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Abstract

Centralized training with decentralized execution is a standard paradigm for coop-1

erative multi-agent reinforcement learning (MARL), with credit assignment being2

a major challenge. In this paper, we propose a cooperative MARL method with3

sequential credit assignment (SeCA) that deduces each agent’s contribution to the4

team’s success one by one to learn better cooperation. We first present a sequential5

MARL framework, under which we introduce a new counterfactual advantage to6

evaluate each agent based on its preceding agents’ actions in a specific sequence.7

As this credit assignment sequence tremendously impacts the performance, we8

further present a sequence adjustment algorithm utilizing integrated gradients. It9

dynamically modifies the sequence among agents according to their contribution10

to the team. SeCA employs a network which either estimates the Q value for11

training the centralized critic or deduces the proposed advantage of each agent for12

decentralized policy learning. Our method is evaluated on a challenging set of13

StarCraft II micromanagement tasks and achieves state-of-the-art performance.14

1 Introduction15

Cooperative multi-agent reinforcement learning (MARL) is a helpful tool in numerous applications16

such as robot swarm control [9], autonomous vehicle coordination [3], network routing [36], and17

productivity optimization [37]. This kind of problem where agents learn coordinated policies to18

optimize the global reward has been extensively studied in recent years [7, 19, 18, 38, 8].19

One natural way of addressing the cooperative MARL problem is the centralized approach, which20

treats the team as a single actor with a joint action space. Although we can trivially apply single-agent21

reinforcement learning algorithms to such settings, it usually does not scale well because the size of22

the joint action space grows exponentially with the number of agents. Besides, it is not applicable23

in real-world settings due to the inherent constraints on agent observability and communication.24

An alternative approach is to learn decentralized policies by independently training agents based25

on their local observations, but simultaneous exploration often brings non-stationarity that causes26

unstable learning and difficulties in convergence. As a result, the majority of work on MARL27

follows the centralized training with decentralized execution (CTDE) paradigm [17, 10, 22, 6], where28

decentralized policies can access extra state information during training.29

A crucial challenge of the CTDE paradigm in cooperative settings is to correctly deduce each agent’s30

contribution to the team’s success, also known as the multi-agent credit assignment problem [4].31

Existing methods can be classified as implicit and explicit credit assignment [39]. Previous implicit32

methods often deduce all agents’ contributions by representing the global state-action value as an33

aggregation of each agent’s state-action value [26, 22, 12, 24, 21, 29] and assigning the shared rewards34

to each agent according to the joint action at one time. In this way, these methods avoid the complex35

interaction analysis and instead fit these cooperation relationships by neural networks. However,36
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implicit methods often face limitations in expressiveness, and their extensions to continuous action37

spaces may require additional strategies [39].38

On the other hand, recognized explicit approaches calculate difference rewards [34] against a certain39

reward baseline [28, 20, 6]. However, in cooperative MARL, evaluating any agent’s action requires40

considering the actions of all agents, so it is often difficult to determine the impact a particular agent’s41

behavior has on the team when we have not assessed other agents’ actions. In other words, we can42

not say that a single agent’s action is bad if the team receives a small reward because the shared43

reward is not decided only by this agent’s behavior. Maybe its action is actually good in that state.44

This paper presents a sequential credit assignment SeCA to evaluate individual agent actions explicitly45

and sequentially. Our motivation is to address the drawbacks of implicit methods that neglect the46

cooperation between agents or simply leave it to neural networks and further improve explicit credit47

assignment. In summary, we face two main challenges to learn a better explicit credit assignment: (1)48

how to alleviate the problem that it is hard to accurately deduce the contribution of one agent without49

previously assessing all the others’ action, and (2) how to evaluate agents better in an explicit way.50

To deal with (1), we introduce a sequential MARL framework. As mentioned above, without assessing51

the behaviors of other agents, we would never be able to evaluate a given agent’s action accurately.52

However, we point out in this paper that some agents are less affected by such influences than others,53

and we can first assign credit to them. For instance, evaluating a staff’s action needs to take the54

