0.592
21-30 563 0.715 0.741 0.738
30-45 249 0.594 0.669 0.667
45+ 68 0.567 0.546 0.599

Table 6: Disattenuated pearson r for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row.

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 1113 4.07 2.52 2.82
18-21 1387 6.52 4.00 3.89
21-30 1557 17.82 12.64 13.11
30-45 695 48.59 39.79 40.43
45+ 248 114.92 121.66 134.72

Table 7: Mean squared error for age over five age buck-
ets using different types of human contexts for error
analysis. Bold indicates best in row (lower error is bet-
ter).

A Appendix 943

A.1 Experimental Settings 944

We closely follow the experimental settings from 945

Soni et al. (2022) and similarly use Optuna frame- 946

work (Akiba et al., 2019) for hyperparameter 947

search. We search for learning rates between 5e-6 948

and 5e-4, and between 1e-7 and 1e-5 for different 949

tasks. We will make our best found hyperparameter 950

values publicly available with our code and results 951

in the github repository. All experiments are run on 952

NVIDIA RTX A6000 GPUs of 48GB. Pre-training 953

takes approx 14 hours for 1 epoch and fine-tuning 954

takes approx 1-4 hours depending on the task. 955
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Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.423 0.410 0.429
18-21 560 0.496 0.487 0.506
21-30 563 0.429 0.380 0.381
30-45 249 0.578 0.489 0.489
45+ 68 0.584 0.501 0.467

Table 8: Mean squared error for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row (lower error is
better).
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