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Abstract

In scientific domains—from biology to the social sciences—many questions boil
down to What effect will we observe if we intervene on a particular variable? If
the causal relationships (e.g. a causal graph) are known, it is possible to estimate
the intervention distributions. In the absence of this domain knowledge, the causal
structure must be discovered from the available observational data. However,
observational data are often compatible with multiple causal graphs, making meth-
ods that commit to a single structure prone to overconfidence. A principled way
to manage this structural uncertainty is via Bayesian inference, which averages
over a posterior distribution on possible causal structures and functional mecha-
nisms. Unfortunately, the number of causal structures grows super-exponentially
with the number of nodes in the graph, making computations intractable. We
propose to circumvent these challenges by using meta-learning to create an end-to-
end model: the Model-Averaged Causal Estimation Transformer Neural Process
(MACE-TNP). The model is trained to predict the Bayesian model-averaged in-
terventional posterior distribution, and its end-to-end nature bypasses the need for
expensive calculations. Empirically, we demonstrate that MACE-TNP outperforms
strong Bayesian baselines. Our work establishes meta-learning as a flexible and
scalable paradigm for approximating complex Bayesian causal inference, that can
be scaled to increasingly challenging settings in the future.

1 Introduction

Answering interventional questions such as: "What happens to Y when we change X?" is central to
areas such as healthcare [37] and economics [57]. One can estimate such interventional distributions
by actively intervening on the variable of interest and observing the effects (obtaining interventional
data), but this can be costly, difficult, unethical, or even impossible in practice [35]. Causal inference
offers an alternative by leveraging readily available observational data alongside knowledge of
the underlying causal relationships in the form of a causal graph [50]. A causal graph can be
manually specified when domain knowledge is available. In the absence of this, causal discovery
techniques attempt to learn the causal structure from data [45]. However, causal discovery from purely
observational data is notoriously difficult. Identifying the true graph requires strong assumptions,
such as the use of certain restricted model classes [54, 13, Ch. 4] and the acquisition of infinite data,
that are rarely met in practice. It is therefore often the case that data provides plausible evidence
for a set of causal graphs, even though each of these graphs may imply drastically different causal
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effects. Picking a single graph can thus result in poor downstream decisions [51, 4]. In this work, we
address the challenge of tractably estimating interventional distributions when the true causal graph
is uncertain, a common scenario in real world applications.

Instead of using a single graph to drive decisions, the Bayesian framework provides a principled way
to manage the uncertainty over the causal models by maintaining a distribution over possible causal
structures and functions relating variables. With access to both, model uncertainty can be accounted
for by marginalising the interventional distributions over both posteriors (fig. 1) [43, 5, 40]. However,
this procedure has two main challenges. First, the space of causal graphs grows super-exponentially
with the number of variables, making exact posterior inference intractable, and sampling difficult to
scale. Second, even with a posterior over causal graphs, estimating an interventional distribution in
each plausible causal graph necessitates computing the posterior over functional mechanisms, which
is analytically intractable except in simple models. Poor approximations at any point in this pipeline
can result in inaccurate interventional distributions. Consequently, most works restrict themselves to
simple functional mechanisms and constrain the allowable structures, limiting their applicability.

To overcome these bottlenecks, we turn to recent advances in meta-learning. Neural processes (NPs)
[19, 20] are a family of meta-learning models that approximate the Bayesian posterior with guarantees
[25], by directly mapping from datasets to the predictive distribution of interest, thus bypassing the
intractable explicit modelling of intermediate posteriors. They underpin several successful methods
with strong empirical performance across a range of real-life domains, ranging from tabular data
classification [28] to weather modelling [63]. Recently, NPs have also been applied to causal discovery
[30, 39, 14], with Dhir et al. [15] showing that they can accurately recover posterior distributions
over causal graphs. However, these existing approaches cannot estimate interventional distributions.

In this work, we apply NPs to the problem of causal inference directly from data by developing a
meta-learning framework that targets Bayesian posteriors for interventional queries—the Model-
Averaged Causal Estimation Transformer Neural Process (MACE-TNP). As shown in fig. 1, our
method amortises the full Bayesian causal inference pipeline (learning the posterior over the causal
structure and functions, and marginalising over them), all within a single model. By directly
estimating the interventional distribution, our approach avoids compounding errors from intermediate
approximations of posteriors and marginalisation, enabling more accurate and computationally-
efficient inference under model uncertainty. Our contributions are threefold. First, we propose
an end-to-end model trained on synthetic datasets to directly approximate the Bayesian posterior
interventional distribution. Second, we empirically show that when the analytical posterior is available
in closed-form, MACE-TNP converges to it. Third, we demonstrate that MACE-TNP outperforms
a range of Bayesian and non-Bayesian baselines across diverse experimental settings of increasing
complexity, highlighting the method’s potential to scale to high-dimensional datasets. Our framework
paves the way for meta-learning-based foundation models for causal interventional estimation.

Figure 1: Overview of MACE-TNP. Unlike classical approaches, that usually require a two-step pro-
cedure which 1) first involves posterior inference over the graph structure, followed by 2) complicated
inference over the functional mechanism, MACE-TNP amortises the full causal inference pipeline.
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2 Background

Our goal in this paper is to compute interventional distributions that take uncertainty over the causal
model—structure and functional mechanism—into account. Like a majority of works that learn
causal models from data, we assume no hidden confounders. We set up the problem and provide
background here. Throughout the paper random variables are denoted by uppercase letters (e.g., X),
and their realizations by lowercase letters (e.g., x). Boldface is used to denote vectors (e.g., x,X).

Causal model: Causal concepts can be formally defined by considering a causal model. Given
a directed acyclic graph (DAG) G with node set V := {1, . . . , D}, functional mechanisms f :=
{f1, . . . , fD}, and independent noise terms U := {U1, . . . , UD}, a Structural Causal Model (SCM)
defines variables Xi recursively as follows [50]

Xi := fi(PAi, Ui), for i = 1, . . . , D, (1)

where PAi ⊂ {X1, . . . , XD}\{Xi} is the set of parents for Xi. This process induces a joint distri-
bution over all the variables. Such a construction can then be used to formally define interventions.
We focus on hard interventions, denoted do(xj), where Xj is set to a fixed value xj , leaving all
other mechanisms unchanged [50]. The resulting distribution of any variable Xi is known as the
interventional distribution p(Xi | do(xj)). We use Dobs to refer to datasets of independent and
identically distributed (i.i.d) observations drawn from the model, and Dint for i.i.d. observations
drawn from any interventional distribution.

Causal discovery and inference: The task of causal discovery is to reconstruct the data generating
graph G from an observational dataset Dobs from an SCM. However, this typically only identifies a
Markov equivalence class (MEC) of graphs that encode the same conditional independences [50].
Unique graph identification requires strong assumptions that may not hold in practice, such as hard
restrictions on the allowable model classes [54, Ch. 4]. Furthermore, the identifiability guarantees
of these methods also only hold in the infinite data setting. For a lot of tasks, causal discovery is a
means to an end—namely, estimating interventional distributions for downstream tasks. With a causal
graph and observational data, causal inference allows for estimating an interventional distribution
p(xi|do(xj)), if it is identifiable [50, 59]2. However, inferring the ground truth causal graph is
difficult. This has drastic implications for computing interventional distributions. Two graphs, even
within the same MEC, may have very different interventional distributions [51]. Relying on a single
causal graph to compute interventions can thus lead to incorrect conclusions.

Bayesian causal inference: Due to the limits of causal discovery, uncertainty is inherent in causal
inference. Finite data issues further compound the problem. The Bayesian framework allows
for quantifying the model uncertainty, both in the causal structure and functions, and use it for
downstream decision making.
Definition 2.1. We define a Bayesian causal model (BCM) as the following hierarchical Bayesian
model over causal graphs G, functional mechanisms f , and dataset Dobs of Nobs samples: G ∼
pBCM(G), f := {fi}i∈V ∼ pBCM(f |G), Dobs := {Xn}Nobs

n=1 ∼
∏Nobs

n=1

∏
i∈V pBCM(xn

i |fi,G), where
xn
i denotes the i-th node of the n-th observational sample. This implies the joint distribution

pBCM(Dobs, f ,G).

As BCMs are defined with a causal graph, they induce a distribution over interventional quantities as
well. Analogous to standard causal models, interventions pBCM(xi|do(xj), fi,G) can be computed
by setting fj(·) = xj and leaving all other mechanisms unchanged.

Given an observational dataset, our task is to estimate an interventional distribution of interest. To do
this, it is necessary to infer the possible graphs and functional mechanisms that generated the dataset.
The Bayesian answer to this question is through the posterior

pBCM(f ,G|Dobs) ∝ pBCM(Dobs|f ,G)pBCM(f |G)pBCM(G). (2)

If the underlying model is identifiable, for example by restricting the function class of f [54, Ch. 4],
then under suitable conditions3 the posterior over G will concentrate on the true graph in the infinite
data limit [13, 14, 12]. However, for finite data, or if the causal model is not identifiable, the posterior

2Note that we assume no hidden confounders which is common for causal discovery. Hence, given the
ground truth causal structure, all interventional distributions are identifiable.

3The prior has to have positive density over the true underlying data generation process.
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will quantify the uncertainty over causal graphs. To make use of the uncertainty, Bayes prescribes to
average the interventions over the models [40], which we call the posterior interventional distribution

pBCM(xi|do(xj),Dobs)=
∑
G

∫
pBCM(xi|do(xj), f ,G)pBCM(f |G,Dobs)pBCM(G|Dobs)df . (3)

Computing the above quantity is often intractable for two main reasons: 1) computing pBCM(G|Dobs)
is challenging as the number of causal graphs increases super-exponentially with the number of
variables, 2) pBCM(f |G,Dobs) is only tractable for simple models.

