
Published as a conference paper at ICLR 2025

ON DESIGNING GENERAL AND EXPRESSIVE QUANTUM
GRAPH NEURAL NETWORKS WITH APPLICATIONS TO
MILP INSTANCE REPRESENTATION

Xinyu Ye1, Hao Xiong1, Jianhao Huang1, Ziang Chen2, Jia Wang1, Junchi Yan1∗

1. Shanghai Jiao Tong University, Shanghai, China.
2. Massachusetts Institute of Technology, Massachusetts, United States.
{xinyu ye,taxuexh,huang jh2021}@sjtu.edu.cn
ziang@mit.edu,{jiawang,yanjunchi}@sjtu.edu.cn

ABSTRACT

Graph-structured data is ubiquitous, and graph learning models have recently been
extended to address complex problems like mixed-integer linear programming
(MILP). However, studies have shown that the vanilla message-passing based
graph neural networks (GNNs) suffer inherent limitations in learning MILP in-
stance representation, i.e., GNNs may map two different MILP instance graphs
to the same representation. In this paper, we introduce an expressive quantum
graph learning approach, leveraging quantum circuits to recognize patterns that are
difficult for classical methods to learn. Specifically, the proposed General Quantum
Graph Learning Architecture (GQGLA) is composed of a node feature layer, a
graph message interaction layer, and an optional auxiliary layer. Its generality
is reflected in effectively encoding features of nodes and edges while ensuring
node permutation equivariance and flexibly creating different circuit structures for
various expressive requirements and downstream tasks. GQGLA is well suited
for learning complex graph tasks like MILP representation. Experimental results
highlight the effectiveness of GQGLA in capturing and learning representations for
MILPs. In comparison to traditional GNNs, GQGLA exhibits superior discrimina-
tive capabilities and demonstrates enhanced generalization across various problem
instances, making it a promising solution for complex graph tasks.

1 INTRODUCTION

Mixed-integer linear programming (MILP) serves as a general optimization formulation appli-
cable to diverse real-world optimization scenarios, such as transportation (Schouwenaars et al.,
2001), scheduling (Floudas & Lin, 2005b), and production planning (Askari-Nasab et al., 2011).

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

(a) Feasible

𝑖=1

6

𝑥𝑖 + 𝑥(𝑖 mod 6)+1
= 1

min
𝑥

𝑥𝑖

0 ≤ 𝑥𝑖 ≤ 1, 𝑥𝑖 ∈ ℤ

∀𝑖 ∈ {1,2, … , 6}

(b) Infeasible

0,1,0,1,0,1 ∈ 𝑋𝑓𝑒𝑎

𝑠. 𝑡.

𝑥𝑖 + 𝑥(𝑖 mod 3)+4 = 1

𝑖=1

6

𝑥𝑖 + 𝑥(𝑖 mod 3)+1 = 1

min
𝑥

𝑥𝑖

0 ≤ 𝑥𝑖 ≤ 1, 𝑥𝑖 ∈ ℤ

∀𝑖 ∈ {1,2, … , 6}

𝑖𝑓 𝑖 ≤ 3,

𝑠. 𝑡.

𝑖𝑓 𝑖 > 3,

𝑋𝑓𝑒𝑎 = ∅
GNN GNN

𝐹(𝐺1) 𝐹(𝐺2)
Equal

Figure 1: A pair of GNN-intractable MILPs G1 and
G2. (a) is feasible and (b) is infeasible. Although
their edge connectivity and feasibility are different,
GNNs embed them into the same representation.

MILP aims to minimize a linear objective func-
tion while adhering to linear constraints. Apart
from the classic non-learning solvers that of-
ten resort to heuristics, recent learning-based
models have been actively studied, and graph
neural networks (GNNs) are considered a suit-
able backbone to represent the mappings for
MILP instances in various stages of MILP solv-
ing processes (Khalil et al., 2022; Gupta et al.,
2022; Wang et al., 2023; Li et al., 2025). A
MILP instance can be regarded as a weighted
bipartite graph with node features, as illus-
trated in Fig. 1 and Fig. 2. Due to the beneficial
property of GNN, permutations on variables or
constraints of a MILP do not essentially change

∗Correspondence author who is also affiliated with Shanghai Innovation Institute. Work was partly supported
by NSFC (62222607), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102).

1

Published as a conference paper at ICLR 2025

Table 1: Comparison of QNNs for classical graph data on several aspects: whether the models provide
implementable circuits, enjoy permutation equivariance, consider multi-dimensional node or edge
features, utilize quantum (Q) layers or classical (C) layers, and the manner of readout. Compared to
other methods, our proposed model addresses multiple aspects, can be applied to both node-level and
graph-level tasks, and achieves advantage validation over GNNs in learning graph representations.

Method Quantum Circuit
Embodied

Permutation
Equivariance Attribute Layer Readout Application

QGNN (Verdon et al., 2019) % ! Q Tomography Learning Hamiltonian Dynamics
& Graph Isomorphism Classification

QGCN (Zheng et al., 2021) ! % Node & Edge Q Estimation Image Classification
egoQGNN (Ai et al., 2022) ! % Node Q & C Tomography Graph Classification

EQGC (Mernyei et al., 2022) % ! Node Q & C Estimation Synthetic Cycle Graph Classification
Ours ! ! Node & Edge Q Estimation Graph Classification & Regression

the problem itself. This can prevent the model from overfitting the variable/constraint orders in the
training data. However, a recent study (Chen et al., 2023) revealed that the classical GNNs based on
the message-passing mechanism suffer fundamental limitations in graph representation, especially
for MILP graphs, i.e., GNNs do not have sufficient power to distinguish some different instances.
Specifically, as shown in Fig. 1, two different MILP instances can be eventually embedded into
the identical representation by GNNs, thus failing to predict the feasibility of MILP. Moreover, in
real-world scenarios, there are numerous MILPs that GNNs cannot distiguish (Chen et al., 2023),
which means that practitioners using GNNs may not benefit from this.

As we can see, classical GNNs face fundamental limitations in learning graph representation. To
overcome this challenge, we turn to quantum machine learning (QML), which is an emerging field
that combines the power of quantum computing with the capabilities of machine learning. QML
has shown immense potential in recent years, such as recognizing patterns that are intractable using
classical methods (Biamonte et al., 2017). In this paper, we aim to associate nodes with qubits and
edges with quantum entanglement, investigating graph structures that are indistinguishable from
classical GNNs and exploring effective approaches for constructing quantum graph neural networks.

Designing a quantum learning framework for unstructured data, such as graph data, is still in its
nascent stages. Although some quantum neural networks (Verdon et al., 2019; Zheng et al., 2021; Ai
et al., 2022; Mernyei et al., 2022; Yan et al., 2023) designed to handle graph data have been proposed,
they struggle to effectively apply to complex graph tasks such as MILP graphs because they fail
to address the following challenges simultaneously. i) Since complex graph data usually contains
node and edge features, it is important to design a reasonable node/edge feature encoding strategy
that enables the quantum circuit to utilize these features to learn effective node representations.ii)
As mentioned earlier, classic GNNs possess the beneficial property of permutation equivariance.
However, designing a quantum circuit that conforms to permutation equivariance is nontrivial and
requires careful design. iii) Unlike building hybrid classical-quantum layers, designing full quantum
circuits for classical graph data and verifying them in practical graph tasks is challenging. Moreover,
we provide a detailed discussion of related works in Appendix A and Table 1 here as a summary.

To tackle the above challenges, we propose a general quantum graph learning architecture named
GQGLA. This method aims to provide a quantum solution for complex graph tasks like learning
MILP representation and to demonstrate superior discriminative power over classical GNNs. The
generality of GQGLA is reflected in the following five aspects. i) GQGLA can encode node and edge
features. We design learnable features associated with each feature and flexible encoding schemes to
better learn node representations. ii) With the proposed parameter-sharing strategy, all the layers in
GQGLA possess the beneficial property of permutation equivariance, and we provide the theoretical
proof in Sec. 4.3. iii) GQGLA can incorporate an optional auxiliary layer to enhance the expressive
power of the model. iv) The types of quantum gates in GQGLA are adjustable under our configuration
principle, allowing flexible use across different scenarios. v) By designing different measurement
layers, GQGLA can be applied to graph tasks at various levels, such as graph classification, graph
regression, and node property prediction. We summarize the main contributions:

1) To explore the potential of quantum machine learning for learning graph-structured data, we present
a general quantum graph learning architecture (GQGLA). The method is based on fully quantum
circuits compatible with current devices and is capable of effectively encoding the features of nodes
and edges while ensuring node permutation equivariance. GQGLA can flexibly create different circuit

2

Published as a conference paper at ICLR 2025

structures to meet various expressive requirements and downstream tasks. Moreover, we theoretically
prove the permutation equivariance of GQGLA.

2) We implement GQGLA in an application for learning MILP representation, which is evaluated on
three tasks: predicting feasibility, the optimal value, and the optimal solution. Numerical experiments
demonstrate the advantage of GQGLA over classic GNNs in learning MILP representations. GQGLA
has better discriminative power to handle GNN-intractable MILPs. It also shows that GQGLA has
better generalization and uses fewer parameters.

3) The superior discriminative power of GQGLA over GNNs not only provides a promising solution
for more challenging graph tasks but also shows the practicability of current quantum machine
learning methods. This will encourage further exploration of the potential of QNNs over their
classical counterparts.

2 PRELIMINARIES

We provide the basics of quantum computing and quantum machine learning in a simple and
understandable way in Appendix B, ensuring that readers with a background in linear algebra but not
familiar with quantum computing can gain a basic understanding of the quantum technologies used
in our paper. The matrix forms of all quantum gates mentioned in the paper are provided in Table 9.
Next, we will introduce the specific form of MILP graphs and the types of MILP datasets.

2.1 MILP GRAPHS AND THE LIMITATION OF CLASSIC GNNS

Graph Representation for MILPs. An instance is defined as follows A ∈ Rp×q , b ∈ Rp, c ∈ Rq:
min
x∈Rq

c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xi ∈ Z, ∀ i ∈ I, (1)

𝑓1
v = (𝑐1, 𝑙1, 𝑢1, 𝜖1)

𝑓2
𝑣 = (𝑐2, 𝑙2, 𝑢2, 𝜖2)

𝐴11

𝐴12

 𝐴11𝑥1 + 𝐴12𝑥2 °1 𝑏1
 𝐴21𝑥1 + 𝐴22𝑥2 °2 𝑏2

𝑠1

𝑠2

𝑣1

𝑣2
𝐴21

𝐴22

min
𝑥

 𝑐1𝑥1 + 𝑐2𝑥2

𝑙1 ≤ 𝑥1 ≤ 𝑢1

𝑙2 ≤ 𝑥2 ≤ 𝑢2

𝑠. 𝑡.

𝑓1
𝑠 = (𝑏1, °1)

𝑓2
𝑠 = (𝑏2, °2)

Variable nodes
Constraint nodes

𝜖𝑖 = ቊ
1， 𝑖𝑓 𝑥𝑖 ∈ ℤ
0，𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 2: A weighted bipartite graph of a MILP
instance. vi is the variable node associated with
feature fVi and sj indicates the constraint node asso-
ciated with feature fSj . The edge between vi and sj
means the j-th constraint involves the i-th variable.

where l and u represent the upper and lower
bounds on variables, where l ∈ (R∪ {−∞})q ,
u ∈ (R ∪ {+∞})q and ◦ ∈ {≤,=,≥}p. Con-
sistent with Chen et al. (2023), the mathe-
matical operators {≤,=,≥} are mapped into
numerical value {0, 1, 2}, respectively. I ⊆
{1, · · · , q} represents the index set of integer
variables. The feasible solution is defined as
the set Xfea = {x ∈ Rq | Ax ◦ b, l ≤
x ≤ u, xi ∈ Z, ∀i ∈ I}, while Xfea = ∅
means the MILP problem is infeasible. Fea-
sible MILPs have an optimal objective value
yobj = inf{c⊤x | x ∈ Xfea}. If there exists
x̂ ∈ Xfea such that c⊤x̂ ≤ c⊤x, ∀ x ∈ Xfea,
then x̂ is an optimal solution. Nevertheless, the optimal solution may not always exist because the op-
timal objective value can be arbitrarily good, where the MILP problem is unbounded and categorized
as feasible with an optimal objective value of −∞. Following the protocol in Gasse et al. (2019) and
Chen et al. (2023), we formulate MILP as a weighted bipartite graph to interpret variable-constraint
relationships, as illustrated in Fig. 2. The vertex set is V ∪ S, where V = {v1, · · · , vi, · · · , vq}
with vi representing the i-th variable and S = {s1, · · · , sj , · · · , sp} with sj representing the j-th
constraint. The edge connected vi and sj has weight Ai,j . Based on Eq. (1), the vertex vi ∈ V is
associated with a feature vector fVi = (ci, li, ui, ϵi), where ϵi ∈ {0, 1} represents whether variable
vi takes an integer value. The vertex sj is equipped with a two-dimensional vector fSj = (bj , ◦j).
There is no edge between vertices in the same vertex set (V or S). The weighted bipartite graph with
node features is named an MILP-induced graph or MILP graph.

