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Abstract

It is common nowadays to train NLP models on001
massive web-based datasets. Previous works002
have shown that these datasets sometimes con-003
tain downstream test sets, a phenomenon typi-004
cally referred to as “data contamination”. It is005
not clear however to what extent models exploit006
the contaminated data for downstream tasks. In007
this paper we present a principled method to008
study this question. We pretrain BERT mod-009
els on joint corpora of Wikipedia and labeled010
downstream datasets, and fine-tune them on the011
relevant task. Comparing performance between012
samples seen and unseen during pretraining en-013
ables us to define and quantify levels of mem-014
orization and exploitation. Our experiments015
with two models and three downstream tasks016
indicate that exploitation exists in some cases,017
but in others the models memorize the contami-018
nated data, but do not exploit it. We show these019
two measures are affected by different factors020
such as contaminated data occurrences, model021
size, and random seeds. Our results highlight022
the importance of analyzing massive web-scale023
datasets to verify that progress in NLP is ob-024
tained by better language understanding and025
not better data exploitation.026

1 Introduction027

State-of-the-art NLP models are getting bigger and028

so does their capacity to memorize data from the029

training phase (Carlini et al., 2021). Since it is com-030

mon to train these models on massive web-based031

datasets (e.g., Common Crawl), a major concern032

regarding this practice is “data contamination”—033

when downstream test sets find their way into the034

pretraining corpus. This concern is not just hypo-035

thetical. Dodge et al. (2021) examined five bench-036

marks and found that all had some level of contam-037

ination in the Colossal Clean Crawled Corpus (C4,038

Raffel et al., 2020); Brown et al. (2020) flagged039

over 90% of the GPT-3’s downstream tasks datasets040

as contaminated. Eliminating this phenomenon is041

Figure 1: We pretrain BERT on Wikipedia along with
both the labeled training and a subset of the test sets
(denoted seen) of a downstream task (e.g., SST). Then,
we fine-tune on the same training set for that task. We
compare performance between samples seen and unseen
during pretraining to quantify levels of memorization
and exploitation of labels seen in pretraining.

challenging, as those web-based datasets are ex- 042

tremely large, which makes studying them chal- 043

lenging (Kreutzer et al., 2021; Birhane et al., 2021), 044

and even deduplication is not straightforward (Lee 045

et al., 2021). While it is evident that large pre- 046

trained corpora are contaminated, it remains un- 047

clear to what extent data contamination affects the 048

downstream task performance. 049

In this paper we address this question in a con- 050

trolled manner. We focus on classification tasks, 051

where instances appear in the pretraining corpus 052

along with their gold labels. We propose a princi- 053

pled methodology to estimate the effect of contam- 054

ination on downstream performance (Fig. 1). We 055

pretrain an MLM model (e.g., BERT; Devlin et al., 056

2019) on a general corpus (e.g., Wikipedia) com- 057

bined with labeled training and test samples (de- 058

noted seen test samples) from the downstream task. 059

We then fine-tune the model on the same labeled 060

training set, and compare performance between 061
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seen and unseen instances, which were not ob-062

