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Abstract

Backpropagation algorithm is indispensable for training modern residual networks
(ResNets) and usually tends to be time-consuming due to its inherent algorithmic
lockings. Auxiliary-variable methods, e.g., the penalty and augmented Lagrangian
(AL) methods, have attracted much interest lately due to their ability to exploit layer-
wise parallelism. However, we find that large communication overhead and lacking
data augmentation are two key challenges of these approaches, which may lead
to low speedup and accuracy drop. Inspired by the continuous-time formulation
of ResNets, we propose a novel serial-parallel hybrid (SPH) training strategy to
enable the use of data augmentation during training, together with downsampling
(DS) filters to reduce the communication cost. This strategy first trains the network
by solving a succession of independent sub-problems in parallel and then improve
the trained network through a full serial forward-backward propagation of data.
We validate our methods on modern ResNets across benchmark datasets, achieving
speedup over the backpropagation while maintaining comparable accuracy.

1 Introduction

Gradient-based algorithms for training ResNets typically require a forward pass of the input data,
followed by back-propagating [41] the gradient to update model parameters, which are often time-
consuming as the depth goes further deeper. As such, many parallelization techniques including, but
not limited to data-parallelism [20], model-parallelism [7], and a combination of both [37, 13, 35, 17]
have been proposed to accelerate the training. Unfortunately, none of them could tackle the scalability
barrier created by the intrinsically serial propagation of data within the network [9], preventing us
from updating layers in parallel and fully leveraging the distributed computing resources.

Note that the backward pass takes roughly twice as long as the forward one and thus recent works
have been focused on breaking the backward locking. One way is to apply the synthetic gradients
to build decoupled neural interfaces [21], however, it fails in training deep convolutional neural
networks (CNNs) [33]. [19] employs the delayed gradients for parameter updates but suffers from
large memory consumption and weight staleness [27]. [18, 45] compensate the gradient delay by
replaying the forward pass, which would incur additional computation cost. Another related work is
the local error learning methods [34, 1, 2, 40, 29], but the objective loss function is not consistent
with the original one and the forward dependency of a particular input data still exists.

Due to their ability to exploit layer-wise parallelism in both the forward and backward modes, the
auxiliary-variable methods [4, 46, 6, 43, 47, 32, 25] have attracted much interest lately but is found to
suffer from accuracy drop when training deep CNNs [11]. In other recent works [9, 38, 23], based on
the similarity of ResNets training to the optimal control of nonlinear systems [8], parareal method for
solving differential equations is employed to replace the forward and backward passes with iterative
multigrid schemes. Since the feature maps need to be recorded and then used in a subsequent process
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arg min {classification loss |ResNet + input images}

arg min {terminal loss | neural ODE + initial values}

arg min {terminal loss + intermediate penalties | local neural ODEs + auxiliary variables}

arg min {classification loss + stage-wise synthetic losses | stacked layers + auxiliary variables}

gdiscrete to continuumg

parallel-in-time or parareal methods

gcontinuum to discreteg

Figure 1: A dynamical systems view of the construction of layer-parallel training algorithms.

to solve the adjoint equations, experiments were conducted on simple ResNets across small datasets.
So far, to the best of our knowledge, it is uncertain that whether these auxiliary-variable methods can
be effectively and efficiently applied to modern deep networks across real-world datasets.

In this work, we observe that there are two key issues that prevent us from attaining good practical
performance via auxiliary-variable methods. The accuracy drop of trained model is mainly due to
the lack of data augmentation, which is hard to implement at the presence of auxiliary variables.
Moreover, data communication is another potential issue that may hamper the speed-up ratio, which
was not adequately addressed in previous studies since most implementations were conducted only on
CPUs. Based on these observations and inspired by the continuous-time reformulation of ResNets, we
propose a novel DS-SPH training strategy that alternates between the traditional layer-serial training
with data augmentation and the layer-parallel training in a reduced parameter space. Experimental
results are carried out to demonstrate the effectiveness and efficiency of our proposed methods.

2 Method

Preliminaries Based on the concept of modified equations [8] or the variational analysis using Γ-
convergence [44], training of ResNets from the scratch [14], i.e.,

arg min
{W`}L−1

`=0

{
ϕ(XL)

∣∣∣X0 =S(y), X`+1 =X`+F (X`,W`) for 0 ≤ ` ≤ L
}

(1)

can be regarded as the discretization of a terminal control problem governed by the neural ODE [5]

arg min
ωt

{
ϕ(x1)

∣∣∣x0 = S(y), dxt = f(xt, wt)dt on (0, 1]
}

(2)

where ϕ(·) denotes the classification loss function (see Appendix A for notation description). Fur-
thermore, the continuous-time counterpart of the most commonly used backpropagation algorithm
[16] for solving (1) is handled by the adjoint and control update equations for finding the extremal of
problem (2) [26] (see Appendix A for more details).

As a direct result, the locking effects (i.e., the forward, backward, and update lockings) [21] inherited
from the serial propagation of data across all the building layers can be recast as the necessity of
solving both the forward-in-time neural ODE (2) and a backward-in-time adjoint equation in order
to perform the control updates (see Appendix A). Therefore, parallelizing the iterative system for
solving the continuous-time optimization problem (2), e.g., the parallel-in-time or parareal methods
[31, 3], is a promising approach to achieve forward, backward, and update unlocking (see Figure 1).

