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ABSTRACT

The impressive capabilities of large language models (LLMs) have sparked debate
over whether these models genuinely generalize to unseen tasks or predominantly
rely on memorizing vast amounts of pretraining data. To explore this issue, we
introduce an extended concept of memorization, distributional memorization,
which measures the correlation between the LLM output probabilities and the
pretraining data frequency. To effectively capture task-specific pretraining data fre-
quency, we propose a novel task-gram language model, which is built by counting
the co-occurrence of semantically related n-gram pairs from task inputs and outputs
in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we
evaluate four distinct tasks: machine translation, factual question answering, world
knowledge understanding, and math reasoning. Our findings reveal varying levels
of memorization, with the strongest effect observed in factual question answering.
Furthermore, while model performance improves across all tasks as LLM size
increases, only factual question answering shows an increase in memorization,
whereas machine translation and reasoning tasks exhibit greater generalization,
producing more novel outputs. This study demonstrates that memorization plays a
larger role in simpler, knowledge-intensive tasks, while generalization is the key
for harder, reasoning-based tasks, providing a scalable method for analyzing large
pretraining corpora in greater depth.

1 INTRODUCTION

Large language models (LLMs), such as GPT-4, have achieved remarkable performance across a
wide range of tasks, yet the debate persists regarding whether these models are truly generalizing to
unseen test cases or merely memorizing their extensive training data (Magar and Schwartz, 2022;
Srivastava et al., 2024; Bender et al., 2021; Merrill et al., 2024; Shaib et al., 2024). Previous research
has primarily investigated memorization in LLMs through verbatim recall of long segments from
the training corpus (Zhang et al., 2023; Jiang et al., 2024; Carlini et al., 2022). However, the exact
reproduction of long text is relatively uncommon when examining high-level capabilities such as
translation and reasoning, particularly when the task output is short, as with world knowledge
questions. To advance this line of inquiry, a more flexible definition of memorization is necessary.

Several works have explored the relationship between memorization and generalization (Feldman,
2020; Feldman and Zhang, 2020; Zhang et al., 2023), often employing counterfactual memorization,
which measures the difference in model performance when a specific training example is excluded.
However, these studies typically use small models and datasets, or subsets of larger datasets, and
focus primarily on quantifying how much model behavior depends on memorization. They do not
fully examine how different model capabilities emerge from the interplay between memorization and
generalization. Moreover, the limited scale of these analyses is partly constrained by the definition of
counterfactual memorization, which requires expensive model retraining.

In this paper, we introduce a new framework for understanding memorization at scale, enabling us
to analyze various LLM capabilities. We define distributional memorization1 as the correlation

1A formal definition is provided in Definition 3.
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Figure 1: Overview of our proposed analysis pipeline. For the selected evaluation tasks, we first construct a
task-gram table by matching semantically similar n-grams from task inputs (x) and targets (y). These n-grams
are then searched within the pretraining corpus, yielding their counts and source documents. We then build a
task-gram language model from the obtained counts and then analyze their relationship with LLM predictions.

between the distribution of LLM outputs and the distribution of pretraining data. Similarly, we
define distributional generalization as the divergence between the LLM’s output distribution and
the pretraining data distribution. For simplicity, we will refer to these concepts as memorization and
generalization throughout the paper.

Our approach to defining memorization and generalization requires estimating the distribution of
LLMs’ pretraining corpora, which is a challenging task given the sheer size of these datasets, often
containing trillions of tokens. To address this, we propose a novel method for modeling language
distributions by counting semantically related n-gram pairs extracted from a task’s input-output
pairs. For example, in machine translation, these n-grams would correspond to phrase pairs from the
source and target languages, as shown in Figure 1. This allows us to construct a set of n-gram pairs
that characterize the task. Drawing inspiration from the phrase table used in machine translation
(Passban et al., 2016), which consists of translation pairs, we refer to this set as the task’s task-gram
table. When n-grams from the input and output co-occur within a document, they are often separated
by significant distances. By counting these co-occurrences, we are able to model long-range, task-
relevant dependencies Elazar et al. (2019; 2022). The resulting n-gram language model, built from
the task-gram table, is referred to as a task-gram language model2. In contrast, classical n-gram
LMs capture only local lexical dependencies within a single n-gram. Although Liu et al. (2024)
introduced a ∞-gram LM, which extends n to infinity through backoff from infinitely long n-grams,
the effective length after backoff remains limited and cannot capture the long-range dependencies
modeled by our task-gram LM. These n-gram LMs can be viewed as empirical approximations of the
pretraining data distribution since they follow the observed frequency of n-grams (or pairs) in the data.
Using these n-gram LMs, we measure the degree of memorization by correlating LLM-predicted
probabilities with the probabilities generated by the n-gram LMs.