Classic GNNs may Fail on General MILPs. Recall that Chen et al. (2023) has shown that GNNs
may embed two different (one feasible and one not) MILPs into an identical embedding. In fact, there
are infinitely many pairs of MILP instances that can puzzle GNNs. Therefore, Chen et al. (2023) call
this class of MILPs that confuse GNNs as foldable MILPs, while the rest of the MILPs are named
unfoldable MILPs. In this paper, we refer to them as GNN-intractable MILPs and GNN-tractable
MILPs, respectively. Fig. 1 gives an example of a pair of MILPs in the GNN-intractable MILP
dataset. In this case, fVi = (1, 0, 1, 1), for all vi ∈ V and fSj = (1,=), for all sj ∈ S. All edge

3

Published as a conference paper at ICLR 2025

Node

Feature

layer

𝑈𝑛(𝐻, 𝛼)

Graph message

interaction layer
Auxiliary

layer

ۧ|0

ۧ|0

ۧ|0

ۧ|0

ۧ|0

ۧ|0

ۧ|0
…

…

Block (𝑡 = 1)

Block … Block

(𝑡 = 2) (𝑡 = 𝑇)

Measurement

Classical

Optimizer

Update

Parameters
𝑈𝑎(𝛾)𝑈𝑔(𝐴, 𝐻, 𝛽)

Figure 3: The overall architecture of our GQGLA. The node feature layer encodes and learns node
features into the quantum circuit, and the graph message interaction layer contains a variable update
layer and a constraint update layer. The auxiliary layer is optional and is used to enhance the model’s
capacity. All layers are designed to preserve the equivariance of the node permutation.

weights are equal to 1, which means that the only difference between the two bipartite graphs lies in
the connectivity of edges. However, these two MILP instances have different feasibility. Fig. 1 (a) is
feasible, e.g. x = (0, 1, 0, 1, 0, 1) is a feasible solution, while Fig. 1 (b) is infeasible as there are no
integer decision variables that can satisfy the equality constraint 2(x1 + x2 + x3) = 3. Appendix E.1
illustrates why GNN has no ability to distinguish between them. The limitation of GNNs means that
directly applying GNNs to represent general MILPs may fail.

3 GENERAL QUANTUM GRAPH LEARNING ARCHITECTURE

Fig. 3 shows the overall framework of GQGLA, which consists of the node feature layer, graph
message interaction layer, auxiliary layer, and measurement layer. The first three layers form a
block. After the block is iteratively repeated Γ times, Pauli-Z measurement is performed. This
section introduces the design details of each layer in GQGLA using MILP graphs as an example.
The next section presents how GQGLA can be applied to various levels of graph tasks of MILP and
demonstrates its permutation equivariance and discriminative power.

3.1 NODE FEATURE LAYER

Node Feature Layer

ۧ|0

ۧ|0

ۧ|0

ۧ|0

ۧ|0

ۧ|0

𝐷(𝑙1 + 𝛼𝑡,3)

𝑣1

𝑣2

𝑠1

𝑠2

𝑈𝑊(𝑐, 𝑢, 𝑏, 𝛼)

𝑊(𝑢1 + 𝛼𝑡,2)

𝑊(𝑢2 + 𝛼𝑡,2)

𝑊(𝑏1 + 𝛼𝑡,5)

𝑊(𝑏2 + 𝛼𝑡,5)

𝐷(𝜖1 + 𝛼𝑡,4)

𝐷(𝑙2 + 𝛼𝑡,3)

𝐷(𝜖2 + 𝛼𝑡,4)

𝐷(∘1 +𝛼𝑡,6)

𝐷(∘2 +𝛼𝑡,6)

𝑈𝐷(𝑙, 𝜖,∘, 𝛼)

𝐴11
𝐴21

𝑠1

𝑠2

𝑣1

𝑣2
𝐴22

(𝑐1, 𝑙1, 𝑢1, 𝜖1)

(𝑐2, 𝑙2, 𝑢2, 𝜖2)

(𝑏1, °1)

(𝑏2, °2)

(a)

(b)

𝑊(𝑐1 + 𝛼𝑡,1)

𝑊(𝑐2 + 𝛼𝑡,1)

Sharing

Trainable

Parameters

(c)

Figure 4: Node features are encoded into the circuit
using angle encoding, and each feature is associated
with a trainable parameter to learn the node repre-
sentation. For node permutation equivariance, the
same feature dimension (e.g., c1 and c2) shares the
identical trainable parameter (i.e., αt,1).

Fig. 4 (a) exemplifies a node feature layer with
two variable nodes and two constraint nodes.
The variable nodes vi have four features
(ci, li, ui, ϵi), and the constraint nodes sj have
two features (bj , ◦j). Suppose that each qubit
encodes two features, as shown in Fig. 4 (c).
Specifically, W (θ) and D(θ) represent two
different types of single-qubit quantum gates,
including {RX(θ), RY (θ), RZ(θ)}, where θ
indicates the parameter of the gate. We can
set θ as either trainable parameters or a con-
stant to encoded. The selection principle of
single-qubit quantum gates (W (θ) and D(θ))
will be described in Sec. 3.4. In this case, the
first qubit encodes the features c1 and l1, and
the second qubit encodes the features u1 and
ϵ1. That is, the first two qubits are used to
represent the node v1. When fewer features are encoded on each qubit, more qubits are used to
represent a node, resulting in a richer node representation. However, this also leads to increased
model complexity, so we set ω as a hyperparameter to denote the maximum number of features that
each qubit can encode, balancing the speed and accuracy. Fig. 4 shows the case where ω = 2, and
we also provide another illustration of ω = 4 in Fig. 8 in Appendix. Moreover, the same feature
dimension (e.g., c1 and c2) shares the identical trainable parameter (i.e., αt,1 in the W (c1+αt,1) and
W (c2 +αt,1)). In other words, the trainable parameters are related only to the feature dimension, not
to the permutation of the nodes. Thereby, even if the order of nodes changes (e.g., encoding node v2
using the first two qubits), each node’s features are assigned the same trainable parameters, ensuring
that the learned node feature representation remains invariant. In this way, the node feature layer can
preserve the node permutation equivariance, see Sec. 4.3 for proof. The node feature layer encodes

4

Published as a conference paper at ICLR 2025

𝑣1

𝑣2

𝑠1

𝑠2

(b) Constraint Update layer(a) Variable Update layer

𝑈𝐾
𝑉(𝐴, 𝛽𝑡,1) 𝑈𝐾

𝑉′(𝐴, 𝛽𝑡,2) 𝑈𝐺
𝑉(𝛽𝑡,3) 𝑈𝐾

𝑆(𝐴, 𝛽𝑡,4) 𝑈𝐾
𝑆′(𝐴, 𝛽𝑡,5) 𝑈𝐺

𝑆(𝛽𝑡,6)

𝐾(𝐴11 + 𝛽𝑡,1) 𝐾(𝐴21 + 𝛽𝑡,1)

𝐾(𝐴22 + 𝛽𝑡,1)

𝐾(𝐴11 + 𝛽𝑡,2) 𝐾(𝐴21 + 𝛽𝑡,2)

𝐾(𝐴22 + 𝛽𝑡,2)

G(𝛽𝑡,3)

𝐺(𝛽𝑡,3)

𝐾(𝐴11 + 𝛽𝑡,4)

𝐾(𝐴21 + 𝛽𝑡,4) 𝐾(𝐴22 + 𝛽𝑡,4) 𝐾(𝐴21 + 𝛽𝑡,5) 𝐾(𝐴22 + 𝛽𝑡,5)

G(𝛽𝑡,6)

𝐺(𝛽𝑡,6)

𝐾(𝐴11 + 𝛽𝑡,5)

…

Pauli-Z
Measurement

(d) Measurement layer

𝑦𝑣1

𝑦𝑣2

𝑦𝑠1

𝑦𝑠2

(c)

Figure 5: The quantum graph message interaction layer. (a) Variable update layer. Controlled-K
gates are used to learn the information interaction between variable nodes and constraint nodes, while
controlled-G(θ) gates are utilized to learn the internal interaction between qubits representing the
same variable nodes. (b) Constraint update layer. Controlled-K gates are turned upside down and are
followed by G(θ) gates to update the representation of constraint nodes. (c) Omitted node feature
layers and graph message interaction layers. (d) Measurement layer using Pauli-Z measurement.

all variable features HV ∈ Rq×4 and constraint features HS ∈ Rp×2 can be defined as:

Ux(H,αt) = UW (c, u, b, αt)UD(l, ϵ, ◦, αt). (2)

3.2 QUANTUM GRAPH MESSAGE INTERACTION LAYER

We employ two-qubit quantum gates to entangle the qubits representing two nodes connected by
an edge. By harnessing the mechanism of quantum entanglement, we can learn the information
interaction in MILP graphs. Fig. 5 exemplifies the graph message interaction layer for the MILP
graph in Fig. 4 (a), which contains three edges. Specifically, this layer includes two parts: the variable
update layer and the constraint update layer. We set the two-qubit quantum gates as controlled-
K(θ) ∈ {RX(θ), RY (θ), RZ(θ)}. In the variable update layer, the control qubit of controlled-K(θ)
gate is the constraint node, and its target qubit is the variable node. Different edges share an identical
trainable parameter βt, as illustrated in the first three gates in Fig. 5 (a). In this case, one variable
node is represented by two qubits. Interestingly, the order of controlled-K gates can be arbitrary
due to the character of bipartite graphs, i.e., whether the controlled-K(A11 + β) or the controlled-
K(A22 + β) is applied first does not change the unitary of the U ·

K layer. We refer to this property as
edge permutation invariance. In the MILP graph, the edge feature is the edge weight, but GQGLA
can also be applied to cases with multi-dimensional edge features, as illustrated in Fig. 9 in the
Appendix. Moreover, the controlled-G gate is applied to these two qubits to learn the interaction
of internal information within one node, where controlled-G(θ) ∈ {CRX(θ), CRY (θ), CRZ(θ)}.
In the constraint update layer, the controlled-K gates are turned upside down and are followed by
G(θ) gates to update the feature representation of constraint nodes. The selection principle of K and
G gates will be described in Sec. 3.4. The unitary of the t-th graph message interaction layer can
be represented by Ug(A, βt) = Ugv(A, βt) · Ugs(A, βt), with formulas shown in Eq. 10. We also
provide a simple and intuitive explanation in Appendix D.2.4. Furthermore, we theoretically prove
the node permutation invariance of this layer in Sec. 4.3.

3.3 AUXILIARY LAYER

To further enhance the expressiveness of the model, inspired by Wu et al. (2021), we introduce
an optional auxiliary layer, which can facilitate the interaction of information within the graph.
Specifically, each auxiliary qubit is connected to all other nodes through symmetric two-qubit gates
RZZ(γ). In this way, the model can increase the width and number of parameters. For the two qubits
representing one variable, trainable parameters γt,1 and γt,2 are assigned, while the parameter γt,3 is
assigned to the qubit representing constraints. The unitary of the auxiliary layer is defined as Ua(γt).
We can choose a varying number of auxiliary qubits based on the requirements of different tasks. The
node feature layer, graph message interaction layer, and auxiliary layer are regarded as a block. After
iterating this block Γ times, the unitary matrix of the overall circuit is equal to

Uqgl(A,H,Θ) =
∏Γ

t=1
Ux(H,αt)Ug(A, βt)Ua(γt), (3)

where Θ contains all trainable parameters α, β, and γ.

5

Published as a conference paper at ICLR 2025

3.4 CONFIGURATION PRINCIPLE OF GQGLA

In GQGLA, the quantum gates W (θ), D(θ), K(θ), and G(θ) are selected from {RX(θ), RY (θ),
RZ(θ)} = {exp(−iθσx), exp(−iθσy), exp(−iθσz)}, where {σx, σy, σz} are Pauli matrices form a
basis for the real vector space of 2× 2 Hermitian matrices. {iσx, iσy, iσz} form a basis for the real
Lie algebra su(2), which exponentiates to the special unitary group SU(2). When two quantum gates
are adjacent in GQGLA, they are expected to be of different types. This enables the encoding of
various features or trainable parameters on different bases, thereby enriching the information encoded
in the circuit and preventing the quantum circuit from confusing different features. There are six
possible configurations of GQGLA, which are summarized in Table 10.

4 GQGLA WITH APPLICATION TO MILP
As the application of GQGLA, predicting feasibility, optimal objective value, and optimal solution of
MILP graphs can be regarded as the task of graph classification, graph regression, and node property
prediction, respectively. As we can see, learning the MILP representation is a sufficiently complex
task that fully utilizes GQGLA, thereby comprehensively showcasing its capabilities.

4.1 MEASUREMENT LAYER

As shown in Fig. 5 (d), we add a measurement layer at the end of the quantum circuit. After
the measurement operation, the quantum information can be translated into classical information.
In the measurement layer, we measure only the first qubit representing each node using Pauli-Z
measurement. That is, for q variable nodes and p constraint nodes, GQGLA outputs q + p results.
The output of the GQGLA is defined as Φ(A,H,Θ) = {⟨0|U†

qgl(A,H,Θ)OiUqgl(A,H,Θ)|0⟩}q+pi=1 ,
where Oi represents i-th observable. For predicting the feasibility and optimal value of MILP
graphs, we define ϕfea(A,H) =

∑q+p
i=1 Φ(A,H,Θfea)i, ϕobj(A,H) =

∑q+p
i=1 Φ(A,H,Θobj)i. For

predicting the optimal solution, we define ϕsol(A,H) = {Φ(A,H,Θsol)i}qi=1. As can be seen, the
three tasks use the same circuit structure of GQGLA but employ different trainable parameters and
different ways to utilize the information obtained by measurements.