To employ K ∈ N+ independent processors for the evolution of neural ODE in (2), we introduce a
partition of [0, 1] into several disjoint intervals (see Figure 2), i.e., 0 = s0 < . . . < sk < . . . < sK =

1, and define piecewise states {xkt }K−1
k=0 such that the underlying dynamic evolves according to 1

xk
s+k

= λk, dxkt = f(xkt , w
k
t )dt on (sk, sk+1], (3)

i.e., the continuous-time forward pass that originates from auxiliary variable λk and with control
variable wkt . This immediately implies that the optimization problem (2) can be reformulated as

arg min
{wkt }

K−1
k=0

{
ϕ(xK−1

s−K
)
∣∣∣xk−1

s−k
= λk and xk

s+k
= λk, dx

k
t = f(xkt , w

k
t )dt on (sk, sk+1]

}
(4)

1Here, xk
s+
k

and xk
s−
k

refer to the right and left limits of the possibly discontinuous function xkt at t = sk.
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0 = t0 · · · tn · · · · · · · · · tkn · · · tkn+n · · · · · · · · · tL = 1

0 = s0
s1 · · · sk sk+1 · · · sK = 1

Figure 2: Contrary to the trajectory of neural ODE (blue line), introducing auxiliary variables (solid
red dots) for each sub-interval (red lines) enables a time-parallel computation of the state, adjoint,

and control variables. Note that to approximately recover the original dynamic, violation of equality
constraints (mismatch between solid and hollow red dots) should be penalized in the loss function.

where x−1

s−0
= λ0 = x0. Such an observation offers the possibility of parallelizing the evolution of

dynamical system (3) by relaxing the other constraint, e.g., Figure 2 with external auxiliary variables.

Layer-Parallel Training The discussion above inspires us to loosen the exact connection between
adjacent sub-intervals and add penalties to the objective function, that is,

arg min
{wkt ,λk}

K−1
k=0

{
ϕ(xK−1

s−K
)+β

K−1∑
k=0

ψ(λk, x
k−1

s−k
)
∣∣∣xk

s+k
= λk, dx

k
t = f(xkt , w

k
t )dt on (sk, sk+1]

}
(5)

where β > 0 is a scalar constant and ψ(λ, x) = ‖λ − x‖2`2 the quadratic penalty function. Such a
method has been extensively used due to its simplicity and intuitive appeal [43, 6, 11], however, it
suffers from ill-conditioning when the penalty coefficient becomes large [36].

To make the approximate solution of (5) nearly satisfy the original problem (2) even for moderate
values of coefficient β, we consider the augmented Lagrangian [36] of problem (4), namely,

LAL = ϕ(xK−1

s−K
) +

K−1∑
k=0

(
βψ(λk, x

k−1

s−k
) +

∫ sk+1

sk

pkt
(
f(xkt , w

k
t )− ẋkt

)
dt− κk(λk − xk−1

s−k
)

)
where pkt is the adjoint variable and κk the explicit Lagrange multiplier. Notably, by forcing κk ≡ 0
for any 0 ≤ k ≤ K − 1, the augmented Lagrangian method degenerates the penalty approach.

By calculus of variations [28], the iterative system for solving the relaxed problem (5) is provided in
Appendix B, which leads to a non-intrusive layer-parallel training algorithm (see Appendix C) after
employing the consistent discretization schemes [10] presented in Appendix A (see also Figure 1).

Hybrid Training with Downsampling We note that the introduction of explicit auxiliary variables
can increase concurrency across all the building blocks, but it can also incur additional memory and
communication overheads. This may limit the performance for the exposed parallelism especially in
the setting of fine partitioned models with the use of complicated data augmentation techniques.

One way of reducing the data communication overhead is to design downsampling filters to attenuate
the size of external auxiliary variables. To be specific, instead of transferring the full-size auxiliary
variables between CPU and GPU cores, we can operate with the downsampled data

Λk = DS(λk), or approximately, λk ≈ US(Λk)

to execute the forward pass (3), and hence the problem (5) can now be defined in a reduced space

arg min
{wkt ,Λk}

K−1
k=0

{
ϕ(xK−1

s−K
)+β

K−1∑
k=0

ψ(US(Λk), xk−1

s−k
)
∣∣∣xk
s+k

=US(Λk), dxkt =f(xkt , w
k
t )dt on (sk, sk+1]

}
.

With a slight loss of accuracy, the memory and communication overheads are significantly reduced
when compared with the original method (5). Moreover, the implementation is very straightforward
and can be easily extended to the augmented Lagrangian method (omitted here for simplicity).

Another key observation is that each training sample requires to introduce a group of corresponding
auxiliary variables. When cooperating with the commonly used data augmentation [42], it may incur
prohibitive memory requirements. Unfortunately, most of the existing auxiliary variable methods fail
to address this issue, which often leads to a significant accuracy drop of the trained networks [11].
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layer-parallel training
in reduced parameter space ×m times

layer-serial training
with data augmentation ×n times

Figure 3: Hybrid training strategy.

To enable the use of data augmentation during training,
we propose a serial-parallel hybrid training strategy that
alternatives between the layer-serial and layer-parallel
training modes as depicted in Figure 3. Although the
serial portion hampers the speedup, it can compensate
the constraint violations caused by downsampling and
significantly increase the test accuracy.

3 Experiments

We conduct experiments using ResNet-110 on CIFAR-10 dataset [24] and report results to validate
our methods (see Appendix D for more experimental results, e.g., WideResNet on CIFAR-100 and
image generation task). All our experiments are implemented in Pytorch 1.4 using multiprocessing
library with NCCL backends [39]. The baseline network is split into K pieces of stacked layers and
then distributed on K independent GPUs (Tesla-V100), which is trained for 200 epochs.

Table 1: Memory (GB), test accuracy, and speedup ratio (abbreviated as MEM, ACC, and SUR) of
the proposed methods on ResNet-110 (the baseline model with ACC = 93.7%) across CIFAR-10.

