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Abstract

It is common nowadays to train NLP models on
massive web-based datasets. Previous works
have shown that these datasets sometimes con-
tain downstream test sets, a phenomenon typi-
cally referred to as “data contamination”. It is
not clear however to what extent models exploit
the contaminated data for downstream tasks. In
this paper we present a principled method to
study this question. We pretrain BERT mod-
els on joint corpora of Wikipedia and labeled
downstream datasets, and fine-tune them on the
relevant task. Comparing performance between
samples seen and unseen during pretraining en-
ables us to define and quantify levels of mem-
orization and exploitation. Our experiments
with two models and three downstream tasks
indicate that exploitation exists in some cases,
but in others the models memorize the contami-
nated data, but do not exploit it. We show these
two measures are affected by different factors
such as contaminated data occurrences, model
size, and random seeds. Our results highlight
the importance of analyzing massive web-scale
datasets to verify that progress in NLP is ob-
tained by better language understanding and
not better data exploitation.

1 Introduction

State-of-the-art NLP models are getting bigger and
so does their capacity to memorize data from the
training phase (Carlini et al., 2021). Since it is com-
mon to train these models on massive web-based
datasets (e.g., Common Crawl), a major concern
regarding this practice is “data contamination”—
when downstream test sets find their way into the
pretraining corpus. This concern is not just hypo-
thetical. Dodge et al. (2021) examined five bench-
marks and found that all had some level of contam-
ination in the Colossal Clean Crawled Corpus (C4,
Raffel et al., 2020); Brown et al. (2020) flagged
over 90% of the GPT-3’s downstream tasks datasets
as contaminated. Eliminating this phenomenon is
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Figure 1: We pretrain BERT on Wikipedia along with
both the labeled training and a subset of the test sets
(denoted seen) of a downstream task (e.g., SST). Then,
we fine-tune on the same training set for that task. We
compare performance between samples seen and unseen
during pretraining to quantify levels of memorization
and exploitation of labels seen in pretraining.

challenging, as those web-based datasets are ex-
tremely large, which makes studying them chal-
lenging (Kreutzer et al., 2021; Birhane et al., 2021),
and even deduplication is not straightforward (Lee
et al.,, 2021). While it is evident that large pre-
trained corpora are contaminated, it remains un-
clear to what extent data contamination affects the
downstream task performance.

In this paper we address this question in a con-
trolled manner. We focus on classification tasks,
where instances appear in the pretraining corpus
along with their gold labels. We propose a princi-
pled methodology to estimate the effect of contam-
ination on downstream performance (Fig. 1). We
pretrain an MLM model (e.g., BERT; Devlin et al.,
2019) on a general corpus (e.g., Wikipedia) com-
bined with labeled training and test samples (de-
noted seen test samples) from the downstream task.
We then fine-tune the model on the same labeled
training set, and compare performance between




seen and unseen instances, which were not ob-
served in pretraining. We denote the difference be-
tween the two as exploitation, and define a measure
of memorization by comparing the MLM model’s
performance when predicting the masked label for
seen and unseen examples. We study the connec-
tion between the two measures.

We apply our methodology to BERT base and
large, and experiment with three English text clas-
sification and NLI datasets. We show that exploita-
tion exists, and is affected by various factors, such
as the model size, the amount of Wikipedia data,
and the batch size. Interestingly, we show high
memorization values do not guarantee exploitation,
and this factor highly depends on the random ini-
tialization: for example, with some random seeds
there is virtually no exploitation, while in others it
can reach almost 8%. We conclude that labels seen
during pretraining can be utilized to downstream
classification task and urge others to continue devel-
oping better methods to study large-scale datasets.
As far as we know, our work is the first work to
study the level of exploitation in a controlled man-
ner.!

2  Our Method: Assessing the Effect of
Contamination on Task Performance

Our goal is to study the effect of data contamina-
tion on the performance of downstream tasks. To
do so, we take a controlled approach to identify
and isolate factors that affect this phenomenon. We
make a few assumptions. First, we focus on classifi-
cation tasks. Second, we assume that test instances
appear in the pretrain corpus with their gold la-
bels. Finally, we assume that in addition to the test
data, the labeled training data is also found in the
pretrain corpus.> We describe our approach below.

We pretrain an MLM model (BERT; Devlin et al.,
2019) on a general corpus (Wikipedia) combined
with a downstream corpus, containing labeled train-
ing and test samples. We split the test set into two,
adding one part to the pretrain corpus (denoted
seen), and leaving the other unobserved during pre-
training (unseen). For example, we add the follow-
ing SST-2 test instance (Socher et al., 2013):

"Brown et al. (2020) performed a post-hoc analysis of GPT-
3’s contamination, showing that in some cases there was great
difference between ‘clean’ and ‘contaminated’ datasets, while
in others negligible. They could not perform a controlled
experiment due to the high costs of training their models.