Transformer neural processes: To bypass the need to compute the intermediate intractable quantities
in eq. (3), we turn towards neural processes (NP)([20, 19]). From a Bayesian perspective, NPs
incorporates a prior through the distribution over datasets that it is trained on [46], and, during
inference, directly provides estimates of the posterior distribution of interest, side-stepping any explicit
approximations of intermediate quantities. In particular, the Transformer Neural Process (TNP;
[47, 16, 1]), which builds on the scalability and expressiveness of the transformer architecture [62],
has achieved strong results across diverse domains [2, 63, 29, 14], motivating its use in our model-
averaged approach for causal intervention estimation.

3 Related work

Estimating the posterior interventional distribution (eq. (3)) is challenging. The dominant paradigm
involves a two stage process: 1) obtaining samples from the high dimensional posterior over graphs,
and 2) estimating the interventional distribution under each sampled DAG, followed by averaging the
result (fig. 1). Although principled, this process faces computational challenges in both stages.

The first stage is challenging due to the super-exponential size of the space of DAGs. Early score-
based methods addressed this by leveraging score equivalence, allowing search over the small space
of MECs instead of individual DAGs. To achieve this, they used restricted the model family to linear
Gaussians, with specific priors to make the scores analytically tractable [26, 22]. To accommodate
broader model classes, Madigan et al. [41] introduced an MCMC scheme over the space of DAGs.
However, the large space of DAGs leads to slow mixing and convergence issues, limiting the number
of effective posterior samples [17, 31, 58, 48, 33]. A common bottleneck in these approaches is
that scoring the proposed structures at each MCMC step requires expensive marginal likelihood
estimation. This is often mitigated through reducing the graph space by restricting the in-degree
of each node. Variational inference (VI) offers a cheaper alternative [11] but struggles to capture
multi-modal posteriors inherent in causal discovery [61, Sec. 3.1], and can still have a demanding
computational costs (e.g. SVGD used in [38] scales quadratically with samples). Crucially, any
inaccuracies or biases in this stage affects the downstream estimation in the second stage.

The second stage—averaging over the posterior of causal graphs—has its own significant computa-
tional burden. It requires performing inference with a potentially complex functional model for every
single DAG sampled from the approximate posterior p(G|Dobs). As a result, previous work has only
considered simple functional models where the inference is not too prohibitive. While early work
in simple settings like linear Gaussian models allowed for closed-form averaging [64, 10], recent
works often employ Gaussian Process (GP) networks [18] where this is not possible. To tackle this,
Giudice et al. [24] use complex MCMC schemes for both hyperparameter posteriors of the GPs and
graph sampling, but have to resort to approximating the final interventional posterior distribution
with a Gaussian for computational tractability. Toth et al. [60, 61] also use GP networks but use the
cheaper alternative of using MAP estimates for hyperparameters. However, both ultimately rely on
the expensive process of estimating interventions by sampling from the GP posterior conditional on
each DAG. Hence, despite variations, the core limitation of expensive inference persists across these
approaches, especially prohibiting the use of more flexible function model classes.

In contrast to this explicit two-stage procedure, we propose leveraging NPs [20] to directly learn an
estimator for the target interventional distribution conditional on the observational data Dobs. Our
approach aims to learn a mapping Dobs 7→ p(y|do(x),Dobs) that does not require approximating
potentially problematic intermediate quantities. This effectively amortises the complex inference
and averaging procedure over the training of the NP. Our method thus seeks to mitigate the severe
computational bottlenecks and avoid the compounding of approximation errors inherent in the
standard two-stage pipeline for Bayesian causal inference.
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There have been recent attempts at end-to-end or meta-learning approaches to estimating inter-
ventional distributions. While some methods assume knowledge of the ground truth causal graph
[9, 42, 69], others offer a similar data driven approach as ours, but only in restricted settings. For
example, Geffner et al. [21] offer an end-to-end approach but restrict to additive noise models, and
do not perform functional inference. Sauter et al. [56] also use meta-learning to directly target the
interventional distribution. Apart from differences in architecture and the loss used, their method is
limited to discrete interventions. In contrast, we propose a general framework that is not restricted to
types functional mechanisms or types of interventions. Further, by viewing meta-learning through a
Bayesian lens, we provide insight into the role of the training data as encoding a prior distribution
[25, 46, 28]. Tying our method to Bayesian inference also provides an understanding of the behaviour
of our model under identifiability and non-identifiability of the causal model [12, 14, 13].

4 A transformer model for meta-learning causal inference

Causal inference with neural processes: The focus of this work is causal inference directly from
data—predicting the distribution of a variable of interest Xi when we intervene on another variable
do(xj) given access to only observational data Dobs (eq. (3)). Instead of using a two-step approach
as in fig. 1, which is computationally expensive and approximation error prone, we propose to
directly learn the map from the observational dataset to the posterior interventional distribution of
a BCM in an end-to-end fashion with NPs. With a chosen BCM, our aim is to approximate the
true posterior interventional distribution defined in eq. 3. To do this, we minimise the expected
Kullback-Leibler (KL) divergence over the tasks ξ := (Dobs, i, j,Xj) between the true posterior
interventional distribution and the NP model predictions pθ(xi|do(xj),Dobs)

θ∗ := argmin
θ

Eξ [KL(pBCM(Xi|do(Xj),Dobs)∥pθ(Xi|do(Xj),Dobs))]

= argmax
θ

Eξ[EXi|ξ[log(pθ(Xi|do(Xj),Dobs))]] + C, (4)

where ξ ∼ p(Dobs, i, j, xj), Xi|ξ ∼ pBCM(xi|do(Xj),Dobs), θ are the parameters of the NP, and C
is some constant independent of θ.

Hence, our objective requires us to generate tasks, and interventional data from BCMs, in order to
find the optimal θ∗. To do this we, 1) sample a graph G ∼ pBCM(G), and 2) a functional mechanism
for each of the D variables from the graph f ∼ pBCM(f |G). Conditioned on the sampled graph G and
functional mechanism f we then 3) draw Nobs samples for each variable to construct the observational
data Dobs ∼ PBCM(Dobs|f ,G). To construct the interventional data, keeping the same graph and
functions as the observational data, we 4) randomly sample a variable index j to intervene upon and
Nint intervention values Xj ∼ N (0, I), set the values of node j to be xj , and 5) draw Nint samples
of each node forming an interventional dataset Dint ∼ pBCM(Dint|do(xj), f ,G). Finally we sample
an outcome node index i and extract samples of pBCM(xi|do(xj), fi,G) from Dint.

While at training time we assume access to an explicitly specified Bayesian causal model, at test time
we do not need access to such a model. In fact, the Bayesian prior is implicitly encoded into the NP
through the distribution over its training datasets [46]. Inference for a new dataset simply requires a
forward pass through the network.

Recovery of exact prediction map: Bruinsma [8, Proposition 3.26] shows that, in the limit of infinite
tasks and model capacity, the global maximum of eq. (4) is achieved if and only if the model exactly
learns the map (Dobs,xj) 7→ pBCM(xi|do(xj),Dobs). Hence the NP learns to implicitly marginalises
out any latent variables in eq. (3) [25]. While the constraint of infinite tasks is limiting when applying
NP to real-world datasets, if the tasks are generated through a known Bayesian causal model, we
have in theory access to an infinite amount of tasks.

Model architecture and desirable properties: Given we are interested in predicting
pBCM(xi|do(xj),Dobs), variables play distinct roles as either the outcome node Xi, the intervening
node Xj , or the nodes that are being marginalised. Thus, properties of this distribution, and the
role of the variables, guide our architecture choice. First, the interventional distribution remains
invariant when the observational data samples are permuted or the nodes being marginalised over
are permuted (permutation-invariance with respect to observational samples and to all nodes ex-
cept the outcome Xi and intervention Xj). Second, permuting the interventional queries should
permute the samples of the target distribution accordingly (permutation-equivariance with respect
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to interventional samples). Similarly, permuting any nodes involving the outcome or intervention
nodes should yield the corresponding permuted interventional distribution (permutation-equivariance
with respect to outcome and intervention nodes). For example, permutting the outcome and inter-
vention nodes i↔ j should result in the permuted p(xj |do(xi),Dobs). Furthermore, we assume no
correlations among the interventional samples and as such restrict our attention to the family of con-
ditional neural processes (CNPs), where the predictive distributions factorises over the interventional
samples pθ(xi|do(xj),Dobs) =

∏Nint
n=1 pθ(x

n
i |do(xn

j ),Dobs). As interventional distributions can be
non-Gaussian even in very simple cases, we opt for a Mixture of Gaussians (MoG) representation of
pθ(xi|do(xj),Dobs) [6].

An architecture that is flexible enough to satisfy these desiderata is the transformer [62, 34]. We
provide a schematic architecture for our proposed model, the Model-Averaged Causal Estimation
Transformer Neural Process (MACE-TNP), in fig. 2, and give a detailed explanation of each of its
components in Appendix A.2.

Figure 2: Overview of MACE-TNP yielding pθ(xi|do(xj),Dobs). Inputs are 1) embedded via
variable-specific MLPs, 2) fed into a transformer encoder that alternates sample-wise and node-wise
attention. The resulting outcome node representation from the unknown interventional distribution is
3) decoded to obtain the parameters of the NP distribution.

Embedding: The model takes as input a matrix of Nobs observational samples of D nodes and an
intervention matrix of Nint queries for a node of interest Xj , with the rest of the D− 1 nodes masked
out (by zeroing them out). Variables play distinct roles in both matrices, requiring different encoding
strategies—either as the node we intervene upon (j), outcome node (i), or node we marginalise
over. Our input representation also needs to reflect that observational and interventional samples
originate from different distributions. As such, we employ six variable-specific MLPs, one for each
combination of (node type, sample type). These MLPs produce dembed-dimensional embeddings,
resulting in representations Zobs ∈ RNobs×D×dembed and Zint ∈ RNint×D×dembed for the observational
and interventional data, respectively.