CEO’s command or action into consideration, while the former has little importance in assessing the55

CEO. Thus, we could evaluate the CEO first without considering the staff’s behavior and then analyze56

the staff based on the CEO’s action. We fully consider the action coordination between agents and57

explicitly deduce contribution to them one by one according to a particular order, so as to make up58

for the disadvantage of implicit methods that the cooperation is only inexplicably fitted by neural59

networks. Intuitively, the order significantly impacts the overall performance, so we further propose60

an algorithm to adjust the sequence dynamically through integrated gradients [25].61

As for (2), we compute an advantage function for each agent to attribute agent contributions explicitly.62

COMA [6] is a representative method that computes a baseline for each agent to reason about63

counterfactuals in which only one agent a’s action changes, so its evaluation of a’s action is based on64

the joint action u−a of other agents. In other words, the policy gradient of COMA only encourages65

agent a to learn in the direction that benefits the team while other agents are acting u−a, but the66

others’ actions are not necessarily u−a when executing. Unlike COMA, we focus more on the action67

coordination among agents and propose a new advantage under the proposed sequential framework.68

We summarize the contributions of this paper as follows: (1) We propose a sequential MARL69

framework in Section 3.2; (2) Under this framework, we introduce a sequential advantage function70

for each agent to guide their learning explicitly in Section 3.3. We further prove that the sequential71

credit assignment we proposed achieves additive advantage-decomposition. (3) We present a sequence72

adjustment algorithm based on integrated gradients to modify the credit assignment order dynamically73

in Section 3.4. This algorithm alleviates the impact caused by the sequence’s randomness and helps74

achieve competitive performance on a challenging set of StarCraft II micromanagement tasks [23].75

2 Related Work76

Explicit credit assignment gives valuable insights into agent actions’ contributions to the shared77

team reward and substantially promotes policy optimization. The representative method COMA [6]78

utilizes a counterfactual baseline that marginalizes out a single agent’s action while keeping the other79

agents’ actions fixed to calculate the advantage function. However, the advantage evaluates a single80

agent’s action based on the other agents’ current behaviors and ignores different action combinations.81

SQDDPG [30] distributes the global reward reflecting each agent’s contribution through Shapley82

Value. Although SQDDPG provides a theoretically justified framework, its assumption on the83

observability and convex game makes it impractical and performs poorly in complex environments.84

Implicit methods are a more common way when addressing the credit assignment challenge. Among85

them, LICA [39] is a policy-based method, which learns an end-to-end differentiable optimization86

where it trains a hypernetwork that maps the state into a set of weights which, in turn, maps the87

action policies into the Q estimate. On the other hand, value-based methods often represent the88

global state-action value as an aggregation of the individual values. The value decomposition is linear89
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in the earlier work VDN [26], and it ignores the state information. QMIX [22] learns a non-linear90

mixing network with the global state and maps the individual state-action values into the joint Q value91

estimate. Although QMIX performs well in various environments, it still faces the mixing network’s92

monotonicity constraint limitation. QTRAN [24] further avoids the representation limitations by93

using linear constraints between individual utilities and the global state-action value. It guarantees94

optimal decentralization, but its constraints are computationally intractable, and the relaxations often95

lead to unsatisfied performance. QPLEX [29] decomposes Q values following the dueling structure,96

transferring the monotonicity condition from Q values to advantage values. QPD [35] leverages the97

integrated gradient attribution technique to decompose global Q values along trajectory paths based98

on the assumption that an agent’s local reward is linearly correlated with its contribution to the team.99

3 Methods100

3.1 Preliminaries101

Notations. This work considers a fully cooperative multi-agent task with n agents A = {1, ..., n}102

as a Dec-POMDP [16] defined by a tuple G = (S,U, P, r, Z,O, n, γ). The environment has a103

true state s ∈ S. Each agent a chooses an action uat from its action space U at each timestep104

t and forms a joint action ut that induces a transition in the environment according to the state105

transition function P (st+1|st,ut) : S×Un×S → [0, 1]. The agents share the same reward function106

r(s,u) : S × un → R, and γ ∈ [0, 1) is the discount factor. We consider partially observable107

scenarios in which agent a acquires its local observation za ∈ Z drawn from O(st, a) : S ×A → Z.108