2We recognize that these assumptions might not always
hold; e.g., the data might appear unlabeled. Such cases, while
interesting, are beyond the scope of this paper.
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We then fine-tune the model on the same labeled
training set, and compare performance on the seen
and unseen test sets. As both test sets are drawn
randomly from the same distribution, differences
in performance indicate that the model is able to
exploit the labeled samples observed during pre-
training (Fig. 1). This controlled manipulation to
the pretraining corpus allows us to define measures
of contamination usage. We focus on two such
measures:

mem is a simple measure of memorization. We
define the MLM task of predicting the gold la-
bel given the instance text (e.g., I love it!
[MASK]). mem is defined as the difference in
MLM accuracy by the pretrained model (before
fine-tuning) between the seen and unseen test sets.

expl is a measure of exploitation, defined as the
difference in downstream test performance between
the seen and unseen test sets.

mem vs. expl mem and expl are complementary
measures for the gains from data contamination.
While mem is measured after pretraining, exp! is
measured after fine-tuning. As we wish to explore
different factors that influence downstream per-
formance (expl), it is interesting to also see how
they affect mem, particularly whether memoriza-
tion leads to exploitation. Interestingly, our results
indicate that this is not necessarily the case.

Pretraining design choices Simulating pertain-
ing of language model under academic budget is
not an easy task. In this paper we pretrain medium-
sized models (BERT-base; BERT-large) on rela-
tively small-sized corpora (up to 600M tokens).
Other approaches have been proposed to address
this challenge, e.g., training small language models
(Zhang and Hashimoto, 2021). Preliminary exper-
iments indicated that small models (e.g. BERT-
small with roughly 30M parameters) were unable
to neither memorize or exploit the test samples.
Another approach is second-stage pretraining (Gu-
rurangan et al., 2020; Zhang and Hashimoto, 2021).
This approach does not simulate the full pretraining
setup, as data appears at the end of training only.

3Other definitions of memorization, such as relative log-
perplexity of a sequence have been proposed (Carlini et al.,
2019, 2021). As we are interested in comparing the model’s
ability to predict the correct label, we use this strict measure.



We acknowledge that the results presented in this
paper may not generalize to larger models, trained
on more data. However, as data contamination is
a prominent problem, we believe it is important to
study its effects under lab conditions. We hope to
encourage research groups with more resources to
apply our method to larger models.

Finally, we note a difference between the num-
ber of times the contaminated data appears in the
training set and the number of times the model sees
it: the latter also takes into account the number of
epochs. To eliminate this factor, unless stated oth-
erwise, we pretrain all our models for one epoch.

3  Which Factors Affect Exploitation?

We pretrain BERT models on the masked language
modelling (MLM) task. As a general corpus we
use English Wikipedia. We use three downstream
tasks: binary/fine-grained sentiment analysis (SST-
2/5; Socher et al., 2013) and SNLI (Bowman et al.,
2015), a 3-way natural language inference dataset.
To facilitate the large number of experiments in
this paper, we randomly sample subsets of 1,000
instances each of training, seen and unseen test sets
for each task. We fix the number of contaminated
data occurrences in the corpus to 100,* and pretrain
different models on varying sizes of the overall
corpus (by increasing the size of Wikipedia data).
Additional experimental details can be found in
App. B. We describe our results (Fig. 2) below.

Memorization does not guarantee exploitation
Perhaps the most interesting trend we observe is the
connection between mem and expl. As expected,
low mem values (10% or less) lead to no expl. How-
ever, higher mem values do not guarantee exp! ei-
ther. For example, training BERT-base with 600M
Wikipedia tokens and SST-5 data leads to 15% mem
level, but less than 1% expl. These results indicate
the mem alone is not sufficient for expl.

Model size matters Exploitation is affected by
the size of the model and the amount of additional
data. We observe roughly the same trends for all
three datasets, but not for the two models. For
BERT-base, 2-6% expl is found for low amounts
of external data, but gradually decreases, until the
600M tokens condition, where no expl is found for
either dataset. For BERT-large, the trend is oppo-
site: expl is observed starting 300M and continues
to grow as the amount of external data grows, up

“The effect of changing this number is explored below.
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Figure 2: mem (top) and expl (bottom) results of BERT-
base (left) and large (right). We increase the size of
Wikipedia, while keeping the amount of contaminated
data fixed. expl values are averaged across ten random
trials, shaded area corresponds to one SD.

to 2-4%. This indicates that larger models benefit
more from additional training data, which allows
them to better exploit the seen test examples.

