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Abstract

We consider the problem of distilling an image into an ordered set of maximally
informative patches, given prior data from the same domain. We cast this problem
as one of maximizing a pointwise mutual information (PMI) objective between a
subset of an image’s patches and the perceptual content of the entire image. We
take an image synthesis-based approach, reasoning that the patches that are most
informative would also be most useful for predicting other pixel values. We capture
this idea with an image completion CNN trained to model the PMI between an
image’s perceptual content and any of its subregions. Because our PMI objective is
a submodular, monotonic function, we can greedily construct patch sets using the
CNN to obtain a provably close approximation to the intractable optimal solution.
We evaluate our approach on datasets of faces, common objects, and line drawings.
For all datasets, we find that a surprisingly few number of patches are needed
to reconstruct most images, demonstrating a particular type of redundancy of
information in images, and new potentials in their sparse representations. We also
show that these minimal patch sets may be used effectively for downstream tasks
such as image classification.

1 Introduction

Natural image datasets often lie on surprisingly low-dimensional manifolds due to significant cor-
relations between image pixels and across images [40]. As a result, the pixel domain tends to be a
highly redundant representation for many vision tasks, where only a subset of a scene needs to be
observed to ensure success. This is illustrated by “attention”-based classifiers that focus on image
subregions [45, 49], and cognitive science studies on “minimal” images for recognition [3, 44]. Put
another way, by just observing a subset of an image’s pixels, we can often infer more about the image
than just those pixels. Studying what in an image is predictable given a very limited view of it reveals
the regularities within and across images, and can influence how we choose to store or process them.

This paper reveals the strength of those image regularities through the following task: given an image
I , a fixed patch size, and training images from the same domain, sequentially determine which patch
in I provides the most new information about I . Consider the example in Fig. 1. Suppose we know
that the image is in the CelebaHQ dataset, consisting of faces of various celebrities. Our approach
will sequentially select patches coinciding with informative regions — areas both within and outside
the face — that help to infer the full image. In addition to revealing fundamental properties of
image collections, the answer to this question has potential impact in the design of efficient vision
algorithms, and may relate to human cognition studies of attention and foveation.
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Figure 1: Illustrative example of selecting informative image patches. We aim to take an input
image, and find the set of patches that are best able to help us reconstruct the image, assuming other
data from the domain as prior knowledge (training images). The optimal patch sets and synthesized
images in this figure are produced by our method.

We propose a method for this task that leverages a combination of probabilistic modeling, image
synthesis, and submodular function optimization. We first propose a measure of pointwise mutual
information (PMI) between an image and any subset of its patches with a probabilistic notion of
perceptual similarity. We then design a convolutional neural network that yields an approximation of
this PMI measure for a data domain of interest. Given a subset of observed image patches as input,
this network synthesizes a completed image, along with uncertainty estimates in perceptual space.
We then use this network to sequentially find maximally-informative patches for a test image in a
greedy manner, which is an efficient and provably good approximation to the optimal solution.

We evaluate our work on several real datasets with different characteristics: face images (Celeba-
HQ [23, 29]) , common objects (STL-10 [9]) and line drawings (QuickDraw [16]). We show that,
given training data from a particular domain, surprisingly few image patches need to be observed to
reconstruct the full image. We also explore how this finding may be useful for performing downstream
tasks like classification.

2 Related Work

Our computational work has ties to several areas in cognition, the closest being visual attention.
Humans selectively attend to parts of the visual space to acquire information, and combine information
from these views to form an internal representation of the scene [33]. Attention has been studied in
relation to human reasoning [4, 10], saccades and eye movements [12, 13, 18], motor control [1, 5],
and peripheral vision [35]. Our work also has ties to findings on “minimal images,” the smallest
regions of an image that remain recognizable for humans [3, 44]. Finally, games like Bubbles and
Peekaboom were developed to use human attention to annotate salient regions of image data in
an interactive way [11, 47]. We draw inspiration from these works, though our method is purely
data-driven and not strongly based on the cognitive system.

Inspired by the human cognitive system, computer vision researchers have incorporated attention
into various learning models. Several studies use attention to localize features for fine-grained image
classification [14, 48, 49, 51] and for image captioning and visual question answering tasks [2, 8, 31].
Attention can also provide computational savings for image processing, by isolating interesting
regions to explore further [30]. In contrast to these studies, we focus on understanding how little of
an image must be attended to to understand its contents.