Each agent has an action-observation history τa ∈ T ≡ (Z × U)∗, on which it conditions a policy109

πa(ua|τa) : T × U → [0, 1]. We denote joint quantities over agents in bold and joint quantities over110

agents other than a given agent a with the superscript −a.111

Integrated Gradients. Many works aim to attribute the predictions of deep networks to their input112

features [1, 15, 2]. As one of them, integrated gradients [25] aggregates the gradients along the inputs113

that fall on the lines between the baseline ~b and the input ~x = (x1, ..., xj , ..., xd). It explains how114

much one feature affects the deep network output F while changing from F (~b) to F (~x) along a115

path between ~b and ~x. Given a path function τ(α) with α ∈ [0, 1] specifying a path from baseline116

τ(0) = ~b to the input τ(1) = ~x, then integrated gradients along the jth dimension is acquired by:117

cj = PathIGτj (~x) ::=

∫ 1

0

∂F (τ(α))

∂τj(α)

∂τj(α)

∂α
dα, (1)

where cj represents xj’s contribution to the difference between baseline prediction F (~b) and F (~x).118

In this work, we leverage the integrated gradients technique to dynamically adjust the order of our119

proposed sequential credit assignment according to each agent’s contribution to the team.120

3.2 Sequential MARL Framework121

The relationship in a multi-agent system is complicated, as every agent makes decisions based on122

the environment interfered with by the other agents. If we model each agent as a node and model123

the cooperations between them as edges, the cooperative relationship will be built as a complicated124

web-like graph shown in Figure 1(a). Evaluating the actions of any agent should take into account125

the behaviors of other agents in this situation. It is hard to judge whether an agent’s current action is126

beneficial to the team when we have not evaluated other agents’ actions. If we cannot determine an127

analysis order, we can only analyze all the agents implicitly as most existing methods did, and the128

cooperation is often fitted only by deep neural networks, leading to unsatisfactory results.129

This section presents a sequential framework for cooperative MARL, which aims to analyze agents’130

actions one by one. Our key assumption is that evaluations of some agents in a team are less affected131

than others. Thus we can study these less-affected agents first and then analyze the others based on132

the actions of these already-studied agents. For instance, when evaluating a staff’s action, the CEO’s133

decision plays a vital role because we have to judge whether the staff obeys the command or not. On134

the contrary, the staff intuitively has little impact on evaluating the CEO’s decision. In assessing the135

CEO, we often consider external factors such as market situation, modeled as state s in MARL.136
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Figure 1: A toy example with three agents. (a) Agents affect each other as they choose actions based
on the state interfered with by the others’ actions. (b) The study on one agent will influence all
the other agents’ assessments in the original MARL framework. Agent’s cooperation analyses are
interrelated. (c) Each agent’s cooperation study in the proposed sequential MARL framework. Dotted
arrows representing correlations decrease from 6 in (b) to 3 in (c), reducing the complexity by half.
This merit also holds for systems with other numbers of agents.

We introduce a variable Oi to help model this sequential MARL framework. This additional variable137

represents a random event that our cooperation study (e.g., credit assignment) on agent ai is optimal or138

precise. Then the probability p(Oi) denotes the accuracy of our research on agent ai. For illustration139

and understanding convenience, we discuss a simple multi-agent system with three agents as an140

example, in which agents are identified by ai (i ∈ {1, 2, 3}). In original MARL, the evaluation of141

agent ai will influence all the other agents’ assessments. Thus events O1, O2 and O3 are mutually142

dependent, as shown in Figure 1(b). We calculate the probability of studying the system accurately143

by computing conditional probabilities:144

p(O1,O2,O3) = p(O1) · p(O2|O1) · p(O3|O1,O2) (2a)
...