MACE transformer encoder: To satisfy the afore-mentioned permutation symmetries, we construct
an encoder of L layers where we alternate between attention among samples, followed by attention
among nodes [15, 39, 32]. The two attention mechanisms that we use are multi-head self-attention
(MHSA) and multi-head cross-attention (MHCA)—both defined in eq. (5) and eq. (7), respectively.
More specifically, at each layer l ∈ {1, . . . , L} we 1) update the observational data representation
Zl

obs ∈ RNobs×D×dembed through MHSA. This is then used to 2) modulate the interventional data repre-
sentation Zl

int ∈ RNint×D×dembed through MHCA, an operation that assures permutation equivariance
with respect to the interventional samples. We then 3) concatenate the two representations to obtain
Zl′ ∈ R(Nobs+Nint)×D×dembed , followed by 4) MHSA among the nodes to yield the output at layer l
which acts as input at layer l + 1:

1.Zl
obs = MHSA(Zl

obs)→ 2.Zl
int = MHCA(Zl

int,Z
l
obs)︸ ︷︷ ︸

attention among samples

→ 3.Zl′ = [Zl
obs,Z

l
int]→ 4.[Zl+1

obs ,Z
l+1
int ] = MHSA(Zl′)︸ ︷︷ ︸

attention among nodes

.

MACE decoder: The information required for the target distribution is now encoded in the outcome
node (i-th index) of the interventional matrix, ZL

int,i ∈ RNint×dembed . This is passed through an MLP
decoder to obtain the final distribution. To parametrise expressive interventional distributions, we
construct the output distribution of the NP as an MoG with Ncomp components [6]. The NP outputs
the mean, standard deviation and weight corresponding to each component for each interventional
query xn

j : {µ,σ,w}(xn
j ) := {µk(x

n
j ), σk(x

n
j ), wk(x

n
j )}

Ncomp

k=1 .
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Loss: The model is trained to maximise the log-posterior interventional distribution according to
eq. (4), where, with a MoG parameterisation:

Lθ(xi, {µ,σ,w}(xj)) =

Nint∑
n=1

log pθ(x
n
i |do(xn

j ),Dobs) =

Nint∑
n=1

log

Ncomp∑
k=1

wk(x
n
j ) · N (xn

i | µk(x
n
j ), σ

2
k(x

n
j ))



5 Experiments

We evaluate the performance of our model, MACE-TNP, against Bayesian causal inference baselines,
and a causal discovery method that selects a single graph. With our experiments we aim to answer: 1)
When analytically tractable, can we confirm that our model recovers the true posterior interventional
distribution under identifiability and non-identifiability of the causal graph, 2) How does our model
compare against baselines when the baselines’ assumptions are respected and when they are violated,
3) How does our model perform when the number of nodes are scaled, 4) How does our model
perform when we do not have knowledge of the data generating process?

To train MACE-TNP, we randomise the number of observational samples Nobs ∼ U{50, 750}, and
set Nint = 1000−Nobs. The training loss is evaluated on these Nint samples. For testing, we sample
500 observation points and compute the loss against 500 intervention points.

Baselines: We benchmark against methods that infer distributions over causal graphs and sample
to marginalise across these graphs when estimating posterior interventional distributions. DiBS-GP
[60], ARCO-GP [61], and BCI-GPN [24] all use GP networks, but differ in the inference procedure
over graphs. DiBS-GP uses a continuous latent to parametrise a graph, ARCO-GP uses an order
parametrisation of DAGs, whereas BCI-GPN uses an MCMC scheme to sample DAGs. We also
compare against DECI [21], which assumes additive noise and uses autoregressive neural networks
to learn a distribution over causal graphs while only learning point estimates for functions. Finally, to
show that learning a distribution over graphs is useful for causal inference, we compare against a
non-Bayesian baseline that uses NOGAM [44] to infer a single DAG, and estimates the interventional
distribution by using GPs: NOGAM-GP.

Metrics: For evaluation, we compare the model’s posterior interventional distributions on held out
datasets. Unlike graph-based metrics that only assess structural accuracy, this task requires correct
inference of both the causal graph as well as the functional mechanisms. The posterior interventional
distribution of the data generating model is only analytically tractable in simple cases (section 5.1). In
these instances, we report the KL divergence between the data generating model’s posterior interven-
tional distribution and that of the NP, averaged over intervention queries.When the analytical solution
is not available, we report the negative log-posterior interventional density (NLPID) of the true
intervention outcomes under the model: −EXj∼N (0,1)[EpBCM(xi|do(xj),D)[log pθ(Xi|do(Xj),D)]]
[23].

5.1 Two-node linear Gaussian model

First, we test on synthetic data where the ground-truth posterior interventional distribution is
tractable. Specifically, we are interested in the behaviour of our model under identifiability and
non-identifiability of the causal structure. For this, we generate from a bivariate, single edge, linear
model, with Gaussian noise—a model that is identifiable when the variances are known [53], but
non-identifiable under specific priors [22] (appendix B.1). Besides the KL between the ground-truth
and MACE-TNP, we also report the KL between the interventional distribution conditioned on the
true function and graph, and MACE-TNP’s output distribution. The latter gauges accuracy in learning
the true interventional distribution, which requires identifiability of the causal graph.

The results are shown in fig. 3 for the identifiable (left) and non-identifiable (right) cases. They confirm
that the output of MACE-TNP does indeed converge to the Bayesian optimal posterior, as the dark blue
lines indicating KL(pBCM (xi|do(xj),Dobs)∥pθ(xi|do(xj),Dobs)) go to 0 with increasing sample
size in both cases. Moreover, as expected, KL(pBCM (xi|do(xj), f

∗,G∗)∥pθ(xi|do(xj),Dobs)),
where {f∗,G∗} characterise the true data-generating mechanism, does not go to 0 in the second case
due to the non-identifiability of the causal graph (as indicated by the red line). The flexibility of our
architecture also allows for conditional queries, multiple interventions, as well as easily incorporating
interventional data to help identify causal relations. Hence, we investigate here whether providing
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a small number Mint = 5 of true interventional samples, alongside the observational data, resolves
identifiability challenges in the non-identifiablee case. As shown in fig. 3 (right) with the green line, we
find that this does indeed lower the KL(pBCM (xi|do(xj), f

∗,G∗)∥pθ(xi|do(xj),Dobs, {xn
i }Mint

n=1)),
suggesting that even limited interventions can enhance identifiability. Moreover, we show that the
divergence further decreases with more interventional samples Mint in appendix B.1.
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Figure 3: KL divergences as a function of the observational sample size, for the identifiable case
(left) and the non-identifiable one (right). Dark blue denotes pBCM—the posterior interventional
distribution defined in eq. (3), red and green use p∗BCM—the interventional distribution conditioned
on {f∗,G∗}. We additionally provide MACE-TNP with Mint = 5 interventional samples. We indicate
the median and the 10-90% quantiles.

5.2 Three-node linear Gaussian confounder vs. mediator

In the previous section, we showed that in the two-node case, when the causal graph is identifiable,
MACE-TNP can identify the correct interventional distribution. However, with more variables, finding
the correct interventional distribution requires proper adjustment of the variables that are not the treat-
ment or the outcome. For example, if we are interested in the distribution p(y|do(x)) and another vari-
able z is a confounder, the interventional distribution is p(y|do(x)) =

∫
p(y|x, z)p(z)dz. However,

if the variable z is a mediator, the interventional distribution is p(y|do(x)) =
∫
p(y|x, z)p(z|x)dz.

Here, we show that in the three-node case, with identifiable causal structures, MACE-TNP implicitly
performs the required adjustment.

We train a MACE-TNP model on fully-connected three-node graphs with data generated from
identifiable linear Gaussian structures [53]. We then estimate the KL divergence between the
interventional distribution conditioned on the true data-generating mechanism and the model’s
interventional distribution: KL(pBCM (xi|do(xj), f

∗,G∗)∥pθ(xi|do(xj),Dobs)) for 1) confounder
graphs, 2) mediator graphs, and 3) confounder graphs where the confounder is unobserved in the
context. Figure 4 (right) shows the results. As expected, as we increase the sample size for 1) and
2), MACE-TNP more accurately identifies the correct interventional distribution, showing that it
is implicitly adjusting the third variable depending on whether it is a mediator or a confounder.
When the confounder is unobserved, and the interventional distribution and the causal graph are not
identifiable, the KL between the true distribution and the MACE-TNP tends to a constant value above
zero.

5.3 Three-node experiments

Next, we compare our model MACE-TNP against the baselines in a three-node setting. Here, there
are 25 graphs in total, making inference over the graph easier than in higher-node settings. Given that
most baselines either use neural networks or GPs, we compare MACE-TNP to the baselines under
two scenarios: 1) when tested on GP data, and 2) when tested on data generated using neural networks
(NN). For each functional mechanism, we train a separate MACE-TNP model. Full experimental
details are provided in Appendix C.2.2.

When tested in-distribution (on datasets from the same distribution the model was trained on),
MACE-TNP consistently outperforms all baselines across both functional mechanisms, as shown in
table 1. MACE-TNP outperforms GP-based methods through its implicit handling of hyperparameter
inference, that the GP baselines may struggle with. It also surpasses DECI (an NN-based approach)
on both GP and NN data by employing a Bayesian treatment over functions. This highlights a key
advantage of MACE-TNP: it can easily incorporate complex Bayesian causal models into its training
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Figure 4: KL divergence (right) of the interventional distribution conditioned on {f∗,G∗} and the
model’s for the confounder (dark blue), mediator (red) and unobserved confounder (light blue) cases.
With increasing sample size, MACE-TNP identifies the correct distribution for both the mediator and
confounder cases, implicitly carrying out the required adjustment.

pipeline by sampling training datasets, whereas traditional Bayesian methods rely on inadequate
approximations for complex scenarios.

Table 1: Results for MACE-TNP and baselines on the three-node experiments. We show the NLPID
(↓) and report the mean± the error of the mean over 100 datasets. Each row corresponds to a different
functional mechanism used in the test set (GP / NN).