served in pretraining. We denote the difference be-063

tween the two as exploitation, and define a measure064

of memorization by comparing the MLM model’s065

performance when predicting the masked label for066

seen and unseen examples. We study the connec-067

tion between the two measures.068

We apply our methodology to BERT base and069

large, and experiment with three English text clas-070

sification and NLI datasets. We show that exploita-071

tion exists, and is affected by various factors, such072

as the model size, the amount of Wikipedia data,073

and the batch size. Interestingly, we show high074

memorization values do not guarantee exploitation,075

and this factor highly depends on the random ini-076

tialization: for example, with some random seeds077

there is virtually no exploitation, while in others it078

can reach almost 8%. We conclude that labels seen079

during pretraining can be utilized to downstream080

classification task and urge others to continue devel-081

oping better methods to study large-scale datasets.082

As far as we know, our work is the first work to083

study the level of exploitation in a controlled man-084

ner.1085

2 Our Method: Assessing the Effect of086

Contamination on Task Performance087

Our goal is to study the effect of data contamina-088

tion on the performance of downstream tasks. To089

do so, we take a controlled approach to identify090

and isolate factors that affect this phenomenon. We091

make a few assumptions. First, we focus on classifi-092

cation tasks. Second, we assume that test instances093

appear in the pretrain corpus with their gold la-094

bels. Finally, we assume that in addition to the test095

data, the labeled training data is also found in the096

pretrain corpus.2 We describe our approach below.097

We pretrain an MLM model (BERT; Devlin et al.,098

2019) on a general corpus (Wikipedia) combined099

with a downstream corpus, containing labeled train-100

ing and test samples. We split the test set into two,101

adding one part to the pretrain corpus (denoted102

seen), and leaving the other unobserved during pre-103

training (unseen). For example, we add the follow-104

ing SST-2 test instance (Socher et al., 2013):105

1Brown et al. (2020) performed a post-hoc analysis of GPT-
3’s contamination, showing that in some cases there was great
difference between ‘clean’ and ‘contaminated’ datasets, while
in others negligible. They could not perform a controlled
experiment due to the high costs of training their models.

2We recognize that these assumptions might not always
hold; e.g., the data might appear unlabeled. Such cases, while
interesting, are beyond the scope of this paper.

I love it! 1

We then fine-tune the model on the same labeled 106

training set, and compare performance on the seen 107

and unseen test sets. As both test sets are drawn 108

randomly from the same distribution, differences 109

in performance indicate that the model is able to 110

exploit the labeled samples observed during pre- 111

training (Fig. 1). This controlled manipulation to 112

the pretraining corpus allows us to define measures 113

of contamination usage. We focus on two such 114

measures: 115

mem is a simple measure of memorization. We 116

define the MLM task of predicting the gold la- 117

bel given the instance text (e.g., I love it! 118

[MASK]). mem is defined as the difference in 119

MLM accuracy by the pretrained model (before 120

fine-tuning) between the seen and unseen test sets.3 121

expl is a measure of exploitation, defined as the 122

difference in downstream test performance between 123

the seen and unseen test sets. 124

mem vs. expl mem and expl are complementary 125

measures for the gains from data contamination. 126

While mem is measured after pretraining, expl is 127

measured after fine-tuning. As we wish to explore 128

different factors that influence downstream per- 129

formance (expl), it is interesting to also see how 130

they affect mem, particularly whether memoriza- 131

tion leads to exploitation. Interestingly, our results 132

indicate that this is not necessarily the case. 133

Pretraining design choices Simulating pertain- 134

ing of language model under academic budget is 135

not an easy task. In this paper we pretrain medium- 136

sized models (BERT-base; BERT-large) on rela- 137

tively small-sized corpora (up to 600M tokens). 138

Other approaches have been proposed to address 139

this challenge, e.g., training small language models 140

(Zhang and Hashimoto, 2021). Preliminary exper- 141

iments indicated that small models (e.g. BERT- 142

small with roughly 30M parameters) were unable 143

to neither memorize or exploit the test samples. 144

Another approach is second-stage pretraining (Gu- 145

rurangan et al., 2020; Zhang and Hashimoto, 2021). 146

This approach does not simulate the full pretraining 147

setup, as data appears at the end of training only. 148

3Other definitions of memorization, such as relative log-
perplexity of a sequence have been proposed (Carlini et al.,
2019, 2021). As we are interested in comparing the model’s
ability to predict the correct label, we use this strict measure.
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We acknowledge that the results presented in this149