= p(O3) · p(O2|O3) · p(O1|O2,O3) (2b)
where p(Oj |Oi) denotes the probability of agent aj’s accurate analysis under the condition of145

conducting a precise study on agent ai. It also indicates the accuracy of aj’s analysis conditions on146

precisely assess ai. We then conclude that:147

p(O1,O2,O3) = p(Oi) · p(Oj |Oi) · p(Ok|Oi,Oj) (3)
where i, j, k ∈ {1, 2, 3}, i 6= j, k 6= i, j.148

We take Equ.(2a) as an example. To study the cooperation of this multi-agent system precisely (i.e.,149

big p(O1,O2,O3)), we can first analyze a1 as accurately as possible (i.e., big p(O1)) and then go150

on to investigate a2 and a3 respectively with the best possible accuracy (i.e., big p(O2|O1) and151

p(O3|O1,O2)) under the condition of preceding agents’ precise analysis.152

The sequential MARL framework reduces the complexity of the model with six dotted arrows that153

indicate correlations between agents’ evaluations in Figure 1(b) by half, as those three dotted lines in154

Figure 1(c) show. Equ.(3) suggests that we can analyze the cooperation of a multi-agent system in155

any order, but from the CEO-Staff example, we can see that the difficulty of analyzing in various156

orders is not the same. Further discussion on the sequence will show in Section 3.4.157

In general, we specify an order to analyze the cooperation in the sequential MARL framework. We158

fix an agent’s actions after assessing it and study a particular agent based on the fixed actions of its159

preceding agents, reflecting the intuition that a CEO’s decision has a strong influence on evaluating160

the staff in the example mentioned earlier. This sequential MARL framework significantly alleviates161

the correlations in studying agents and helps us assess their cooperation more directly.162

3.3 Sequential Credit Assignment163

Following the CTDE paradigm, we utilize a centralized critic for each actor to follow a gradient164

based on an advantage function A estimated from this critic:165

g = ∇θπ log π (u|τat )A. (4)
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Figure 2: Performances between COMA’s counterfactual advantage and ours in two environments.
(Left) Predator-Prey. Three predators cooperate to chase a faster prey that acts randomly in an area
containing two obstacles. The game terminates when a predator captures the prey, and then a shared
reward is given. The predators trained by our advantage capture the prey faster. (Right) Cooperative
Navigation initializes three agents and three landmarks with random locations. Agents cooperate to
cover all the landmarks, and the shared reward is the negative sum of displacements between each
landmark and its nearest agent. Our method helps the team gain bigger rewards than COMA.

The advantage function A for each actor explicitly deduces how that particular agent contributes to166

the team. COMA [6] introduced a counterfactual baseline inspired by difference rewards [34]. For167

each agent a, COMA computes an advantage function that compares the Q-value for the action ua to168

a counterfactual baseline that marginalizes out ua while keeping the others’ actions u−a fixed:169

AaCOMA(s,u) = Q
(
s,
(
ua,u−a

))
−
∑
u′a

πa (u′a|τa) ·Q
(
s,
(
u−a, u′a

))
. (5)

COMA avoids expensive calculations through careful network design. However, each agent’s170

contribution deduced by COMA is still imperfect. The evaluation of ua is based on the fixed u−a171

in Equ.(5), so agent a will learn a policy that works better with u−a in this way. It ignores the joint172

actions (ua,u−a′) with u−a′ 6= u−a that may lead to unexpected results when assessing ua.173

To analyze each agent a’s contribution more objectively, we consider the influence of all joint actions174

with ua. Considering all potential action combinations, we calculate a counterfactual advantage for175

each agent’s action, derived by computing the expectation on all the actions of other agents:176

Aa(s,u) = Eu−a
[
Q
(
s,
(
ua,u−a

))]
− Eu−a

[∑
u′a

πa (u′a|τa) ·Q
(
s,
(
u−a, u′a

))]
. (6)