MACE-TNP DiBS-GP ARCO-GP BCI-GPN DECI NOGAM+GP
GP 563.9± 23.4 644.2± 27.2 630.7± 22.3 628.5± 27.5 632.0± 25.6 749.4± 43.0
NN 527.9± 19.8 807.6± 50.1 851.2± 55.0 706.8± 5.0 588.0± 23.6 815.6± 58.4

Out-of-distribution testing: All previous experiments trained MACE-TNP on the true functional
mechanism (GP or NN). However, a natural question is: how does the model perform when tested
on out-of-distribution (OOD) data? To probe this, we evaluate MACE-TNP (GP) on NN-generated
data and MACE-TNP (NN) on GP-generated data. As expected, performance degrades when the
test mechanism differs from training, since our model lacks built-in inductive bias for unseen
mechanisms: MACE-TNP (GP) tested on NN achieves 608.3± 17.3, compared to MACE-TNP (NN)
with 527.9± 19.8. Similarly, MACE-TNP (NN) tested on GP achieves 678.0± 10.0, compared to
MACE-TNP (GP) with 563.9± 23.4. However, NPs trivially support additional training on any data
likely to be informative. Indeed, training MACE-TNP on the combined GP+NN data nearly recovers
in-distribution accuracy, achieving 531.0±19.4 on NN data and 583.9±21.5 on GP data (see table 4).

5.4 Higher dimensional experiment

We next investigate the scalability of our method. This is especially relevant in many modern
applications (e.g. genomics, neuroscience, econometrics, and social-network analysis) which naturally
involve high-dimensional systems where understanding intervention effects is crucial. We do so by
testing a single trained model on increasingly higher-dimensional data, scaling up from 20 up to 40
nodes. The functional mechanisms used are a mix of NNs and functions drawn from a GP with an
additional latent variable input. More details on data generation are given in appendix B.3.

Table 2 shows that MACE-TNP outperforms both the Bayesian, as well as the non-Bayesian baselines
across all node sizes. Moreover, the underperformance of the non-Bayesian baseline NOGAM+GP
underscores the importance of capturing uncertainty with a higher number of variables. The majority
of our baselines involve GP-based approaches, which can become prohibitively expensive with a
higher number of variables. For example, we do not report BCI-GPN as its MCMC scheme is too
expensive for these node sizes. In contrast, MACE-TNP can readily leverage advancements that have
made neural network architectures scale favourably in other domains. Inference after training only
requires a forward pass through the network.
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Table 2: Results for MACE-TNP and baselines on the higher dimension experiment. We show the
NLPID (↓) and report the mean ± the error of the mean over 100 datasets. Each row corresponds to a
different number of variables.

MACE-TNP DiBS-GP ARCO-GP DECI NOGAM+GP

20 variables 660.4± 5.2 701.9± 4.0 701.9± 4.0 686.3± 6.7 942.7± 23.8
30 variables 653.3± 5.7 713.2± 4.7 713.0± 4.7 675.6± 6.1 946.9± 19.2
40 variables 665.8± 4.8 711.5± 4.6 712.1± 4.6 683.0± 5.1 986.0± 20.0

5.5 Unknown dataset generation process

Finally, we apply our proposed method on the Sachs proteomics dataset [55], which includes
measurements of D = 11 proteins from thousands of cells under various molecular interventions.
Crucially, we do not retrain any model for this task; instead, we reuse the model from section 5.4
which was trained exclusively on synthetic data. Following [7, 36, 66], we retain only samples
with interventions directly targeting one of the D = 11 proteins, yielding 5846 samples: 1755
observational and 4091 interventional across five single-protein perturbations. The results indicate
that our method performs competitively with our strongest baseline, giving an NLPID for MACE-TNP
of 998.9± 104.9 compared to 1000.9± 133.5 for DECI, when averaged over 5 interventional queries
and 10 outcome nodes. We provide additional comparisons to the remaining baselines in appendix
C.2.3. This shows the potential of tackling interventional queries in real-world settings with a fast,
data-driven framework that captures uncertainty in a principled manner and leverages flexible and
expressive neural network architectures.

6 Conclusions

We address the challenge of efficiently estimating interventional distributions when the causal
graph structure is unknown. Our solution, MACE-TNP, is an end-to-end meta-learning framework
that directly approximates the Bayesian model-averaged interventional distribution by mapping
observational data to posterior interventional distributions. When the true posterior is available, we
show empirically that the model’s predictions converge to it. Moreover, in a simple non-identifiable
case, we show that interventional data allows for capturing the true underlying mechanism. When
employing more complex functional mechanisms, as well as higher-dimensional data (up to 40 nodes),
MACE-TNP outperforms strong Bayesian and non-Bayesian baselines, with the only requirement
being access to samples from a prior distribution (implicit or explicit) at meta-train time. One
limitation of our model is its reliance on substantial training-time compute and data to effectively
capture a diverse range of causal mechanisms. Moreover, if the test distribution is not properly
covered by the training data distribution, the model may struggle to generalise. However, as our
out-of-distribution experiments demonstrate, integrating additional data to better cover the target
distribution is straightforward and efficient in improving MACE-TNP’s generalisation capabilities.
Finally, the attention mechanism scales quadratically with the number of variables and samples,
which can be costly. However, MACE-TNP can leverage recent advances in sparse and low-rank
attention to mitigate this overhead [67, 68]. Future work includes a thorough investigation into the
interventional sample complexity required by the NP for accurate interventional estimation, as well
as how to best construct the prior over BCMs to capture the complexities of real-life data.
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A Architecture

This section provides the definitions of the architectures described in the main paper.

Transformers [62] can be viewed as general set functions [34], making them ideally suited for NPs,
which must ingest datasets. We begin by briefly overviewing transformers, defining the attention
operations and how we construct a transformer layer, followed by how we integrate transformers into
the MACE-TNP architecture.

A.1 Transformers

MHSA and MHCA Throughout this work we make use of two operations: multi-head self-
attention (MHSA) and multi-head cross-attention (MHCA). Let Z ∈ RN×Dz be a set of N tokens of
dimensionality Dz . Then, for ∀ n = 1, . . . , N , the MHSA operation updates this set of tokens as
follows

zn←cat
({ N∑

m=1

αh(zn, zm)zm
TWV,h

}H

h=1

)
WO, (5)

where WV,h ∈ RDz×DV and WO ∈ RHDV ×Dz are the value and projection weight matrices, H
denotes the number of heads, and αh is the attention mechanism. We opt for the most widely used
softmax formulation

αh(zn, zm) = softmax({zTnWQ,hW
T
K,hzm}Nm=1)m, (6)

where WQ,h ∈ RDz×DQK and WK,h ∈ RDz×DQK are the query and key matrices.

The MHCA operation performs attention between two different sets of tokens Z1 ∈ RN1×Dz and
Z2 ∈ RN2×Dz . For ∀ n = 1, . . . , N1, the following update on z1,n is performed:

z1,n ← cat
({ N2∑

m=1

αh(z1,n, z2,m)z2,m
TWV,h

}H
h=1

)
WO. (7)

In order to obtain the attention blocks used within the transformer, these operations are typically
combined with residual connections, layer-isations and point-wise MLPs.

More specifically, we define the MHSA operation as follows:

Z̃← Z+MHSA(layer-norm1(Z))

Z← Z̃+MLP(layer-norm2(Z̃)).
(8)

Similarly, the MHCA operation is defined as:

Z̃1 ← Z1 +MHCA(layer-norm1(Z1), layer-norm1(Z2))

Z1 ← Z̃1 +MLP(layer-norm2(Z̃1)).
(9)

Masked-MHSA Consider the general case in which we want to update N token Z ∈ RN×Dz . There
might be some situations where we want to make the update of a certain token zn ∈ Z independent of
some other tokens. In that case, we can specify a set Mn ⊆ N+

≤N containing the indices of the tokens
we want to make the update of zn independent of. Then, we can modify the pre-softmax activations
within the attention mechanism α̃h(zn, zm), where αh(zn, zm) = softmax(α̃h(zn, zm)) as follows:

α̃h(zn, zm) =

{−∞ if m ∈Mn

zTnWQ,hW
T
K,hzm otherwise

(10)

From the indices of Mn we can construct a binary masking matrix M ∈ {0, 1}N×N :

Mn,m =

{
0 if m ∈Mn

1 otherwise

When used in the context of MHSA, we refer to this operation as masked-MHSA and represent it as
Z = masked-MHSA(Z,M).
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A.2 Model-Averaged Causal Estimation Transformer Neural Processes (MACE-TNPs)

We refer to Nguyen and Grover [47], Ashman et al. [2] for a complete description of standard
TNP architectures, and focus on describing the architecture of the MACE-TNP in more detail. Our
proposed architecture is conceptually similar to the standard TNP architectures, but incorporates
specific design choices and inductive biases that make it suitable for causal estimation.

We assume we have access to Nobs observational samples and want to predict the distribution of
Nint interventional samples. The inputs to the MACE-TNP are: the observational dataset Dobs ∈
RNobs×D×ddata , the values of the node we intervene upon xj ∈ RNint (implying we intervene on node
j), and the outcome node index i. Let Dobs,i ∈ RNobs×ddata denote the observational data at node i. We
omit the batch dimension for notational convenience.

Data pre-processing The model takes as input a matrix of Nobs observational samples of D nodes
and an intervention matrix of Nint queries for a node of interest Xj , with the rest of the D − 1 nodes
masked out (by zeroing them out). Let Dint,i ∈ RNint×ddata denote the interventional data at node i. In
the following we use Dobs,{k∈[D]\{i,j}} to denote nodes in the observational dataset that are being
marginalised over.

Embedding To differentiate between the different type of variables, we employ six different types
of encodings, depending on the source of the data (observational (obs) or interventional (int)), and
the type of the node (node we intervene upon (j), outcome node (i), or node we marginalise over).
These are all performed using 2-layer MLPs of dimension dembed.

observational, intervention node: Zobs,j = MLPobs,j(Dobs,j) (11)
observational, outcome node: Zobs,i = MLPobs,i(Dobs, i)

observational, marginal nodes: Zobs,{k∈[D]\{i,j}} = MLPobs(Dobs,{k∈[D]\{i,j}})

interventional, intervention node: Zint,j = MLPint,j(Dint,j)

interventional, outcome node: Zint,i = MLPint,i(Dint,i)

interventional, marginal nodes: Zint,{k∈[D]\{i,j}} = MLPint(Dint,{k∈[D]\{i,j}}),

where {k ∈ [D] \ {i, j}} represents the set of indices from {1, . . . , D} excluding i and j. The
representations are then concatenated back together in the original node order:

Zobs = concat
(
[Zobs,k]k∈[D]

)
, where Dk =


Zobs,i if k = i

Zobs,j if k = j

Zobs,k otherwise

Zint = concat
(
[Zint,k]k∈[D]

)
, where Zk =


Zint,i if k = i

Zint,j if k = j

Zint,k otherwise

After the embedding stage, we obtain the representation of the observational dataset Zobs ∈
RNobs×D×dembed , and the representation of the interventional one Zint ∈ RNint×D×dembed .

