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Abstract

Attention mechanisms have become a crucial001
aspect of deep learning, particularly in natural002
language processing (NLP) tasks. However, in003
tasks such as constituency parsing, attention004
mechanisms can lack the directional informa-005
tion needed to form sentence spans. To ad-006
dress this issue, we propose a Bidirectional007
masked and N-gram span Attention (BNA)008
model, which is designed by modifying the009
attention mechanisms to capture the explicit010
dependencies between each word and enhance011
the representation of the output span vectors.012
The proposed model achieves state-of-the-art013
performance on the Penn Treebank and Chi-014
nese Treebank datasets, with F1 scores of 96.47015
and 94.15, respectively. Ablation studies and016
analysis show that our proposed BNA model017
effectively captures sentence structure by con-018
textualizing each word in a sentence through019
bidirectional dependencies and enhancing span020
representation.1021

1 Introduction022

The concept of attention has become a major as-023

pect of deep learning, and improving attention is024

essential to enhance the model efficacy. In natu-025

ral language processing (NLP), numerous studies026

that utilize the sequence-to-sequence model have027

achieved significant performance improvements by028

modifying the attention mechanisms to specific029

tasks. Tasks such as summarization (Duan et al.,030

2019; Wang et al., 2018), translation (Zeng et al.,031

2021; Lu et al., 2021), question answering (Wang032

et al., 2021; Chen et al., 2019), and multi-modal033

learning (Nishihara et al., 2020; Liu et al., 2022)034

are examples of the efficacy of such mechanisms035

in improving model performance.036

In the constituency parsing task, which involves037

identifying constituent phrases and their relation-038

ships in a sentence, attention mechanisms, espe-039

1Our code is available at
https://anonymous.4open.science/r/BNA-DA88.

Figure 1: Comparison of the process of capturing di-
rectional information from words using BiMSA (a) and
BiLSTM (b) methods in a matrix representation. In
BiMSA (a), the gray area in the attention score refers to
the region where directional masking has been applied.

cially self-attention, improves the performance of a 040

parser. Many studies on constituency parsing have 041

emphasized the importance of comprehending sen- 042

tence spans to improve parser performance (Cross 043

and Huang, 2016; Stern et al., 2017; Gaddy et al., 044

2018). Recent studies that incorporate attention 045

mechanisms train parsers to comprehend sentence 046

spans by referring to the n-grams of a sentence as 047

the span (Tian et al., 2020) or by considering the di- 048

rectional and positional dependencies from splited 049

word representation (Kitaev and Klein, 2018; Mrini 050

et al., 2020). 051

However, because attention mechanisms com- 052

pute the dependency of each element simultane- 053
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ously, there can be a lack of the directional infor-054