Under our proposed sequential MARL framework, we carry out credit assignment according to a177

specific order, and there is no need to consider all the possible joint actions. After assessing agent a,178

we fix its action and evaluate agents after it based on a’s fixed action, so the following agents’ credit179

assignments do not have to compute the expectation on ua anymore.180

We now give the detailed sequential credit assignment for a team with n agents identified by181

ai(i ∈ {1, ..., n}) under one specific sequence {a1, a2, ..., an}, and it can also be concluded from the182

rest (n!− 1) orders in the same way. Here we denote uai−1
a1 = [ua1 , ua2 , ..., uai−1 ] (i = 2, 3, ..., n).183

As for agent ai (i 6= 1) in the sequence, the contribution of its leading agents a1, a2, ..., ai−1 has184

been deduced. We fix the leading agents’ actions and assess agent ai’s action based on uai−1
a1 , so185

there is no need to calculate the expectations on [ua1 , ua2 , ..., uai−1 ], simplifying Equ.(6) to:186

Aai (s,u) =
∑
u′ai+1

· · ·
∑
u′an

πai+1 (u′ai+1 |τai+1)· · ·πan (u′an |τan)·Q
(
s,
(
uaia1 , u

′ai+1 ,· · ·, u′an
))

−
∑
u′ai

· · ·
∑
u′an

πai(u′ai |τai) · · ·πan (u′an |τan) ·Q
(
s,
(
uai−1
a1 , u′ai , · · · , u′an

))
. (7)

Then the first agent a1’s advantage is:187

Aa1 (s,u) =
∑
u′a2

· · ·
∑
u′an

πa2 (u′a2 |τa2) · · ·πan (u′an |τan) ·Q (s, (ua1 , u′a2 , · · · , u′an))

−
∑
u′a1

· · ·
∑
u′an

πa1 (u′a1 |τa1) · · ·πan (u′an |τan) ·Q (s, (u′a1 , u′a2 , · · · , u′an)) (8)
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Figure 3: (a) A centralized mixing critic network that maps the state into a set of weights (top) and
the decentralized agent network structure (bottom). (b) The overall SeCA architecture. (c) Critic
learning (top) and policy learning (bottom) flow. View in color if possible for better understanding.

To illustrate the effectiveness of our sequential counterfactual advantage, we conduct a simple188

but illuminating test in two common multi-agent particle environments [11], Predator-Prey and189

Cooperative Navigation. We train both methods with 5 random seeds, and agents are trained for 5000190

episodes. We provide detailed information on the environments and experiments in the Appendix. As191

shown in Figure 2, our sequential advantage functions help agents handle the task faster and better.192

Our sequential advantage for each agent achieves an additive decomposition of the total advantage193

function, which to some extent explains the soundness and superiority of our advantage over COMA’s.194

Claim 1. The proposed sequential credit assignment achieves additive advantage-decomposition.195

Proof. See Appendix A.196

Facing the same problem as COMA that those evaluations are expensive, we model the first term197

in Equ.(7) as a function fφ of (ua1 , ua2 , ..., uai , πai+1 , ..., πan) to address this issue, and the second198

term is a similar function of (ua1 , ua2 , ..., uai−1 , πai , ..., πan). Thus, we rewrite Equ.(7) as:199

Aai = fφ (s;u
a1 , ua2 , ..., uai , πai+1 , ..., πan)− fφ (s;ua1 , ua2 , ..., uai−1 , πai , ..., πan) . (9)

Here fφ is a function evaluating agents’ action-policy vectors, where fφ (ua1 , ua2 , ..., uan) = Q and200

fφ (π
a1 , πa2 , ..., πan) = V . We design the complete setup for SeCA, which is illustrated in Figure 3.201

Critic Learning. We train critic fφ on-policy to estimateQ, utilizing a practical variant of TD(λ) [27]202

adapted for use with deep neural networks. In particular, the critic parameter φ is updated by minibatch203

gradient descent to minimize the following loss:204

Lt(φ) =
(
y
(λ)
t − fφ(st,ut)