MACE Transformer Encoder We utilise a transformer-based architecture composed of L layers,
where we alternate between attention among samples, followed by attention among nodes. This
choice preserves 1) permutation-invariance with respect to the obervational samples, 2) permutation-
equivariance with respect to the interventional samples, 3) permutation-invariance with respect to
the nodes we marginalise over, and 4) permutation-equivariance with respect to the outcome and
interventional nodes. Although we generally omit the batch dimension for convenience, we include it
in this subsection to accurately reflect our implementation. Thus, the input to the MACE transformer
encoder are the observational data representation Zobs ∈ RB×Nobs×D×dembed and interventional data
representation Zint ∈ RB×Nint×D×dembed , with B the batch size.
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Attention among samples We propose two variants to perform attention among samples. We
use the less costly MHSA + MHCA variant for the experiments in the main paper and show that it
performs better in appendix C.2.2.

1. Masked-MHSA among the observational and interventional samples: At each
layer l, we first move the node dimension to the batch dimension for efficient
batched attention: Zl

obs ∈ RB×Nobs×D×dembed → R(B×D)×Nobs×dembed and Zl
int ∈

RB×Nint×D×dembed → R(B×D)×Nint×dembed . We then concatenate the two representations
Zl ∈ R(B×D)×(Nobs+Nint)×dembed = [Zl

obs,Z
l
int], and construct a mask M ∈ RNobs+Nint that

only allows interventional tokens to attend to observational ones.

Mn,m =

{
1 if m < Nobs

0 otherwise

We then perform masked-MHSA: Zl = masked-MHSA(Zl,M). This strategy has a
computational complexity O((Nobs +Nint)

2).
2. MHSA + MHCA: An alternative, less costly strategy, is to perform MHSA on the observa-

tional data, followed by MHCA between the interventional and observational data. More
specifically, as in the previous case we move the node dimension to the batch dimension and
then perform:

Zl
obs = MHSA(Zl

obs)

Zl
int = MHCA(Zl

int,Z
l
obs).

We then concatenate the two representations into Zl ∈ R(B×D)×(Nobs+Nint)×dembed =
[Zl

obs,Z
l
int]. This strategy has a reduced computational cost of O(N2

obs + NobsNint) and
is the strategy we use for the results in the main paper.

Attention among nodes The output of the attention among samples at layer l Zl ∈
R(B×D)×(Nobs+Nint)×dembed is then fed into the next stage: attention among nodes. We first reshape the
data Zl ∈ R(B×D)×(Nobs+Nint)×dembed → Zl′ ∈ R(B×(Nobs+Nint))×D×dembed , and then perform MHSA
between the nodes:

Zl+1 = MHSA(Zl′)

This is then reshaped back into Zl+1 ∈ RB×(Nobs+Nint)×D×dembed , and then split into the observational
and intervational data representations that are fed into layer l + 1: Zl+1

obs ∈ RB×Nobs×D×dembed and
Zl+1

int ∈ RB×Nint×D×dembed .

MACE Decoder We parameterise the output distribution of the NP as a Mixture of Gaus-
sians (MoG) with Ncomp components. The NP outputs the mean, standard deviation and weight
corresponding to each component for each interventional query {xn

j }Nint
n=1: {µ,σ,w}(xn

j ) :=

{µk(x
n
j ), σk(x

n
j ), wk(x

n
j )}

Ncomp

k=1 . These are computed based on the outcome interventional rep-
resentation from the final layer of the MACE Transformer Encoder. More specifically, the input to
the decoder is ZL

int,i ∈ RNint×dembed . This is then passed through a two-layer MLP of hidden size demb,
followed by an activation function

zout = activation(MLP(ZL
int,i))

Finally, we use linear layers to project the embedding zout ∈ RNint×dembed to the parameters of a
mixture of Ncomp Gaussian components:

µ = Linearmean(zout) ∈ RNint×Ncomp

pre-σ = Linearstd(zout) ∈ RNint×Ncomp

pre-w = Linearweight(zout) ∈ RNint×Ncomp .

We then apply element-wise transforms to obtain valid parameters:

σ = softplus(pre-σ) w = softmax(pre-w),

with the softmax being applied along the component dimension.
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Loss The output parameters are then used to evaluate the per-dataset loss of the MACE-TNP, which,
as shown in section 4 requires the evaluation of the log-posterior interventional distribution of the
MoG. We restate the equation of the loss presented in section 4 for completeness:

Lθ(xi, {µ,σ,w}(xj)) =

Nint∑
n=1

log pθ(x
n
i |do(xn

j ),D) =
Nint∑
n=1

log

Ncomp∑
k=1

wk(x
n
j ) · N (xn

i | µk(x
n
j ), σ

2
k(x

n
j ))

 (12)

where N (x|µ, σ) represents the Gaussian distribution with mean µ and standard deviation σ.

B Data Generation

We provide in fig. 5 a diagram showing how we sample training data from a specified Bayesian
Causal Model to infer its posterior interventional distribution (see discussion in section 4).

Figure 5: Overview of the data generation process. We first sample a graph G, and a functional
mechanism (conditioned on the sampled graph) for each of the D nodes in the dataset. These are then
used to draw Nobs observational samples. To construct the interventional dataset, we first randomly
sample a node to intervene upon j, draw Nint intervention values xj ∼ N (0, I), and set the values of
node j to be xj . We then drawn Nint samples of each node to form an interventional dataset Dint.

B.1 Two-node Linear Gaussian Models

The data generation details for the two-node linear Gaussian experiments from section 5.1 and the
derivations of the posterior interventional distribution are explained in this section.

We examine the basic scenario involving n independent and identically distributed (i.i.d.) random
vectors, each consisting of two components, defined as Xi := [Xi

1, X
i
2]

T for i ∈ {1, 2, . . . , n}.
Let the observed dataset be denoted by Dobs := {X1, X2, . . . , Xn}. For the sake of notational
simplicity, we drop the subscript BCM from pBCM in eq. (2) throughout the subsequent proofs. In
this setting, where the random vectors are composed of only two nodes (X1, X2), there exist three
distinct possible structural SCMs:

G1 :=

[
0 0
1 0

]
: X1 = wX2 + U1 and X2 = U2 (13)

G2 :=

[
0 1
0 0

]
: X1 = U1 and X2 = wX1 + U2 (14)

G3 :=

[
0 0
0 0

]
: X1 = U1 and X2 = U2 (15)

We consider two models, one where the causal graph is identifiable (appendix B.1.1) and one where
it is not identifiable (appendix B.1.2).
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B.1.1 Identifiable Case

We begin with the case where the error terms U1 and U2 are Gaussian distributed and the noise
variances of U1 and U2 are equal and known—a setting shown to be identifiable in Peters and
Bühlmann [52]. Fixing σ2, σ2

w ∈ R+, we consider the following hierarchical model:

G ∼ U{G1,G2,G3}, Ui ∼ N (0, σ2) for i = 1, 2

w ∼ N (0, σ2
w) if G ∈ {G1,G2}.

which induces the following joint distribution:

p(X,w,G) = p(X|w,G)p(w|G)p(G) if G ∈ {G1,G2} or (16)

p(X,G3) = p(X|G3)p(G3), otherwise. (17)

We show below that the above models can be identified by the posterior.

Theorem B.1. Let Dobs := {X(1), X(2), . . . , X(n)} be i.i.d. observations generated by
one of the simple models described in eqs. (13) to (15). The posterior over the graphs
[p(G1|Dobs), p(G2|Dobs), p(G3|Dobs)] is

1

c

[
σ√

(σ2
wS2 + σ2)

exp

(
σ2
w

2σ2

S2
12

σ2
wS2 + σ2

)
,

σ√
(σ2

wS1 + σ2)
exp

(
σ2
w

2σ2

S2
12

σ2
wS1 + σ2

)
, 1

]
,

where c is a constant of normalisation and

S12 :=

n∑
i=1

Xi
1X

i
2, S1 :=

∑
i=1

Xi2
1 , S2 :=

∑
i=1

Xi2
2 . (18)

The posterior interventional distribution is a mixture of 2 Gaussian distributions

p(X1 = y|do(X2 = x),Dobs) = p(G1|Dobs)N
(
y|µ1−2(x), σ

2
1−2(x)

)
+ (1− p(G1|Dobs))N (y|0, σ2),

with

µ1−2(x) :=
σ2
wS12

σ2
wS2 + σ2

· x and σ2
1−2(x) := σ2

(
1 +

σ2
wx

2

σ2
wS2 + σ2

)
. (19)

Proof: First, we find the full conditional distribution, p(w|G,Dobs) and the posterior distribution over
the DAG models, p(G|Dobs). Following Bayes’ rule we have

p(w|G1,Dobs) ∝ p(w|G1)p(G1)
n∏

i=1

p(Xi|G1, w) ∝ p(w|G1)
n∏

i=1

p(Xi|G1, w)

∝ exp

(
− w2

2σ2
w

− 1

2σ2

n∑
i=1

(
Xi

1 − wXi
2

)2)
and by completing the square we obtain

p(w|G1,Dobs) = N
(
w

∣∣∣∣∣ σ2S12

σ2
wS2 + σ2

1

,
σ2
1σ

2
w

σ2
wS2 + σ2

1

)
, (20)

with S12 and S2 being defined in eq. (18).
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Similarly, conditioned on the G2 model, the full conditional distribution is again Gaussian

p(w|G2,Dobs) = N
(
w

∣∣∣∣∣ σ2S12

σ2
wS1 + σ2

,
σ2σ2

w

σ2
wS1 + σ2

)
. (21)

Using eq. (20) and eq. (21), the posterior for the G is

p(G1|Dobs) ∝
∫

p(w)p(G1)
n∏

i=1

p(Xi|G1, w)dw

∝ exp

(
− S1 + S2

2σ2

)
σ√

(σ2
wS2 + σ2)

exp

(
σ2
w

2σ2

S2
12

σ2
wS2 + σ2

)
(22)

p(G2|Dobs) ∝
∫

p(w)p(G2)
n∏

i=1

p(Xi|G2, w)dw

∝ exp

(
− S1 + S2

2σ2

)
σ√

(σ2
wS1 + σ2)

exp

(
σ2
w

2σ2

S2
12

σ2
wS1 + σ2

)
(23)

p(G3|Dobs) ∝ p(G3)
n∏

i=1

p(Xi|G3) ∝ exp

(
− S1 + S2

2σ2

)
. (24)

Next, the posterior interventional distribution is

p(X1|do(X2 = x),Dobs) = p(X1,G3|do(x),Dobs) +
∑

G∈{G1,G2}

∫
p(X1,G, w|do(x),Dobs)dw

= p(X1|do(x),G3,Dobs)p(G3|Dobs) +
∑

G∈{G1,G2}

p(G|Dobs)

∫
p(X1|do(x),G, w)p(w|G,Dobs)dw.