Our experiments focus on the Pythia model family (Biderman et al., 2023), pretrained on the Pile
dataset (Gao et al., 2020), and evaluate performance across three tasks: translation (WMT (Callison-
Burch et al., 2009)), factual question answering (TriviaQA (Joshi et al., 2017)), world knowledge
questions (MMLU (Hendrycks et al., 2020)), and math reasoning (GSM8K (Cobbe et al., 2021)).
The high-level overview of our analysis pipeline is depicted in Figure 1. We first construct a task-
gram table using supervised task data, then search for the co-occurrence of n-gram pairs in the
pretraining corpus using WIMBD (Elazar et al., 2024). Finally, we construct a task-gram LM from
the co-occurrence counts and compare it with LLM predictions. Our results demonstrate that the
task-gram LM effectively captures task-relevant data distributions, providing better explanations for
LLM behaviors compared to the ∞-gram LM (Liu et al., 2024).

Among the four tasks, our analysis reveals that TriviaQA exhibits the strongest memorization effect,
with task performance highly correlated to the n-gram distributions in the pretraining data. In contrast,
MMLU shows weaker memorization, and WMT exhibits only an insignificant memorization effect.

2A formal definition is provided in Definition 2.
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Additionally, our results show that as the model size increases, the source of performance gains varies
across tasks: for TriviaQA, improved memorization plays a key role, while for MMLU, WMT, and
GSM8K, increased generalization is more crucial. These findings align with the nature of the tasks:
TriviaQA relies on factual recall, MMLU and GSM8K require more complex reasoning, and WMT
reflects transferable translation skills.

To complement our distributional memorization analysis, we also conduct a gradient-based estimation
of the training influence of pretraining documents on test examples. We find that, consistent with
our distributional memorization results, pretraining documents have the largest impact on TriviaQA,
followed by MMLU, and the least impact on WMT. Documents containing n-gram pairs from the
task-gram table exert a greater influence than those containing only individual n-grams.

To our knowledge, this work presents one of the first comprehensive analyses of LLM capabilities by
tracing their origins to pretraining corpora at scale. Our task-gram language model offers a scalable,
generalizable approach for understanding LLM behavior across a variety of tasks.3

2 METHOD

Diverse abilities have been observed from LLMs trained on large pretraining corpora. Many of them
are distinct in nature, like knowledge retrieval and math reasoning. It is reasonable to hypothesize
that these capabilities come from different subsets of texts from pretraining. To better identify
these task-relevant texts, we propose to construct a task-gram table from a set of supervised task
data DT = {(xi, yi)}i corresponding to task T , to characterize the task-relevant documents. More
specifically, we mine semantically similar n-gram pairs (sx, sy) from corresponding task input x and
output y respectively. i.e., sx ⊆ x, and sy ⊆ y. We use the cosine similarity between the embeddings
of the n-grams to measure the semantic closeness of the n-grams. The task-gram table is then
constructed by all possible such n-gram pairs in DT . The mined n-gram pairs capture task-specific
supervision signals as the output n-gram can be viewed as “answering” the input n-gram. We formally
define the task-gram table as follows:
Definition 1. Denote all possible combinations of input-output n-gram pairs from task data DT =
{(xi, yi)}i by An(T ) = ∪i[Gn(xi)×Gn(yi)], where Gn(·) denotes the set of all possible n-grams
in a piece of text. Then the task-gram table Hn(T ) is defined as:

Hn(T ) = {(sxj , s
y
j ) | cos(E(sxj ), E(syj )) > γT , s

x ̸= sy, (sxj , s
y
j ) ∈ An(T )},

where γT ∈ (0, 1) is a threshold chosen as a hyperparameter, E is a pretrained text embedding
model, and cos(·, ·) denotes the cosine similarity between two vectors.