4.2 TRAINING AND TESTING

For predicting the feasibility, ŷfea = ϕfea(A,H), we utilize the negative log-likelihood as the loss
to train GQGLA. In the testing, we set an indicator function Iŷfea>1/2 :

Iŷfea>1/2 =

{
0, ŷfea ≤ 1/2

1, ŷfea > 1/2
(4)

to calculate the error rate: 1
M (

∑M
m=1 y

m
fea · Imŷfea>1/2), where M indicates the number of tested

MILP instances, to evaluate the number of correct predictions for feasibility.

For predicting the optimal solutions, ŷsol = λϕsol(A,H), where λ is the maximum range of
variables of the training sample, i.e., max{{{abs(lei), abs(uei)}

q
i=1}Ee=1}. We use the mean square

error as the training and testing metric: 1
Mq

∑M−1
m=0 ∥ysol − ŷmsol∥22, where ymsol is the ground truth.

For predicting the optimal values, ŷobj = δλϕobj(A,H), where δ = max{{{cei}
q
i=1}Ee=1} is the

maximum range of coefficients of training sample. We also use the mean square error to train or
evaluate, i.e., 1

M

∑M−1
m=0 (y

m
obj − ŷmobj)

2.

4.3 PERMUTATION EQUIVARIANCE AND INVARIANCE

Permutation equivariance and invariance are fundamental requirements for graph neural networks. In
this section, we will demonstrate that the proposed quantum graph learning architecture possesses
these desirable properties. Let G = (A,HV,HS) represent a MILP graph with q variable nodes
and p constraint nodes. πq and πp are the permutations of variable nodes and constraint nodes,
respectively. Λq ∈ Bq×q and Λp ∈ Bp×p are permutation matrices representing a permutation πq
and πp, respectively. Additionally, we define a permutation πq+p on the (q + p) elements to indicate
the overall permutation on all nodes of the MILP graph. Λq+p is the permutation matrix of the

6

Published as a conference paper at ICLR 2025

permutation πq+p. Λ̃ is the unitary representation of πq+p, which indicates the permutation of qubits
representing nodes. Based on this, we give the definition of a permutation equivariant circuit.

Defintion 1. (Permutation Equivariant Circuit). A parameterized quantum circuit U is
permutation equivariant for MILP graphs (A,HV,HS) if it satisfies

U(ΛpAΛq,ΛqHV,ΛpHS,Θ) = Λ̃† · U(A,HV,HS,Θ) · Λ̃, (5)

where Λq and Λp are the permutation matrices for permutation πq ∈ Sq and πp ∈ Sp,
respectively. Λ̃ ∈ B2n×2n is the unitary of permutation πq+p.

Appendix D.1 provides the formulation and detailed explanation of Definition 1. After measuring the
quantum circuit, we can consider the model to be a mapping ϕ ∈ Rq+p. According to Definition 1,
we can obtain the permutation equivariance of the mapping.

Defintion 2. (Permutation Equivariant Mapping). A mapping ϕ(·) ∈ Rq+p is permutation
equivariant for MILP graphs (A,HV,HS) if it satisfies

ϕ(ΛpAΛq,ΛqHV,ΛpHS) = Λq+p · ϕ(A,HV,HS), (6)

where Λq+p is the permutation matrix representing the permutation πq+p, i.e.,

Λq+p =

[
Λq 0
0 Λp

]
∈ B(q+p)×(q+p).

It indicates that the mapping result after node permutation ϕ(ΛpAΛq,ΛqHV) is equal to the result of
applying the permutation πq+p to the original result ϕ(A,HV,HS). In addition, we can aggregate the
result of the permutation equivariant mapping as a value to obtain the other mapping κ ∈ R. The
mapping is permutation invariant if changing the order of inputs does not alter the mapping output.

Defintion 3. (Permutation Invariant Mapping). A mapping κ(·) ∈ R is permutation invariant
for MILP graphs if it satisfies

κ(ΛpAΛq,ΛqHV,ΛpHS) = κ(A,HV,HS).

Theorem 1. In the proposed GQGLA, the circuit Upeqg(A,HV,HS,Θ) is a permutation equiv-
ariant circuit. After Pauli-Z measurement, the output of the circuit Φ(A,H,Θsol) = ϕsol(A,H)

is a permutation equivariant mapping. ϕfea(A,H) =
∑q+p
i=1 Φ(A,H,Θfea)i and ϕobj(A,H) =∑q+p

i=1 Φ(A,H,Θobj)i are permutation invariant mapping.

Appendix D.2 provides a detailed proof of Theorem 1, offering theoretical guarantees of permutation
equivariance and invariance for our proposed GQGLA.

4.4 SUPERIOR DISCRIMINATIVE POWER OVER GNNS

As mentioned earlier, Chen et al. (2023) have shown that GNNs may fail to distinguish two MILP
graphs, which is because of the fundamental limitations of GNNs. Xu et al. (2018) have shown
that GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test (Weisfeiler & Leman,
1968) in distinguishing graph structures. However, as the WL test iteratively updates the label of
vertices in a graph only based on the label of their neighboring vertices, if two graphs exhibit subtle
structural differences not reflected in the degree of vertices or the patterns of local neighbors, the
WL test will fail to distinguish between these two graphs, as shown in Fig. 1. See Appendix E.1
for a detailed explanation of why GNN fails on the MILPs. By contrast, benefiting from quantum
entanglement between nodes, GQGLA can capture the difference in edge connectivity between
two MILP graphs. Different edges result in variations in graph-message interaction layer Uk, i.e.,
exp(−i(

∑
(i,j)∈E Ai,j(I − σz)iP

K
q+j)). We give the detailed proof in Appendix E.2.

5 EXPERIMENTS

In the experimental section, we compare the performance between classical GNNs and quantum
machine learning algorithms on the learning representation of MILP graphs. The construction of the
MILP dataset is in line with Chen et al. (2023) (see details in Appendix G). We use Adam (Kingma &

7

Published as a conference paper at ICLR 2025

Table 2: Performance Comparison on the GNN-tractable MILP dataset.

Feasibility (Rate of Error ↓)/10−2 Optimal Value (MSE ↓) /10−2 Optimal Solution (MSE ↓) /10−1

MILP-GNN
(Chen et al., 2023)

E.Size 4 6 8 4 6 8 16 24 32

Train 6.72 ± 0.17 5.42± 0.21 4.29± 0.12 1.52± 0.04 1.12± 0.06 0.66± 0.03 7.84± 0.21 6.39± 0.26 5.47± 0.15
Test 7.96± 0.19 6.74± 0.20 5.62± 0.11 2.35± 0.07 1.64± 0.05 1.76± 0.04 8.82± 0.27 7.57± 0.21 6.31± 0.25

GQGLA
Block 4 6 8 6 8 10 8 10 12

Train 7.22± 0.11 6.53± 0.13 5.57± 0.08 1.10± 0.04 1.00± 0.02 0.98± 0.01 6.10± 0.14 5.79± 0.10 5.70± 0.09
Test 7.34± 0.12 6.65± 0.12 5.74± 0.09 1.26± 0.05 1.13± 0.03 1.11± 0.02 6.37± 0.11 6.03± 0.08 5.99± 0.07

Ba, 2014) with an initial learning rate of 0.1 to find the optimal parameters of GQGLA, and batch size
is set at 16. Experiments are performed on a single machine with 4 2.20GHz CPUs and four NVIDIA
A100 GPU. The source code is written using TorchQuantum (Wang et al., 2022a), a PyTorch-based
library for quantum computing, which can simulate quantum circuits with up to 26 qubits. In Table 10
of Appendix F, the performance of all possible types of GQGLA are compared, and we finally select
(W (θ), D(θ),K(θ), G(θ)) = (RX(θ), RZ(θ), RY (θ), RZ(θ)) for the following experiments.

5.1 COMPARISON WITH CLASSICAL GNNS

We first compare the GNN used in Chen et al. (2023) named MILP-GNN as it is designed for MILP.
Our GQGLA model has a hyperparameter to control the number of circuit parameters, i.e., the number
of blocks T . MILP-GNN also has a hyperparameter embedding size d controlling the number of
parameters. We vary these two hyperparameters separately for evaluation.

Experiments on GNN-intractable MILP Dataset. GNN-intractable MILPs contain many pairs
of WL indistinguishable graphs that cannot be distinguished by classic GNNs (Chen et al., 2023).
Here, we randomly generate 2, 000 GNN-intractable MILPs with 12 variables and 6 constraints, and
there are 1, 000 feasible MILPs while the others are infeasible. The error rate serves as the evaluation
criterion for predicting the feasibility of GNN-intractable MILPs. We compare our GQGLA with
the classical GNNs, i.e., MILP-GNN (Chen et al., 2023) and MILP-GNN with random features.

2 4 6 8
Block Number of Ours

0

0.01

0.1

0.5

R
at

e
of

 E
rr

or

4 8 16 32
Embedding Size of GNN

GNN (train & test)
GNN + Rand. Feat (train)
GNN + Rand. Feat (test)
Ours (train)
Ours (test)

Figure 6: Comparison on GNN-intractable
MILPs. GNN refers to MILP-GNN (Chen et al.,
2023), and GNN + Rand. feat. indicates the MILP-
GNN with random features.

MILP-GNN with random features is proposed
by Chen et al. (2023) to alleviate the limitations of
the original GNN by appending random features to
the MILP graphs. As shown in Fig. 6, the error rate
of MILP-GNN is highest regardless of the embed-
ding size, as it cannot distinguish GNN-intractable
MILPs. Although MILP-GNN with random features
can improve performance, it achieves the best when
the embedding size is 32, which will cost 30, 565
parameters. Moreover, adding random features may
cause additional issues, i.e., changing the feasibility
or solution of the original problem, resulting in the
change of ground truth of the dataset. In contrast,
GQGLA can capture the edge connectivity of GNN-
intractable MILPs, so it can achieve accurate test
results with just 4 blocks, i.e., 48 parameters. The
results show that GQGLA has better discriminative
power than GNNs with fewer parameters.

Experiments on GNN-tractable MILP Dataset. We further compare our GQGLA and MILP-GNN
on the GNN-tractable MILPs that GNNs can distinguish. We randomly generate 8, 290 GNN-tractable
MILPs with four variables and four constraints, with feasible and infeasible MILPs each accounting
for half. The experiments evaluate the rate of error in predicting the feasibility and the mean squared
error (MSE) of predicting optimal values and optimal solutions of MILPs. As reported in Table 2,
as the embedding size increases, the training error of MILP-GNN decreases, but its generalization
error on the test set increases. The reason is that GNN-tractable datasets are challenging, with diverse
training and test sets, making it difficult for MILP-GNN to generalize well on the test set. In contrast,
our GQGLA benefits from quantum mechanisms, leading to better generalization performance.

Comparison with Advanced GNNs. We utilize the PyG (PyTorch Geometric) library 1 to extend
more GNN models into frameworks suitable for MILP graphs. We modify each GNN to update

1https://pytorch-geometric.readthedocs.io/en/latest/

8

Published as a conference paper at ICLR 2025

Table 4: Comparison between different quantum models on
predicting the feasibility of MILPs.

HEA
(Kandala et al., 2017)

QGCN
(Zheng et al., 2021) GQGLA (ours)

Train 0.4613± 0.024 0.3419± 0.015 0.1086± 0.008
Test 0.4665± 0.020 0.3475± 0.018 0.1127± 0.012

Table 5: Performance changes as the num-
ber of auxiliary qubits increases on predict-
ing optimal solution.

Aux. qubits 0 1 2 3

Train 0.6580 0.6166 0.5694 0.6099
Test 0.6853 0.6410 0.5993 0.6354

variable nodes and constraint nodes using different weights. Table 3 compares our methods with
GAT (Graph Attention Network) (Veličković et al., 2018), GATv2 (Brody et al., 2022), and Graph
Transformer (Shi et al., 2021), w.r.t the accuracy of feasibility prediction on GNN-intractable and
GNN-tractable datasets. As we can see, in the GNN-tractable dataset, our method remains competitive
with advanced GNNs, achieving nearly the best results, and advanced GNNs still struggle with GNN-
intractable datasets, whereas our model is more effective.

5.2 COMPARISON WITH OTHER QUANTUM ALGORITHMS

Table 3: Comparison of GQGLA and other GNNs on
the GNN-intractable and GNN-tractable dataset.