Method MEM ACC SUR

P

K=2 1.53 85.0% 1.41

K=3 4.58 84.5% 1.56

K=4 5.34 84.3% 1.87

DS-P

K=2 0.38 84.2% 1.53

K=3 1.44 83.7% 1.69

K=4 1.64 80.3% 2.01

SPH-P

K=2 1.53 91.8% 1.30

K=3 4.58 91.3% 1.40

K=4 5.34 91.6% 1.59

DS-SPH-P

K=2 0.38 91.8% 1.38

K=3 1.44 91.8% 1.48

K=4 1.64 91.5% 1.67

Method MEM ACC SUR

AL

K=2 3.05 85.7% 1.36

K=3 9.12 85.2% 1.49

K=4 10.68 83.7% 1.64

DS-AL

K=2 0.57 84.1% 1.42

K=3 2.29 83.7% 1.58

K=4 2.67 80.0% 1.74

SPH-AL

K=2 3.05 91.8% 1.27

K=3 9.12 91.4% 1.35

K=4 10.68 91.2% 1.45

DS-SPH-AL

K=2 0.57 91.6% 1.31

K=3 2.29 91.5% 1.41

K=4 2.67 91.0% 1.51

Table 2: ACC and SUR of ResNet-110 on CIFAR-10.

m : n (in the case of K=4)

4 : 1 2 : 3 3 : 2 1 : 4

DS-SPH-P
ACC 91.5% 92.2% 93.1% 93.6%
SUR 1.67 1.43 1.25 1.11

DS-SPH-AL
ACC 91.0% 92.0% 92.8% 93.6%
SUR 1.51 1.34 1.20 1.09

As can be seen from Table 1, a straight-
forward implementation of the penalty
(abbreviated as P) and AL methods re-
quires a large memory capacity for stor-
ing the auxiliary variables and suffers
from accuracy drop, which can be atten-
uated through the use of DS and SPH
(m = 4n) methods. To further improve
the accuracy, one can increase the serial
portion but at the cost of slowing down
the training process (see Table 2).

4 Conclusion

In this paper, we observed that the key issues that hampered the practicality of auxiliary-variable
methods were data augmentation and communication. We then proposed a novel hybrid training
strategy combined with downsampling to resolve these issues, and demonstrated the effectiveness of
the proposed method on training large ResNets on CIFAR datasets. Potential future directions include
investigation on the proposed method with more heavy duty deep ResNets, larger number of stages,
exploring other choices of downsampling operators, other layer-parallel training algorithms, etc.
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Supplementary Materials

A Layer-Serial Training of Residual Networks

Without loss of generality, we consider the benchmark residual learning framework [14, 15] that assigns pixels
in the raw input image to categories of interest as depicted in Figure 4. Its continuous-time analogue [44, 8] is
then introduced to bridge such an image classification task with a terminal control problem constrained by the
so-called neural ordinary differential equation [5].

X` conv conv + X`+1· · ·X0 = S(y) · · · XL

y ∈ Ω T (XL) h(y)

BN
ReLU

identity mapping

BN
ReLU

input layer output layer

cross
entropy

Figure 4: A diagram describing the serial training process of a pre-activation ResNet.

Given a human-labeled database {y, h(y)}y∈Ω, the optimization of model parameters requires solving (1), i.e.,

arg min
{W`}

L−1
`=0

{
Ey∈Ω

[
‖T (XL)− h(y)‖

] ∣∣∣X0 = S(y), X`+1 = X` + F (X`,W`) for 0 ≤ ` ≤ L− 1
}

where X` indicates the input feature map of the `-th building module, L ∈ N+ the total number of modules, F
typically a composition of linear and nonlinear functions as depicted in Figure 4, W` the network parameters
to be learned, and ‖·‖ a given metric measuring the discrepancy between the model prediction T (XL) and the
ground-truth label h(y) for each training sample y ∈ Ω. The trainable parameters of input and output layers, i.e.,
S and T in Figure 4, are assumed to be fixed [12] for the ease of illustration.

When the most commonly used backpropagation algorithm [16] is applied to solving the optimization problem
(1), we obtain the formula for parameter updates, i.e.,

W` ←W` − η
∂ϕ(XL)

∂W`
= W` − η

∂ϕ(XL)

∂X`+1

∂X`+1

∂W`
, 0 ≤ ` ≤ L− 1, (6)

where η > 0 is the learning rate and ϕ(XL) = Ey∈Ω

[
‖T (XL)− h(y)‖

]
2.

Note that by defining P`+1 =
∂ϕ(XL)

∂X`+1
for 0 ≤ ` ≤ L− 1, formula (6) can be rewritten as

W` ←W` − η
(
P`+1

∂F (X`,W`)

∂W

)
, 0 ≤ ` ≤ L− 1, (7)

where {P`+1}L−1
`=0 satisfy a backward dynamic that captures the objective changes with respect to the hidden

neurons, i.e.,

P` = P`+1
∂X`+1

∂X`
= P`+1 + P`+1

∂F (X`,W`)

∂X
, PL =

∂ϕ(XL)

∂XL
. (8)

To put it differently, the full layer-serial backpropagation algorithm (6) is handled by formulae (8) and (7). As
such, the training of ResNets at each iteration step requires the repeated execution of

• forward pass in (1) • backward gradient propagation (8) • parameter updates (7)

which can be very time-consuming as it is common to see neural networks with hundreds or even thousands of
layers.

A.1 Optimal Control of Neural Ordinary Differential Equations

The continuous-time counterpart of the minimization problem (1) is formulated as (2), that is,

arg min
ωt

{
Ey∈Ω

[
‖T (x1)− h(y)‖

] ∣∣∣x0 = S(y), dxt = f(xt, wt)dt for 0 < t ≤ 1
}

where the forward propagation through the underlying network with fixed parameters, i.e., the constraint of (1)
is interpreted as a numerical discretization of differential equations [8, 30, 5].