Based on the task-gram table, we can then construct a task-gram language model, which can
describe the distribution of the characterized task-related data in a large pretraining corpus. In the
following paper, we use C as the counting function. We define the number of co-ocurrence of a
n-gram pair (sx, sy) in the same document in the pretraining copus D by C((sx, sy),D). We also
define the number of occurrences of a n-gram sy in the pretraining corpus D by C(sy,D). Then a
task-gram language model can be defined as follows:
Definition 2. A task-gram language model is defined over its task-gram table Hn(T ). For
∀(sx, sy) ∈ Hn(T ) and a corpus of interest D, we define the following probability distribution

Pn,D(s
y|sx) = C((sx, sy),D)/C(sx,D). (1)

In practice, when we observe that an n-gram sx exists in an unseen text input, the chance of the
corresponding n-gram sy appearing in the output can be estimated by Pn,D(s

y|sx).
Suppose we have an LLM pretrained on the corpus D. Considering the zero-shot setting where we
prompt the LLM with an instruction text u and an input text x.4 Suppose sx ⊆ x and sy ⊆ y, we
want to define an LLM version of the above n-gram conditional distribution using the LLM predicted
probability of sy in the context of the concatenated testing example u⊕ x⊕ y:

PLLM(sy|sx) =
∏
t∈sy

PLLM(t|u⊕ x⊕ y[1:m−1]). (2)

3Code will be made available upon acceptance of the paper.
4In practice, we use a minimal instruction template to indicate the input and output.
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Here m denotes the location index of the n-gram sy found in y, and t is each token in the tokenized
n-gram sy . We can then formally define the distributional memorization by Spearman correlation ρ
between the task-gram language model probabilities and LLM predicted probabilities of testing data:

Definition 3. For a testing set D′
T = {(xi, yi)}i, we denote all n-gram pairs found in it by Φ =

{(sx, sy)|∀(sx, sy) ∈ [Gn(x)×Gn(y)] ∩Hn(T ),∀(x, y) ∈ D′
T }. Then we define the extent of an

LLM distributional memorize the pretraining corpus D when performing task T as follows:

Memn(LLM,D|T ) = ρ(logPn,D(Y |X), logPLLM(Y |X)), (3)

where ρ denotes Spearman correlation, logPn,D(Y |X) = {logPn,D(s
y|sx)|∀(sx, sy) ∈ Φ}, and

logPLLM(Y |X) = {logPLLM(s
y|sx)|∀(sx, sy) ∈ Φ}.

Similar to normal Spearman correlations, the significance of distributional generalization can be
measured by p-value. The distributional generalization is then defined as the opposite of the
distributional memorization: increased memorization implies decreased generalization, as the LLM
predictions and the n-gram LM are more distributionally correlated, and vice versa.

Figure 2: Expected distributional memorization and gen-
eralization trend for different types of tasks.

Distributional memorization describes to what
extent the LLM predicted probability of the
ground truth testing data can be viewed as a
monotonic function of task-gram LM proba-
bility. This can be viewed as a measure of
the predictability of task-gram LM to the LLM
probability. In the following sections, we show
comprehensive empirical evidence of LLMs per-
forming knowledge-intensive tasks depending
on distributional memorization while perform-
ing reasoning-intensive tasks depending on dis-
tributional generalization, as illustrated in Fig-
ure 2.

3 EXPERIMENTAL SETUP

In this section, we introduce the datasets, models, and tools we use for analyzing the memorization
and generalization behaviors of LLMs.

Models and Pretraining Corpus We use a family of fully open-sourced, Transformer-decoder-
based LMs: Pythia (Biderman et al., 2023), with a wide range of model sizes ranging from 13M to
12B parameters. All Pythia models are trained on Pile (Gao et al., 2020), a diverse pretraining corpus
consisting of approximately 207B tokens. We also include some results with 1B and 7B parameters
OLMo models (Groeneveld et al., 2024), pretrained on a much larger corpus with 3T tokens, Dolma
(Soldaini et al., 2024b).

Downstream Tasks We use four types of tasks: machine translation, factual question answering,
world knowledge questions, and reasoning.

For translation, we use the WMT-09 dataset (Callison-Burch et al., 2009) with a 2.5K testing set.
WMT is a classic annual machine translation shared task with different languages. We chose WMT09
as our testing data instead of newer versions of WMT because WMT09 contains more European
languages, which is more prominent in the Pile.

For factual question answering, we use the TriviaQA dataset (Joshi et al., 2017) with a 10K testing
set, which is a knowledge-intensive question-answering dataset with the questions originating from
trivia enthusiasts. Since the answers are usually single words or short phrases, we regard the whole
answer text as the output n-gram sy no matter the value of n.

For world knowledge questions, we use the MMLU benchmark (Hendrycks et al., 2020), covering
57 tasks including elementary mathematics, US history, computer science, law, and more. The aim of
MMLU is to test models’ world knowledge and problem-solving ability, so different from TriviaQA,
there is a large portion of questions that require logical/math reasoning skills.