Embedding Size/
Blocks 2 4 6 8

GNN-tractable
dataset

GAT 0.856 0.926 0.930 0.940
GATv2 0.914 0.927 0.936 0.943
Graph Transformer 0.875 0.914 0.920 0.930
MILP-GNN 0.872 0.910 0.911 0.902
GQGLA 0.933 0.936 0.942 0.946

GNN-intractable
dataset

GAT 0.500 0.500 0.500 0.500
GATv2 0.500 0.500 0.500 0.500
Graph Transformer 0.500 0.500 0.500 0.500
MILP-GNN 0.500 0.500 0.500 0.500
GQGLA 0.987 0.998 1.000 1.000

Recall in Table 1 that most quantum GNNs have
not considered edge features, which yet are vital
for solving MILP. Therefore, we only compare
QGNNs that consider edge features, e.g. the quan-
tum graph CNN (QGCN) (Zheng et al., 2021).
We also compare a problem-agnostic, hardware-
efficient ansatz (HEA) (Kandala et al., 2017). The
circuit structure of HEA is typically fixed, mak-
ing it unable to encode the edge information of a
graph, yet can encode the node feature informa-
tion of the graph. Table 4 reports the error rates on
the GNN-tractable MILP dataset with three vari-
ables and three constraints. In this MILP dataset,
QGCN requires more qubits to compute than GQGLA. Moreover, we set the number of parameters
for all quantum models to 96. The results show that the problem-agnostic ansatz cannot effectively
learn from graph data. Although QGCN is a problem-inspired ansatz and designs an equivariant
graph convolution layer, their pooling layers violate permutation invariance, leading to performance
degradation in predicting MILP feasibility. By contrast, GQGLA ensures permutation invariance
with better performance.

5.3 ABLATION STUDY

Table 5 investigates the contribution of auxiliary layers to GQGLA, which shows the perfor-
mance of GQGLA in predicting the optimal solution with an increasing number of auxiliary
qubits. The results indicate that increasing the number of auxiliary qubits can enhance per-
formance, yet there may exist an optimal threshold for a specific problem scale. We can
select appropriate auxiliary qubits to enhance performance for tasks of different complexity.

Table 6: Ablation study w.r.t our components.

Repeated
Encoding

Syn. Encoding
Learning

Double
Interaction Train Test

% % % 0.0924 0.0953
% % ! 0.0876 0.0898
! % ! 0.0708 0.0726
! % % 0.0738 0.0765
! ! % 0.0623 0.0659
! ! ! 0.0557 0.0574

Furthermore, we delve into the individual compo-
nents that shape GQGLA’s design, as shown in Ta-
ble 6. Repeated encoding refers to encoding features
at every block. Synchronous encoding and learning
refers to adding features and learnable parameters
as new learnable parameters. Double interaction
refers to using a constraint and a variable layer in the
graph message interaction layer. All configurations
employ the same number of parameters. Results
indicate that these three components are useful.

5.4 COMPARISON WITH HIGHER ORDER GNNS

We conducted experiments on BREC (Wang & Zhang, 2024) to evaluate expressiveness, com-
pared to higher order GNNs, including subgraph-based methods NGNN (Zhang & Li, 2021),
DS-GNN (Bevilacqua et al., 2022) and KP-GNN (Feng et al., 2022), k-WL hierarchy-based
models δ-k-LGNN (Morris et al., 2020) and PPGN (Maron et al., 2019), random model
DropGNN (Papp et al., 2021), Transformer-based model Graphormer (Ying et al., 2021), and
substructure-based model GSN (Bouritsas et al., 2022). The Basic dataset in BREC consists of

9

Published as a conference paper at ICLR 2025

Table 7: Performance comparison of GNNs on BREC.

Method Basic Regular Extension

NGNN (Zhang & Li, 2021) 0.983 0.343 0.59
DS-GNN (Bevilacqua et al., 2022) 0.967 0.343 1.0
KP-GNN (Feng et al., 2022) 1.0 0.757 0.98
δ-k-LGNN (Morris et al., 2020) 1.0 0.357 1.0
PPGN (Maron et al., 2019) 1.0 0.357 1.0
DropGNN (Papp et al., 2021) 0.867 0.293 0.820
Graphormer (Ying et al., 2021) 0.267 0.086 0.41
GSN (Bouritsas et al., 2022) 1.0 0.707 0.95
Ours 1.0 0.964 1.0

1-WL-indistinguishable graphs generated
through exhaustive search and is designed
to be non-regular. The Regular dataset con-
tains regular graphs, further divided into
simple regular graphs and strongly regular
graphs, where 1-WL and 3-WL test fail,
respectively. Including 4-vertex condition
graphs and distance-regular graphs further
increases the dataset’s complexity. The Ex-
tension graphs bridge the gap between 1-WL
and 3-WL, offering a more granular comparison for evaluating models beyond 1-WL. We employ
Reliable Paired Comparison (RPC) (Wang & Zhang, 2024) to verify if GNNs can produce distinct
outputs for a pair of graphs. Table 7 shows that the proposed GQGLA not only achieves good
performance on the Basic and Extension datasets but also outperforms other classical methods on the
challenging Regular dataset.

6 THE COMPLEXITY AND SCALABILITY OF GQGLA
For a graph with N nodes and E edges, the node feature encoding layer involves O(N) qubits and
O(N) single-qubit gates, while the graph message interaction layer introduces O(E) two-qubit gates.
For a circuit with T blocks, the total number of gates scales as O(T (N + E)). However, in the
current NISQ era, both real quantum devices and classical simulators have a limited number of qubits.
Therefore, inspired by how classical GNN algorithms handle large graph computations with limited
resources, we have presented S-GQGLA to process large graphs with limited qubits. Specifically, we
first employ the graph sampling technique GraphSAINT (Zeng et al., 2020) to extract appropriately
connected subgraphs, then apply our GQGLA model to these subgraphs and combine the obtained
information of these subgraphs together so that the training process overall learns information of the
full graph. In this way, for a graph with N nodes, we can sample m subgraphs for training, with each
subgraph using at most k qubits.

Table 8: Accuracy comparison of S-GQGLA on
three graph classification datasets.

Methods PROTEINS PTC
GraphSAGE 75.9 ± 3.2 63.9 ± 7.7
GIN 76.20 ± 2.8 64.6 ± 7.0
GAT 74.70 ± 2.2 66.70 ± 5.1
PPGN 76.66 ± 5.6 62.94 ± 6.6
QS-CNN 78.2 ± 4.6 66.0 ± 4.4
Deep-WL-SGN 76.78 ± 2.4 65.88 ± 5.1
U2GNN 78.53 ± 4.1 69.63 ± 3.6
SEG-BERT 77.20 ± 3.1 68.86 ± 4.2
S-GQGLA (Ours) 91.64 ± 3.1 68.57 ± 2.9

Table 8 shows the performance of GQGLA on three
commonly used graph classification datasets, PRO-
TEINS and PTC. Among them, the number of nodes is
up to 620 at most. We extract appropriately connected
subgraphs with at most 14 nodes, which can be pro-
cessed using our 14-qubit GQGLA with 6 blocks. All
subgraphs are input as a batch into the GQGLA, and
we combine their results to predict the classification of
the full graph. We compare S-GQGLA with message-
passing based GNNs GraphSAGE (Hamilton et al.,
2017), GIN (Xu et al., 2018), and GAT (Veličković
et al., 2018), subgraph-based methods PPGN (Maron
et al., 2019), QS-CNN (Zhang et al., 2019) and Deep-
WL-SGN (Xuan et al., 2019), and Transformer-based
methods SEG-BERT (Zhang, 2020) and U2GNN (Nguyen et al., 2022a). S-GQGLA can achieve the
best performance on PROTEINS, and slightly worse than U2GNN and SEG-BERT on PTC.

7 CONCLUSION

This paper introduces an expressive quantum graph learning framework aimed at addressing complex
graph structural data, such as learning the MILP graph representation. Our proposed framework,
GQGLA, uses the synchronous encoding and learning module to handle node and edge features, and
presents a parameter-sharing mechanism and a carefully designed graph information interaction layer.
We theoretically prove that GQGLA possesses permutation equivariance and invariance for nodes and
edges. Moreover, the proposed graph information interaction layer leverages quantum entanglement
to model the edges, enabling the capture of graph patterns that are challenging for classical methods.
Numerical experiments demonstrate that our approach can overcome the fundamental limitations
of traditional GNNs, achieving superior performance on MILP tasks that include GNN-intractable
graphs. GQGLA also offers flexibility in configuration for general graphs, and the results of the
BREC dataset highlight the generality and separating power of GQGLA.

10

Published as a conference paper at ICLR 2025

REFERENCES

Xing Ai, Zhihong Zhang, Luzhe Sun, Junchi Yan, and Edwin Hancock. Towards quantum graph
neural networks:an ego-graph learning approach. arXiv preprint arXiv:2201.05158, 2022.

Hooman Askari-Nasab, Y Pourrahimian, E Ben-Awuah, and S Kalantari. Mixed integer linear
programming formulations for open pit production scheduling. Journal of Mining Science, 47:
338–359, 2011.

Tianyi Bao, Qitian Wu, Zetian Jiang, Yiting Chen, Jiawei Sun, and Junchi Yan. Graph out-of-
distribution detection goes neighborhood shaping. In Forty-first International Conference on
Machine Learning, 2024.

Tianyi Bao, Xinyu Ye, Hang Ruan, Chang Liu, Wenjie Wu, and Junchi Yan. Beyond circuit
connections: A non-message passing graph transformer approach for quantum error mitigation. In
The Thirteenth International Conference on Learning Representations, 2025.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Proceedings
of the International Conference on Learning Representations, 2022.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In Proceedings of the International Conference on Learning
Representations, 2023.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems, 35:
4776–4790, 2022.

Christodoulos A. Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139(1):131–162, Oct
2005a. ISSN 1572-9338.

Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139:131–162, 2005b.

Bernard Fortz and Michael Poss. An improved benders decomposition applied to a multi-layer
network design problem. Operations research letters, 37(5):359–364, 2009.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Proceedings of the Advances in
Neural Information Processing Systems, 32, 2019.

Xueshi Guo, Casper R Breum, Johannes Borregaard, Shuro Izumi, Mikkel V Larsen, Tobias Gehring,
Matthias Christandl, Jonas S Neergaard-Nielsen, and Ulrik L Andersen. Distributed quantum
sensing in a continuous-variable entangled network. Nature Physics, 16(3):281–284, 2020.

Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

11

Published as a conference paper at ICLR 2025

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J Wood, Jake Lishman, Julien
Gacon, Simon Martiel, Paul D Nation, Lev S Bishop, Andrew W Cross, et al. Quantum computing
with qiskit. arXiv preprint arXiv:2405.08810, 2024.

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow,
and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules
and quantum magnets. Nature, 549(7671):242–246, sep 2017.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guiding
combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
10219–10227, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Martin Larocca, Frédéric Sauvage, Faris M Sbahi, Guillaume Verdon, Patrick J Coles, and Marco
Cerezo. Group-invariant quantum machine learning. PRX Quantum, 3(3):030341, 2022.

Junde Li and Swaroop Ghosh. Scalable variational quantum circuits for autoencoder-based drug
discovery. In 2022 design, automation & test in europe conference & exhibition, pp. 340–345.
IEEE, 2022.

Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wanqian Luo, Junhua Huang, Hui-Ling Zhen,
Mingxuan Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula
generation and a strong structure-hardness-aware baseline. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2023a.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023b.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
Advances in Neural Information Processing Systems, 2024.

Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
Ml4tspbench: Drawing methodological principles for tsp and beyond from streamlined design
space of learning and search. International Conference on Learning Representations, 2025.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
plateaus in quantum neural network training landscapes. Nature communications, 9(1):4812, 2018.

Péter Mernyei, Konstantinos Meichanetzidis, and Ismail Ilkan Ceylan. Equivariant quantum graph
circuits. In Proceedings of the International Conference on Machine Learning, pp. 15401–15420.
PMLR, 2022.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems, 33:
21824–21840, 2020.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. In Companion Proceedings of the Web Conference 2022, pp. 193–196, 2022a.

Quynh T Nguyen, Louis Schatzki, Paolo Braccia, Michael Ragone, Patrick J Coles, Frederic Sauvage,
Martin Larocca, and M Cerezo. Theory for equivariant quantum neural networks. arXiv preprint
arXiv:2210.08566, 2022b.

Joaquı́n Ossorio, Castillo and F Pena, Brage. Optimization of a refinery scheduling process with
column generation and a quantum annealer. Optimization and Engineering, 23(3):1471–1488,
2022.

12

Published as a conference paper at ICLR 2025

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum
processor. Nature communications, 5(1):4213, 2014.

Michael Ragone, Paolo Braccia, Quynh T Nguyen, Louis Schatzki, Patrick J Coles, Frederic Sauvage,
Martin Larocca, and M Cerezo. Representation theory for geometric quantum machine learning.
arXiv preprint arXiv:2210.07980, 2022.

A. Richards and J.P. How. Aircraft trajectory planning with collision avoidance using mixed integer
linear programming. In Proceedings of the American Control Conference, volume 3, pp. 1936–1941
vol.3, 2002.

Louis Schatzki, Martin Larocca, Frederic Sauvage, and Marco Cerezo. Theoretical guarantees for
permutation-equivariant quantum neural networks. arXiv preprint arXiv:2210.09974, 2022.

Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer programming for
multi-vehicle path planning. In 2001 European control conference (ECC), pp. 2603–2608. IEEE,
2001.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the International Joint Conference on Artificial Intelligence, 2021.