paper may not generalize to larger models, trained150

on more data. However, as data contamination is151

a prominent problem, we believe it is important to152

study its effects under lab conditions. We hope to153

encourage research groups with more resources to154

apply our method to larger models.155

Finally, we note a difference between the num-156

ber of times the contaminated data appears in the157

training set and the number of times the model sees158

it: the latter also takes into account the number of159

epochs. To eliminate this factor, unless stated oth-160

erwise, we pretrain all our models for one epoch.161

3 Which Factors Affect Exploitation?162

We pretrain BERT models on the masked language163

modelling (MLM) task. As a general corpus we164

use English Wikipedia. We use three downstream165

tasks: binary/fine-grained sentiment analysis (SST-166

2/5; Socher et al., 2013) and SNLI (Bowman et al.,167

2015), a 3-way natural language inference dataset.168

To facilitate the large number of experiments in169

this paper, we randomly sample subsets of 1,000170

instances each of training, seen and unseen test sets171

for each task. We fix the number of contaminated172

data occurrences in the corpus to 100,4 and pretrain173

different models on varying sizes of the overall174

corpus (by increasing the size of Wikipedia data).175

Additional experimental details can be found in176

App. B. We describe our results (Fig. 2) below.177

Memorization does not guarantee exploitation178

Perhaps the most interesting trend we observe is the179

connection between mem and expl. As expected,180

low mem values (10% or less) lead to no expl. How-181

ever, higher mem values do not guarantee expl ei-182

ther. For example, training BERT-base with 600M183

Wikipedia tokens and SST-5 data leads to 15% mem184

level, but less than 1% expl. These results indicate185

the mem alone is not sufficient for expl.186

Model size matters Exploitation is affected by187

the size of the model and the amount of additional188

data. We observe roughly the same trends for all189

three datasets, but not for the two models. For190

BERT-base, 2-6% expl is found for low amounts191

of external data, but gradually decreases, until the192

600M tokens condition, where no expl is found for193

either dataset. For BERT-large, the trend is oppo-194

site: expl is observed starting 300M and continues195

to grow as the amount of external data grows, up196

4The effect of changing this number is explored below.

Figure 2: mem (top) and expl (bottom) results of BERT-
base (left) and large (right). We increase the size of
Wikipedia, while keeping the amount of contaminated
data fixed. expl values are averaged across ten random
trials, shaded area corresponds to one SD.

to 2-4%. This indicates that larger models benefit 197

more from additional training data, which allows 198

them to better exploit the seen test examples. 199

Comparing the different datasets, we observe 200

that mem levels (though not necessarily expl) of 201

SST-5 are consistently higher compared to the other 202

datasets. This might be due to the fact that it is a 203

harder dataset (a 5-label dataset, compared to 2/3 204

for the other two, with lower state-of-the-art re- 205

sults), so the model has fewer meaningful features 206

to focus on, and thus might memorize more. 207

A good initialization matters We observe that 208

expl highly depends on the random seed used dur- 209

ing fine-tuning. In one extreme case, expl levels 210

on a single model range from 0.5% to 8%. This 211

is consistent with prior work that showed that fine- 212

tuning performance is sensitive to the selection of 213

the random seed (Dodge et al., 2020). Consistently 214

with that work, we also find that some random 215

seeds lead to good generalization, as observed by 216

unseen performance, while others are useful for 217

exploitation (Fig. 6, App. A). Interestingly, none 218

of the seeds were ranked in the top 5 seeds on av- 219

erage on both measures. These results indicate a 220

tradeoff between generalization and exploitation, 221

which is perhaps expected. Future work will further 222

study the connection between generalization and 223

exploitation. To support such research, we publicly 224

release our fine-tuning experimental results.5 225

We next continue to explore other factors that 226

5https://github.com/anonymous
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Figure 3: SST-5 mem and expl results. Left: increasing
the number of occurrences of the data. Right: increasing
the proportion of masking the label token.