4
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Figure 3: Task performance v.s. n-gram pair count in the Pile with different Pythia model sizes, for four different
tasks, from left to right: WMT, TriviaQA, MMLU, and GSM8K. For WMT, the x-axis shows the counts of
n-gram pairs found in the testing set of six different languages: Hungarian, Czech, German, Italian, Spanish,
and French, from left to right.

For complex reasoning, we use the GSM8K dataset (Cobbe et al., 2021), which contains linguistically
diverse grade school math world problems with step-by-step solutions. To solve GSM8K, the LLM
needs to first generate the chain-of-thoughts (CoT) reasoning step, and then draw the final conclusion,
which requires advance math and logical reasoning capabilities.

Searching over Pretraining Data at Scale Given the scale of the LLM pretraining corpus, search-
ing n-grams over the whole corpus D is non-trivial. We use What’s In My Big Data? (WIMBD)
(Elazar et al., 2024) and the ∞-gram (Liu et al., 2024) platform, which are designed to search and
retrieve documents in huge corpora. Both of them have indexed the Pile, allowing us to search it
using API calls. We use WIMBD for accurately counting the co-occurrence of n-gram pairs as the
co-occurrence frequency is usually low, and the approximate counting function in ∞-gram sometimes
fails to capture these low-frequency n-gram pairs. We use ∞-gram for counting the occurrence of
single n-grams as they appear more frequently in the corpus and the counting approximation has a
relatively small effect on the search results. We also use the ∞-gram API to produce the ∞-gram
probability of single n-grams, as detailed in Section 5.

4 n-GRAM DATA FREQUENCY V.S. TASK PERFORMANCE

In this section, we investigate the overall relation between the n-gram pair counts and the LLM task
performance, which can viewed as a rough estimation of the importance of the task-related data. We
confirm that the Pile is not contaminated by any of the datasets we used, by ensuring there are no large
n-grams (n = 8 and n = 14) overlaps between the Pile and the testing data. This decontamination
method is adopted from the GPT3 technical report (Brown, 2020).

We estimate the probability of a test example (x, y) appearing in the pretraining corpus as the
probability of any of the n-gram pairs from the task-gram table found in (x, y) appearing:

PD,n(x, y) ∝
∑

(sx,sy)∈(x,y)

C((sx, sy),D)1(sx,sy)∈Hn(T ) (4)

In Figure 3, we plot the task performances v.s. the count of n-gram pairs per example as defined
in Equation (4), for WMT (n = 2), TriviaQA (n = 5), and MMLU (n = 3). For WMT, since the
test set size for each language is the same, thus we show the sum of count per language here. For
TriviaQA, MMLU, and GSM8K, the x-axis represents bins that group test examples based on the
number of n-gram pairs. For instance, in the case of TriviaQA, data points at x = 0 correspond to
test examples where the number of n-gram pairs falls between 0 and 2000. In general, TriviaQA has
more n-gram pair counts than WMT, MMLU, and GSM8K.

The WMT performance is evaluated by the BLEU score between greedily generated translation and
the reference translations. The TriviaQA performance is evaluated by the accuracy of the exact
match of the generated answer. The MMLU performance is evaluated by the accuracy of the option
with the highest LM predicted probability. Since there are four choices for each question, the random
performance of MMLU is 25%. For GSM8K, Since the performance of Pythia models is in general
low (< 5% accuracy), the accuracy plot is too sparse to show any trend. We thus compute the

5
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BERTScore (Zhang* et al., 2020) (precision) between the model-generated chain-of-thoughts (CoT)
and the ground truth CoT instead.

When the model size is small (< 410m), WMT and TriviaQA have near-zero performance regardless
of the n-gram pair count, while interestingly, MMLU reaches the lowest performance (<10%)
significantly lower than random guessing when the n-gram pair count is around 150. A closer
inspection of the test examples in this interval reveals that they contain more reasoning or math
problems, which appear to be harder for Pythia models. The noisier performance curve of MMLU
and GSM8K is likely due to the weaker capabilities of Pythia models on this benchmark.

In general, all task performance increases when the number of task-related n-gram pairs increases
when the model size is large enough (> 410m). And the trend of performance improvement is
more significant when the model size is larger. For GSM8K, the Pythia 2.8B model shows the
most significant increasing trend, while larger models show a less significant trend. This seems to
indicate that memorization plays an essential role in LM’s capabilities for all four tasks, and larger
models memorize more. However, these performance curves can also be explained by the improved
generalization ability of LMs when there is more relevant pretraining data. In the next section, we use
pre-defined distributional memorization and generalization to investigate the possible causes behind
these performance trends.