Kristan Temme, Sergey Bravyi, and Jay M Gambetta. Error mitigation for short-depth quantum
circuits. Physical review letters, 119(18):180509, 2017.

Ewout Van Den Berg, Zlatko K Minev, and Kristan Temme. Model-free readout-error mitigation for
quantum expectation values. Physical Review A, 105(3):032620, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2018.

Guillaume Verdon, Trevor McCourt, Enxhell Luzhnica, Vikash Singh, Stefan Leichenauer, and Jack
Hidary. Quantum graph neural networks. arXiv preprint arXiv:1909.12264, 2019.

Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z Pan, Frederic T Chong, and Song Han.
Quantumnas: Noise-adaptive search for robust quantum circuits. In High-Performance Computer
Architecture, pp. 692–708, 2022a.

Hao Wang, Yu Pan, and Wei Cui. Quantum-inspired solvers on mixed-integer linear programming
problem. In Proceedings of the Chinese Control Conference, pp. 5693–5698. IEEE, 2022b.

Rui Wang, Zhiming Zhou, Tao Zhang, Ling Wang, Xin Xu, Xiangke Liao, and Kaiwen Li. Learning
to branch in combinatorial optimization with graph pointer networks, 2023.

Yanbo Wang and Muhan Zhang. An empirical study of realized gnn expressiveness. In Forty-first
International Conference on Machine Learning, 2024.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Huaijin Wu, Xinyu Ye, and Junchi Yan. Qvae-mole: The quantum vae with spherical latent vari-
able learning for 3-d molecule generation. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

Yadong Wu, Juan Yao, Pengfei Zhang, and Hui Zhai. Expressivity of quantum neural networks.
Physical Review Research, 3(3):L032049, 2021.

13

Published as a conference paper at ICLR 2025

Yongliang Wu, Xinting Hu, Yuyang Sun, Yizhou Zhou, Wenbo Zhu, Fengyun Rao, Bernt Schiele,
and Xu Yang. Number it: Temporal grounding videos like flipping manga. arXiv preprint
arXiv:2411.10332, 2024b.

Yongliang Wu, Shiji Zhou, Mingzhuo Yang, Lianzhe Wang, Wenbo Zhu, Heng Chang, Xiao Zhou,
and Xu Yang. Unlearning concepts in diffusion model via concept domain correction and concept
preserving gradient. In AAAI Conference on Artificial Intelligence, 2025a.

Yongliang Wu, Wenbo Zhu, Jiawang Cao, Yi Lu, Bozheng Li, Weiheng Chi, Zihan Qiu, Lirian Su,
Haolin Zheng, Jay Wu, et al. Video repurposing from user generated content: A large-scale dataset
and benchmark. In AAAI Conference on Artificial Intelligence, 2025b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? Proceedings of the International Conference on Learning Representations, 2018.

Qi Xuan, Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu, Zhongyuan Ruan, and Guanrong
Chen. Subgraph networks with application to structural feature space expansion. IEEE Transactions
on Knowledge and Data Engineering, 33(6):2776–2789, 2019.

Ge Yan, Huaijin Wu, and Junchi Yan. Quantum 3d graph learning with applications to molecule
embedding. In International Conference on Machine Learning, pp. 39126–39137. PMLR, 2023.

Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun Chen, and Xin Geng. Exploring diverse in-context
configurations for image captioning. In Advances in Neural Information Processing Systems, 2025.

Xinyu Ye, Ge Yan, and Junchi Yan. Towards quantum machine learning for constrained combinatorial
optimization: a quantum qap solver. In Proceedings of the International Conference on Machine
Learning), 2023a.

Xinyu Ye, Ge Yan, and Junchi Yan. Vqne: Variational quantum network embedding with application
to network alignment. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 3105–3115, 2023b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Jiawei Zhang. Segmented graph-bert for graph instance modeling. arXiv preprint arXiv:2002.03283,
2020.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Zhihong Zhang, Dongdong Chen, Jianjia Wang, Lu Bai, and Edwin R Hancock. Quantum-based
subgraph convolutional neural networks. Pattern Recognition, 88:38–49, 2019.

Zhongqi Zhao, Lei Fan, and Zhu Han. Hybrid quantum benders’ decomposition for mixed-integer
linear programming. In IEEE Wireless Communications and Networking Conference (WCNC), pp.
2536–2540. IEEE, 2022.

Jin Zheng, Qing Gao, and Yanxuan Lü. Quantum graph convolutional neural networks. In Proceedings
of the Chinese Control Conference, pp. 6335–6340. IEEE, 2021.

14

Published as a conference paper at ICLR 2025

A RELATED WORK

Quantum Graph Neural Networks Various quantum graph neural networks have been proposed,
with applications in fields such as social networks (Ye et al., 2023b) and molecular generation (Li
& Ghosh, 2022; Wu et al., 2024a; Yang et al., 2025). Verdon et al. (2019) proposed a class of
graph neural networks by defining operations in terms of Hamiltonians based on the graph structure.
However, their models are restricted to Hamiltonians of specific forms, thereby cannot flexibly and
efficiently encode classical high-dimensional node or edge features of the graphs to solve some
classical tasks. Zheng et al. (2021) designed a specific quantum graph convolutional neural network
(QGCN), which uses an amplitude encoding method to encode node and edge features and employs
qubits representing edges as control qubits to apply unitaries to the two qubits representing nodes
connected by that edge. Nevertheless, the usage of edge qubits will lead to the number of qubits of the
model scales quadratically with the number of nodes. Moreover, the pooling layer and measurement
operator of QGCN will indeed result in the loss of permutation invariance of the entire model. Ai
et al. (2022) presented an ego-graph based Quantum Graph Neural Network (egoQGNN), which
decomposes the input graph into smaller-scale subgraphs and feeds them into the circuit. However,
due to the use of entanglement layers within the model, it still does not possess permutation invariance.
Equivariant Quantum Neural Networks Recently, a nascent field named geometric quantum
machine learning (GQML) (Larocca et al., 2022; Nguyen et al., 2022b) has been developed, which
leverages the machinery of group and representation theory (Ragone et al., 2022) to build quantum
architectures that encode symmetry information about the problem. Schatzki et al. (2022) provide
an analytical study of Sn-equivariant QNNs and prove that they do not suffer from barren plateaus,
quickly reach overparametrization, and can generalize well from small amounts of data. The
equivariant QNNs can used to learn various problems with permutation symmetries abound, such
as molecular systems, condensed matter systems, and distributed quantum sensors (Peruzzo et al.,
2014; Guo et al., 2020; Wu et al., 2024b), namely, they are also not specifically designed to solve
classical graph tasks. Mernyei et al. (2022) first proposed a theoretical recipe for building permutation
equivariant quantum graph circuits (EQGC) and aggregated the output of the quantum circuit by
classical functions to ensure permutation invariance of the model. Nevertheless, the EQGC does not
provide the specific circuit implementation and does not consider the case of weighted graphs in their
model. In addition, another QNN with permutation equivariance Ye et al. (2023a) is proposed, which
is specially designed for solving quadratic assignment problems, but their model only encodes the
graph information and then employs the shared problem-agnostic ansatz to learn the representation of
each node. Thus, their model does not contain the learnable graph message interaction layer.

Quantum Algorithms for MILP Mixed-Integer Linear Programming (MILP) is a mathematical
optimization approach that aims to find the best solution to a linear objective function while imposing
constraints on some or all of the variables to be integers. MILP is widely used in various practical
applications such as process scheduling (Floudas & Lin, 2005a; Li et al., 2023b; 2024; Wu et al.,
2025b), transportation (Richards & How, 2002; Wu et al., 2025a; Bao et al., 2024; 2025), and network
design (Fortz & Poss, 2009; Li et al., 2023a). Recently, researchers have endeavored to employ
quantum computing to assist in solving the MILP. Zhao et al. (2022) proposed a hybrid quantum-
classical Benders’ decomposition algorithm, which decomposes an MILP problem into a Quadratic
unconstrained binary optimization (QUBO) problem solved by quantum computer and a subproblem
easily tackled by classical computers. Ossorio & Pena (2022) described an algorithm based on
Dantzig–Wolfe decomposition. Different from Zhao et al. (2022), the algorithm then solves several
either continuous or binary subproblems instead of a mixed one. Wang et al. (2022b) pointed out that
quantum-inspired Ising machines can be used to solve MILPs by reducing them into Ising models.
However, the above algorithms are based on unconstrained Ising models, while MILPs are subject
to complex constraints. Their common solution is to introduce a penalty to the algorithm. A proper
penalty is of great importance because an extremely large penalty may cause the quantum annealer
to malfunction since it will explode the coefficients, while a soft penalty may make the quantum
annealer ignore the corresponding constraints (Zhao et al., 2022). However, there is no instruction
on how to tune the penalty, and it may even be different for various MILP problems. In contrast,
our approach leverages QML to represent MILP problems, thereby pioneering a novel direction
for harnessing quantum computing in aiding MILP solutions, there is promising for witnessing the
emergence of new paradigms that combine quantum and classical methods for MILP solving.

15

Published as a conference paper at ICLR 2025

B THE BASICS OF QUANTUM COMPUTING

Single-qubit Quantum State. In quantum computing, the fundamental building blocks of compu-
tation are qubits (short for quantum bits), which are the quantum analog of classical bits. Unlike
classical bits, which can only take on one of two possible values (0 or 1), a qubit can exist in a
superposition of the two states, represented by the vector:

|ψ⟩ = α1|0⟩+ α2|1⟩, (7)

where |0⟩ and |1⟩represent the two basis states of one qubit, and α1 and α2 are complex numbers
that satisfy the normalization condition |α1|2 + |α2|2 = 1. When |ψ⟩ is measured, it will collapse to
either the |0⟩ or |1⟩ state with a probability |α1|2 or |α2|2.

Mathematically, the quantum state of one qubit can be denoted as a complex 2-dimensional vector,
e.g., |0⟩ = [1, 0]T , |1⟩ = [0, 1]T , and |ψ⟩ = [α1, α2]

T . The Bloch sphere is a sphere of radius 1,
which is a useful tool for visualizing the state of a single qubit. Any other state of one qubit can be
represented by a point on the surface of the sphere, and you can see them through this online tool 2.

Multi-qubit Quantum State. Multi-qubit quantum states are an extension of single-qubit quantum
states, and aN -qubit quantum state can be represented as a complex 2N -dimensional vector in Hilbert
space. This is why quantum systems are often described as living in a 2N -dimensional Hilbert space.
More specifically, a two-qubit system can be represented as |ϕ⟩ = α1|00⟩+α2|01⟩+α3|10⟩+α4|11⟩,
where

∑22

i=1 |α2
i | = 1 and |00⟩ represent the tensor product |0⟩ ⊗ |0⟩.

Quantum Circuits. Quantum circuits are constructed using quantum gates, which are analogous to
classical logic gates. Some commonly used single-qubit gates include the Pauli-X gate, the Pauli-Y
gate, and the Pauli-Z gate. They can be represented by the unitary matrix:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8)

The Controlled-NOT (CNOT) gate is a two-qubit gate that flips the second qubit (target) if the first
qubit (control) is in the |1⟩ state. We provide the matrix forms of common quantum gates in Table 9.
When a quantum gate acts on a quantum state |ψ⟩, it transforms this state to another quantum state
|ψ′⟩, according to the mathematical operation |ψ′⟩ = U |ψ⟩, where U represents the unitary matrix
associated with the quantum gate.
Parameterized Quantum Circuits. Parameterized quantum circuits (PQCs) consist of parameterized
gates and offer a concrete way to implement quantum machine learning algorithms. Specifically, the
common parameterized quantum gates are listed in Table 9. The parameters (e.g., θ) in the quantum
gate can be either learnable parameters for optimizers or classical information that we want to encode.

Quantum Machine Learning. A quantum machine learning model can be constructed using a
sequence of parameterized quantum gates. The initial quantum states can be transformed into the
output quantum states. By measuring the output of the quantum circuit, we can convert quantum
information into classical information, which can be used to calculate the cost function of the
optimization task. We can use classical optimizers to minimize the cost function by adjusting the
parameters of quantum gates.

C FORMULAS OF EACH LAYER IN GQGLA
In GQGLA, the single-qubit gate can be written as the unitary matrix from. For example,
K(θ) = exp(−i θ2P

K), where PK ∈ {σx, σy, σz}. Similarly, W (θ) = exp(−i θ2P
W), D(θ) =

exp(−i θ2P
D), G(θ) = exp(−i θ2P

G).

Based on this, the unitary matrix of the node feature layer of Fig. 4 contains:
UW (c, u, b, αt) = exp(−i(

∑q

i=1
((ci+αt,1)P

W
2i +(ui+αt,2)P

W
2i+1)+

∑p

j=1
(bj+αt,5)P

W
2q+j)),

UD(l, ϵ, ◦, αt) = exp(−i(
∑q

i=1
((li+αt,3)P

D
2i +(ϵi+αt,4)P

D
2i+1)+

∑p

j=1
(◦j +αt,6)P

D
2q+j)),

(9)where PW2i = I ⊗ · · ·⊗︸ ︷︷ ︸
2i−1

PW ⊗ · · · ⊗ I︸ ︷︷ ︸
q+p−2i

.

2https://javafxpert.github.io/grok-bloch/

16

Published as a conference paper at ICLR 2025

Table 9: Common quantum gates.