influence expl. Given the higher SST-5 mem levels,227

we focus on that task in the following experiments.228

We pretrain models on 60M Wikipedia tokens and229

100 copies of SST-5 (unless stated otherwise).230

Exploitation grows with contaminated data oc-231

currences We pretrain BERT-base on a fixed232

Wikipedia corpus while increasing the number of233

copies of SST-5. As expected, both mem and expl234

levels increase in proportion to the contaminated235

data, reaching 60% mem and almost 40% expl when236

the data appears 200 times (Fig. 3, left). One expla-237

nation for this result is that the rising ratio between238

the contaminated data and the full corpus leads to239

increased mem. We conduct experiments in which240

we keep the ratio between the two fixed but increase241

the number of epochs (which increases the number242

of times the model sees each example). Our results243

(App. A) show that this manipulation leads to in-244

creased mem, indicating the importance of the total245

number of occurrences of the task data.246

One explanation for the importance of seeing the247

examples multiple times is that this increases the248

expected number of times the label was masked249

during pretraining.6 We pretrain the BERT-base250

with varying probability of masking the label. Our251

results (Fig. 3, right) show that the higher proba-252

bility of masking the label, the higher the values253

of both mem and expl. Combined, these findings254

indicate that the number of times a model sees the255

contaminated data is crucial for exploitation, and256

motivate works on deduplication (Lee et al., 2021).257

Large batch size during pretraining reduces ex-258

ploitation We next explore the effect of the batch259

size on the level of expl.7 We pretrain BERT-base260

several times, with increasing batch sizes. Our ex-261

periments show that as we decrease the batch size,262

6Our main experiments follow the BERT pretraining pro-
cedure and mask each word with a 15% probability.

7We update after each batch (no gradient accumulation).

both mem and expl levels increases (Fig. 7, App. A). 263

In the extreme case of batch size=2, the mem level 264

reaches 49%, and expl reaches 14%. An intuitive 265

explanation to this phenomena is that when training 266

with small batches, each training sample has more 267

influence on the gradient updates. 268

4 Discussion 269

In this work we focused on the affect contaminated 270

data has on fine-tuning performance. Recent years 271

have seen improvements in prompt-based methods 272

for zero- and few-shot learning (Shin et al., 2020; 273

Schick and Schütze, 2021; Gu et al., 2021). These 274

works argue that masked language models have an 275

inherent capability to perform classification tasks 276

by reformulating them as fill-in-the-blanks prob- 277

lems. Our mem metric uses one such reformula- 278

tion. We have shown that given that the language 279

model has seen the gold label, it is able to retrieve 280

that label under some conditions. Although most 281

manually crafted prompts tend to use meaningful 282

words to the task (unlike our numerical labels), 283

contaminated data might appear with different kind 284

of labels, not necessarily numbers, which might 285

artificially boost zero- or few-shot performance. 286

Moreover, prompt-tuning methods, which learn dis- 287

crete prompts (Shin et al., 2020) or continuous ones 288

(Zhong et al., 2021), might latch on to the memo- 289

rized labels, and further amplify this phenomenon. 290

This further highlights the importance of quantify- 291

ing and characterizing data contamination. 292

5 Conclusion 293

We presented a method for studying the extent to 294

which data contamination affects downstream task 295

performance. This method allows us to quantify 296

explicitly memorization of labels from pretraining 297

phase and exploitation of them in fine-tuning. 298

Experiments with two models and three datasets 299

suggests that language models can exploit labels 300

seen in pretraining and that exploitation is affected 301

by the model’s size and grows with the number of 302

contaminated occurrences. Results also show that 303

memorization does not guarantee exploitation, and 304

that the latter is highly influenced by the random 305

seed. Continuing to study the connection between 306

these two measures is an important line of research. 307

Our results also emphasize the importance of ana- 308

lyzing web-based corpora and performing dedupli- 309

cation to the training set. 310
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A Same Ratio, Different expl467