)2
, where y(λ)t = rt + γ

(
λy

(λ)
t+1 + (1− λ)fφ−(st+1,ut+1)

)
. (10)

We utilize a target critic fφ− [14] to improve learning stability and update φ− ← φ periodically. The205

critic learning flow is shown at the top of Figure 3(c). The input for critic training is the state s and206

the action vector u =
[
u1, u2, ..., un

]
denoted as v1:n.207

Policy Learning. We optimize each agent a’s policy parameter θa by maximizing the following208

objective, which contains our proposed advantage function and an entropy regularization termH:209

ga = Eτ∼π [∇θa log πa(ua|τa)Aa(s,u) +H (πa(·|τa))] , (11)

where the derivative of the adaptive entropy regularization termH(πa(·|τa)) [39] with respect to the210

i-th action probability pai is given by:211

dHi := −ξ · (log pai + 1)/H(πa(·|τa)), where H(πa(·|τa)) = Eua∼πa [− log πa(ua|τa)] . (12)

We share parameters among agents, and the gradient we use to train the actor shared by all agents is:212

g = Eτ∼π
[∑

a
(∇θa log πa(ua|τa)Aa(s,u) +H (πa(·|τa)))

]
. (13)
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The inputs of the centralized critic fφ to compute the advantage function are the state s and two213

action-policy vectors v1:i =
[
u1, ..., ui, πi+1, ..., πn

]
and v1:i−1 =

[
u1, ..., ui−1, πi, ..., πn

]
. The214

bottom of Figure 3(c) demonstrates the policy learning flow.215

3.4 Sequence Adjustment Through Integrated Gradients216

We apply integrated gradients to adjust the credit assignment sequence dynamically. Reviewing the217

enlightening and straightforward CEO-Staff example discussed in Section 3.2, we can evaluate the218

staff’s behavior based on the CEO’s decision, but assessing the CEO does not require much attention219

to the staff’s action. Therefore, we would analyze the CEO first and then evaluate the staff based on220

the CEO’s current action. However, this example is not generalized for two reasons: (1) There are221

often multiple agents taking the same role in a system with superior-subordinate relationships, and the222

sequence of these agents is hard to determine; (2) Not all scenarios have such superior-subordinate223

relationships. The agents often do not need to follow others’ commands in many applications.224

We generalize the CEO-Staff example to propose a universal model. Instead of focusing on the roles225

among the agents as in [31, 32], we are more interested in agents’ contributions. Although the CEO226

and the staff have a superior-subordinate relationship, they are essentially employees of an enterprise.227

The staff plays an auxiliary role and acts based on the CEO’s decision. The staff’s work is meaningful228

only if the CEO’s decision is correct. Therefore, we often intuitively assume that an enterprise’s229

leader is paid more and contributes more. Based on this, we transform the roles of the CEO and staff230

into employees with different contributions to the enterprise. In the sequential MARL framework, we231

first assign credit to the agent with a higher contribution to the team.232

The attribution method is a powerful way to determine the influence of input features’ each component233

on the network output value [2]. Among them, integrated gradients [25] leverages path integral to234

aggregate gradients along the inputs that fall on the lines between the baseline and the input, which235

is a natural tool for measuring each agent’s contribution. QPD [35] utilizes the integrated gradient236

attribution technique to decompose shared rewards along trajectory paths, revealing how much each237

agent’s observation and action contributes to the global Q value. However, it remains unclear whether238

individual Q value should be linearly correlated to or approximated by the agent’s contribution, as in239

the case of QPD. The proper connection between agents’ contributions and their individual Q values240

in a cooperative team is worth well studied for the community.241

Here we avoid detailed analysis on the relationship between agents’ contributions and their individual242

rewards. Instead, we use integrated gradients to measure agents’ contributions to the state transition243

and adjust the credit assignment sequence based on their contributions. In particular, we estimate244

agent a’s contribution ca in the trajectory path τ t2t1 from time t1 to t2 based on its policy vector πa:245

ca =
∑
xj∈πa

PathIG
τ
t2
t1
j (πa), (14)

where xj is j-th dimension of the policy vector πa. The computation for PathIG is shown in Equ.(1).246