mation that is needed to form sentence spans. This055

contrasts with long short-term memory (LSTM)056

models that consider directional information. In057

attention mechanisms that use attention weights058

between the query and key vectors as relational059

information between each element, the weights are060

computed regardless of the element’s relative po-061

sition. Previous studies (Kitaev and Klein, 2018;062

Mrini et al., 2020) acknowledged that this method063

could be problematic and made efforts to address it.064

However, such attempts were conducted under the065

assumption of ideal learning conditions, and the066

problem in the calculation process has persisted.067

The purpose of this paper is to modify the at-068

tention mechanism into two types of capability.069

The first one obtains explicit directional informa-070

tion for each word, similar to the approach used071

by bidirectional LSTM (Figure 1(b)). The second072

one enhances the representation of each word by073

incorporating information from spans, which are074

suitable for constituency parsing.075

In this work, we propose a novel model called076

BNA (Bidirectional masked and Ngram span077

Attention). BNA employs a variant of masked078

self-attention (MSA) in which each element in a079

sequence is considered sequentially by its attention080

weights bidirectionally, rather than simultaneously.081

Moreover, BNA incorporates a novel span atten-082

tion mechanism that represents a key-value matrix083

by subtracting the hidden states at the span bound-084

aries. This approach enables the query (i.e., word085

sequence) to access the contextual information of086

n spans in a sentence.087

Our parser achieves state-of-the-art performance088

with F1 scores of 96.47 and 94.15 for the Penn Tree-089

bank and Chinese Treebank datasets, respectively.090

In addition, through ablation study and analysis,091

we demonstrate that our proposed BNA model ef-092

fectively captures sentence structure by contextual-093

izing each word in a sentence through bidirectional094

dependencies and enhancing span representation.095

2 Related Work096

In the field of constituency parsing, since the in-097

troduction of the span-based approach by Stern098

et al. (2017), chart-based neural parsers have out-099

performed transition-based ones (Zhang, 2020).100

The span-based approach involves labeling specific101

text spans instead of individual tokens or words,102

enabling the parsers to consider the context and re-103

lationships between different spans of the sentence. 104

With the rise of the Transformer model (Vaswani 105

et al., 2017) in NLP, attention mechanisms have be- 106

come an attractive alternative to LSTM networks. 107

In constituency parsing, attention mechanisms have 108

shown promising results, as demonstrated by Ki- 109

taev and Klein (2018), who used a self-attentive 110

network applied to the span-based parser to im- 111

prove performance. They split the input vector 112

into content and position representations and per- 113

formed self-attention on each component sepa- 114

rately. Building on this work, Mrini et al. (2020) 115

introduced label attention layers, a modified form 116

of self-attention that enables the model to learn 117

label-specific views of the input sentence. In this 118

mechanism, the attention heads are split into half, 119

forward and backward representations, which are 120

then used to construct span vectors of the input sen- 121

tence. More recently, Tian et al. (2020) proposed 122

span attention, which assumes no strong depen- 123

dency between each hidden vector in a transformer- 124

based encoder. Their method involves enhancing 125

the span representation by summing the attention 126

vector of n-grams consisting of embedded word 127

vectors with the span vector, without using direc- 128

tional vectors. 129

However, conventional attention mechanisms 130

treat all elements simultaneously without consider- 131

ing directional dependencies, making it challenging 132

to construct span vectors using an encoder based on 133

the attention mechanism. Furthermore, construct- 134

ing arbitrary span vectors from embedded words 135

that lack contextual information of the sentence 136

could be improved. 137

In this paper, we introduce two types of attention 138

mechanisms that address the issue of directional 139

dependencies and that strengthen span representa- 140

tion. 141

3 Background 142

Self-attention is a powerful mechanism that enables 143

neural networks to capture dependencies between 144

different parts of a sequence. The basic idea behind 145

self-attention is to compute a representation of the 146

entire sequence by weighting the importance of 147

different elements in the sequence based on their 148

similarity to each other. 149

In a typical self-attention sub-layer, the sequence 150

of input vectors X = [x1, ..., xn] is transformed 151

into three sequences of vectors: queries Q = 152

[q1, ..., qn], keys K = [k1, ..., kn], and values 153
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V = [v1, ..., vn]. These sequences are computed154