As noted in Sec. 2, the number of times the model468

sees the contaminated data is a different notion than469

the number of occurrences of contaminated data470

in the pertaining corpus, as the former also takes471

into account the number of training epochs. It is472

mostly common to refer to second notion (occur-473

rences) (Carlini et al., 2021; Brown et al., 2020).474

However, the following experiment emphasizes475

the importance of the first notion—the number of476

times the model sees the data. We conduct second-477

stage-pretraining for 5 epochs on varying sizes of478

Wikipedia along with 10 copies of SST-5. In this479

scenario the contaminated data appears 10 times480

in the corpus, but the model sees it for 50 times. 481

We compare the results to two other experiments. 482

In the first, we train the same corpus for 1 epoch 483

only. In this scenario the contaminated data still 484

appears 10 times in the corpus, but now the model 485

sees it for 10 times only. Notice how in both these 486

experiments the ratios of contaminated data (SST- 487

5) to clean data (Wikipedia) are identical. In the 488

last experiment we train for 1 epoch on a corpus 489

of varying sizes of Wikipedia but with 50 copies 490

of SST-5. In this scenario the contaminated data 491

appears 50 times in the corpus, and this is also the 492

numbers of times the model sees it. In this condi- 493

tion the ratios of contaminated data to clean are 5 494

times bigger than the ratio used in the other experi- 495

ments. Results are shown in Fig. 4 and Fig. 5. In 496

all three conditions, accuracy of the unseen set is 497

similar. Nevertheless, in both conditions where the 498

model saw the seen set 50 times, accuracy spiked 499

on the seen set. The expl levels in these experi- 500

ments reaches 7-10%. 501

Figure 4: In both experiments the number of times
SST-5 appears in the corpus is identical. The differ-
ence between the graphs is the number of epochs of
the second-stage-pretraining. The two graphs are quite
different. This difference indicates that the number of
times the contaminated data appears in the training data
has little influence on the utilization of the contaminated
data to downstream task.

Figure 5: In both graphs the model “sees” 50 instances
of SST-5. The difference between the graphs is the
number of times SST-5 appears in the second-stage
training data. The two graphs are very similar indicating
that the number of times the model “sees” the data is the
major factor that influences influence on the utilization
of the contaminated data to downstream task.
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Figure 6: expl levels using two random seeds. Seed
A leads to consistently higher expl than seed B on all
tasks.

Figure 7: mem and expl values drop as the batch size
increases.

B Experimental Details502

Originally, BERT model was trained on Masked503

Language Modelling (MLM) task and Next Sen-504

tence Prediction task (NSP; Devlin et al., 2019).505

However, Liu et al. (2019) showed that removing506

the NSP loss doesn’t impact the downstream task507

performance substantially. Therefore we pretrain508

both BERT models (-base and -large, both uncased)509

on the MLM task only.510

Wikipedia Data We extracted and pre-511

processed the April 21’ English Wikipedia dump.512

We used the wikiextractor tool (Attardi, 2015). In513

order to measure the effect of contamination when514

contaminated data is shuffled across the pretraining515

corpus, we divided clean Wikipedia text into lines516

(instances which were originally separated by new517

line symbol).518

Experimental Details for Section 3 All mod-519

els were trained with the following standard pro-520

cedure and hyperparameters. Specific experimen- 521

tal adjustments will be discussed later. We pre- 522

trained BERT models using transformers (Wolf 523

et al., 2020) run_mlm script for masked language 524

modeling. We used a combined corpus of 60M 525

tokens of Wikipedia along with 100 copies of the 526

downstream corpus. Due to computational limi- 527

tations, we limited the training sequences to 128 528

tokens. We pretrained for 1 epoch and used batch 529

size of 32 to fit on 1 GPU. We trained with a learn- 530

ing rate of 5e-5. We apply linear learning rate 531

warm up for the first 10% steps of pretraining and 532

linear learning rate decay for the rest. We fine-tune 533

the models on 1,000 samples of the downstream 534

corpora (SST-2, SST-5 and SNLI). 535

We fine-tune for 3 epochs using batch size of 536

8. We use AdamW (Loshchilov and Hutter, 2019) 537

optimizer with learning rate of 2e-5 and default pa- 538

rameters: β1 = 0.9, β2 = 0.999, ϵ = 1e-6, with bias 539

correction and without weight decay. We average 540

the results over ten random trials. 541

Experimental Details for Section A We con- 542

ducted second-stage-pretraining by continuing to 543

update BERT-base weights. We used batch size of 544

32 and learning rate of 5e-5. Learning rate schedul- 545

ing, optimization and fine-tuning are the same as 546

standard procedure described above. 547
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