Conditioned on the model graphs, the interventional distributions are

p(X1 = y|do(X2 = x),G1, w) = N (y|wx, σ2), p(X1 = y|do(X2 = x),G2, w) = N (y|0, σ2)

p(X1 = y|do(X2 = x),G3) = N (y|0, σ2).

Then, we have∫
p(X1 = y|do(X2 = x),G2, w)p(w|G2,Dobs)dw =

∫
N (y|0, σ2)p(w|G2,Dobs)dw = N (y|0, σ2),

∫
p(X1 = y|do(X2 = x),G3, w)p(w|G3,Dobs)dw =

∫
N (y|0, σ2)p(w|G3,Dobs)dw = N (y|0, σ2),

and ∫
p(X1 = y|do(X2 = x),G1, w)p(w|G1,Dobs)dw =

∫
N (y|wx, σ2)p(w|G1,Dobs)dw

= N
(
y

∣∣∣∣∣ σ2
wS12

σ2
wS2 + σ2

· x, σ2

(
1 +

σ2
wx

2

σ2
wS2 + σ2

))
.

Hence, the interventional distribution is simply a mixture of 2 Gaussian distributions

p(X1 = y|do(X2 = x),Dobs) = p(G1|Dobs)N
(
y|µ1−2(x), σ

2
1−2(x)

)
+ (1− p(G1|Dobs))N (y|0, σ2),
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with p(G1|Dobs) calculated in eqs. (22) to (24) and µ1−2(x), σ
2
1−2(x) defined in eq. (34).

Similarly, the next result easily follows

p(X2 = y|do(X1 = x),Dobs) = p(G2|Dobs)N
(
y|µ2−1(x), σ

2
2−1(x)

)
+ (1− p(G2|Dobs))N (y|0, σ2),

with p(G2|Dobs) calculated in eq. (23) and

µ2−1(x) :=
σ2
wS12

σ2
wS1 + σ2

· x and σ2
2−1(x) := σ2

(
1 +

σ2
wx

2

σ2
wS1 + σ2

)
.

Remark: It can be shown that if Dobs is generated by one of the models presented in eqs. (13)
to (15), then the posterior distribution p(G | Dobs) asymptotically concentrates around the true
data-generating structure G∗ [12, 65, 14]. Consequently, in the infinite data limit, the posterior
interventional distribution converges to a Gaussian distribution whose mean and variance depend on
the intervened node and the true underlying causal mechanism G∗.

B.1.2 Non-identifiable Case

Second, we consider the errors’ variances to be unknown while keeping the same SCMs described in
eqs. (13) to (15). Therefore, we place priors on these extra parameters as well chosen such that the
model is not identifiable [22]. We propose the following hierarchical model for fixed α > 1

2 , and
β, η > 0

G ∼ U{G1,G2,G3}

If G = G1, then τ21 ∼ InvGamma(α, β), τ22 ∼ InvGamma(α− 1

2
, β), w ∼ N (0, ητ21 )

If G = G2, then τ21 ∼ InvGamma(α− 1

2
, β), τ22 ∼ InvGamma(α, β), w ∼ N (0, ητ22 )

If G = G3, then τ21 ∼ InvGamma(α− 1

2
, β), τ22 ∼ InvGamma(α, β).

Then, this hierarchical model introduces the following joint distributions

If G = G1, then p(X,w, τ21 , τ
2
2 ,G1) = p(X|w, τ21 , τ22 ,G1)p(w|G1, τ21 )p(τ22 )p(G1)

If G = G2, then p(X,w, τ21 , τ
2
2 ,G2) = p(X|w, τ21 , τ22 ,G2)p(w|G2, τ22 )p(τ21 )p(G2)

If G = G3, then p(X, τ21 , τ
2
2 ,G3) = p(X|τ21 , τ22 ,G3)p(τ21 )p(τ22 )p(G3).

For completeness, we show below that the above priors result in the same posterior for graphs in the
same Markov equivalence class — G1 and G2. We begin by recalling a simple result before stating
the main theorem of this subsection.
Lemma 1. For any ν > 0 and A,B,C ∈ R such that CA2 > B we have∫ ∞

−∞

dx

(A2x2 − 2Bx+ C)
ν+1
2

=
√
π

Γ(ν2 )

Γ(ν+1
2 )
× (A2)

ν−1
2

(CA2 −B2)
ν
2
,

where Γ(·) is the usual Gamma-function.

PROOF: Completing the square in the dominator we have

∫ ∞

−∞

dx

(A2x2 − 2Bx+ C)
ν+1
2

=

(
A2

CA2 −B2

) ν+1
2 ∫ ∞

−∞

dx(
A4

CA2−B2

(
x− B

A2

)2
+ 1

) ν+1
2

.
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Next, we recall the probability density function (pdf) of a shifted and scaled version of the standard
student-t distribution (i.e. Z = µ+ σT, with T ∼ t(ν))

fZ(z) =
Γ(ν+1

2 )

Γ(ν2 )
√
π

(
1 +

1

ν

(z − µ

σ2

)2)− ν+1
2

.

Then, matching the terms gives the desired result.

Theorem B.2. Let Dobs := {X(1), X(2), . . . , X(n)} be i.i.d. observations generated by
one of the simple models described in eqs. (13) to (15). The posterior over the graphs
[p(G1|Dobs), p(G2|Dobs), p(G3|Dobs)] is

1

c

[
(Sη

2 )
(ν−1)/2

(Sβ
2 )

(ν−1)/2[Sβ
1 S

η
2 − S2

12]
ν/2

,
(Sη

1 )
(ν−1)/2

(Sβ
1 )

(ν−1)/2[Sβ
2 S

η
1 − S2

12]
ν/2

,
1

(Sβ
1 )

(ν−1)/2(Sβ
2 )

(ν/2)

]
,

where c is the constant of normalisation, ν := 2α+ n and

Sη
i := Si +

1

η
, Sβ

i := Si + 2β for i ∈ {1, 2}, (25)

with S1, S2 and S12 defined in eq. (18). The posterior interventional distribution is a mixture of 2
shifted and scaled Student-t distributions

p(X1 = y|do(X2 = x),Dobs) = p(G1|Dobs)t(ν, µ1−2(x), σ1−2(x)) + (1− p(G1|Dobs))t

(
ν, 0,

√
Sβ
1

ν − 1

)
with

µ1−2(x) :=
xS12

Sη
2

and σ2
1−2(x) :=

Sη
2 (S

β
1 S

η
2 − S2

12) + x2(Sβ
1 S

η
2 − S2

12)

(Sη
2 )

2ν
. (26)

Proof: Similar to the case presented in Appendix B.1.1, we start by deriving the posterior over the
three models described above and use the same definitions from eq. (18).

p(G1|Dobs) ∝
∫

p(Dobs|G1, w, τ21 , τ22 )p(w|τ21 )p(τ21 )p(τ22 )d(τ21 ) d(τ22 ) dw

=

∫
1(√

2πτ21

)n exp
(
− 1

2τ21

n∑
i=1

(Xi
1 − wXi

2)
2
) 1(√

2πτ22

)n exp
(
− 1

2τ22
S2

) 1√
2πητ21

× exp
(
− w2

2ητ21

) β2α− 1
2

Γ(α)Γ(α− 1
2 )

(τ21 )
−α−1 exp

(
− β

τ21

)
(τ22 )

−α−1/2 exp
(
− β

τ22

)
d(τ21 ) d(τ

2
2 ) dw

=
1√
η

1

(2π)n+1/2

β2α−1/2

Γ(α)Γ(α− 1
2 )

Γ(α+ n−1
2 )(

β + S2

2

)(ν−1)/2

∫ ∞

−∞

Γ(α+ n+1
2 )(

β +
∑n

i=1(X
i
1−wXi

2)
2

2 + w2

2η

)α+n+1
2

dw

=
(2β)2α−

1
2Γ(α+ n−1

2 )Γ(α+ n
2 )√

ηπnΓ(α)Γ(α− 1
2 )

· (1/η + S2)
(ν−1)/2

(2β + S2)(ν−1)/2
· 1

[(2β + S1)(1/η + S2)− S2
12]

α+n/2

=
(2β)2α−

1
2Γ(α+ n−1

2 )Γ(α+ n
2 )√

ηπnΓ(α)Γ(α− 1
2 )

·
(Sη

2

Sβ
2

)(ν−1)/2

· 1

(Sβ
1 S

η
2 − S2

12)
ν/2

, (27)

where in the last step we used the result of Lemma 1. We note that the conditions in the lemma are
fulfilled as

(2β + S1)(1/η + S2) > S1S2 ≥
(
S12

)2
, (28)
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where we used the fact that β, η > 0 and the Cauchy-Schwartz inequality in the second step.