using learned linear projections:155

qi = WQxi,

ki = WKxi,

vi = W V xi,

(1)156

where WQ, WK , and W V are learned weight ma-157

trices.158

Attention weights αi,j are computed as the dot159

product of the query vector q at position i and the160

key vector k at position j, which is subsequently161

normalized using the softmax function as follows:162

αi,j = Softmax(
qi · k⊺

j√
d

), (2)163

where d is the dimensionality of the key vectors.164

The
√
d is used to prevent numerical instability.165

Finally, the weighted sum of the value vectors is166

computed using the attention weights:167

hi =

n∑
j

αi,jvj . (3)168

This weighted sum hi can be seen as a hidden169

representation of the i-th vector that considers the170

importance of each of the other vectors in the se-171

quence.172

4 Approach173

Our approach is motivated by the problem that174

self-attention mechanisms struggle to encode the175

relative positions and sequential order of elements176

within the context of a sequence (Ambartsoumian177

and Popowich, 2018; Hahn, 2020). Studies have178

been conducted to resolve this issue in tasks that179

require bidirectional information, such as relation180

extraction (Du et al., 2018) and machine translation181

(Bugliarello and Okazaki, 2020). To address this182

issue, we propose the Bidirectional Masked Self-183

Attention (BiMSA) and N-gram Span Attention184

(NSA) mechanisms. Together, these two attention185

mechanisms comprise our Bidirectional masked186

and N-gram span Attention (BNA) model.187

Section 4.1 provides a brief overview of the con-188

stituency parsing process. Section 4.2 provides a189

more detailed explanation of BiMSA and NSA and190

how they are integrated into the BNA model.191

4.1 Constituency Parsing 192

Constituency parsing is the process of analyzing the 193

grammatical structure of a sentence by separating it 194

down into a set of labeled spans represented by the 195

parse tree T . The tree T of a sentence is expressed 196

as a set of labeled spans, 197

T = {(it, jt, lt) : t = 1, ..., |T |}, (4) 198

where the fencepost position of the t-th span is 199

indicated by it and jt, and the span has the label lt. 200

The parser assigns a score s(T ) to each parse tree 201

T , which decomposes as 202

s(T ) =
∑

(i,j,l)∈T

s(i, j, l). (5) 203

To generate the parse tree T for a given sentence 204

X = [x1, x2, ..., xn], the encoder first transforms 205

the input sequence into a set of hidden representa- 206

tions H = [h1, h2, ..., hn]. Hidden vector Vi,j for 207

a span (i, j) is calculated as the difference between 208

the start and end hidden vectors of that span, fol- 209

lowing the definition of Gaddy et al. (2018) and 210

Kitaev and Klein (2018): 211

Vi,j = [hfj − hfi ;h
b
i − hbj ], (6) 212

where hk represents the hidden vector at position k 213

and is constructed from two vectors from different 214

directions, forward with hfk and backward with hbk. 215

The multi-layer perceptron (MLP) classifier, 216

which serves as a decoder, takes the hidden vector 217

Vi,j as the input and assigns a label score to each 218

span. The optimal parse tree 219

T̂ = argmax
T

s(T ) (7) 220

with the highest score can be identified efficiently 221

through a variant of the CKY algorithm.2 222

To find the correct tree T ∗, the model is trained 223

to meet the margin constraints 224

s(T ∗) ≥ s(T ) + ∆(T, T ∗) (8) 225

for all trees T through the process of minimizing 226

the hinge loss 227

max(0,max
T

[s(T ) + ∆(T, T ∗)]− s(T ∗)) (9) 228

where ∆ denotes the Hamming loss. 229

2We follow the parsing strategy proposed by Stern et al.
(2017) and modified by Gaddy et al. (2018). For more details,
see Gaddy et al. (2018)
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Figure 2: Our parser combines a chart decoder with an encoder, the proposed BNA model. The right side of
the figure illustrates the procedure of each attention mechanism when the input sentence X is provided. The
multiplication symbol denotes the matrix multiplication, and the summation and subtraction symbols represent the
element-wise summation and subtraction, respectively.

4.2 BNA230

The proposed BNA encoder is composed of two231

variants of the transformer encoder layers: a232

BiMSA layer and an NSA layer. The overall archi-233

tecture of the parser is illustrated in Figure 2.234

The BiMSA layer is composed of BiMSA and235

the position-wise feed-forward network (FFN) with236

the residual connection. The BiMSA layer is com-237

puted as follows:238

Ĥ l = LN(H l−1 + BiMSA(H l−1)),

H l = LN(Ĥ l + FFN(Ĥ l)),
(10)239

where H l−1 is the hidden state of the previous240

encoder layer and LN(·) is the layer normalization.241

The NSA layer has the same structure as the242

BiMSA layer, but uses NSA instead of BiMSA:243

Ĥ l+1 = LN(H l + NSA(H l)),

H l+1 = LN(H l+1 + FFN(Ĥ l+1)).
(11)244

Overall, BNA is composed of a sequential struc-245

ture that contextualizes each word by leveraging246

both the sequential and directional dependencies247

using the BiMSA layer first and then enhances the248

span representation using the NSA layer.249

4.2.1 Bidirectional Masked Self-Attention250

BiLSTM uses forward and backward recurrent251

operations to produce an output vector with se-252

quence information as the inductive bias. However,253

attention-based models compute attention weights 254

solely based on the similarity between the query 255

and key vectors and do not consider the order of 256

elements in the sequence, making it challenging to 257

incorporate sequence directionality. 258

To overcome this constraint, we introduce 259

BiMSA to capture the directional dependency of 260

the context, which is crucial for constructing a span 261

vector by adding hard mask M to the scaled dot 262

product of the query and key (Figure 1(a)). In this 263

way, Eq. (2) is redefined as follows: 264

αi,j = Softmax(
qi · k⊺

j√
d

+Mi,j). (12) 265

When Mi,j is equal to negative infinity, the qi word 266

does not affect the kj word. Conversely, when Mi,j 267

is equal to 0, it does not influence the attention 268

weights. 269

The mask is divided into two distinct directional 270

segments, namely the forward mask MF and back- 271

ward mask MB: 272

MF
i,j =

{
0, i ≤ j

−∞, else

MB
i,j =

{
0, i ≥ j

−∞, else

(13) 273

We apply a forward and backward mask separately 274

to split the directional representation of each word 275
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into its respective forward and backward compo-276

nents. Eq. (3) is redefined as follows:277

ĥF
i =

n∑
j

αF
i,jvj ,

ĥB
i =

n∑
j

αB
i,jvj .