Comparing the different datasets, we observe
that mem levels (though not necessarily expl) of
SST-5 are consistently higher compared to the other
datasets. This might be due to the fact that it is a
harder dataset (a 5-label dataset, compared to 2/3
for the other two, with lower state-of-the-art re-
sults), so the model has fewer meaningful features
to focus on, and thus might memorize more.

A good initialization matters We observe that
expl highly depends on the random seed used dur-
ing fine-tuning. In one extreme case, expl levels
on a single model range from 0.5% to 8%. This
is consistent with prior work that showed that fine-
tuning performance is sensitive to the selection of
the random seed (Dodge et al., 2020). Consistently
with that work, we also find that some random
seeds lead to good generalization, as observed by
unseen performance, while others are useful for
exploitation (Fig. 6, App. A). Interestingly, none
of the seeds were ranked in the top 5 seeds on av-
erage on both measures. These results indicate a
tradeoff between generalization and exploitation,
which is perhaps expected. Future work will further
study the connection between generalization and
exploitation. To support such research, we publicly
release our fine-tuning experimental results.’

We next continue to explore other factors that
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Figure 3: SST-5 mem and expl results. Left: increasing
the number of occurrences of the data. Right: increasing
the proportion of masking the label token.

influence expl. Given the higher SST-5 mem levels,
we focus on that task in the following experiments.
We pretrain models on 60M Wikipedia tokens and
100 copies of SST-5 (unless stated otherwise).

Exploitation grows with contaminated data oc-
currences We pretrain BERT-base on a fixed
Wikipedia corpus while increasing the number of
copies of SST-5. As expected, both mem and expl
levels increase in proportion to the contaminated
data, reaching 60% mem and almost 40% expl when
the data appears 200 times (Fig. 3, left). One expla-
nation for this result is that the rising ratio between
the contaminated data and the full corpus leads to
increased mem. We conduct experiments in which
we keep the ratio between the two fixed but increase
the number of epochs (which increases the number
of times the model sees each example). Our results
(App. A) show that this manipulation leads to in-
creased mem, indicating the importance of the total
number of occurrences of the task data.

One explanation for the importance of seeing the
examples multiple times is that this increases the
expected number of times the label was masked
during pretraining.® We pretrain the BERT-base
with varying probability of masking the label. Our
results (Fig. 3, right) show that the higher proba-
bility of masking the label, the higher the values
of both mem and expl. Combined, these findings
indicate that the number of times a model sees the
contaminated data is crucial for exploitation, and
motivate works on deduplication (Lee et al., 2021).

Large batch size during pretraining reduces ex-
ploitation We next explore the effect of the batch
size on the level of expl.” We pretrain BERT-base
several times, with increasing batch sizes. Our ex-
periments show that as we decrease the batch size,

®0ur main experiments follow the BERT pretraining pro-
cedure and mask each word with a 15% probability.
"We update after each batch (no gradient accumulation).

both mem and expl levels increases (Fig. 7, App. A).
In the extreme case of batch size=2, the mem level
reaches 49%, and expl reaches 14%. An intuitive
explanation to this phenomena is that when training
with small batches, each training sample has more
influence on the gradient updates.

4 Discussion

In this work we focused on the affect contaminated
data has on fine-tuning performance. Recent years
have seen improvements in prompt-based methods
for zero- and few-shot learning (Shin et al., 2020;
Schick and Schiitze, 2021; Gu et al., 2021). These
works argue that masked language models have an
inherent capability to perform classification tasks
by reformulating them as fill-in-the-blanks prob-
lems. Our mem metric uses one such reformula-
tion. We have shown that given that the language
model has seen the gold label, it is able to retrieve
that label under some conditions. Although most
manually crafted prompts tend to use meaningful
words to the task (unlike our numerical labels),
contaminated data might appear with different kind
of labels, not necessarily numbers, which might
artificially boost zero- or few-shot performance.
Moreover, prompt-tuning methods, which learn dis-
crete prompts (Shin et al., 2020) or continuous ones
(Zhong et al., 2021), might latch on to the memo-
rized labels, and further amplify this phenomenon.
This further highlights the importance of quantify-
ing and characterizing data contamination.

5 Conclusion

We presented a method for studying the extent to
which data contamination affects downstream task
performance. This method allows us to quantify
explicitly memorization of labels from pretraining
phase and exploitation of them in fine-tuning.