Mutual information and submodular function optimization are topics with wide applications in AI
and other fields. They have had a few uses in computer vision too. Mutual information has been
used for registration between pairs of images [15, 36, 37, 46], and pointwise mutual information
was proposed for grouping pixels within an image [19]. Submodular function optimization has been
used to measure image region saliency and to segment image regions [20, 21, 25]. These works do
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Figure 2: Image completion network. Patch regions are specified by a binary mask MR. The
original image I is multiplied by MR, and sent as input to the network, parameterized by θ. The
outputs of the network are predictions for the average completed image, along with Gaussian standard
deviation parameters σI and σφ,l, l ∈ {1, · · ·L}, for the image and perceptual feature spaces.

not aim to maximize the information of the entire image from a few patches, and do not optimize
a synthesis-based objective. Submodular functions have also been used for tracking and detecting
objects [38, 52], and image collection summarization [43].

While this approach utilizes synthesis-based objective similar to image inpainting works, what
differentiates this approach is that the primary focus is to retrieve the maximally informative patches
instead of maximizing reconstruction quality. Therefore, the patch-selection method we use is
network-agnostic and generalizes to different architectures. State-of-the-art architectures may provide
crisper image reconstructions [32, 28, 7], but the UNet-style architecture we choose suffices in
reconstruction quality and achieves the paper’s main purpose of calculating mutual information.

3 Methods

We assume a training dataset D of images from a domain of interest and a fixed patch size s as input.
Given an image I ∈ Rd from this domain at test time, we aim to construct an ordered set of k patches
R∗k ∈ I carrying maximal information about I’s visual content. Formally, we define R∗k as the set of
k patches with maximal pointwise mutual information (ρ) with I:

R∗k(I) = argmax
Rk

(ρ(Rk, I)) = argmax
Rk

(
log

p(I|Rk)

p(I)

)
= argmax

Rk

(log p(I|Rk)) . (1)

We estimate p(I|Rk) using a synthesis-based approach (see Figs. 1 and 2). We first specify a form for
this distribution that captures both per-pixel and higher-order perceptual features. This formulation
leads to a loss function with trainable parameters θ, which we implement with a CNN that completes
images from a subset of visible patches.

Once trained, this network serves as a functional approximator to the pointwise mutual information,
ρ(·, ·). Unfortunately, finding the optimal set R∗k for a given k is a combinatorial, intractable problem.
We instead leverage the fact that ρ(·, ·) is a monotone submodular function, and use a greedy
patch selection strategy that is a provably good approximation to the optimal solution. Using a
synthesis-driven objective to measure information content is attractive for several reasons. First, it is
unsupervised, and therefore applicable to any image dataset. Second, since it is not tied to a particular
task like classification or segmentation, our findings are applicable to any downstream task operating
on the images. Finally, a synthesis network can tractably model long-range pixel dependencies, unlike
approaches that only compare pixels over local neighborhoods [6, 19, 27].

3.1 Probabilistic Formulation

We build on existing works that combine per-pixel and “perceptual” losses for realistic image
synthesis [22, 50]. A per-pixel loss treats each pixel as an independent observation, and the perceptual
loss measures image differences in a more complex feature space φ(·) : Rd → R|φ| defined by
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the activations of an L-layer image classifier, e.g., VGG16 [39] (L = 5 in our experiments). We
approximate p(I|R) with these ideas using a factored form:

p(I|R; θ, φ) = ppixel(I|R; θ) · ppercep(φ(I)|R; θ, φ), (2)

where θ are function parameters to be trained over data. We define the per-pixel distribution as:

ppixel(I|R; θ) = N (I;µI(R; θ),ΣI(R; θ)) , (3)

where µI(·; θ) ∈ Rd is a mean image, and ΣI(·; θ) ∈ Rd×d is a diagonal covariance matrix (i.e.,
effectively also inRd). Estimating a different variance for each pixel accounts for the heteroscedastic
uncertainty of our task [24] due to certain pixels being easier to model than others given R.

We define the perceptual distribution as:

ppercep(φ(I)|R; θ, φ) =

L∏
l=1

N
(
φl(I);φl(Î), σ2

φ,l(R; θ)
)
, (4)

where Î is a sample from ppixel(·|R; θ), φl(·) are features from layer l of the perceptual network, and
σ2
φ,l(·; θ) ∈ R is a variance estimate for layer l.