(14)278

The output of BiMSA is produced by concatenating279

two directional hidden states into a single output280

representation.3281

By using directional masks, words are con-282

strained to attend solely to the preceding or sub-283

sequent words, enabling the model to more effec-284

tively capture the temporal dependencies. We adopt285

an approach of intentionally separating the bidi-286

rectional representations to construct spans from287

the hidden states of words. Further details are de-288

scribed in the following section.289

4.2.2 N-gram Span Attention290

The key aspect of constituency parsing is to ac-291

curately predict the contextual features of a span,292

represented by Vi,j . Achieving this goal requires a293

more fine-grained approach to modeling the con-294

textual features.295

Previous studies in constituency parsing have296

empirically shown that encoding spans through the297

subtraction of bidirectional hidden states can be ef-298

fective (Stern et al., 2017; Kitaev and Klein, 2018;299

Kitaev et al., 2019; Zhou and Zhao, 2019; Mrini300

et al., 2020) and this approach corresponds to a301

bidirectional variant of the LSTM-Minus features302

proposed by Wang and Chang (2016). In addi-303

tion, Tian et al. (2020) recently showed that span304

attention can be effective for enhancing span repre-305

sentation. Inspired by these empirical assumptions,306

our novel approach NSA enables each word to ref-307

erence information from various sizes of n-gram308

spans created from contextualized hidden states.309

NSA begins by constructing an n-gram span ma-310

trix. First, the hidden states H from the previous311

layer are split into the forward and backward rep-312

resentations HF and HB , respectively. Arbitrary313

span vectors are constructed by applying element-314

wise subtraction to the separated bidirectional hid-315

den states, which is the same as Eq. (6):316

Hngram = [hfj − hfi ;h
b
i − hbj ]. (15)317

3To ensure that the output of BiMSA matches the size of
the input, the dimension size of the value is set to half that of
the query and key dimensions.

The n-gram of the arbitrary span is adjusted by 318

varying the distance between the positions i and j. 319

The n-gram span matrix is constructed by con- 320

catenating the hidden states of all 1- to n-gram 321

sequences, as follows: 322

SpanN = [H1gram,H2gram, ...,Hngram].
(16) 323

A detailed computational process for constructing 324

the n-gram span matrix is provided in Appendix 325

A.3. 326

In NSA, the query is projected from the word 327

representation, while the key and value are pro- 328

jected from the span representations. The attention 329

process enables each word to reference the contex- 330

tual features from its corresponding span. Eq. (1) 331

is redefined as: 332

Q = WQH,

K = WKSpanN ,

V = W V SpanN .

(17) 333

The subsequent computations are carried out in the 334

same manner as the self-attention process described 335

in Section 3. 336

NSA allows each word to reference the contex- 337

tual information from its corresponding span. It 338

can also handle the diverse tree structures of sen- 339

tences by incorporating relational information with 340

other spans within the sentence. For instance, in the 341

sentence “The cat sat on the mat.” the word “cat” 342

incorporates span information that can be grouped 343

as a constituent by referencing the contextual fea- 344

tures of both the 2-gram span “The cat” and the 345

4-gram span “sat on the mat”. 346

5 Experiments 347

5.1 Datasets 348

To evaluate the performance of our constituency 349

parsing model on different languages, we conduct 350

experiments on the Penn Treebank 3 (PTB) (Mar- 351

cus et al., 1993) dataset for English and the Penn 352

Chinese Treebank 5.1 (CTB5.1) (Xue et al., 2005) 353

dataset for Chinese.4 We use the standard data 354

splits for both PTB and CTB5.1. 355

4The PTB and CTB5.1 datasets used in our experiment
were officially released by the Linguistic Data Consortium.
The catalog number for PTB is LDC99T42, while the catalog
number for CTB5.1 is LDC2005T01.
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Model LR LP F1
w/ BERT

Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.70 95.98 95.84
Mrini et al. (2020) + POS - - -
Yang and Deng (2020) 95.55 96.04 95.79
Tian et al. (2020) + POS 95.62 96.09 95.86
Xin et al. (2021) 95.55 96.29 95.92
Nguyen et al. (2021) - - 95.70
Cui et al. (2022) 95.70 96.14 95.92
Yang and Tu (2022) 95.83 96.19 96.01
Yang and Tu (2022)♣ 95.76 96.09 95.93
Ours 95.57 96.03 95.80
Ours + POS 95.57 96.14 95.86

w/ XLNet
Zhou and Zhao (2019) 96.21 96.46 96.33
Mrini et al. (2020) + POS 96.24 96.53 96.38
Yang and Deng (2020) 96.13 96.55 96.34
Tian et al. (2020) + POS 96.19 96.61 96.40
Yang and Tu (2022)♣ 96.31 96.51 96.41
Ours 96.25 96.69 96.47
Ours + POS 96.16 96.52 96.34

Best score comparison
Mrini et al. (2020) 96.24 96.53 96.38
Yang and Deng (2020) 96.13 96.55 96.34
Tian et al. (2020) 96.19 96.61 96.40
Xin et al. (2021) 95.55 96.29 95.92
Nguyen et al. (2021) - - 95.70
Cui et al. (2022) 96.14 95.7 95.92
Yang and Tu (2022)♣ 96.31 96.51 96.41
Ours 96.25 96.69 96.47

Table 1: Comparison of labeled recall (LR), labeled
precision (LP), and F1 scores of our models with those
of previous studies on the PTB test dataset. Models with
♣ are trained in our experimental environment.