2Though the population risk is of primary interest, we only have access to the empirical risk in practice. For
notational simplicity, we still denote by ϕ(·) the objective function obtained from a mini-batch of the entire
training data throughout this work.
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By introducing the Lagrange functional with multiplier pt [36], solving the constrained optimization problem
(2) is equivalent to finding saddle points of the following Lagrange functional without constraints3

L(xt, wt, pt) = ϕ(x1) +

∫ 1

0

pt (f(xt, wt)− ẋt) dt

= ϕ(x1)− p1x1 + p0x0 +

∫ 1

0

ptf(xt, wt) + ṗtxt dt.

and the variation in L(xt, wt, pt) corresponding to a variation δw in control w takes on the form [28]

δL =

[
∂ϕ(x1)

∂x
− p1

]
δx+

∫ 1

0

(
pt
∂f(xt, wt)

∂x
+ ṗt

)
δx+

(
pt
∂f(xt, wt)

∂w

)
δw dt,

which leads to the necessary conditions for wt = w∗t to be the extremal of L(xt, wt, pt), i.e.,

dx∗t = f(x∗t , w
∗
t )dt, x∗0 = S(y), (state equation)

dp∗t = −p∗t
∂f(x∗t , w

∗
t )

∂x
dt, p∗1 =

∂ϕ(x∗1)

∂x
, (adjoint equation)

p∗t
∂f(x∗t , w

∗
t )

∂w
= 0, 0 ≤ t ≤ 1. (optimality condition)

However, directly solving this optimality system is computationally infeasible due to the so-called curse of
dimensionality, a gradient-based iterative approach with step size η > 0 is typically used, e.g.,

dxt = f(xt, wt)dt, x0 = S(y), (forward pass) (10a)

dpt = −pt
∂f(xt, wt)

∂x
dt, p1 =

∂ϕ(x1)

∂x
, (backward gradient propagation) (10b)

wt ← wt − η
(
pt
∂f(xt, wt)

∂w

)
, 0 ≤ t ≤ 1, (parameter updates) (10c)

which is consistent with the layer-serial training of ResNet through forward-backward propagation, i.e., (1), (8)
and (7), by taking the limit as L→∞ [26]. In other words, the backprapagation method (6) can be recovered
from (10b) and (10c) by employing the stable discretization schemes (8) and (7).

As a result, the locking effects [21] for training feedforward neural networks, i.e.,

(i) forward locking: no module can process its incoming data before the previous node in the directed
forward network have executed;

(ii) backward locking: no module can capture the objective changes with respect to its activation layer
before the previous node in the backward network have executed;

(iii) update locking: no building modules can be updated before all the dependent nodes have executed in
both the forward and backward modes;

can be recast as the necessity of solving both the neural ODE in (2) and a backward-in-time adjoint equation
(10b) in order to perform the control updates (10c).

This connection not only brings us a dynamical system view of the locking effects but also provides a way to
consistently discretize the iterative system (10b) and (10c) for solving the continuous-time optimization problem
(2). Therefore, breaking the locking issues, or, equivalently, parallelizing the iterative system for solving (2) is a
promising approach to speed up the network training.

B Augmented Lagrangian Method

Recall that the neural ODE-constrained optimization problem (2) can be reformulated as (4), that is,

arg min
{wkt }

K−1
k=0

{
ϕ(xK−1

s−
K

)
∣∣∣xk−1

s−
k

= λk and xk
s+
k

= λk, dx
k
t = f(xkt , w

k
t )dt on (sk, sk+1] for 0 ≤ k ≤ K − 1

}
,

whose the augmented Lagrangian functional is expressed as

LAL(xkt , p
k
t , w

k
t , λk, κk) = ϕ(xK−1

s−
K

) +

K−1∑
k=0

(
βψ(λk, x

k−1

s−
k

)− κk(λk − xk−1

s−
k

) +

∫ sk+1

sk

pkt
(
f(xkt , w

k
t )− ẋkt

)
dt

)

= ϕ(xK−1

s−
K

) +

K−1∑
k=0

(
βψ(λk, x

k−1

s−
k

)− κk(λk − xk−1

s−
k

)− pk
s−
k+1

xk
s−
k+1

+ pk
s+
k
λk +

∫ sk+1

sk

pkt f(xkt , w
k
t ) + ṗkt x

k
t dt

)
.

3For notational simplicity, dxt
dt

and ẋt are used to denote the time derivative of xt throughout this work.
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Specifically, the augmented Lagrangian functional can be decomposed as parts involving xK−1
t and {xkt }K−2

k=0 ,
i.e.,

I = ϕ(xK−1

s−
K

)− pK−1

s−
K

xK−1

s−
K

+ pK−1

s+
K−1

λK−1 +

∫ sK

sK−1

pK−1
t f(xK−1

t , wK−1
t ) + ṗK−1

t xK−1
t dt,

and

II =

K−2∑
k=0

(
βψ(λk+1, x

k

s−
k+1

) + (κk+1 − pks−
k+1

)xk
s−
k+1

+ pk
s+
k
λk +

∫ sk+1

sk

pkt f(xkt , w
k
t ) + ṗkt x

k
t dt− κk+1λk+1

)
respectively, then the variation in L(xkt , p

k
t , w

k
t , λk, κk) corresponding to a variation δwkt in control wkt takes

on the form

δL =

∂ϕ(xK−1

s−
K

)

∂x
− pK−1

s−
K

 δxK−1 +

∫ sK

sK−1

(
pK−1
t

∂f(xK−1
t , wK−1

t )

∂x
+ ṗK−1

t

)
δxK−1 dt

+

K−2∑
k=0

β ∂ψ(λk+1, x
k

s−
k+1

)

∂x
+ κk+1 − pks−

k+1

 δxk +

∫ sk+1

sk

(
pkt
∂f(xkt , w

k
t )

∂x
+ ṗkt

)
δxk dt

 ,
which implies that the adjoint variable pkt satisfies the backward differential equations (11) [28], namely,

dpkt = −pkt
∂f(xkt , w

k
t )

∂x
dt on [sk, sk+1),

pk
s−
k+1

= (1− δ)

β ∂ψ(λk+1, x
k

s−
k+1

)

∂x
+ κk+1

+ δ
∂ϕ(xk

s−
k+1

)

∂x
,

(11)

for any 0 ≤ k ≤ K − 1. Here and in what follows δ = δk,K−1 represents the Kronecker Delta function.