3.2 Synthesis CNN and Loss Function

We use a UNet-style architecture [34] to implement the three functions µI(·; θ), ΣI(·; θ) and σ2
φ(·; θ)

(see Fig. 2). We output µI and ΣI from the final convolutional layer of the UNet, at full image
resolution. We estimate the vector σ2

φ with a fully-connected layer applied to the activations of the
middle (smallest) convolutional block of the UNet.

We represent R with a masked version of image I , obtained by multiplying a binary mask MR

element-wise with I . During training, we populate MR with a random number of patches at random
locations, to teach the model to complete arbitrarily-occluded images.

We optimize the network parameters by minimizing the negative log-likelihood of Eq. (2) over the
training dataset D:

θ∗ = min
θ

ED
[
− log ppixel(I|R; θ)− log ppercep(φ(I)|R; θ, φ)

]
. (5)

3.3 Patch Selection

At test time we use the trained network to calculate PMI between any set R and test image I .
Constructing the optimal set R∗k for value k requires a combinatorial search over many candidate
regions with complexity O(kd), and is therefore intractable.

Fortunately, the PMI between a set of variables and any of its subsets is monotone and submodular
in expectation (see supplementary material for proof). This means that the incremental information
added by a patch about I decreases as the number of visible patches increases, and that if R ∈ S ∈ I ,
PMI(R, I) ≤ PMI(S, I). For such functions, a greedy selection of candidates is a provably good
approximation, to within a factor of 1 − 1

e of the optimal solution [26]. We perform the greedy
search in a brute-force manner, for each patch over a fixed grid of image locations. Evaluating every
pixel location is computationally intensive, so we set grid points to be a half-patch-size apart.

4 Experiments

We evaluate our work on three popular image datasets: CelebaHQ [23, 29] (high-res faces), STL-
10 [9] (common animals/objects), and QuickDraw [16] (line drawings). We randomly split all of the
CelebaHQ images to construct 28000/1000/1000 train/validation/test sets. We used a subset of the
QuickDraw object classes, by taking the union of the 10 classes in the original study’s experiments,
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Figure 3: QuickDraw reconstruction results for three test images. Columns 1-6 of each odd row
displays our method’s outputs given different numbers of greedily-selected patches. The patches are
shown in each even row, on top of a gray background for easier visualization. Ground truth images
are shown in column 7. We also show the nearest neighbor from the training set in column 8.

and the object classes in STL-10, resulting in 17 classes1. We randomly sampled 5400/300/300
train/validation/test images per class. We found that STL-10 contains duplicate images between
its unlabeled and labeled datasets, so we removed them from the unlabeled set, which we used for
training. We used an 87,700/5000/1000 split of data.

We used constant patch areas of 1/64th of the full image area of each dataset. For CelebAHQ and
QuickDraw this resulted in 32× 32 patches, and for STL-10 this resulted in 12× 12 patches. We
varied the number of patches from 1-25, covering roughly 1− 40% of the full image area. We trained
separate models for each dataset, and our code is written in PyTorch.

4.1 Reconstruction Results

Figs. 3, 4 and 5 present sample reconstruction results for several test images from each dataset. We
show both the reconstructed image, as well as the greedily selected patches from our method for
different patch set sizes. We also display the nearest neighbor to the ground truth image in the training
set, evaluated using the LPIPS perceptual error [50], for further context.

For QuickDraw, roughly 5 patches give close approximations of the ground truth for most cases, after
which smaller details are added with subsequent patches. Selected patches tend to straddle areas
with multiple semantic parts or corners. For example, in Fig. 3, the first patch selected for the face

1face, cat, pig, crab, rabbit, garden, owl, mosquito, yoga, airplane, bird, car, dog, horse, monkey, cruise ship,
truck
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Figure 4: CelebaHQ reconstruction results. Column format is the same as in Fig. 3.

(example 1) straddles the chin and mouth, and the first patch for the truck (3rd example) is placed at
its top-left corner.