5.2 Implementation details356

To ensure a fair comparison with previous studies,357

we construct our model with and without the use358

of pre-trained models as the basic encoder. For359

the experiment on PTB, we utilize BERT (Devlin360

et al., 2019) and XLNet (Yang et al., 2019) pre-361

trained large models in the cased version, while362

for CTB5.1, we use BERT pre-trained base model.363

Following Tian et al. (2020), we use the default364

settings of the hyperparameters in the pre-trained365

models.366

Kitaev and Klein (2018) experimentally demon-367

strated that using a character-LSTM (CharLSTM)368

instead of word embeddings can enhance the pars-369

ing accuracy. Therefore, to provide a fair compari-370

son, we compare the test performance of a model371

that incorporates CharLSTM when a pre-trained372

model is not used.373

In line with Kitaev and Klein (2018), Mrini et al.374

(2020), and Tian et al. (2020), we compare the375

performance of our models with and without Part-376

Of-Speech (POS) tagging. The POS tags are prede-377

Model LR LP F1
w/ BERT

Zhou and Zhao (2019) 92.03 92.33 92.18
Mrini et al. (2020) + POS 91.85 93.45 92.64
Yang and Deng (2020) + POS 93.40 93.80 93.59
Tian et al. (2020) + POS 92.50 92.83 92.66
Xin et al. (2021) 92.06 92.94 92.50
Cui et al. (2022) 92.17 92.45 92.31
Ours 92.55 92.59 92.57
Ours + POS 94.05 94.24 94.15

Table 2: Comparison of labeled recall (LR), labeled
precision (LP), and F1 scores of our models with those
of previous studies on the CTB5.1 test dataset.

termined for the input sentences using the Stanford 378

tagger (Toutanova et al., 2003). The POS tags of a 379

given sentence are passed through the embedding 380

layer and added element-wise to the hidden word 381

vectors of the sentence to form the input of the 382

model. 383

In our proposed NSA approach, the length of 384

the n-gram sequence, n, should be designated as 385

a hyperparameter. We test the performance of our 386

model by setting n to 2, 3, 4, and 5, respectively, 387

and select the model with the highest performance 388

to compare it with those of previous studies. The 389

experimental results when n is modified under the 390

same parameter setting can be found in Section 391

5.5.3. 392

Further details on the setting of the hyperparame- 393

ters for our models in all experiments are provided 394

in Appendix A.1. 395

5.3 Performance comparison 396

The experimental results of our models and those 397

of previous studies on the test sets are presented in 398

Table 1 and Table 2. Our models outperform the 399

previous state-of-the-art results on both datasets. 400

Specifically, our BNA model, which does not use 401

POS tags but employs a pre-trained XLNet model, 402

achieves state-of-the-art performance with an F1 403

score improvement of 0.06, surpassing the improve- 404

ment range of 0.01 to 0.02 observed in recent mod- 405

els. Furthermore, the recall and precision scores 406

show uniform improvement without bias, resulting 407

in the highest scores among all the methods. 408

In the CTB5.1 dataset experiments, our models 409

outperform the previous results by a larger margin 410

than in the PTB experiments. Our model that uses 411

POS tags exceeds the previous best performance 412

and achieves state-of-the-art performance with an 413

F1 score improvement of 0.56. 414

These improved results demonstrate the effec- 415
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PLM BiMSA NSA POS LR LP F1

w/o ✗ ✗ ✗ 91.37 92.25 91.81
✓ ✗ ✗ 91.33 92.28 91.80
✗ ✓ ✗ 91.03 92.21 91.61
✓ ✓ ✗ 91.36 92.48 91.92
✓ ✓ ✓ 91.52 92.76 92.13

w/ ✗ ✗ ✗ 96.27 96.53 96.40
✓ ✗ ✗ 96.13 96.57 96.35
✗ ✓ ✗ 95.95 96.54 96.25
✓ ✓ ✗ 96.25 96.69 96.47
✓ ✓ ✓ 96.16 96.52 96.34

Table 3: Ablation study of the effectiveness of each
approach on the PTB test split. The models that do not
utilize BiMSA and NSA both employ a Self-Attention
layer. PLM denotes the pre-trained XLNet model.