Moreover, it can be easily deduced from the augmented Lagrangian functional that the control updates satisfy

wkt ← wkt − η
(
pkt
∂f(xkt , w

k
t )

∂w

)
on [sk, sk+1] (12)

for 0 ≤ k ≤ K − 1, while the correction of auxiliary variables takes on the form

λ0 ≡ x0 and λk ← λk − η

(
β
∂ψ(λk, x

k−1

s−
k

)

∂λ
+ pk

s+
k
− κk

)
for 1 ≤ k ≤ K − 1. (13)

Notably, by choosing a quadratic penalty function ψ(λ, x) = ‖λ− x‖2`2 , formula (13) shows that the constraint
violations associated with the minimizer of augmented Lagrangian method satisfy for 1 ≤ k ≤ K − 1,

λk − xk−1

s−
k

≈ 1

2β
(κk − pks+

k
) (14)

which offers two ways of improving the consistency constraint xk−1

s−
k

= xk
s+
k

: increasing β or sending κk → pk
s+
k

,

whereas the penalty method (by forcing κk ≡ 0 in (14), see also the formula (19) below) provides only one
option. Moreover, it can be deduced from (14) that the update rule of explicit Lagrange multipliers satisfy

κ0 ≡ 0 and κk ← κk −
η

2β

(
λk − xk−1

s−
k

)
for 1 ≤ k ≤ K − 1. (15)

In short, the augmented Lagrangian method for approximately solving problem (2) at each iteration step includes

• local operations (3), (11), (12) in parallel • global communication (13), (15)

which not only parallelizes the iterative system (10) for solving (2) but also lessens the the issue of coefficient
tuning.

B.1 Penalty Method

Note that by forcing κk ≡ 0 for any 0 ≤ k ≤ K − 1, the augmented Lagrangian method degenerates to a
penalty method. Specifically, it can be deduced from (11) that the adjoint equation for relaxed minimization
problem (5) takes on the form

9



dpkt = −pkt
∂f(xkt , w

k
t )

∂x
dt on [sk, sk+1),

pk
s−
k+1

= (1− δ)β
∂ψ(λk+1, x

k

s−
k+1

)

∂x
+ δ

∂ϕ(xk
s−
k+1

)

∂x
,

(16)

for 0 ≤ k ≤ K − 1. Moreover, by (12) and (13) , the update rule for control variables now satisfies for
0 ≤ k ≤ K − 1,

wkt ← wkt − η
(
pkt
∂f(xkt , w

k
t )

∂w

)
on [sk, sk+1], (17)

while the correction of auxiliary variables is given by

λ0 ≡ x0 and λk ← λk − η

(
β
∂ψ(λk, x

k−1

s−
k

)

∂λ
+ pk

s+
k

)
for 1 ≤ k ≤ K − 1. (18)

In short, the penalty approach (5) for approximately solving problem (2) at each iteration consists of

• local operations (3), (16), (17) in parallel • global communication (18)

which parallelizes the iterative system (10) for solving (2).

In particular, by choosing the quadratic penalty function ψ(λ, x) = ‖λ − x‖2`2 as before, it can be deduced
from (18) that the constraint violations associated with the approximate minimizer of problem (5) satisfies for
1 ≤ k ≤ K − 1,

λk − xk−1

s−
k

≈ − 1

2β
pk
s+
k

(19)

which implies that a large penalty coefficient β is needed in order to force the minimizer of (5) close to the
feasible region of problem (2). By employing the augmented Lagrangian method (14), the ill-conditioning of
penalty method can be lessened without increasing the penalty coefficient indefinitely, however, the introduction
of external Lagrangian multipliers {κk}K−1

k=0 requires additional memory and communication overheads that
may hamper the speed-up ratio.

C Parallel Backpropagation and Communication

By utilizing the consistent finite difference schemes (see Appendix A) for the discretization of the time-parallel
iterative systems established in Appendix B, we arrive at a layer-parallel training algorithm that enables us to
fully leveraging the computing resources. The detailed derivations are presented in what follows.

Recall the partitioning of [0, 1] associated with the original ResNet (1), i.e.,

0 = t0 < t1 < . . . < t` = `∆t < t`+1 < . . . < tL=nK = 1,

then the local sub-problem is built by choosing a coarsening factor n > 1 and extracting every n-th module as
depicted in Figure 2, or, equivalently, the forward Euler discretization of neural ODE with the coarser gird

t0 = s0 < . . . < sk = tnk < sk+1 < . . . < sK = tL,

which can be implemented independently and trained with low accuracy at a correspondingly low cost4.