Similarly, we find the posterior for the second model, G2

p(G2|Dobs) ∝
(2β)2α−

1
2Γ(α+ n−1

2 )Γ(α+ n
2 )√

ηπnΓ(α)Γ(α− 1
2 )

·
(Sη

1

Sβ
1

)(ν−1)/2

· 1

(Sβ
2 S

η
1 − S2

12)
ν/2

and for the third model, G3

p(G3|Dobs) ∝
∫

p(Dobs|G3, τ21 , τ22 )p(τ21 )p(τ22 )d(τ21 ) d(τ22 )

=

∫
1(√

2πτ21

)n exp
(
− 1

2τ21
S1

) 1(√
2πτ22

)n exp
(
− 1

2τ22
S2

)

× β2α−1/2

Γ(α)Γ(α− 1
2 )

(τ21 )
−α−1/2 exp

(
− β

τ21

)
(τ22 )

−α−1 exp
(
− β

τ22

)
d(τ21 ) d(τ

2
2 ) (29)

=
(2β)2α−1/2Γ(α+ n−1

2 )Γ(α+ n
2 )

πnΓ(α)Γ(α− 1
2 )

· 1

(Sβ
1 )

(ν−1)/2(Sβ
2 )

ν/2
. (30)

Conditioned on the models, the interventional distributions are

p(X1 = y|do(x),G1, w, τ21 ) := p(X1 = y|do(X2 = x),G1, w, τ21 ) = N (y|wx, τ21 ),
p(X1 = y|do(x),G2, w, τ21 ) = p(X1 = y|do(X2 = x),G2, w, τ21 ) = N (y|0, τ21 ),

p(X1 = y|do(x),G3, τ21 ) := p(X1 = y|do(X2 = x),G3, τ21 ) = N (y|0, τ21 ).
Then, the posterior interventional distribution, p(X1|do(x),Dobs), is

∑
G∈{G1,G2}

p(G|Dobs)

∫
p(X1 = y|do(x),G, w, τ21 )p(w, τ21 , τ22 |,G,Dobs) d(τ

2
1 ) d(τ

2
2 ) dw

+ p(G3|Dobs)

∫
p(X1 = y|do(x),G3, τ21 )p(τ21 , τ22 |,G3,Dobs) d(τ

2
1 ) d(τ

2
2 ).

First, we find the last term

∫
p(X1 = y|do(X2 = x),G3, τ21 )p(τ21 , τ22 |,G3,Dobs) d(τ

2
1 ) d(τ

2
2 ) ∝∫

1√
2πτ21

exp
(
− y2

2τ21

)
p(Dobs|G3, τ21 , τ22 )p(τ21 )p(τ22 )d(τ21 ) d(τ22 ) ∝

∝ 1

(2β + S1 + y2)α+
n−1
2

∝ 1

(1 + y2

Sβ
1

)α+
n−1
2

, (31)

which is a scaled Student-t distribution with ν = 2α + n degrees of freedom and σ2 =
Sβ
1

ν−1 .
Computing the next integral follows the same pattern presented in eq. (30)

∫
p(X1 = y|do(X2 = x),G2, w, τ21 )p(w, τ21 , τ22 |,G2,Dobs) d(τ

2
1 ) d(τ

2
2 ) dw ∝∫

1√
2πτ21

exp
(
− y2

2τ21

)
p(Dobs|w, τ21 , τ22 )p(w|τ22 )p(τ21 )p(τ22 ) d(τ21 ) d(τ22 ) dw ∝

(S1 +
1
η )

α+n−1
2

(2β + S1 + y2)α+
n−1
2

· 1[
(2β + S2)(S1 +

1
η )− (S12)2

] ∝ 1

(1 + y2

Sβ
1

)α+
n−1
2

, (32)
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which is again a scaled Student-t distribution with σ2 =
Sβ
1

ν−1 and ν degrees of freedom. Finally,
using similar steps as in eq. (27), the last term is

∫
p(X1 = y|do(X2 = x),G1, w, τ21 )p(w, τ21 , τ22 |,G1,Dobs) d(τ

2
1 ) d(τ

2
2 ) dw ∝∫

1√
2πτ21

exp
(
− (y − wx)2

2τ21

)
p(Dobs|w, τ21 , τ22 )p(w|τ21 )p(τ21 )fpτ22 ) d(τ21 ) d(τ22 ) dw ∝

1[
(S2 + x2 + 1

η )(2β + S1 + y2)− (S12 + xy)2
]α+n

2
, (33)

where the denominator is always bounded away from 0 as in eq. (28). By completing the square,
we obtain another scaled and shifted student-t distribution with ν = 2α+ n, µ1−2(x) and σ2

1−2(x)
defined in eq. (34). Then, combining eqs. (27) to (33) we obtain the result.

Similarly, we show

p(X2 = y|do(x),Dobs) = p(G2|Dobs)t(ν, µ2−1(x), σ2−1(x)) + (1− p(G2|Dobs))t

(
ν, 0,

√
Sβ
2

ν − 1

)
with

µ2−1(x) :=
xS12

Sη
1

and σ2
2−1(x) :=

Sη
1 (S

β
2 S

η
1 − S2

12) + x2(Sβ
2 S

η
1 − S2

12)

(Sη
1 )

2ν
. (34)

Remark: We employ asymmetric priors for τ21 and τ22 to ensure that the posterior assigns equal
probability to the models G1 and G2, which belong to the same Markov equivalence class. In particular,
setting 2β = η results in Sη

1 = Sβ
1 and Sη

2 = Sβ
2 , which implies that the posterior distribution over

graphs, [
p(G1 | Dobs), p(G2 | Dobs), p(G3 | Dobs)

]
,

takes the form:

1

c

[
1

(Sβ
1 S

β
2 − S2

12)
ν/2

,
1

(Sβ
2 S

β
1 − S2

12)
ν/2

,
1

(Sβ
1 )

(ν−1)/2(Sβ
2 )

ν/2

]
, (35)

where c is a normalising constant.

This setup corresponds to the prior structure proposed by Geiger and Heckerman [22, Equation 12],
obtained by setting the precision matrix T in the Wishart distribution to the identity. As noted in their
Geiger and Heckerman [22, Section 4], a change of variables transforms the Wishart prior on the
covariance of X into the prior used here for the weights w and error variances τ21 and τ22 .

Assuming a true data-generating mechanism, the posterior concentrates on its Markov equivalence
class. If the true graph is G1 or G2, then p(G1|Dobs) = p(G2|Dobs) → 1/2. Conversely, if G3 is the
true graph, then p(G3|Dobs)→ 1[12, 65, 14].

The degrees of freedom, ν = α + n, grow with the sample size n, so the corresponding Student-t
distributions converge to Gaussians in the large-sample regime.

B.2 Three-node Experiments

In the three-node experiments (section 5.3) we use two datasets with two different functional mecha-
nisms fi(·) as defined in eq. (1): one sampled from a GP prior, and one based on neural networks.
In both cases, we sample Erdős–Rényi graphs with graph degree chosen uniformly from {1, 2, 3}.
Following Ormaniec et al. [49], we standardise all variables upon generation.
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GP functional mechanism To model fi(·) we use a GP with a squared exponential kernel, with a
randomly sampled lengthscale for each parent set PAi of size |PAi|. More specifically, we sample
the lengthscale from a log- distribution {λp}|PAi|

p=1 ∼ Log(−1, 1), followed by clipping between
λp = clip(λp, 0.1, 5) to ensure that a too long lengthscale does not result in independence of the
variable from a parent. This defines the kernel matrix between the n-th and m-th samples as:

Knm = exp(−(PAn
i − PAm

i )TΛ−1(PAn
i − PAm

i )),

with Λ := Diag(λ1, . . . , λ|PAi|). We then add noise with variance σ2 ∼ Gamma(1, 5) and sample
the variables as follows

Xi ∼ N (0,K+ σ2I)

Neural network-based functional mechanism We sample each variable as follows

ηi ∼ N (0, 1)

Xn
i ∼ ResNetθ([PA

n
i , ηi]) + σϵ,

where σ2 ∼ Gamma(1, 10), ϵ ∼ N (0, 1). ResNetθ is a residual neural network with a randomly
sampled number of blocks Nblocks ∼ U{1, . . . , 8} and randomly sampled hidden dimension dhidden ∼
U{25, 26, 27, 28}. We use the GELU [27] activation function.

B.3 Higher-dimensional experiments

For the higher dimension experiments in section 5.4, we generate the training data for MACE-TNP
as follows:

• We sample number of variables D ∼ U [5, 40].
• We sample a type of graph, either an Erdős–Rényi graph or a scale-free graph [3].
• The density of the graph (number of edges) is sampled from U

[
D
2 , 6D

]
.

• For each node, we sample a functional mechanism randomly from either a GP with an
additional latent variable input, or a Neural network with an additional latent variable input:

– GP with latent: We sample a latent ηi ∼ N (0, 1), and lengthscales {λp}|PAi|+1
p=1 ∼

Log(−0.5, 1), where PAi denotes the set of parents of node index i. Functions are
sampled from a squared expoenential kernel with ηi included as an input and Gaussian
noise added with variance σ2 ∼ Gamma(1, 5).

– NN with latent:

ηi ∼ N (0, 1)

Xn
i ∼ NNθ([PA

n
i , ηi]) + σϵ,

where σ2 ∼ Gamma(1, 10), ϵ ∼ N (0, 1). NNθ denotes a randomly initialised neural
network with 128 hidden dimensions and one hidden layer.

Using a latent as an input ensures that the final distribution is not Gaussian. Following Ormaniec
et al. [49], we standardise all variables during the data generation process.

For testing for each variable size in table 2, we only generate Erdős–Rényi graphs with density 4D.
This is to test the performance of the baselines and our method in the difficult dense graph case. The
rest of the data generation process is the same as the training data.
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C Experimental Details

This section provides additional details and results for the experiments presented in Section 5.