5 n-GRAM DISTRIBUTION V.S. LLM DISTRIBUTION

In this section, we compute the distributional memorization Memn(LLM,D|T ) as defined in
Definition 3, for T = WMT, TriviaQA, and MMLU respectively. In addition to computing the
distributional memorization with the task-gram language model as defined in Definition 2, we
consider computing another version of distributional memorization with an n-gram language model
defined by single n-grams. Specifically, we consider the ∞-gram language model (Liu et al., 2024)
that uses an n as large as possible for predicting the probability of each token, which is shown to be
better aligned with human written text compared with classical n-gram LMs.

An ∞-gram LM can be viewed as an n-gram LM initialized with n = ∞, and then backoff when the
n-gram count equals zero. This way, the probability of each token is dependent on its longest prefix
that exists in the pretraining corpus. Considering concatenating the input and output text u⊕ x⊕ y
as the context, such distribution can be written as

P∞,D(s
y|u⊕ x⊕ y) =

∏
ti∈sy

P∞,D(ti|t[1:i−1]) =
∏
ti∈sy

C(t[i−(ni−1):i])/C(t[i−(ni−1):i−1]).

Here i is the location index of the token ti in the concatenated text u ⊕ x ⊕ y, and ni is
the size of the longest prefix of ti that can be found in the pretraining corpus, i.e., ni =
max {n′ ∈ [1, i]|C(t[i−(n′−1):i−1]) > 0}. In practice, we ignore the tokens with zero probability and
set the ∞-gram probability of this token to one, i.e., P∞,D(s

y) = 0 only when all its tokens have
zero probability. Then the alternative version of distributional memorization using ∞-gram LM is
defined as:

Mem∞(LLM,D|T ) = ρ(logP∞,D(Y |X), logPLLM(Y |X)), (5)

with all the notations similarly defined as in Definition 3. We then compute the two versions of
distributional memorization for the different datasets, WMT, TriviaQA, and MMLU, and show the
results in Figure 4.

Translation ability does not come from memorization. In Figure 4, we do not show any distribu-
tional memorization values of WMT because none of them are statistically significant. This indicates
that while the translation performance is strongly positively correlated to the n-gram counts as shown
in Figure 3, the performance gain does not come from initiating the pretraining data distribution.

To further investigate how different the LLM-generated translation text is from the pretraining data,
we show the number of novel n-gram pairs that LLMs generated on WMT that have never been seen
in any pretraining documents in the top left panel of Figure 4. It shows that larger LLMs generate
more novel n-grams, which indicates a larger discrepancy in text distribution from the pretraining
data and better distributional generalization. This implies the performance increase in Figure 3 comes
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Figure 4: Visualization of distributional memorization with different-sized Pythia models on four tasks: WMT,
TriviaQA, MMLU, and GSM8K. We also show results with OLMo models on GSM8K. For WMT, we show the
number of new n-gram pairs generated by LLMs as the distributional memorization is not significant. For MMLU,
we divide the tasks into two categories: knowledge-intensive and reasoning-intensive. For GSM8K, we show the
Kendall tau ranking distance instead of Spearman correlation to quantify the distributional generalization effect
as the distributional memorization is not significant. Solid lines show distributional memorization computed
with our task-gram LM and dashed lines are computed with the ∞-gram LM. Statistical significant (p < 0.05)
values are marked with solid round markers while statistically insignificant values (p > 0.05) are marked with
gray star markers.

from a better generalization ability learned from more relevant data instead of memorization. Our
hypothesis is that this generalization is the transfer of translation skills between different languages.

Such a result contradicts the observations in Merrill et al. (2024), which show that larger LLMs
are less novel in n-gram generation. This is likely because they evaluate LLM generation using
the prompts from an in-distribution dataset (validation set of the Pile) to the pretraining corpus,
which might encourage LLMs to memorize. On the other hand, the translation dataset we use is
out-of-distribution, which encourages LLMs to use its generalization capabilities.

Knowledge-intensive question-answering ability relies more on memorization. In the top middle
panel of Figure 4, we show that TriviaQA has a significant distributional memorization effect, in
terms of both task-gram LM and ∞-gram LM. Memn=3(LLM,D|T ) (> 0.35) is significantly more
profound than Memn=5(LLM,D|T ) (< 0.25) and Mem∞(LLM,D|T ) (< 0.25). This indicates that
LLMs memorize small, long-range parallel data pieces more than large, local data pieces.