CelebaHQ contains variabilities in facial attributes, poses, apparel, and background (see Fig. 4).
Our synthesis method is usually able to establish gender with one greedily-selected patch, such as
in examples 1,3, and 4. The first patch on the lip for example 1, for instance, helps establish both
gender and pose. The fourth example is a case where patches are placed to help fill in both complex
background details along with the face. The second example is particularly challenging due to the
atypical hair, pose, and apparel combination.

STL-10 is the most challenging of the three datasets, consisting of more unconstrained images, with
complex backgrounds. But even for this dataset, our method performs well, and is able to recover a
surprising number of details within 10 patches. Some interesting landmarks captured by the patches
include the ear of one dog (1st example, 2 patches) as well as the nose of a second dog in the same
scene (1st example, 5 patches), part of the leg and beak of the bird (2nd example), and the center
ridge of the boat (3rd example, 5 patches).

We numerically evaluated the reconstruction results against a baseline, random patch selection
approach. The random selector places patches with equal probability at the same grid locations we
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Figure 5: STL-10 reconstruction results. Column format is the same as in Fig. 3.

consider for the greedy search (see Sec. 3.3). For QuickDraw, we added a constraint that the patch
must contain at least one black (foreground) pixel. Fig. 6 presents our results. Greedy selection
outperforms random, with the difference more accentuated as the number of patches approaches 25.
These results demonstrate that not all patches in an image are equal in regards to information content,
and that careful selection is critical.
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Figure 6: Perceptual reconstruction error vs. number of input patches. We randomly selected
1000 test images from each dataset and measured the LPIPS perceptual error [50] of our synthesis
model’s reconstructions given a varying number of visible input patches. We plot the mean error per
set size, along with standard deviations in bars. Greedy patch selection significantly outperforms
random selection, with the difference growing as k → 25 for CelebaHQ and STL-10. This result
shows that a sparse set of areas of the image are particularly informative.
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Figure 7: Classification results. We report accuracies of image classifiers on images synthesized by
our approach from different numbers of greedily selected patches. For STL-10 and QuickDraw, we
also show accuracies for random patch selection and the true accuracy of the classifier on images
from that dataset. We omitted random results for CelebaHQ for the sake of figure clarity, and included
the true classifier accuracy in the legend.

4.2 Patches for Classification

We explore the viability of using our patch sets for image classification. Instead of designing a new
classifier that handles arbitrary patches as input, we evaluate a standard image classifier’s accuracy
on synthesized images produced from different sets of input patches. Each of the three datasets
provide annotations: QuickDraw and STL-10 for object classes, and CelebaHQ for 40 facial features.
We selected seven attributes for CelebaHQ capturing a broad span of face characteristics. We use
ResNet-51 [17] architectures for each classifier. We use a multiclass softmax loss for QuickDraw
(17-way) and STL-10 (10-way), and a binary cross-entropy loss for each CelebaHQ attribute.

Fig. 7 presents our method’s accuracy versus patch set size. We show random patch selection as a
baseline for QuickDraw and STL-10, and omit it for CelebaHQ to avoid overcrowding the figure (full
results are in supplementary material). Greedy selection outperforms random for QuickDraw and
STL-10 by a considerable margin, in line with our results for image reconstruction in Fig. 6. Greedy
selection achieves within 5% of the true classifier accuracy at roughly 10-15 patches for QuickDraw,
and 5-10 patches for STL-10.

Greedy selection performs well on CelebaHQ as well, though we do observe variability across
attributes. For example, it struggles with few patches on high cheekbones and smiling, likely because
slight variations to these features (e.g., a neutral vs. smiling mouth) are not particularly informative
for reconstructing the full image.

5 Discussion and Conclusion

There are several avenues of further exploration given our results. It would be interesting to disen-
tangle the information of a patch into its location and content components. For instance, the first
QuickDraw example in Fig. 3 of a face shows how one carefully placed patch straddling the mouth
and chin immediately constructs most of the face. Given that the image is from QuickDraw, clearly
both the visual feature and its coordinate in image space say something about the object class. It
is likely that our method uses such biases, which exist widely in vision datasets [41, 42], to its
advantage.

Our experiments demonstrate that our minimal patch sets also contain appropriate information for
classification tasks. Admittedly, more analysis may be required to apply those ideas in practice.
First, it would be useful to show that the patches can be informative when given sequentially to
an attention-based classifier to minimize computation. Second, our process for returning patches
involves synthesizing a full image for each considered patch location, for all k iterations. This may be
improved upon by using the per-pixel uncertainty map σI returned by our network to prune locations
worth exploring. This would be more similar in spirit to ideas in sequential attention [12, 30].