Operator Gate(s) Matrix

Pauli-X (X, σx) X

[
0 1

1 0

]

Pauli-Y (Y, σy) Y

[
0 −i
i 0

]

Pauli-Z (Z, σz) Z

[
1 0

0 −1

]

Rotation-Z (RZ(θ)) RZ

[
e−i θ2 0

0 ei θ2

]

Rotation-Y (RY (θ)) RY

[
cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

]

Rotation-X (RX(θ)) RX

[
cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

]

Controlled Not (CNOT, CX)

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Controlled RZ (CRZ(θ)) RZ

1 0 0 0

0 1 0 0

0 0 e−i θ2 0

0 0 0 ei θ2

Controlled RY (CRY (θ)) RY

1 0 0 0

0 1 0 0

0 0 cos(θ2) − sin(θ2)

0 0 sin(θ2) cos(θ2)

Controlled RX (CRX(θ)) RX

1 0 0 0

0 1 0 0

0 0 cos(θ2) −i sin(θ2)
0 0 −i sin(θ2) cos(θ2)

The graph message interaction layer of Fig. 5 contains:

UVK (A, βt,1) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,1)(I − σz)2iP
K
2q+j)),

UV
′

K (A, βt,2) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,2)(I − σz)2i+1P
K
2q+j)),

UVG (βt,3) = exp(−i(
∑
i

βt,3(I − σz)2i+1P
G
2i)),

USK(A, βt,4) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,4)(I − σz)2q+jP
K
2i)),

US
′

K (A, βt,5) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,5)(I − σz)2q+jP
K
2i+1)),

USG(βt,6) = exp(−i(
∑
j

βt,6P
G
2q+j)).

(10)

17

Published as a conference paper at ICLR 2025

input

𝑦𝑣1

𝑦𝑣2

𝑦𝑣3output

𝑣3

𝑣1

𝑣2

𝑠2

𝑠1

Equivariant

model
input

𝑦𝑣3

𝑦𝑣1

𝑦𝑣2
output

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

input

𝑌

Invariant

model
input

output

Equivariant

model
Invariant

model

Change the order

of input nodes

Change the order

of output results

𝝈𝒗

𝝈𝒔

𝝈𝒗

𝝈𝒔

Predict

feasibility and

optimal values

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑣3

𝑣1

𝑣2

𝑠2

𝑠1

𝑦𝑠2

𝑦𝑠1

𝑦𝑣3

𝑦𝑣1

𝑦𝑣2

𝑦𝑠2

𝑦𝑠1

𝑦𝑠1

𝑦𝑠2

𝝈𝒔

𝝈𝒗

Change the order

of input nodes

(a) Equivariant model (b) Invariant model

Figure 7: Diagram of the properties of equivariant (a) and invariant (b) models. For equivariant
models, when the input node has a permutation σ, the output is equivalent to the original one with the
same permutation σ. For invariant models, the permutation of input nodes will not affect output Y .

D THEOREMS AND PROOFS OF THE EQUIVARIANCE

D.1 THE DETAILS OF DEFINITION 1

Λq ∈ Bq×q and Λp ∈ Bp×p are permutation matrices representing a permutation πq ∈ Sq and
πp ∈ Sp, respectively. Sq and Sp are the groups containing all permutations on the q variable nodes
and p constraint nodes, respectively. After the MILP graph undergoes permutation πq and πp, the
feature set of the variable nodes and the feature set of the constraint nodes become ΛqHV and ΛpHS,
respectively. Then, the adjacency matrix between variable nodes and constraint nodes of the MILP
graph A ∈ Rp×q is transformed to ΛpAΛq . We define a permutation πq+p on the (q+ p) elements to
indicate the overall permutation on all nodes of the MILP graph. πq+p consists of two distinct parts:
the first q elements follow the permutation πq, and the subsequent p elements follow πp. Λ̃ is the
unitary representation of πq+p, which indicates the permutation of qubits representing nodes. Λ̃ can
be implemented by applying a series of SWAP gates to the quantum circuit. The detailed proof and
formulation are as follows.

It is known that any permutation can be expressed as a product of transpositions. The transposition
refers to a simple permutation that just swaps two elements. Suppose that the permutation πq+p con-
tains z transpositions, i.e., πq+p = (δ11, δ12)...(δi1, δi2)...(δz1, δz2). Given that a n-qubit quantum
circuit and suppose that one qubit represents one node, i.e., n = p + q, a transposition (δz1, δz2)
can be represented by a SWAP(δz1,δz2) gate to exchange the δz1-th qubit and δz2-th qubit of the
quantum circuit. Hence, the corresponding unitary Λ̃ = Λ̃δ1Λ̃δ2 ...Λ̃δi ...Λ̃δz is equal to

SWAP(δ11,δ12)...SWAP(δi1,δi2)...SWAP(δz1,δz2). (11)

That is, we decompose a complex permutation into a series of transposition, so that we can get:

Defintion D.1. If the quantum circuit U is equivariant for any transpositions (δi1, δi2), i.e.,

U(ΛpδiAΛqδi ,ΛqδiH
V,ΛpδiH

S,Θ) = Λ̃†
δi
· U(A,HV,HS,Θ) · Λ̃δi ,

the circuit is equivariant for the permutation πq+p, where Λpδi and Λqδi are the permutation
matrices corresponding to the permutation (δi1, δi2).

18

Published as a conference paper at ICLR 2025

Based on Definition D.1, we can derive Definition 1 by using Eq. 11.

Λ̃† · U(A,HV,HS,Θ) · Λ̃
= SWAP(δz1,δz2)...SWAP(δ11,δ12) · U(A,HV,HS,Θ) · SWAP(δ11,δ12)...SWAP(δz1,δz2),

= SWAP(δz1,δz2)...SWAP(δ21,δ22)U(Λpδ1AΛqδ1 ,Λqδ1HV,Λpδ1HS,Θ)SWAP(δ21,δ22)...SWAP(δz1,δz2)

= U(Λpδ1...δzAΛqδ1...δz ,Λqδ1...δzHV,Λpδ1...δzHS,Θ)

= U(ΛpAΛq,ΛqHV,ΛpHS,Θ)
(12)

By the associative law of matrix multiplication, we can combine the middle three terms of the formula
until the last transpositions. In the final, Λpδ1...δz = Λp and Λqδ1...δz = Λq reprsent the permutation
matrices corresponding to the permutation πq+p = (δ11, δ12)...(δi1, δi2)...(δz1, δz2). Thereby, we
can obtain Definition 1.

D.2 THE DETAILS OF THEOREM 1

We can decompose Theorem 1 into the following theorems and corollary for clearer proof.

Theorem D.1. (Uqgl is Equivariant). The circuit Uqgl(A,HV,HS,Θ) of the proposed GQGLA
is a permutation equivariant circuit.

Theorem D.2. (Φ(A,H,Θ) is an Equivariant Mapping). After Pauli-Z measurement, the
output of the GQGLA is permutation equivariant.

Corollary D.1. (ϕ(A,H)fea is an Invariant Mapping). The mapping of GQGLA to predict
the feasibility of instance ϕ(A,H)fea is permutation invariant.

D.2.1 THE PROOF OF THEOREM D.1

These two circuits in the quantum circuit are permutation-dependent and permutation-independent
circuits. Permutation-dependent circuit refers to the quantum circuit composed of gates related to
input node features or edge features. Permutation independent circuit is defined as:

Defintion D.2. (Permutation Independent Circuit). A parameterized quantum circuit Uind)
is permutation independent for MILP graphs (A,HV,HS) if Uind(ΛpAΛq,ΛqHV,ΛpHS,Θ) =
Uind(Θ), and

Λ̃†Uind(Θ) = Uind(Θ)Λ̃ = Uind(Θ). (13)

We can derive the permutation equivariance of the circuit that only contain permutation equivariant
circuit and permutation indepentent circuit.

Corollary D.2. (Equivariant × Independent = Equivariant). If a quantum circuit U =
UeqUind, where Ueq represents the permutation equivariant circuit and Uind represents the
permutation independent circuit, then U is the permutation equivariant circuit.

Proof. It is known that

Ueq(A,HV,HS) = Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃†,

Λ̃†Uind(Θ) = Uind(Θ)Λ̃† = Uind(Θ).

Therefore, we can obtain

U(A,HV,HS,Θ) = Ueq(A,HV,HS)Uindd(Θ) = Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃† · Uind(Θ)

= Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃† · Λ̃ · Uind(Θ) · Λ̃†

= Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Uind(Θ) · Λ̃†

= Λ̃ · U(ΛpAΛq,ΛqHV,ΛpHS,Θ) · Λ̃†,

which indicates the circuit satisfies the definition of permutation equivariance.

On the other hand, GQGLA contains many layers, and we can demonstrate the permutation equivari-
ance of GQGLA by proving the permutation equivariance of each layer in GQGLA.

19

Published as a conference paper at ICLR 2025

Node Feature Layer (𝜔 = 1)

𝐷(𝑙1 + 𝛼𝑡,3)𝑣1

𝑣2

𝑠1

𝑠2

𝑊(𝑏1 + 𝛼𝑡,5)

𝑊(𝑏2 + 𝛼𝑡,5)

𝐷(𝑙2 + 𝛼𝑡,3)

𝐷(∘1 +𝛼𝑡,6)

𝐷(∘2 +𝛼𝑡,6)

𝑊(𝑐1 + 𝛼𝑡,1)

𝑊(𝑐2 + 𝛼𝑡,1)

𝑊(𝑢1 + 𝛼𝑡,2) 𝐷(𝜖1 + 𝛼𝑡,4)

𝑊(𝑢2 + 𝛼𝑡,2) 𝐷(𝜖2 + 𝛼𝑡,4)

𝐾(𝐴11 + 𝛽𝑡,1) 𝐾(𝐴21 + 𝛽𝑡,1)

𝐾(𝐴22 + 𝛽𝑡,1)

G(𝛽𝑡,2)

𝐺(𝛽𝑡,2)

𝐾(𝐴22 + 𝛽𝑡,3)

𝐾(𝐴11 + 𝛽𝑡,3)

𝐾(𝐴21 + 𝛽𝑡,3)

G(𝛽𝑡,4)

𝐺(𝛽𝑡,4)

Graph Message Interaction Layer (𝜔 = 1)

…

Variable update layer

Constraint Update Layer

Figure 8: The framework of GQGLA with one qubit represents one node (i.e., ω = 1).

Theorem D.3. (Equivariance of Γ-layered circuit). A Γ-layered quantum circuit
U(A,HV,HS,Θ) =

∏Γ
t=1 U

t(A,HV,HS,Θt) is permutation equivariant iff every layer U t
is permutation equivariant.

Proof. U t is permutation equivariant means that

U t(A,HV,HS,Θt) = Λ̃ · U t(ΛpAΛq,ΛqHV,ΛpHS,Θt) · Λ̃†.

Therefore,

U(A,HV,HS,Θ) =

Γ∏
t=1

U t(A,HV,HS,Θt) =

Γ∏
t=1

Λ̃ · U⊤(ΛpAΛq,ΛqHV,ΛpHS,Θt) · Λ̃†,

where Λ̃ and Λ̃†Λ̃ = I . Hence,

U(A,HV,HS,Θ) = Λ̃(

Γ∏
t=1

U (ΛpAΛq,ΛqHV,ΛpHS,Θt))Λ̃
† = Λ̃U(ΛpAΛq,ΛqHV,ΛpHS,Θ)Λ̃†.

Each layer of GQGLA has the same circuit structure and can be decomposed into
Ux(HV,HS, αt)Ug(A, βt)Ua(γt). Moreover, Ua(γt) is a permutation independent circuit. Therefore,
by Corollary D.2 and Corollary D.1, we only need to prove that Ux(HV,HS, αt) and Ug(A, βt) are
permutation equivariant for any transpositions (δi1, δi2).

Equivariance of the Node Feature Layer

Take Fig. 8 as an example, i.e., one qubit represents one node, Ux(HV,HS, αt) can be written as
Uv1⊗Uv2⊗Us1⊗Us2 , whereUvi =W (ci+αt,1)D(li+αt,3)W (ui+αt,2)D(ϵi+αt,4), i = {1, ..., q}
and Usj = W (bj + αt,5)D(◦j + αt,6), j = {1, ..., p}. When the node permutation changes,
Ux(ΛqHV,ΛpHS, αt) = Uvπq(1)

⊗Uvπq(2)
⊗Usπp(1)

⊗Usπp(2)
. As we can see, the node permutation

is transformed into the permutation of the order of tensor products of unitary matrices on individual
qubits. Suppose there is a n-qubit arbitrary quantum state

|ψ⟩ =
∑

Cd1...dj ...dn |d1...dj ...dn⟩, dj ∈ {0, 1},

where Cd1...dj ...dn is the amplitude of the basic state |d1...dj ...dn⟩. Take |ψ⟩ as input to U =
U1 ⊗ ...Uj ...⊗ Un. For a transposition (δi1, δi2),

SWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dn |d1...dδi2 ...dδi1 ...dn⟩,

USWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dnU1|d1⟩ ⊗ ...⊗ Uδi1
|dδi2 ⟩ ⊗ ...Uδi2

|dδi1 ⟩ ⊗ ...Un|dn⟩,

SWAP(δi1,δi2)USWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dnU1|d1⟩ ⊗ ...⊗ Uδi2
|dδi1 ⟩ ⊗ ...Uδi1

|dδi2 ⟩ ⊗ ...Un|dn⟩

= U1 ⊗ ...⊗ Uδi2
⊗ ...⊗ Uδi1

⊗ ...⊗ Un|ψ⟩.
(14)

Therefore, we can obtain SWAP(δi1,δi2)U1 ⊗ ... ⊗ Uδi1 ⊗ ... ⊗ Uδi2 ⊗ ... ⊗ UnSWAP(δi1,δi2) =
U1 ⊗ ...⊗ Uδi2 ⊗ ...⊗ Uδi1 ⊗ ...⊗ Un, which indicates the unitary U satisfies the definition of the
equivariance.