Also, when the LM size increases, our Memn=5(LLM,D|T ) (> 0.35) also increases. Since the
larger model also has better performance as shown in Figure 3, this memorization behavior is highly
correlated with LMs’ factual QA ability. This might be because factual QA requires retrieving
knowledge from training data, thus memorization plays a critical role in this task.

For MMLU shown in the two rightmost panels of Figure 4, we divide the 57 MMLU tasks into two
groups: knowledge-intensive and reasoning-intensive. We consider knowledge-intensive tasks as
tasks that can be answered by retrieving static knowledge, while reasoning-intensive tasks as ones
that need computation or logical reasoning over the knowledge.5 In general, knowledge-intensive
tasks show a more significant memorization effect than reasoning-intensive tasks. This discrepancy
is the most profound when n = 3, while the memorization level of knowledge-intensive tasks and
reasoning-intensive tasks is similar when n = 5. This echoes our previous hypothesis that LLMs
demonstrate a stronger memorization behavior when performing knowledge-intensive tasks.

Recalling rare knowledge requires generalization. Similar to TriviaQA, the top right panel of
Figure 4 shows that our Memn=3(LLM,D|T ) (> 0.25) remains most pronounced for the knowledge-

5The detailed classification is shown in the appendix.
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intensive MMLU tasks. The primary distinction between the MMLU tasks and TriviaQA is that
Memn(LLM,D|T ) decreases as the LLM size increases. This may be attributed to the fact that
MMLU involves more specialized and less common knowledge compared to TriviaQA, making its
occurrence in the pretraining corpus relatively infrequent. Consequently, for larger models to perform
better on MMLU tasks, they may need to adjust the probability of recalling this knowledge, resulting
in a decrease in distributional memorization.

Reasoning-intensive abilities rely more on generalization. The reasoning-intensive MMLU tasks
in the bottom right panel of Figure 4 show a very different picture compared to the knowledge-
intensive MMLU tasks and TriviaQA. In this case, our Memn=5(LLM,D|T ) is the most significant,
which indicates that the memorization of large text segments is more significant. This might be
because some concepts can be meaningfully expressed in large text segments while the small text
segments are meaningless in a reasoning-intensive context. The decreasing trend of memorization
when the model size increases also indicates that memorization is not the driving force of performance
improvement.

For GSM8K shown in the two bottom panels of Figure 4, we did not observe a significant memoriza-
tion effect with either Pythia models or OLMo models. To quantify the distributional generalization,
we substitute the Spearman correlation with the normalized Kendall tau ranking distance, which
represents the fraction of data pairs that disagree on their rankings. For both Pythia models and
OLMo models, the distributional generalization increases when the model size increases, while the
LLMs’ probabilities agree more with task-gram probabilities than the inf-gram probabilities. The
GSM8K results confirm that generalization is the driving force of performance improvement.

Task-gram LM can better explain LLM predicted probabilities than ∞-gram LM. With
both TriviaQA and MMLU, we observe that Mem∞(LLM,D|T ) is always less or equal to our
Memn(LLM,D|T ). And larger LLMs always show less ∞-gram memorization effect. This shows
that our task-gram LM is a better way to model the data distribution so that it is more correlated to
what is memorized by LLMs.

In general, the LLM shows decreased memorization and increased generalization when the model
size increases. This implies LLMs leverage better generalization to solve hard tasks, whether they
are hard in terms of the rarity of the knowledge or in terms of the requirement of reasoning. Our
task-gram LM also better models the memorized data distribution than the ∞-gram LM.

6 INFLUENCE OF n-GRAM DATA THROUGH PRETRAINING

Since our results so far only show correlations between pretraining data frequency and the LLM
predictions, we wish to explore the causal relationship of training data on LLM predictions. In this
section, we estimate the influence of pretraining data on related testing predictions by accumulating
the gradient dot products through model checkpoints, as introduced in Pruthi et al. (2020).

More specifically, we approximate the influence of a pretraining document at training time by the
dot product between its pretraining loss gradient and the testing loss gradient. For an n-gram pair
(sx, sy) ∈ Hn(T ) found in some example (x, y), the test loss is defined as:

ℓ(θ, (x, y), sy) = − logPLLM(sy|u, x, y[1:m−1]).