C.1 Architecture, training details and hardware

Throughout our experiments we use H = 8 attention heads, each of dimension DQ = DKV =
dmodel/8. The MLPs used in the encoding use two layers and a hidden dimension of dembed = dmodel.
Unless otherwise specified, we use a learning rate of 5× 10−4 with a linear warmup of 2% of the
total iterations, and a batch size of 32.

To train MACE-TNP, we randomise the number of observational samples Nobs ∼ U{50, 750}, and
set Nint = 1000−Nobs. The training loss is evaluated on these Nint samples. For testing, we sample
500 observation points and compute the loss against 500 intervention points.

Two-node linear Gaussian model We use L = 2 transformer encoder layers, where each trans-
former encoder layer involves the attention over samples, followed by attention over nodes. The
model dimension is dmodel = 128, and feedforward width dff = 128. We train the model for 1 epoch
on 50.000 datasets and test on 100 datasets. Training takes roughly 60 minutes on a single NVIDIA
GeForce RTX 2080 Ti GPU 11GB, and testing is performed in less than 5 seconds.

Three-node experiments For the experiment in the main paper, we use L = 2 transformer encoder
layers, a model dimension dmodel = 128, and feedforward width dff = 128. We train the model for 2
epochs on 50.000 datasets for the GP experiment and 100.000 datasets for the NN one, and test on
100 datasets in both cases. When testing the OOD performance, we train on the union of the two
datasets for 2 epochs. Training the models described in the main text required roughly 4− 6 hours of
GPU time; however, because we ran them on a shared cluster, actual runtimes may vary with cluster
utilization.

Higher dimensional and Sachs experiments For the higher dimensional experiments we use
L = 4 encoder layers. The model dimension is dmodel = 256 with feedforward dimension dff = 1024.
We train the model on data generated as listed in appendix B.3, with 2, 500, 000 datasets in total. The
model was trained on an NVIDAI A100 80GB GPU for 2 epochs which took roughly 20 hours. We
use the model trained for the higher dimensional experiment for the Sachs experiment.

Hardware For the two- and three-node experiments, we ran both training and inference on a single
NVIDIA GeForce RTX 2080 Ti (11 GB) with 20 CPU cores on a shared cluster. The only exception
was for our largest three-node GP and NN models (with dmodel = 1024), where we used a single
NVIDIA RTX 6000 Ada Generation (50 GB) paired with 56 CPU cores; those models required
roughly 25 GB of GPU memory. For the higher-node experiments, we used a single NVIDIA A100
80GB GPU, as well as an RTX 4090 24GB GPU.

C.2 Additional Results

C.2.1 Two-node Linear Gaussian Model

We study the performance of MACE-TNP in both identifiable and non-identifiable causal settings by
generating data according to the models described in appendix B.1.1 and appendix B.1.2, respectively.
For all experiments, we set σ = σw = 1 in the identifiable case and α = 3, η = 2β = 1 in the
non-identifiable case. We investigate at different interventional queries, x, how the NP predicted
distributions compare with the analytical ones as a function of the observational sample size. For
simplicity, for the first model B.1.1 we consider an NP which outputs a mixture of 2 components,
while for the second model B.1.2, the NP approximates the true analytical distribution using 3
components.

The flexibility of our architecture also allows for conditional queries, multiple interventions, as well
as easily incorporating interventional data to help identify causal relations. Hence, we investigate here
whether providing a small number Mint = 5 of true interventional samples, alongside the observational
data, resolves identifiability challenges in the non-identifiable case. As already shown in fig. 3 (right)
with the green line and discussed in section 5.1, we find that adding extra interventional data
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does indeed lower the KL(pBCM (xi|do(xj), f
∗,G∗)∥pθ(xi|do(xj),Dobs, {xn

i }Mint
n=1)), suggesting

that even limited interventions can enhance identifiability. We also test this with an increasing number
of interventional samples in fig. 6. As soon as the interventional information is rich enough (Mint ∈
{50, 300}), the NP recovers the interventional disribution of the true data-generating mechanism
even with little to no observational data, as indicated by the near-flat KL curves. We note that the KL
divergence between two Gaussian mixtures (or between a Student-t mixture and a Gaussian mixture)
lacks a closed-form expression. Therefore, we approximate it in our experiments by averaging 1000
Monte Carlo estimates of the log-density ratio.

Then, we show in fig. 7 two examples where the intervention is made at x = 1 for the identifiable
model and at x = 2 for the non-identifiable model. A clear distinction is observed between the two
settings: for the identifiable case, the analytical posterior interventional distribution is a mixture of
two Gaussian distributions, which, at high observational sample sizes, converges to a single Gaussian
(i.e. because the observational data gives information regarding the causal structure, the weight
corresponding to one mode collapses to 0). In contrast, for the non-identifiable case, the posterior
places equal mass on both G1 and G2, and therefore, the mixture structure persists across both regimes.
In both settings, the NP-predicted distributions closely match the correct interventional distributions,
with accuracy improving as the number of observational samples increases. This improvement is due
to two factors. First, larger sample sizes provide the NP with more information about the underlying
causal model, allowing for enhanced inference. Second, in the non-identifiable case, the posterior
interventional distribution is a mixture of two Student-t distributions with a number of degrees of
freedom proportional to the number of observational samples. Thus, in the high sample regime, the
mixture distribution converges to a mixture of Gaussians, which is the class that parameterises the
output of the NP model.
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Figure 6: Average KL divergence between the interventional distribution of the true generating
mechanism, {G∗, f∗}, and the NP-predicted distribution shown as a function of the observational
sample size for the non-identifiable setting. Results are shown for various interventional sample sizes.
For simplicity, we only report the medians.
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Figure 7: Fitted NP posterior interventional distributions vs. true posterior interventional distributions
for identifiable (left) and non-identifiable models (right) at increasing observational sample sizes (5,
50, 100, 500).

C.2.2 Three-node Experiments

In this section we provide additional results on the three-node experiments where we aim to address
three questions: 1) between the MHSA and MHCA schemes for sample attention introduced in
appendix A.2, which one performs better? 2) Does increasing the number of MoG components
improve performance, and 3) How does the model performance vary with the size of the architecture?

Table 3 shows the results for the two functional mechanisms used in the three-node experiments: GP
and NN-based. For each model configuration, we present four sets of results: for a model trained
on GP and tested on GP (GP / GP), a model trained on NN and tested on NN (NN / NN), and for a
model trained on the combination between the two datasets and tested on each of them (GP+NN /
GP and GP+NN / NN). These results allow us to assess whether the influence of model architecture
is consistent across the functional mechanisms. Notably, models trained on the combined GP+NN
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dataset are able to match—within error—the performance of models trained specifically on either GP
or NN data. This highlights the strength of the meta-learning approach: even when trained on data
generated from diverse functional mechanisms, a single model can generalise effectively across both,
achieving performance comparable to specialised models while also benefiting from broader prior
coverage. We summarise the findings from table 3:

1. MHSA + MHCA outperforms the masked-MHSA strategy for attention over samples.

2. Increasing the number of MoG components increases the performance of MACE-TNP. There
is a larger gap in performance when going from 1 to 3 mixture components, indicating the
importance of allowing the model to output non-Gaussian marginal predictions. Increasing
the number of components to 10 further improves performance, but the gains are not as
significant.

3. Scaling up the model architecture generally leads to decreased NLPID.

4. Training a model on the combination of the two datasets (GP+NN) is able to recover—within
error—the performance on both datasets.

Table 3: Results of MACE-TNP under different architectural configurations. M-SA stands for
Masked-MHSA, while SA+CA indicates the MHSA+MHCA attention mechanism. For each model,
the column name under NLPID indicates the training set / test set (i.e. GP+NN / GP indicates we
trained the model on the GP+NN dataset and tested it on the GP one). We report the mean ± the error
of the mean of the NLPID over 100 datasets.

NLPID (↓)
MoG Attention dmodel dff L GP / GP NN / NN GP+NN / GP GP+NN / NN

1 M-SA 128 128 4 629.0± 20.0 664.1± 16.0 640.1± 17.3 668.3± 17.2
1 SA+CA 128 128 4 617.4± 20.1 664.9± 16.4 629.8± 17.5 688.0± 31.5
3 M-SA 128 128 4 581.8± 21.8 538.9± 19.1 597.6± 19.9 547.1± 17.8
3 SA+CA 128 128 4 569.3± 23.1 540.5± 17.1 582.1± 21.6 540.6± 18.8
10 M-SA 128 128 4 572.1± 21.9 533.2± 18.3 599.4± 20.3 531.5± 19.6
10 SA+CA 128 128 4 563.9± 23.4 527.9± 19.8 583.9± 21.5 531.0± 19.4
10 SA+CA 512 256 8 555.7± 24.6 527.0± 19.1 564.6± 23.6 532.1± 18.4
10 SA+CA 1024 256 8 558.0± 23.9 518.2± 19.7 565.6± 22.3 521.1± 20.8

Finally, table 4 summarises the results for the out-of-distribution (OOD) evaluation for the configura-
tion presented in the main text.

Table 4: Results for the OOD two-node experiment. We show the NLPID (↓) and report the mean ±
the error of the mean over 100 datasets. Each row corresponds to a different functional mechanism
used in the test set (GP / NN).

Training→
Test ↓ GP NN GP+NN

GP 563.9± 23.4 678.0± 10.0 583.9± 21.5
NN 608.3± 17.3 527.9± 19.8 531.0± 19.4

C.2.3 Sachs Full Results

The full set of results for the Sachs dataset are shown in table 5. The MACE-TNP performs
competitively with DECI, and both outperform other methods that use GPs as functional models.
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Table 5: Results for the Sachs dataset [55]. We show the NLPID (↓) and report the mean ± the error
of the mean across 5 interventions and across all 10 nodes used as the outcome for each intervention.
Each row corresponds to a different baseline.

Sachs

MACE-TNP 998.9± 104.9
DiBS-GP 1417.5± 186.7
ARCO-GP 1400.7± 208.7
DECI 1000.9± 133.5
NOGAM+GP 1763.7± 297.4
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