To be specific, [sk, sk+1] is uniformly divided into n sub-intervals for 0 ≤ k ≤ K − 1, i.e.,

sk = tkn < tkn+1 < · · · < tkn+n−1 < tkn+n = sk+1,

we have by (3) that feature flow of the k-th sub-network evolves according to

Xk
kn = λk, Xk

kn+m+1 = Xk
kn+m + F (Xk

kn+m,W
k
kn+m) (20)

where 0 ≤ m ≤ n − 1. Then by using the particular numerical scheme (8) that arises from the discrete-to-
continuum transition, the discretization of the adjoint equation (11) is given by a backward dynamic

P kkn+m = P kkn+m+1 + P kkn+m+1

∂F (Xk
kn+m,W

k
kn+m)

∂X
= P kkn+m+1

∂Xk
kn+m+1

∂Xk
kn+m

,

P kkn+n = (1− δ)

(
β
∂ψ(λk+1, X

k
kn+n)

∂X
+ κk+1

)
+ δ

∂ϕ(Xk
kn+n)

∂X
.

(21)

4The trainable parameters in the input and output layers, i.e., S and T , can be automatically updated by
coupling into the first and last sub-problems respectively.
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In other words, for any interval [sk, sk+1] and arbitrary 0 ≤ m ≤ n, the adjoint variable in (21) is equivalent to

P kkn+m = (1− δ)

(
β
∂ψ(λk+1, X

k
kn+n)

∂Xk
kn+m

+ κk+1
∂Xk

kn+n

∂Xk
kn+m

)
+ δ

∂ϕ(Xk
kn+n)

∂Xk
kn+m

(22)

which captures the objective and layer-wise synthetic loss changes, namely, the second and the first term on the
right-hand-side of (22), with respect to the latent states for k = K − 1 and 0 ≤ k ≤ K − 2, respectively.

Contrary to the straightforward approach [31, 9] where the iterations are executed by first solving state equation
(3), then adjoint equation (16) afterwards, and finally control updates (17), we conduct the control updates
simultaneously with the solution of adjoint equation after solving the state equation.

Specifically, to discretize the update rule for control variables (12) for any 0 ≤ k ≤ K − 1, i.e.,

wkt ← wkt − η
(
pkt
∂f(xkt , w

k
t )

∂w

)
on [sk, sk+1],

we adopt the numerical scheme (7) to guarantee the accurate gradient information [10], that is,

W k
kn+m ←W k

kn+m − η

(
P kkn+m+1

∂F (Xk
kn+m,W

k
kn+m)

∂W

)

= W k
kn+m − η

(
(1− δ)

(
β
∂ψ(λk+1, X

k
kn+n)

∂Xk
kn+m+1

+ κk+1
∂Xk

kn+n

∂Xk
kn+m+1

)
+ δ

∂ϕ(Xk
kn+n)

∂Xk
kn+m+1

)
∂Xk

kn+m+1

∂W k
kn+m

= W k
kn+m − η

(
(1− δ)

(
β
∂ψ(λk+1, X

k
kn+n)

∂W k
kn+m

+ κk+1
∂Xk

kn+n

∂W k
kn+m

)
+ δ

∂ϕ(Xk
kn+n)

∂W k
kn+m

)
(23)

where the second equality holds by (20) and (22). Next, we have by (13) and (22) that the correction of auxiliary
variables satisfies λ0 ≡ x0 and

λk ← λk−η

(
β
∂ψ(λk, X

k−1
kn )

∂λ
+ (1− δ)

(
β
∂ψ(λk+1, X

k
kn+n)

∂Xk
kn

+ κk+1
∂Xk

kn+n

∂Xk
kn

)
+ δ

∂ϕ(Xk
kn+n)

∂Xk
kn

− κk

)
(24)

for 1 ≤ k ≤ K − 1, while the update rule (15) for Lagrangian multiplier κk is given by

κ0 = 0 and κk ← κk −
η

2β

(
λk −Xk−1

kn

)
(25)

for 1 ≤ k ≤ K − 1. Clearly, operations (24) and (25) require communication between adjacent layers which
can impede the performance of parallel computations.

Consequently, the layer-parallel training approach for solving (1) can be formulated as the operations

• local forward pass and backpropagation (20), (23) • global communication (24), (25)

at each iteration, which breaks the forward, backward and update locking issues [21].

C.1 Non-intrusive Implementation Details

The stage-wise parallel training approach is summarized in algorithm 1 for deep residual learning, which can
be applied in a non-intrusive way w.r.t. the existing network architectures 5. Besides, we denote by K = 1 the
traditional method using the full serial forward-backward propagation.

Downsampling for Data Communication Note that for each iteration of algorithm 1, the computational time
associated with the layer-serial (K = 1) and layer-parallel training methods can be summarized as follows:

layer-serial layer-parallel

forward pass tf
1
K
tf

backpropagation tb
1
K
tb + tψ

communication td tλ + tκ

5To clarify the differences between layer-parallel training of fully-connected networks [47] and ResNets, we
refer the readers to Figure 1 and algorithm 1 for technical details.

11



Algorithm 1: Layer-parallel training method for deep residual learning
// Initialization.

[1]divide the ResNet containing L = Kn building modules into K stages (see Figure 2);
[2]generate initial values for network parameters and auxiliary variables;
[3]set multipliers to zero; // switch to penalty method if κk ≡ 0 hereafter
[4]pick a suitable metric, e.g., squared `2-norm, `1-norm or `∞-norm, for penalty function;
[5]choose positive sequences of increasing coefficients {βj}Jj=1 and decreasing tolerances {τj}Jj=1;
[6]schedule proper learning rates for network parameters, auxiliary variables and multipliers;

// Training Procedure.
[7]for j ← 1 to J (number of epochs) do

// decoupled parallel forward-backward propagation on multiple GPUs
foreach mini-batch input data do

parfor k ← 0 to K − 1 do
// forward pass with auxiliary variable loading from CPU
for m← 0 to n− 1 do
Xk
kn = λmb

k , X
k
kn+m+1 = Xk

kn+m + F (Xk
kn+m,Wkn+m)

// backpropagation with synthetic and objective loss functions
for m← n to 0 do

if k 6= K − 1 then

W k
kn+m ←W k

kn+m − η
(
βj
∂ψ(λmb

k+1, X
k
kn+n)