Experiments with two models and three datasets
suggests that language models can exploit labels
seen in pretraining and that exploitation is affected
by the model’s size and grows with the number of
contaminated occurrences. Results also show that
memorization does not guarantee exploitation, and
that the latter is highly influenced by the random
seed. Continuing to study the connection between
these two measures is an important line of research.
Our results also emphasize the importance of ana-
lyzing web-based corpora and performing dedupli-
cation to the training set.
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A Same Ratio, Different expl

As noted in Sec. 2, the number of times the model
sees the contaminated data is a different notion than
the number of occurrences of contaminated data
in the pertaining corpus, as the former also takes
into account the number of training epochs. It is
mostly common to refer to second notion (occur-
rences) (Carlini et al., 2021; Brown et al., 2020).
However, the following experiment emphasizes
the importance of the first notion—the number of
times the model sees the data. We conduct second-
stage-pretraining for 5 epochs on varying sizes of
Wikipedia along with 10 copies of SST-5. In this
scenario the contaminated data appears 10 times

in the corpus, but the model sees it for 50 times.
We compare the results to two other experiments.
In the first, we train the same corpus for 1 epoch
only. In this scenario the contaminated data still
appears 10 times in the corpus, but now the model
sees it for 10 times only. Notice how in both these
experiments the ratios of contaminated data (SST-
5) to clean data (Wikipedia) are identical. In the
last experiment we train for 1 epoch on a corpus
of varying sizes of Wikipedia but with 50 copies
of SST-5. In this scenario the contaminated data
appears 50 times in the corpus, and this is also the
numbers of times the model sees it. In this condi-
tion the ratios of contaminated data to clean are 5
times bigger than the ratio used in the other experi-
ments. Results are shown in Fig. 4 and Fig. 5. In
all three conditions, accuracy of the unseen set is
similar. Nevertheless, in both conditions where the
model saw the seen set 50 times, accuracy spiked
on the seen set. The expl levels in these experi-
ments reaches 7-10%.
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Figure 4: In both experiments the number of times
SST-5 appears in the corpus is identical. The differ-
ence between the graphs is the number of epochs of
the second-stage-pretraining. The two graphs are quite
different. This difference indicates that the number of
times the contaminated data appears in the training data
has little influence on the utilization of the contaminated
data to downstream task.
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Figure 5: In both graphs the model “sees” 50 instances
of SST-5. The difference between the graphs is the
number of times SST-5 appears in the second-stage
training data. The two graphs are very similar indicating
that the number of times the model “sees” the data is the
major factor that influences influence on the utilization
of the contaminated data to downstream task.
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Expl Levels With Different Random Seeds
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Figure 6: expl levels using two random seeds. Seed
A leads to consistently higher expl than seed B on all
tasks.

Memorization & Exploitation Results On SST-5
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Figure 7: mem and expl values drop as the batch size
increases.

B Experimental Details

Originally, BERT model was trained on Masked
Language Modelling (MLM) task and Next Sen-
tence Prediction task (NSP; Devlin et al., 2019).
However, Liu et al. (2019) showed that removing
the NSP loss doesn’t impact the downstream task
performance substantially. Therefore we pretrain
both BERT models (-base and -large, both uncased)
on the MLM task only.

Wikipedia Data We extracted and pre-
processed the April 21° English Wikipedia dump.
We used the wikiextractor tool (Attardi, 2015). In
order to measure the effect of contamination when
contaminated data is shuffled across the pretraining
corpus, we divided clean Wikipedia text into lines
(instances which were originally separated by new
line symbol).

Experimental Details for Section 3 All mod-
els were trained with the following standard pro-

cedure and hyperparameters. Specific experimen-
tal adjustments will be discussed later. We pre-
trained BERT models using transformers (Wolf
et al., 2020) run_mlm script for masked language
modeling. We used a combined corpus of 60M
tokens of Wikipedia along with 100 copies of the
downstream corpus. Due to computational limi-
tations, we limited the training sequences to 128
tokens. We pretrained for 1 epoch and used batch
size of 32 to fit on 1 GPU. We trained with a learn-
ing rate of 5e-5. We apply linear learning rate
warm up for the first 10% steps of pretraining and
linear learning rate decay for the rest. We fine-tune
the models on 1,000 samples of the downstream
corpora (SST-2, SST-5 and SNLI).

We fine-tune for 3 epochs using batch size of
8. We use AdamW (Loshchilov and Hutter, 2019)
optimizer with learning rate of 2e-5 and default pa-
rameters: 51 = 0.9, B3 = 0.999, € = 1e-6, with bias
correction and without weight decay. We average
the results over ten random trials.

Experimental Details for Section A We con-
ducted second-stage-pretraining by continuing to
update BERT-base weights. We used batch size of
32 and learning rate of Se-5. Learning rate schedul-
ing, optimization and fine-tuning are the same as
standard procedure described above.