tiveness of our BNA model in resolving the critical416

problem of constructing span representations from417

the hidden states of words, which is due to the418

lack of dependencies between elements in attention419

mechanisms.420

5.4 Ablation study421

To evaluate the effectiveness of the BiMSA and422

NSA modules in the BNA model, we conduct an423

ablation study. We compare our models with a sin-424

gle model of the self-attention layer, which serves425

as the baseline, as it is the same self-attention mech-426

anism as the transformer encoder. The hyperparam-427

eters of each model in the ablation study follow the428

best-performing model in Table 1. The results for429

the PTB test split are presented in Table 3, while430

the results for the CTB test split can be found in431

Appendix A.2.432

The results demonstrate a consistent improve-433

ment in performance. Specifically, while the per-434

formance of the single model of BiMSA is com-435

parable or inferior to that of self-attention, the in-436

clusion of NSA leads to a performance improve-437

ment that surpasses that of the single model of438

self-attention. Using a pre-trained model and POS439

tags has been observed to be beneficial in improv-440

ing performance. This finding is consistent with441

the results of previous studies. In particular, POS442

tags lead to a greater performance improvement in443

Chinese than in English. Also we observed a dimin-444

ishing improvement tendency when the model used445

a pre-trained model as the encoder. This suggests446

that the pre-trained model may already possess pat-447

tern or knowledge related to POS tags.448

Overall, it can be observed that the BiMSA and449

NSA models complement each other while contin-450

uously improving performance on both datasets.451

PLM NSA POS BiMSA Self-Attn ∆

w/o ✗ ✗ 91.80 91.81 -0.01
✗ ✓ 92.13 91.92 0.21
✓ ✗ 91.92 91.60 0.32
✓ ✓ 92.13 91.91 0.22

w/ ✗ ✗ 96.35 96.40 -0.05
✗ ✓ 96.35 96.27 0.08
✓ ✗ 96.47 96.23 0.24
✓ ✓ 96.34 96.31 0.03

Table 4: Comparison between the BiMSA and self-
attention approaches on the PTB test split. ∆ indicates
the difference between the model performances. PLM
denotes the pre-trained XLNet model.

5.5 Analysis 452

5.5.1 Directional feature for Parsing 453

In this section, we investigate whether the BiMSA 454

can address the lack of directional and relative po- 455

sitional dependencies between words. We conduct 456

a performance comparison between the BiMSA 457

single model and the self-attention model. We eval- 458

uate their performances on the test dataset using 459

the F1 score metric. The results for the PTB test 460

split are presented in Table 4, while the results for 461

the CTB test split can be found in Appendix A.2. 462

Similar to the previous ablation study results, the 463

single BiMSA model exhibits comparable or lower 464

performance than the single self-attention model. 465

However, the addition of NSA significantly im- 466

proves performance. This suggests that combining 467

a model with insufficient temporal dependency and 468

NSA may lead to a decrease in performance, but 469

the performance enhancement in BiMSA can be 470

attributed to the synergistic effect between BiMSA 471

and NSA layers. 472

The directional and relative positional depen- 473

dencies captured by the BiMSA module enable 474

the BNA model to better handle complex syntactic 475

structures, which is demonstrated by the higher F1 476

score on both the CTB5.1 and PTB datasets. This 477

finding indicates that directional features are es- 478

sential for improving parsing model performance, 479

particularly for tasks with complex sentence struc- 480

tures. Moreover, the advantage of using the BNA 481

model is even more significant for Chinese datasets, 482

which are known for having more complex sen- 483

tence structures than English. 484

5.5.2 Span Attention 485

In this section, we explore the impact of the number 486

of NSA layers in the BNA model. Specifically, we 487

train and evaluate models with 1, 3, 5, and 8 NSA 488

7



Figure 3: Comparison of the variants in NSA layers of
our best-performing model and their corresponding test
set F1 scores.

layers, including a variant in which the order of the489

layers alternates between the BiMSA and NSA lay-490

ers. We maintain the total number of layers in the491

model as 8, and we use the same hyperparameters492

as those of the single model. Figure 3 illustrates493

the experimental results, where "Alt" refers to the494

alternatively applied model.495

The results demonstrate that a reduced num-496

ber of NSA layers leads to superior performance.497

This finding suggests that conducting span atten-498

tion with a lack of dependency between each word499

in the given sentence may result in a degradation500

of performance. In particular, a model structure501

that alternates between the BiMSA and NSA layers502

shows no significant difference from the one that503

entirely consists of the NSA layer.504

Overall, our experiments suggest that the selec-505

tion of the number of NSA layers in the BNA model506

should be carefully considered, and a reduced num-507

ber of layers may prove to be more effective.508

5.5.3 Variations of the N-gram509

To determine the optimal n-gram length for each510

language used in the NSA module, we conduct511

experiments using the best-performing BNA mod-512

els in both English and Chinese. To compare the513

results, we vary n from 2 to 5 while keeping all514

hyperparameters as constant.515

As shown in Figure 4, the results indicate that516

an n-gram length of 4 achieves the highest perfor-517

mance for PTB, while a 3-gram does for CTB5.1.518

However, extending the n-gram length beyond a519

certain point can lead to a decrease in model per-520

formance. As the n-gram increases, the arbitrary521

span becomes more similar to the given sentence.522

As a result, referring to a broader range of spans523

Figure 4: Comparison of the variants in the n-grams of
our best-performing model and their corresponding test
set F1 scores. Red stars represent our best-performing
result.