Our results show that images from several popular datasets can be accurately inferred by just
observing a few patches in sequential order, given prior data from those domains. This form of
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data redundancy has not been explored in depth by past work, and has natural ties to sequential
attention processes of humans and recent vision algorithms, as well as image compression. At the
core of our approach is a measure of pointwise mutual information captured by a synthesis model
that does not rely on any supervised information. Quantifying information about a scene from a
subset of patches specifies where an attention-based learner should look next in a task-agnostic
way. In addition to image reconstruction, our experiments demonstrate these minimal patch sets
contain appropriate information for potential downstream tasks like classification. In the case of
low-bandwidth computing, this approach could process high-resolution images piecemeal and feed
patches into the classifier.

The pointwise mutual information approach is both task-agnostic and network-agnostic. Other
potential applications of this method include quantifying how much information a network can learn
from seeing a face occluded by a face-mask and potentially detect which patches a face recognition
system must focus on to authenticate a user. Furthermore, neural networks with attention-mechanisms,
such as transformers, identify which parts of the image the model focuses on. Alternatively, a
greedy search with among patches can also help us dissect where the network gains information to
understand a scene. While this paper is not geared toward one single application, the method we
propose demonstrates which information neural networks find most valuable, which can then be
leveraged for various downstream tasks.
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Finding Maximally Informative Patches in Images

A ER,I [PMI(R, I)], where R ⊆ I , is submodular and monotonic.

Proof. ER,I [PMI(R, I)] is the mutual information between R and I , which we denote MI(R, I). Rewriting
in terms of informational entropy we obtain:

MI(R, I) = H(R) +H(R|I) = H(R), (6)

since H(R|I) = 0 when R ⊆ I . Entropy is both submodular and monotonic. To see this, let
R ⊆ S ⊆ I , and let z ∈ I \ S be an unobserved patch. Then:

H(R, z)−H(R) = H(z|R) (7)
≥ H(z|R ∪ (S \R)) (8)
= H(z|S) (9)
= H(S, z)−H(S), (10)

where step 8 follows from the fact that conditioning never increases entropy (“information never
hurts”). Therefore, entropy is submodular. Furthermore, since adding a random variable to a set can
only increase the set’s entropy, H(R) ≤ H(S), and entropy is also monotonic.

B Additional visual examples

See Figs. 8, 9, and 10 below for additional reconstruction results for each dataset.

C Celeba-HQ classification plots

See Fig. 11 for a breakdown of accuracies of our approach vs. random patch selection for each
attribute.

D Visual examples ordered by difficulty

Figs. 12, 13 and 14 show test images ordered by the number of patches needed by our method to
reconstruct them to a given accuracy threshold. This metric correlates well with the visual complexity
of the images.
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Figure 8: Additional Quickdraw reconstruction results. Column format is the same as in Fig. 3.
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Figure 9: Additional CelebaHQ reconstruction results. Column format is the same as in Fig. 3.
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Figure 10: Additional STL-10 reconstruction results. Column format is the same as in Fig. 3.
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Figure 11: Classification results for CelebaHQ. A comparison of greedy vs. random patch selection
for classification accuracy which we omitted from the main text (Fig. 7) due to space constraints.
Greedy selection outperforms random selection in general, although the difference is smaller for
Young, High Cheekbones, and Smiling.
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22

Figure 12: QuickDraw images sorted by reconstruction difficulty. We display randomly selected
images in the QuickDraw test set sorted by the number of greedily-selected patches needed to achieve
a negative log-probability (Eq. 5) below a threshold of 2.0. The number of patches correlates with
image complexity.

r

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 >25

Figure 13: CelebaHQ images sorted by reconstruction difficulty. Column format is the same as
Fig. 12. The negative log probability threshold is 5.5. Images with solid-colored backgrounds require
fewer patches, and faces with non-standard image features and apparel require more patches.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 >25

Figure 14: STL-10 images sorted by reconstruction difficulty. Column format is the same as
Fig. 12. The negative log probability threshold is 5.5. Images depicting airplanes, trucks, and cars
require fewer patches than those depicting animals. Animal images also tend to have more complex
backgrounds.
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