∂W k
kn+m

+ κmb
k+1

∂Xk
kn+n

∂W k
kn+m

)
else

W k
kn+m ←W k

kn+m − η
∂ϕmb(Xk

kn+n)

∂W k
kn+m

// communicate across GPUs and data transmission from GPUs to CPU
for k ← 1 to K − 1 do

while ψ(λmb
k , X

k−1
kn ) > τj do

// update of auxiliary variables
if k 6= K − 1 then

λmb
k ← λmb

k − η
(
βj
∂ψ(λmb

k , X
k−1
kn )

∂λmb
k

+ βj
∂ψ(λmb

k+1, X
k
kn+n)

∂Xk
kn

+ κmb
k+1

∂Xk
kn+n

∂Xk
kn

− κmb
k

)
else

λmb
k ← λmb

k − η
(
∂ϕmb(Xk

kn+n)

∂Xk
kn

− κmb
k

)
// update of Lagrangian multipliers

κmb
k ← κmb

k −
η

2βj

(
λmb
k −Xk−1

kn

)
// for quadratic penalty function

where tf (tb) denotes the time cost of forward pass (backpropagation) using the layer-serial training method, td
the time cost on data loader, tψ the computation time of synthetic loss functions, tλ + tκ the evaluation and
communication time of auxiliary variables. Clearly, the speedup ratio per epoch can be expressed as

ρK =
serial runtime

parallel runtime
=

1
1
K

tf+tb
tf+tb+td

+
tψ+tλ+tκ
tf+tb+td

(26)

where tf , tb, td, tψ , tλ and tκ are almost independent of the model partition number K during training.

For realistic neural networks such as ResNets [14, 15], it is plausible to assume that tf + tb + td > tψ + tλ + tκ,
which immediately shows speed-up over the traditional layer-serial training approach by choosing a sufficient
large value of K. Notably, formula (26) also implies that the upper bound of speed-up ratio is given by

ρK <
tf + tb + td
tψ + tλ + tκ

,

namely, the communication becomes the performance bottleneck as the model is partitioned more finely, which
motivates us to reduce the data communication overhead in order to further accelerate the network training.
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One way to achieve this is to design downsampling (DS) filters to attenuate the size of auxiliary variables. We
can, for instance, take the example of penalty method (5). Instead of transferring the full-size auxiliary variables
between CPU and GPU cores, we can operate with the downsampled data

Λk = DS(λk), or approximately, λk ≈ US(Λk)

to execute the forward pass (3) for 0 ≤ k ≤ K − 1

xk
s+
k

= US(Λk), dxkt = f(xkt , w
k
t )dt on (sk, sk+1]. (27)

For instance, by taking the Kronecker product with an all-ones matrix of size 2× 2 for each slice of the tensor
Λk, we obtain the auxiliary variable λk for forward pass. section 3 will focus on this particular example and we
leave the exploration of other downsampling tools as future work.

As such, the optimization problem is now defined in a reduced parameter space, that is,

arg min
{wkt ,Λk}

K−1
k=0

{
ϕ(xK−1

s−
K

) + β

K−1∑
k=0

ψ(US(Λk), xk−1

s−
k

)
∣∣∣ (27)

}
.

With a slight loss of accuracy, the memory and communication overheads can be significantly reduced compared
with the original method (5). Moreover, the implementation is very straightforward, only requiring an additional
upsampling layer before the execution of forward pass in Algorithm 1, while the backpropagation is automatically
achieved through the standard auto-differentiation. Such a technique can also be easily extended to the augmented
Lagrangian method (omitted here for simplicity).

Hybrid Training for Data Augmentation To justify our argument about the lacking of data augmentation,
we shown some preliminary experimental results by using different ratios ρDA of data augmentation (i.e., the
number of synthetic images to the number of real images), Figure 5 shows the test accuracy of ResNet-110 for
the classification task on CIFAR-10 dataset, where ρDA =∞ denotes the data augmentation containing random
operations. It can be observed that, as ρDA is increased, the accuracy gap between the traditional layer-serial
training method and the proposed layer-parallel training approach is tending to close. However, the memory
requirements for storing all the synthetic training data blows up even for moderate values of ρDA, which is
unaffordable in practical scenarios.
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Figure 5: Test accuracy of trained model using data augmentation.

Unfortunately, most of the existing auxiliary-variable methods fail to address this issue, which often leads to a
significant accuracy drop of the trained networks [11]. To allow the use of data augmentation during training, we
propose a novel serial-parallel hybrid strategy that alternatives between the layer-serial and layer-parallel training
modes as depicted in Figure 3. That is, the layer-parallel training method is performed m times without data
augmentation, followed by n times execution of the layer-serial training method, which improves the network
parameters through the employment of data augmentation.

As an immediate result, the speed-up ratio now gives

ρH =
(m+ n)× ts
m× tp + n× ts

=
1 + γH
1
ρK

+ γH
(28)

where γH = n
m

indicates the hybrid ration, ts = tf + tb + td and tp = 1
K

(ts + tb) + tψ + tλ + tκ are runtime
of the layer-serial and layer-parallel training methods per epoch. Although the serial portions in (28) hamper
the speedup ratio, i.e., ρH < ρK , enabling data augmentation can significantly increase the test accuracy as
shown in Figure 5. Moreover, the constraint violations caused by downsampling, i.e., US(Λk) is applied to
match xk−1

s−
k

in (7) instead of λk, can be adjusted through the layer-serial training procedure, which also works

for applications without the use of data augmentation.

13



D Additional Experiments

To further demonstrate the effectiveness of our proposed methods, we conduct experiments on various network
architectures, training datasets, and learning tasks.