Here m denotes the location index of the n-gram sy found in y, and θ denotes all trainable parameters
of the LLM. The training loss of a pretraining document d ∈ D containing the n-gram pair (sx, sy)
is defined as:

ℓ(θ, d, sy) = − logPLLM(sy|d[1:h−1]).

Here h denotes the location index of the n-gram sy found in d. Suppose we have k evenly spaced
pretraining checkpoints of the LLM θ1, θ2, ..., θk, then the influence of d on the testing example
(x, y) through the pretraining is defined as:

In(d, (x, y)) =

k∑
i=1

∑
(sx,sy)∈Φ(x,y)

∇θiℓ(θi, d, s
y) · ∇θiℓ(θi, (x, y), s

y).
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Figure 5: Training influence of pretraining documents v.s. Pythia model size with WMT, TriviaQA, and MMLU.
Green lines correspond to documents containing n-gram pairs, while blue lines correspond to documents
containing only the output n-gram in n-gram pairs.

TriviaQA GSM8K
Memorization Generalization Memorization Generalization

Pythia (6.9B) 17% 9% 2.6% 2.8%
Pythia-Instruct (6.9B) 23.5% 23.2% 6.3% 7.3%

Pythia (12B) 28.7% 23.2% 2.7% 2.8%
OLMo (7B) 36.4% 29.8% 2.5% 3.1%

OLMo-instruct (7B) 29% 10% 6.3% 7.9%

Table 1: Zero-shot accuracy on TriviaQA and GSM8K test set with memorization encouraged task prompt
(maximize counts) and generalization encouraged task prompt (minimize counts).

Here, we use Φ(x, y) to denote all n-gram pairs found in (x, y) and exist in the task-gram table
Hn(T ). Such an influence function can be viewed as an estimation of the total reduction in loss on
the test example (x, y) that is induced by the training process whenever document d is utilized in the
pretraining. To estimate how much influence the documents containing n-gram pairs have on each
testing task, we compute the average influence over the testing set D′

T and R randomly retrieved
documents from pretraining corpus D for each testing example. The average influence obtained can
then be written as:

In(D, T ) =
1

|D′
T |

1

R

∑
(x,y)∈D′

T

R∑
i=1

In(di, (x, y))

Note that the computation of the full gradient is relatively expensive, so we choose a relatively small
R = 50. This analysis does not aim to cover the full pretraining corpus but to give complementary
causal evidence to the previous findings. We consider two retrieval schemes: 1. retrieving documents
where the test sample’s n-gram pair appears together. 2. retrieving documents that contain the output
n-gram from the test sample’s n-gram pair. In Figure 5, we plot the average influence of these two
schemes by green and blue curves respectively.

Across all three datasets, we observe that pretraining documents containing n-gram pairs consistently
contribute more to the testing examples than documents containing only the output n-gram in n-gram
pairs, over different model sizes. This suggests that our task-gram table identifies important task-
relevant data better than single n-grams. The difference between n-gram pair and output n-gram is
the smallest on WMT, as well as the value of the influence function, which echoes the insignificant
memorization effect of LLMs on this task. In general, when LLM size increases, WMT and MMLU
decrease in data influence, while TriviaQA slightly increases, and has the highest influence value at
the largest model size. This indicates that memorization is likely caused by more influence of the
relevant data at training time.

7 PRACTICAL IMPLICATIONS: PROMPT OPTIMIZATION

An important observation of our study is that knowledge-intensive tasks benefit from LLMs’ distribu-
tional memorization, while reasoning-intensive tasks benefit from LLMs’ distributional generalization.
Then it is possible to design or rewrite the prompt according to this principle to improve an LLM’s task
performance, based on the hypothesis that the LLM generation distribution is strongly affected by the
prompt distribution. More specifically, to encourage memorization, we can rewrite the task instruction

9
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to be more similar to pretraining data in terms of n-gram counts. To encourage generalization, we
can rewrite the prompt to be less similar to training data.

We implement a simple prompt optimizer based on GPT4o and the WIMBD n-gram count feedback.
More specifically, we instruct GPT4o (Achiam et al., 2023) to rewrite a given task prompt at each
iteration, and give the average n-gram count in the pretraining corpus of the rewritten prompt to
GPT4o in the next iteration as the reward. We instruct GPT4o to maximize this reward if we
want to encourage memorization, and instruct it to minimize this reward if we want to encourage
generalization. Here, we show a maximization and a minimization result for TriviaQA and GSM8K
respectively. We report zero-shot testing accuracy with the Pythia models and OLMo models in
Table 1. The meta prompt we used to perform such optimization and the optimized task prompts are
included in Appendix E.