We compute each agent’s contribution c to the state transition from st1 to st2 and analyze the agent247

with higher c first. We further study the adjustment frequency and its effectiveness in Section 4.2248

4 Experiments and Analysis249

4.1 Experimental Setup250

We consider a challenging set of cooperative StarCraft II maps from the SMAC benchmark [23]251

classified as Easy, Hard, and Super Hard scenarios according to the baseline algorithms’ performance.252

The inherent differences among various methods and their training procedure (e.g., on/off-policy253

learning for value-based/policy-based methods) bring difficulties when comparing methods in a254

reasonably fair manner without introducing additional components (e.g., importance sampling [13, 33]255

for off-policy methods). To attribute any poor performance of policy-based methods to potential256

algorithmic limitations or poor training conditions (in particular, high variance due to small batch257

sizes or insufficient gradient steps), we follow [5, 39], training all methods with 32 parallel runners258

to generate trajectories and using batches of 32 episodes. We evaluate each method every 320K259

steps with 32 episodes and report the 1st, median, and 3rd quartile win rates across 5 random seeds.260

Detailed information about the scenarios and the experimental setup is shown in the Appendix.261
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Figure 4: Ablations for SeCA’s key elements on scenario MMM2 (Super Hard). (a) investigates the
effects of our sequential advantage and network architecture. (b) validates our sequence adjustment
through integrated gradients. (c) shows the test win percentage with various adjustment frequencies.

4.2 Ablation Studies262

We first carry out ablation experiments on a Super Hard map MMM2 to validate key elements of SeCA.263

Proposed Advantage and Architecture. In Section 3.3, we compare our sequential advantage264

with COMA’s in two simple multi-agent particle environments and show our superiority in Figure 2.265

Afterward, we introduce a fφ approximation and a corresponding network architecture. Here we apply266

the same approximation and architecture for COMA’s counterfactual advantage (COMA-newArchi)267

and compare it with the original COMA and our method SeCA to show the effects of our advantage268

function, approximation, and network architecture. The result is illustrated in Figure 4(a). COMA269

performs poorly on this Super Hard map but acquires significant improvement with our approximation270

and architecture. Our sequential advantage further accelerates and stabilizes the training.271

Sequence Adjustment Algorithm. SeCA’s credit assignment sequence is dynamic. We compare272

our method with some intuitive adjustments to validate its effects. One could first evaluate agents273

with higher current-action probability (SeCA-Prob) or lower policy entropy (SeCA-Entro), as these274

agents are more confident in their acts, and we can assess other agents based on their behaviors. Since275

SeCA-Prob and Entro get a new order at each step, to be fair, we set the path length in Equ.(14) to one,276

i.e., consider agents’ contributions based on the transition from st to st+1 (SeCA-IG-1). Figure 4(b)277

illustrates that SeCA-Prob and Entro learn better than the fixed method (SeCA-Fixed), but Prob has a278

larger variance than Entro. Fixed is better than expected, which we believe is because that the fixed279

sequence acquires adequate training. Our integrated-gradients-adjustment performs the best in win280

rates and stability, and the others have inferior performance and incredibly high variance.281

Sequence Adjustment Frequency. We next consider how the sequence adjustment frequency in282

SeCA-IG affects the performance. Except per step adjustment (i.e., SeCA-IG-1), one could also283

update the sequence after a stage or an episode. If we change the credit assignment order for every284

episode during training (SeCA-IG-episode), then τ t2t1 in Equ.(14) represents a whole episode. As for285

stage adjustment, it is hard to define a stage in these tasks, and the stage length varies in diverse maps.286