To begin with, we show in Figure 6 the learning curves of ResNet-110 on CIFAR-10 dataset, where K = 3
and γH = 1/4. As can be seen from Figure 6 (right) and Figure 7 (right), a large jump of constraint violation
appears when the training is switched from parallel to serial, which helps improve the trained model through the
use of data augmentation (see Figure 6 (left and middle)). Moreover, by using the same penalty coefficient, the
constraint violation associated with AL method is smaller than that of penalty method (see Figure 6 (right)),
which validates our theoretical analysis (19) and (14).

Baseline As a benchmark model for CIFAR-10 dataset, the network architecture of our baseline ResNet-110 is
constructed as that described in [14], which achieves 93.7% accuracy on the 10k testing images in 200 epochs.
The total number of trainable parameters is around 1.7 million. Model is trained on the 50k training images with
a batch size of 128, a weight decay of 10−4, momentum 0.9 and standard data augmentation. The training starts
with a learning rate of 0.1, and is divided by 10 at 50 and 150 epochs.
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Figure 6: Training loss through the full serial forward pass, testing loss and constraint violation.

D.1 Images Classification

Our methods also work well for WideResNet on CIFAR-100 dataset. The feature map of WideResNet-40-10 is
roughly ten times larger than that of ResNet, which requires more auxiliary variables for training and makes
the parallelization even more challenging. Table 3 implies that the performance gap between the serial training
with data augmentation and vanilla parallel training, which roughly equals to 15%, is much larger than that of
ResNet on CIFAR-10. Our methods can effectively decrease this gap to 4.48% and 3.7% for penalty and AL
approaches, respectively. Furthermore, the speed-up ratio is larger than that of ResNet, say 1.76 compares to
1.48 for DS-SPH-P and 1.62 compares to 1.41 for DS-SPH-AL. This is because a large number of auxiliary
variables naturally lead to larger memory cost and communication overhead, and our DS strategy can reduce
much cost in them so as to exhibits a better speed-up ratio.

Table 3: MEM, ACC and SUR of WideResNet on CIFAR-100, where K = 3 and γH = 1 : 4.

Method MEM ACC SUR Method Memory ACC SUR

Serial w/o DA - 66.53 - Serial with DA - 80.71 -
Penalty 45.77 64.91 1.89 AL 91.55 64.80 1.67
DS-P 11.44 61.06 2.19 DS-AL 22.89 60.84 1.92
SPH-P 45.77 75.25 1.52 SPH-AL 91.55 76.25 1.42
DS-SPH-P 11.44 76.23 1.76 DS-SPH-AL 22.89 76.84 1.62

Learning curves are depicted in Figure 7, and the trade-off between speedup ratio and testing accuracy are shown
in Table 4 and Figure 8.

D.2 Image Generation

To demonstrate that our methods are not limited to image classification, we consider the image generation task in
what follows. A VAE [22] model contains a pair of encoder and decoder. The serial model is implemented based
on ResNet-VAE whose encoder is ResNet-110. The encoder for penalty method and AL method is divided to
three stages and the initial penalty coefficient β is set as 10. We use Adam as an optimizer for all networks with
hybrid ratio γH = 1:4, and the initial learning rate is set as 0.01. To evaluate the generated image, we use the
reconstructing MSE loss between reconstructed images and original images on the test set.
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Figure 7: Training loss through the full serial forward pass, testing loss and constraint violation.

Table 4: ACC and SUR of WideResNet on CIFAR-100.
m : n (in the case of K=3)

4 : 1 2 : 3 3 : 2 1 : 4

DS-SPH-P
ACC 76.23% 78.34% 80.22% 80.69%
SUR 1.76 1.48 1.28 1.12

DS-SPH-AL
ACC 76.84% 78.08% 79.97% 80.37%
SUR 1.62 1.40 1.24 1.11

The results are shown in Table 5. As data augmentation is usually not used in the training of VAE, we omit the
experiments with only SPH. As the results show, the vanilla penalty and AL, in general, can achieve acceptable
performance on VAE, since data augmentation is not essential. However, they still suffer from enormous memory
cost and CPU-GPU communication overhead. DS strategy reduces those costs significantly with a slight drop in
performance. The reconstruction loss reduces from 0.149 to 0.160 for DS-P and from 0.129 to 0.137 for DS-AL.
Combining with SPH, the performance drop caused by DS is almost eliminated. This result shows that SPH
plays a more significant role than merely providing data augmentation. It also helps eliminate the gap between
the real feature map and the auxiliary feature map and get better results, in Figure 9 we show the reconstructed
images sampled from the test set to examine their visual qualities. From the figure, we see that our methods
indeed reconstruct high-quality images.

Table 5: Test loss and SUR on MNIST generation.

METHOD TEST LOSS SUR

BASELINE MODEL 0.126 -

PENALTY 0.149 2.33
AL 0.129 2.18

DS-P 0.160 2.41
DS-AL 0.137 2.25

DS-SPH-P 0.127 1.88
DS-SPH-AL 0.128 1.80
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Figure 8: Accuracy-speed trade-off for different methods. The red-dot line is drawn by early
stopping (ES) the serial training at epochs corresponding to the speed-up ratio.

Figure 9: Reconstruction images in test set. Line-1: Original images; Line-2: Reconstruction from
baseline model; Line-3: Reconstruction from DS-SPH-P; Line-4: Reconstruction from DS-SPH-AL.

16


	Introduction
	Method
	Experiments
	Conclusion
	Layer-Serial Training of Residual Networks
	Optimal Control of Neural Ordinary Differential Equations

	Augmented Lagrangian Method
	Penalty Method

	Parallel Backpropagation and Communication
	Non-intrusive Implementation Details

	Additional Experiments
	Images Classification
	Image Generation