Equivariance of the Graph Interaction Layer

As shown in Fig. 8, the variable update layer has a similar structure to the constraint update layer.
Moreover, the layer that consists of G(βt) is the permutation independent circuit. Therefore, ac-
cording to Corollary D.2, we only need to prove that the layer that consists of controlled-K gates is

20

Published as a conference paper at ICLR 2025

permutation equivariant. It is known that CK(θ)2,1 = I ⊗ |0⟩⟨0|+K(θ)⊗ |1⟩⟨1|, where the first
qubit is the target qubit and the second qubit is the control qubit. Moreover,

SWAP(2,1)CK(θ)2,1SWAP(2,1) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗K(θ) = CK(θ)1,2. (15)

For n(= q + p)-qubit circuit,

CK(Ajk+βt)q+j,k = I1⊗ ...⊗|0⟩⟨0|q+j⊗ ...⊗In+I1⊗K(Ajk+βt)k⊗ ...⊗|1⟩⟨1|q+j⊗ ...⊗In,
where the index of the matrix represents the index of qubit that the matrix acted on. For brevity, we
set θjk = Ajk + βt, 0 = |0⟩⟨0|, 1 = |1⟩⟨1|, and the edge set of the graph is E . As we can see, the
double-qubit quantum gate is only related to the permutation of the qubit (q + j) or qubit k. Assume
that there are two transpositions (q + j, q + δs(j)) and (k,) to exchange the place of the qubits, and
SWAP ′ denot Considering a n-qubit arbitrary quantum state

|ψ⟩ =
∑

Cd1...di...dn |d1...dk...dδv(k)...dq+j ...dq+δs(j)...dn⟩, di ∈ {0, 1}.

SWAP ′|ψ⟩ =
∑

Cd1...di...dn |d1...dδv(k)...dk...dq+δs(j)...dq+j ...dn⟩

CK(θjk)q+j,kSWAP ′|ψ⟩ =
∑

Cd1...di...dn((|d1⟩ ⊗ ...⊗ 0dq+δs(j) ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ |dπ(n)⟩)

+ (|d1⟩ ⊗ ...⊗K(θjk)|dδv(k)⟩ ⊗ ...⊗ |dk⟩ ⊗ ...⊗ 1|dq+δs(j)⟩ ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ |dπ(n)⟩,

SWAP ′TCK(θjk)q+j,kSWAP ′|ψ⟩ =
∑

Cd1...di...dn((|d1⟩ ⊗ ...⊗ dq+j ⊗ ...⊗ 0|dq+δs(j)⟩⊗

...⊗ |dπ(n)⟩) + (|d1⟩ ⊗ ...⊗ |dk⟩ ⊗ ...⊗K(θjk)|dδv(k)⟩ ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ 1|dq+δs(j)⟩ ⊗ ...⊗ |dπ(n)⟩,
= CK(Ajk + βt)q+δs(j),δv(k).|ψ⟩

(16)

Therefore, we can obtain

SWAP ′TCK(Ajk + βt)q+j,kSWAP ′|ψ⟩ = CK(Ajk + βt)q+δs(j),δv(k) = CK(Aδs(j′)δv(k′) + βt)q+j′,k′ ,
(17)

where j = δs(j′) and k = δv(k′). It is known that UVK (A, β) =
∏

(j,k)∈E CK(Ajk + βt)q+j,k

SWAP ′TUV
K (A, βt)SWAP ′ =

∏
(j,k)∈E

SWAP ′TCK(Ajk + βt)q+j,kSWAP ′

=
∏

(j,k)∈E

CK(Aδs(j′)δv(k′) + βt)q+j′,k′ =
∏

(j′,k′)∈E′

CK(A′
δs(j)δv(k) + βt)q+j,k

= UV
K (A′, βt) = UV

K (ΛδsAΛδv , βt),

(18)

where Λδs and Λδv are the permutation matrices of the permutation δs and δv . The equation indicates
the equivariance of the graph message interaction layer.

D.2.2 PROOF OF THEOREM D.2

As mentioned earlier,

Φ(A,H,Θ) = Φ(A,HV,HS,Θ) = {⟨0|U†
peqg(A,H

V,HS,Θ)OiUpeqg(A,HV,HS,Θ)|0⟩}q+pi=1 ,
(19)

and we have proven that Upeqg is permutation equivariant. i.e.,

Λ̃† · Upeqg(A,HV,HS,Θ) · Λ̃ = Upeqg(ΛpAΛq,ΛqHV,ΛpHS,Θ). (20)

Therefore, Φ(ΛpAΛq,ΛqHV,ΛpHS,Θ)

= {⟨0|U†
peqg(ΛpAΛq,ΛqH

V,ΛpHS,Θ)OiUpeqg(ΛpAΛq,ΛqHV,ΛpHS,Θ)|0⟩}q+pi=1

= {⟨0|Λ̃†U†
peqg(A,H

V,HS,Θ))Λ̃OiΛ̃
†Upeqg(A,HV,HS,Θ))Λ̃|0⟩}q+pi=1

= {⟨0|Λ̃†U†
peqg(A,H

V,HS,Θ))Oπq+p(i)Upeqg(A,H
V,HS,Θ))Λ̃|0⟩}q+pi=1

= Λq+pΦ(A,HV,HS,Θ),

(21)

which indicates Φ(A,HV,HS,Θ) is a permutation equivariant mapping.

D.2.3 PROOF OF COROLLARY D.1

21

Published as a conference paper at ICLR 2025

Corollary D.3. (From Equivariance to Invariance). If a mapping ϕ(A,HV,HS) ∈ Rq+p is
permutation equivariant,

∑
(ϕ(A,HV,HS)) is permutation invariant.

Proof. Assume that ϕ(A,HV,HS) = [y1, ..., yq+p]
⊤, According to Definition 2,

ϕ(ΛpAΛq,ΛqHV,ΛpHS) = [yπq+p(1), ..., yπq+p(q+p)]
⊤. Therefore, we can obtain∑

(ϕ(A,HV,HS)) =
∑q+p
i=1 yi =

∑q+p
i=1 yπq+p(i) =

∑
(ϕ(ΛpAΛq,ΛqHV,ΛpHS)).

By Theorem D.2 and Corollary D.3, we can obtain ϕfea(A,H) =
∑q+p
i=1 Φ(A,H,Θfea)i is

permutation invariant. Similarly, the mapping of predicting objective value ϕobj(A,H) =∑q+p
i=1 Φ(A,H,Θobj)i also holds.

D.2.4 AN INTUITIVE EXAMPLE OF GRAPH MESSAGE INTERACTION LAYERS

In graph message interaction layers, each edge is mapped into a two-qubit quantum gate acted on
qubits representing two nodes. For example, here is a graph G with three nodes a, b, c. After the first
feature encoding layer, the quantum state |ψ⟩ = |ψa⟩ ⊗ |ψb⟩ ⊗ |ψc⟩. If there is an edge connecting
nodes a and b, the model will apply a two-qubit quantum gate between qubit qa and qubit qb. Suppose
the used two-qubit gate is RZZ(θ) = exp(−iθZ ⊗ Z) gate, then it is equivalent to multiplying the
quantum state by a matrix U = RZZ(θ)⊗ I . Thus, the quantum state is changed as |ψ′⟩ = U |ψ⟩ =
(exp(−iθZ ⊗Z)⊗ I)(|ψa⟩⊗ |ψb⟩⊗ |ψc⟩) = (RZZ(θ)⊗ I)(|ψab⟩⊗ |ψc⟩) = |ψ′

ab⟩⊗ |ψc⟩. In other
words, the two-qubit gate alters the quantum states corresponding to nodes a and b, thereby achieving
the goal of information exchange.

E GQGLA CAN DISTINGUISH MILP GRAPHS THAT GNN CANNOT
DISTINGUISH

E.1 WHY GNN FAILS ON THE GNN-INTRACTABLE MILPS

The discriminative power of GNN is defined as whether it can distinguish two non-isomorphic graphs.
The representation power of GNN refers to its ability to approximate mappings with permutation
equivariant/invariant properties. Moreover, Xu et al. (2018) have shown that GNNs are at most as
powerful as the Weisfeiler-Lehman (WL) test Weisfeiler & Leman (1968) in distinguishing graph
structures. The WL test is a well-known algorithm to identify whether two graphs are isomorphic
or not, i.e., whether two graphs are topologically identical. However, there are numerous WL test
indistinguishable graphs, and the most well-known class is regular graphs, where every vertex has
the same number of neighbors, i.e., the same degree. According to the above, if a pair of graphs is
indistinguishable by the WL test, GNN will also fail to distinguish them. In fact, the MILP graph
dataset just contains numerous WL-indistinguishable graphs, so directly using GNN to represent
general MILP graphs will lead to poor performance. Chen et al. (2023) extracted this subset of
WL-indistinguishable graphs from the entire MILP dataset and named it the ”GNN-intractable MILP”.
A variant of the WL test specially modified for MILP is provided in Algorithm 1. Based on the
algorithm, it can intuitively show why the WL test cannot distinguish some non-isomorphic graphs,
thereby showing why GNN cannot discriminate GNN-intractable MILPs.

Algorithm 1 WL test for MILP-Graphs

Input: A graph instance (A,H) ∈ Gq,p ×HV
q ×HS

p , and iteration limit L > 0.
Initialize with c0v = hash(fV) for all v ∈ V , c0s = hash(fS) for all s ∈ S.
for l = 1 to L do

clvi = hash(cl−1
vi ,

∑p−1
j=0 Ai,jhash(c

l−1
sj)), for all v ∈ V .

clsj = hash(cl−1
sj ,

∑q−1
i=0 Ai,jhash(c

l−1
vi)), for all s ∈ S.

end for
Output: The multisets contain all colors {{clv : v ∈ V, cls : s ∈ S}}.

In the algorithm, hash(·) is a function that maps its input feature to a color in C. The algorithm
flow can be seen as follows. First, all nodes in V ∪ S are assigned to an initial color c0v and c0s
according to their node features. Then, for each vi ∈ V , the hash function maps the previous color
cl−1
vi and aggregates the color of the neighbors of {cl−1

sj }sj∈N (vi). Similarly, the hash function maps

22

Published as a conference paper at ICLR 2025

the previous color cl−1
sj and aggregates the color of the neighbors of {cl−1

vi }vi∈N (sj). This process is
repeated until L reaches the maximum iteration number. Finally, a histogram hG of the node colors
can be obtained according to {{clv : v ∈ V, cls : s ∈ S}}, which can be used as a canonical graph
representation. The notation {{·}} denotes a multiset, which is a generalisation of the concept of
a set in which elements may appear multiple times. That is, the -WL test transforms a graph into
a canonical representation. If the canonical representation of two graphs is equal, the WL test will
consider them isomorphic.

Assume that there are two n-regular MILP graphs G1 = (A1, H1) and G2 = (A2, H2), where each
node has n neighbors in both graphs. And we set A1 ̸= A2 and H1 = H2, i.e., they have the same
features but different topology structures (the connectivity of edges). For clarity, we set {fVi }qi=1

is the same, and {fSi }
p
j=1is the same. Fig. 1 is an example of this type of graph. Initially, in the

WL-test, (c0v)g1 = (c0v)g2 and (c0s)g1 = (c0s)g2. Then, the representation of each vertex is updated
iteratively based on itself and information from its neighbors. In both graphs, each variable node has
the same number of constraint nodes, and all constraint features are the same, so all clvi are identical
at this step. Similarly, each constraint node has the same number of variable nodes, so all clsj are
identical. Until the maximum number of iterations is reached, the algorithm will output the same
representation for these two graphs. Therefore, the WL-test or GNNs cannot distinguish them.

E.2 PROOF OF THE DISCRIMINATIVE POWER OF GQGLA BETTER THAN GNNS

Theorem E.1. GQGLA can capture the difference in edge connectivity between two MILP graphs.

Proof. Suppose that G1 = (A1, H1) and G2 = (A2, H2), and the two graphs have only different
edge connectivity or edge weights, i.e., A1 ̸= A2. In GQGLA, the layer related to A is the graph
message interaction layer. As shown in Eq. 10, the sublayers related to A are UK layers. All UK
layers have similar structures. For clarity, we consider the following a simplified UK layer (where
one qubit represents one node) to showcase how GQGLA captures the topological structure. i.e.,

UVK (A) = exp(−i(
∑

(i,j)∈E

Ai,j(I − σz)iP
K
q+j)).