Here we set stage length to 10 and 20, respectively denoted as SeCA-IG-10 and SeCA-IG-20. As the287

results in Figure 4(c) show, IG-1 and IG-episode have similar final win rates. However, IG-episode288

converges more quickly with smaller variance. The reason for IG-10(20)’s mediocre performance289

and high variance may be because the stage length needs to be dynamically adjusted. Inappropriate290

adjustment frequency fails to adapt to the stage changes in the task and causes insufficient training291

for each sequence. We utilized SeCA-IG-episode in other experiments and will investigate dynamic292

stage learning in the future to improve stage adjustment.293

4.3 Comparisons with State-of-the-arts294

We compare SeCA with some competitive algorithms, including the representative explicit credit295

assignment method COMA, the policy-based implicit method LICA, the common-used baseline296

QMIX and QTRAN. Methods are evaluated on 6 scenarios, including 2 Easy ones (2s3z, 1c3s5z),297

2 Hard ones (2c_vs_64zg, 3s_vs_5z), and 2 Super Hard ones (MMM2, 3s5z_vs_3s6z). We train298

all methods for 32 million steps in Easy maps and 64 million steps in Hard and Super Hard maps.299

These scenarios involve homogeneous and heterogeneous teams, symmetric and asymmetric battles,300

allowing a holistic study on all methods. Our experiments are based on the latest PyMARL [23]301
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Figure 5: The comparison of SeCA against various baseline algorithms on six SMAC maps.

utilizing SC2.4.10. Performance is not always comparable between versions, so the results may be302

subtly different from the original papers.303

As we can see in Figure 5, SeCA demonstrates its robustness by achieving good performances in304

scenarios with various characteristics. All methods except COMA and QTRAN solve two Easy305

scenarios, and SeCA performs better in convergence speed and stability. SeCA’s advantage is further306

extended in the Hard map 2c_vs_64zg, and it converges significantly faster than other methods.307

Although classified only as Hard, 3s_vs_5z invalidates most algorithms except QMIX and SeCA, as308

Stalkers have to learn dispersing and making enemies give chase while maintaining enough distance309

("kiting" technique) in this map. SeCA has a higher variance than QMIX. This is possibly because310

the Stalkers’ scattering prioritizes individual performance over cooperation which is more in line311

with QMIX’s monotonicity constraint. Nevertheless, SeCA’s performance improvements on the312

Super Hard scenarios MMM2 and 3s5z_vs_3s6z demonstrate the effectiveness of our method. LICA’s313

performance in 3s5z_vs_3s6z here is different from the original paper, as the original results for314

this map are obtained by using a different entropy coefficient, which is explained in its open-source315

implementation.1 This parameter tuning is unfair when comparing methods, so all experiments in this316

paper use the fixed entropy coefficient. We also visualize the learned sequences in different battles of317

3s_vs_5z to provide insights into our sequence adjustment in the Appendix.318

We are supposed to compare our method with QPD that also utilizes integrated gradients to show319

our improvement. However, QPD modifies the original SMAC environment to acquire additional320

information for policy training, which is mentioned in its open-source implementation.2 Therefore, it321

is unfair to compare QPD’s learning curves in the modified environment with other methods, and322

QPD’s authors did not provide methods’ learning curves comparison in the original paper. We follow323

them, providing a win rate table in the Appendix to show our superiority over QPD.324

5 Conclusions and Future Work325

This paper presents SeCA, a cooperative MARL framework with sequential credit assignment.326

SeCA computes counterfactual advantage functions to evaluate each agent based on the actions of327

the preceding agents under a specific sequence. The sequence is adjusted dynamically according328

to agents’ contributions to the team deduced by integrated gradients. SeCA accelerates policy329

convergence and improves the final performance over existing recognized methods in practice. In the330

future, we will further investigate stage learning in an episode and adjust the sequence per stage to331

improve SeCA and achieve adaptive cooperation in various task situations.332

1https://github.com/mzho7212/LICA
2https://github.com/QPD-NeurIPS2019/QPD
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