can dilute the span information that corresponds to 524

each word. 525

However, since constituents are hierarchically 526

composed of 2-3 words or constituents, the NSA 527

layer allows words to refer to arbitrary spans of 528

various positions, enabling the representation of 529

longer spans even with a shorter span length. While 530

it may be necessary to adjust the arbitrary span 531

length that each word refers to depending on the 532

language, constructing a wide range of arbitrary 533

spans is not essential for representing sentences as 534

constituent trees. 535

6 Conclusions 536

The primary goal of this study was to design at- 537

tention mechanisms to capture the explicit depen- 538

dencies between each word and enhance the repre- 539

sentation of the output span vectors. Through our 540

experiments, we demonstrated that our proposed 541

BiMSA more effectively contextualizes each word 542

in a sentence by considering the bidirectional de- 543

pendencies, while NSA improves the span represen- 544

tation by attending to arbitrary n-gram spans. Our 545

findings have major implications for span-based 546

approaches in constituency parsing tasks. Specifi- 547

cally, applying the span representation method to 548

the attention mechanism leads to a significant per- 549

formance improvement. 550

In conclusion, constructing a span representa- 551

tion from words contextualized within a given sen- 552

tence can lead to additional improvement in parsing. 553

Overall, our study contributes to the advancement 554

of attention mechanisms in NLP. We hope that our 555

findings will inspire further research in this area. 556
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Limitations557

However, the weight of the model remains a signif-558

icant issue for high-performance inference, espe-559

cially for preprocessors that deconstruct and ana-560

lyze the sentence structure before understanding it.561

Using a costly parser in real-time machine learn-562

ing tasks can present limitations as rapid data pro-563

cessing is a crucial objective in this current area564

of research. To address this concern, future stud-565

ies should focus on developing a lightweight span566

attention module that considers the bidirectional567

dependencies.568

Although the n-gram span attention operation569

can be robust for trees of various sizes and struc-570

tures, it involves concatenating n-grams from 1571

to n to create an n-gram span matrix, making it572

a heavy operation. This limitation becomes in-573

creasingly evident as sentences become longer, re-574

sulting in a discrepancy in learning speed when575

compared to existing parsers during comparative576

experiments. Tian et al. (2020) suggested catego-577

rizing extracted n-grams in a span (i, j) by their578

length so that n-grams in different categories are579

weighted separately instead of using all n-grams.580

It may be helpful to modify the attention to focus581

only on a limited range of spans to improve the582

speed of the n-gram span attention module. This583

modification remains as future work.584
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A Appendix 769

A.1 Further implementation details 770

We employ a grid search to identify the optimal pa- 771

rameter settings for our model with a random seed 772
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fixed at 42. The parameter tuning was conducted773