Note that i ∈ {1, ..., q} and j ∈ {1, ..., p}, and (I − σz)i is equal to I ⊗ ...⊗ ...︸ ︷︷ ︸
i−1

⊗(I − σz) ⊗

...⊗ I︸ ︷︷ ︸
q−i

⊗ ...⊗ I︸ ︷︷ ︸
p

. Similarly, PKq+j = I ⊗ ...⊗ I︸ ︷︷ ︸
q

⊗...⊗︸ ︷︷ ︸
j−1

PK ⊗...⊗ I︸ ︷︷ ︸
p−j

. Therefore, (I − σz)iP
K
q+j =

I ⊗ ...⊗︸ ︷︷ ︸
i−1

(I − σz)⊗...⊗ I︸ ︷︷ ︸
q−i

⊗...⊗︸ ︷︷ ︸
j−1

PK ⊗...⊗ I︸ ︷︷ ︸
p−j

.

As we can see, for (I−σz)iPKq+j , I−σz appears in one of the first q positions, and PK is acted in one
of the last p positions. For different edges, (I −σz)iP

K
q+j is different. More importantly, for different

edge sets,
∑

(i,j)∈E Ai,j(I − σz)iP
K
q+j is also different due to the properties of tensor products.

Therefore, if A1 ̸= A2, resulting in UVK (A1) ̸= UVK (A2), which indicates the GQGLA can capture
the difference in edge connectivity between two MILP graphs. Although two non-isomorphic regular
graphs have the same degree, the edge connectivity is different. That is, GQGLA can distinguish
GNN-intractable MILP graphs that GNN fails to distinguish.

F THE PERFORMANCE OF ALL POSSIBLE TYPES OF GQGLAS

Table 10 lists all possible selections of the quantum gate in GQGLA. The type represents
(Pw, PD, PK , PG). For example, when the type is equal to (σx, σz, σy, σz), it indicates W (θ) =
RX(θ), D(θ) = RZ(θ), CK(θ) = CRY (θ), and G(θ) = RZ(θ). To compare the performance of
different settings, we test them on the task of predicting the feasibility of the GNN-tractable MILP
dataset. In the experiment, we set the block of GQGLA is 8, the number of epochs to 15, the learning
rate to 0.1, and the batch size to 16. Table 10 shows GQGLA with (σx, σz, σy, σz) can achieve the
best result, so we adopt this scheme in our all experiments.

23

Published as a conference paper at ICLR 2025

Table 10: All possible selections of GQGLA and their performance results on predicting the feasibility
of GNN-tractable MILP datasets. Results demonstrated that (σx, σz, σy, σz) can achieve the best
performance.

Types (σx, σy, σz, σy) (σx, σz, σy, σz) (σy, σx, σz, σx) (σy, σz, σx, σz) (σz, σx, σy, σx) (σz, σy, σx, σy)

Train 0.0598 0.0557 0.0724 0.0623 0.0635 0.0615
Test 0.0606 0.0574 0.0741 0.0625 0.0647 0.0635

G MILP DATASET GENERATION

For GNN-tractable MILPs, we first set the number of variables and constraints to m and n.

• For each variable, cj ∼ N (0, 0.01), lj , uj ∼ U(0, 2π). If lj > uj , then switch lj and uj .
The probability that xj is an integer variable is 0.5.

• For each constraint, ◦i ∼ U(≤,=,≥) and bi ∼ U(−1, 1).
• After randomly generating all the MILP samples, we use the WL test algorithm to calculate

their graph representation for each instance, ensuring that there are no duplicate graph
representations in the dataset, so that we can determine that this dataset does not contain
WL-test indistinguishable pairs of MILP instances.

The GNN-intractable dataset is constructed by many pairs of WL indistinguishable graphs, and Fig. 1
in our paper is a GNN-intractable example, which is a pair of non-isomorphic graphs that cannot be
distinguished by the WL-test or by GNNs. The GNN-intractable dataset randomly generates 2000
GNN-intractable MILPs with 12 variables and 6 constraints, and there are 1000 feasible MILPs with
feasible optimal solutions while the others are infeasible. We construct the (2k − 1)-th and 2k-th
problems via the following approach, where (1 ≤ k ≤ 500).

• Sample J = {j1, j2, ..., j6} as a random subset of {1, 2, ..., 12} with 6 elements. 1) For
j ∈ J , xj ∈ {0, 1}, i.e., xj is a binary integer variable. 2) For j /∈ J , xj is a continuous
variable with bounds lj ∼ U(0, π), uj ∼ U(0, π). If lj > uj , then switch lj and uj .

• c1 = ... = c12 = 0.01.
• The constraints for the (2k − 1)-th problem (feasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3+xj4 = 1, xj4+xj5 = 1, xj5+xj6 = 1, xj6+xj1 = 1. For example, x = (0, 1, 0, 1, 0, 1)
is a feasible solution.

• The constraints for the 2k-th problem (infeasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3 + xj1 = 1, xj4 + xj5 = 1, xj5 + xj6 = 1, xj6 + xj4 = 1.

𝑣1

𝑣2

𝑠1

𝑠2
𝑈𝐾

𝑉(𝐴, 𝛽𝑡,11) 𝑈𝐾
𝑉′

(𝐴, 𝛽𝑡,12)

𝐾(𝐴11
1 + 𝛽𝑡,1

1) 𝐾(𝐴21
1 + 𝛽𝑡,1

1)

𝐾(𝐴22
1 + 𝛽𝑡,1

1)

𝐾(𝐴11
2 + 𝛽𝑡,2

2) 𝐾(𝐴21
2 + 𝛽𝑡,2

2)

𝐾(𝐴22
2 + 𝛽𝑡,2

2)
…

𝑈𝐾
𝑉(𝐴, 𝛽𝑡,1𝑒)

𝐾(𝐴11
𝑒 + 𝛽𝑡,1

𝑒) 𝐾(𝐴21
𝑒 + 𝛽𝑡,1

𝑒)

𝐾(𝐴22
𝑒 + 𝛽𝑡,1

𝑒)

𝑣𝑗/𝑠𝑖

G(𝛽𝑡,3
1)

𝐺(𝛽𝑡,3
2)

𝐺(𝛽𝑡,3
3)

𝐺(𝛽𝑡,3
𝑚)

…

(a) 𝑈𝐾
𝑉 layer for multi-dimensional edge features (b) 𝑈𝐺

𝑉 layer for 𝑚>1

𝑈𝐺
𝑉(𝛽𝑡,3)

Figure 9: (a) The controlled K layer for multi-dimensional edge features. (b) The controlled G layer
for m > 1, where m is the number of qubits representing one node vj or si.
H THE CAPACITY OF GQGLA
The proposed framework can also be used for situations where the edge dimension is more than
one. As shown in Fig. 9 (a), the controlled K gates can be repeatedly applied with different
edge dimensions. In addition, Fig. 9 (b) illustrates the detailed circuit when the number of qubits
representing one node is more than one. Moreover, although GQGLA is designed for MILP graphs,
i.e., bipartite graphs, it can be easily extended to arbitrary graphs. Specifically, in the quantum graph
message interaction layer, we can apply symmetric two-qubit gates, such as RZZ gate, between two
nodes, representing edges in an arbitrary graph and preserving the edge permutation invariance. The
remaining structure can remain completely unchanged when applied to an arbitrary graph.

24

Published as a conference paper at ICLR 2025

Figure 10: Variance v.s qubits (log-linear scale).

6 8 10 12 14 16 18
Number of Qubits

1e-3

6e-4

3e-4

2e-4

1e-4

V
ar

ia
nc

e
of

 G
ra

di
en

ts

Polynomial Decay (Ours)
Exponential Decay

It has been shown that general QNNs may suf-
fer from barren plateau (McClean et al., 2018),
i.e., the loss gradients vanish exponentially with
the system size, causing the trainability of QNNs
becomes an important issue. However, Fig. 10
shows the variance of our cost function par-
tial derivatives for a parameter in the middle of
GQGLA. The variance only decreases polyno-
mially with the system size, which shows that
GQGLA has good trainability.

I THE DETAILS OF UK LAYER

In the training process, the types (e.g., RX(θ), RY (θ), or RZ(θ)) and positions of gates are fixed,
but their internal parameters are not fixed in the quantum machine learning. Therefore, it should
be noted that when implementing the proposed graph message interaction layer, there is actually
a controlled K gate between each variable node and each constraint node (like a fully connected
bipartite graph). However, if there is no edge between the two nodes, we will set the parameters
of the corresponding controlled K gate to 0. CK(0) is an identity matrix that will not affect the
overall circuit. Specifically, in code engineering, we first obtain the binary adjacency matrix T of the
bipartite graph. Tij = 1 indicates that there is an edge connecting constraint node si and variable
node vj , while Tij = 0 indicates that there is no edge connecting them. Then, CK(Tij(Aij + β)) is
acted on the two qubits representing constraint node si and variable node vj . As we can see, when
there is an edge between the two qubits, CK(Aij + β) is acted on the two qubits, while when there
is no edge between the two qubits, CK(0) is acted on the two qubits. In this way, we can achieve the
modeling of the graph message interaction layer under the premise of fixed gate types and positions.

J THE IMPLEMENTATION ON REAL QUANTUM DEVICES

Our proposed GQGLA quantum circuit consists of only simple single-qubit and two-qubit gates,
making it easy to deploy on existing NISQ devices. To verify this, we use the Qiskit package and
the IBM Quantum platform to directly execute our circuits on real IBM quantum hardware. The
circuits are first compiled and optimized, then mapped to the real quantum hardware’s topology using
the generate preset pass manager function. Subsequently, the expectation values of the quantum
circuits are estimated using the Estimator V2 primitive. The Estimator primitive supports three
resilience levels: Resilience Level 0 represents no error mitigation techniques are applied. Resilience
Level 1 applies readout error mitigation and measurement twirling using a model-free technique
known as Twirled Readout Error eXtinction (TREX) (Van Den Berg et al., 2022). Resilience Level 2
includes the error mitigation techniques from Level 1 and further applies gate twirling and the Zero
Noise Extrapolation (ZNE) (Temme et al., 2017).

We conducted experiments using 10 minutes of free usage on the 127-qubit IBM Brisbane quantum
computer, and evaluate the mean square error (MSE) compared to ground truth on MILP dataset
with three different scales, as shown in the table below. The results demonstrate that employing
error mitigation strategies can improve performance. Higher resilience levels produce more accurate
results, but at the cost of increased processing time, which is a trade-off between cost and accuracy.

18 qubit 26 qubit 36 qubit

Noise (ibm brisbane) 0.2627 0.2850 0.3461
resilience level = 1 0.2107 0.2428 0.3336
resilience level = 2 0.2077 0.2174 0.3176

Table 11: Performance comparison across different qubit numbers and resilience levels.

In addition, we studied the parameter transferability and the impact of noise on performance. We train
on the 20-qubit GNN-intractable MILPs and transfer their parameters into problems with 30, 40, and
50 qubits to test. n qubit represents a MILP graph dataset containing 200 different graphs with n nodes.

25

Published as a conference paper at ICLR 2025

Table 12: Parameter transferability across qubits
under noiseless and noisy conditions.

Qubit 20 (base) 30 40 50

Noiseless 1.0 0.967 0.908 0.862
Nosiy 0.995 0.928 0.864 0.825

Specifically, we use Qiskit’s (Javadi-Abhari et al.,
2024) matrix product state simulator, as well as
IBM’s noise model FakeWashingtonV2, with the
backends built to mimic the behaviors of IBM Quan-
tum systems. As shown in Table 12, the model param-
eters trained on the 20-qubit remain effective for the
50-qubit data, benefiting from GQGLA’s parameter-
sharing mechanism. This means that the parameters
trained on small qubit datasets can provide a good initialization for larger qubit datasets, speeding up
the training. Moreover, while noise does have an impact on performance, the effect is not big.

26

	Introduction
	Preliminaries
	MILP Graphs and the Limitation of Classic GNNs

	General Quantum Graph Learning Architecture
	Node Feature Layer
	Quantum Graph Message Interaction Layer
	Auxiliary Layer
	Configuration Principle of GQGLA

	GQGLA with application to MILP
	Measurement Layer
	Training and Testing
	Permutation Equivariance and Invariance
	Superior Discriminative Power over GNNs

	Experiments
	Comparison with Classical GNNs
	Comparison with Other Quantum Algorithms
	Ablation Study
	Comparison with higher order GNNs

	The complexity and scalability of GQGLA
	Conclusion
	Related Work
	The Basics of Quantum Computing
	Formulas of each layer in GQGLA
	Theorems and Proofs of the Equivariance
	The Details of Definition 1
	The Details of Theorem 1
	The Proof of Theorem D.1
	Proof of Theorem D.2
	Proof of Corollary D.1
	An intuitive example of graph message interaction layers

	GQGLA Can Distinguish MILP Graphs that GNN Cannot Distinguish
	Why GNN Fails on the GNN-intractable MILPs
	Proof of the Discriminative Power of GQGLA Better than GNNs

	The Performance of All Possible Types of GQGLAs
	MILP Dataset Generation
	The Capacity of GQGLA
	The Details of UK Layer
	The implementation on real quantum devices