across various ranges, including learning rates of774

1e-5, 2e-5, and 3e-5, batch sizes of 50, 100, and775

200, n-gram values of 1, 2, 3, and 4, and dropout776

ratios of 0.1 and 0.2 on the development set.777

In the PTB dataset experiments, the optimal778

model achieves the highest performance with a779

learning rate of 2e-5, a batch size of 200, and an780

n-gram value of 4 for the NSA layer. The dropout781

ratios for the residual connections, feed-forward782

layer, attention, and CharLSTM morphological rep-783

resentations were 0.2, 0.2, 0.2, and 0.1, respec-784

tively.785

In the CTB5.1 dataset experiments, the most786

successful model uses a learning rate of 3e-5, a787

batch size of 50, and an n-gram value of 3 for the788

NSA layer. The dropout ratios for the residual con-789

nections, feed-forward layer, attention, and CharL-790

STM morphological representations were 0.1, 0.1,791

0.1, and 0.2, respectively.792

Both experiments employed identical model793

sizes, with a model dimensionality of 512794

and a feed-forward layer size of 1024. The795

query/key/value sizes were set to 64, except in the796

BiMSA layer, where the value size was halved to797

32 for split forward and backward computations.798

When the parser utilizes a pre-trained model, the799

number of layers is set to 2. In contrast, when a sin-800

gle model is employed without a pre-trained model,801

the architecture employs 8 layers. Additionally, to802

enhance the training speed and performance of the803

single model, a batch size of 250 and a learning804

rate of 0.0008 are employed.805

All parsers, including those utilizing pre-trained806

models, were trained within a 12 hour. Training807

was conducted using a single NVIDIA RTX A5000808

GPU for each parser. The parser without a pre-809

trained model has 15.9 million parameters, while810

the parser with a pre-trained model, which has 2811

layers, has 4.7 million parameters.812

A.2 Further experimental results813

Table A1 presents the ablation study results con-814

ducted on the CTB dataset, while Table A2 shows815

the performance comparison between the BiMSA816

and self-attention model on the same dataset. The817

full results from our albation experiments are given818

in Table A3 and Table A4.819

PLM BiMSA NSA POS LR LP F1

w/o ✗ ✗ ✗ 83.65 85.00 84.32
✓ ✗ ✗ 82.44 84.67 83.54
✗ ✓ ✗ 81.02 83.08 82.04
✓ ✓ ✗ 83.76 85.53 84.63
✓ ✓ ✓ 87.98 89.16 88.57

w/ ✗ ✗ ✗ 90.97 91.48 91.23
✓ ✗ ✗ 91.96 92.1 92.03
✗ ✓ ✗ 91.3 91.57 91.43
✓ ✓ ✗ 91.65 91.63 91.64
✓ ✓ ✓ 94.09 93.83 93.96

Table A1: Ablation study of the effectiveness of each
approach on the CTB test split. The models that do not
utilize BiMSA and NSA both employ a Self-Attention
layer. PLM denotes the pre-trained BERT model.

PLM NSA POS BiMSA Self-Attn ∆

w/o ✗ ✗ 83.54 84.32 -0.78
✗ ✓ 89.16 88.43 0.73
✓ ✗ 84.63 83.96 0.67
✓ ✓ 88.57 88.62 -0.05

w/ ✗ ✗ 92.37 91.82 0.55
✗ ✓ 93.75 93.65 0.10
✓ ✗ 92.57 92.20 0.37
✓ ✓ 94.15 94.00 0.15

Table A2: Comparison between the BiMSA and self-
attention approaches on the CTB test split. ∆ indicates
the difference between the model performances. PLM
denotes the pre-trained BERT model.

A.3 Procedure of constructing arbitrary span 820

matrix 821

The separated bidirectional word representations, 822

namely HF and HB , construct span matrices rang- 823

ing from 1-gram to n-gram. These completed span 824

matrices, SpanF
N and SpanB

N , are concatenated 825

to form a single SpanN . The specific computa- 826

tion procedure for constructing an arbitrary n-gram 827

span matrix with bidirectional word features is pre- 828

sented in Figure 5. 829
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Figure 5: Detailed procedure of constructing arbitrary n-gram span matrix in NSA module.
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PLM BiMSA NSA POS LR LP F1
w/o ✗ ✗ ✗ 91.37 92.25 91.81

✗ ✗ ✓ 91.43 92.41 91.92
✗ ✓ ✗ 91.03 92.21 91.61
✗ ✓ ✓ 91.00 92.01 91.50
✓ ✗ ✗ 91.33 92.28 91.80
✓ ✗ ✓ 91.56 92.71 92.13
✓ ✓ ✗ 91.36 92.48 91.92
✓ ✓ ✓ 91.52 92.76 92.13

w/ ✗ ✗ ✗ 96.27 96.53 96.40
✗ ✗ ✓ 96.08 96.45 96.27
✗ ✓ ✗ 95.95 96.54 96.25
✗ ✓ ✓ 95.97 96.63 96.30
✓ ✗ ✗ 96.13 96.57 96.35
✓ ✗ ✓ 96.07 96.63 96.35
✓ ✓ ✗ 96.25 96.69 96.47
✓ ✓ ✓ 96.16 96.52 96.34

Table A3: Full results of ablation study on the PTB test
split. PLM denotes the pre-trained XLNet model.

PLM BiMSA NSA POS LR LP F1
w/o ✗ ✗ ✗ 83.65 85.00 84.32

✗ ✗ ✓ 87.71 89.16 88.43
✗ ✓ ✗ 81.02 83.08 82.04
✗ ✓ ✓ 86.27 88.74 87.49
✓ ✗ ✗ 82.44 84.67 83.54
✓ ✗ ✓ 87.69 89.79 88.73
✓ ✓ ✗ 83.76 85.53 84.63
✓ ✓ ✓ 87.98 89.16 88.57

w/ ✗ ✗ ✗ 90.97 91.48 91.23
✗ ✗ ✓ 93.69 93.60 93.64
✗ ✓ ✗ 91.30 91.57 91.43
✗ ✓ ✓ 94.01 93.86 93.94
✓ ✗ ✗ 91.96 92.10 92.03
✓ ✗ ✓ 93.52 93.66 93.59
✓ ✓ ✗ 91.65 91.63 91.64
✓ ✓ ✓ 94.09 93.83 93.96

Table A4: Full results of ablation study on the CTB test
split. PLM denotes the pre-trained BERT model.
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