Note that the lengths of the optimized prompts are not significantly different, while TriviaQA
significantly benefits from the prompts that are more similar to the pretraining data, and GSM8K
benefits from the prompts that are less similar. More sophisticated prompt optimization algorithms
with more detailed distributional memorization feedback can be designed based on a similar idea. We
leave the investigation of other possibilities for future work.

8 RELATED WORK

Understanding LLMs’ capabilities from training data. Most work on understanding LLMs
analyzes their capabilities via synthetic experiments or small-scale studies (Arora and Goyal, 2023;
Prystawski et al., 2023; Wang et al., 2024; Xie et al., 2022; Wang et al., 2023; Chan et al., 2022;
Razeghi et al., 2023; Chen et al., 2024), despite the importance of scaling. Kirchenbauer et al. (2024)
estimate dependencies between model capabilities and subsets of training data using kernel-based
statistical evidence but rely on a small fraction of pretraining data due to computational constraints.
To address this, Elazar et al. (2024) introduce WIMBD, a system for efficient n-gram retrieval over
massive datasets, while Merrill et al. (2024) develop an unbounded n-gram search method and find
larger LLMs generate fewer novel n-grams. Shaib et al. (2024) demonstrate how syntactic templates
in training data influence LLM outputs, and Liu et al. (2024) propose ∞-gram language models to
estimate text corpora distributions, focusing on local dependencies rather than complex capabilities.

In this work, we analyze the origins of LLMs’ zero-shot capabilities by leveraging WIMBD and
∞-gram frameworks for full-scale pretraining data exploration.

Memorization vs. generalization. LLM memorization, defined as exact recall of training data, has
been extensively studied, including memorization of rare or private data (Zhang et al., 2023), test set
contamination (Jiang et al., 2024), and higher prevalence of verbatim recall in larger models (Carlini
et al., 2022). Hartmann et al. (2023) provides a comprehensive summarization of different types
of LLM memorization. The relationship between memorization and generalization is explored in
Feldman (2020), showing that memorization can improve generalization. Extensions to this work
quantify memorization via performance differences when specific training examples are included or
excluded (Feldman and Zhang, 2020; Zhang et al., 2023). However, this approach is infeasible for
large-scale LLMs due to retraining requirements. We propose a scalable definition of distributional
memorization using n-gram counts to enable efficient large-scale analysis. 6

9 CONCLUSION

In this paper, we introduce the task-gram language model, a scalable approach for modeling the
task-relevant distribution of pretraining data. We trace the capabilities of LLMs back to this data
by defining distributional memorization, measured through the Spearman correlation between
task-gram LM probabilities and LLM probabilities. Through extensive experiments using Pythia
models across four distinct tasks, we find that LLMs tend to memorize more when engaged in
simpler, knowledge-intensive tasks, while they generalize more in harder, reasoning-intensive tasks.
Our analysis provides a comprehensive examination of the origins of LLM capabilities and offers
a scalable framework for investigating the fine-grained task-relevant characteristics of pretraining
corpora.

6A More detailed discussion of related work can be found in Appendix C.
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APPENDIX

A LIMITATIONS

While this paper provides valuable insights into how large-scale pretraining corpus contributes to
the emergent abilities of LLMs through n-gram search, there are a few limitations that we want to
list out. First, the model we use, Pythia (Biderman et al., 2023), and the pretraining corpus, Pile
(Gao et al., 2020), are slightly outdated and have been outperformed by many new open-source
LLMs. However, most open-source LLMs lack corresponding pretraining data and have limited
model sizes and pre-training checkpoints, hindering scaling effect studies. The current WIMBD
system also has limitations in searching larger corpora like Dolma (Soldaini et al., 2024a) (3T tokens),
calling for improved searching and retrieval methods. The quality of task-relevant n-gram pairs is
highly sensitive to the filtering method, and while the current embedding similarity-based approach is
effective, better filtering methods could significantly enhance the analysis, which is left for future
research.

B ETHICS STATEMENT

The insights and methodologies developed in this paper have several significant implications for
the broader field of artificial intelligence, particularly in the development and deployment of large
language models (LLMs). Understanding the balance between memorization and generalization
within LLMs is crucial for both advancing the theoretical foundation of machine learning and
addressing practical concerns related to their use.

Enhanced Model Interpretability: By extending the definition of memorization and examining how
LLMs utilize their pretraining data, our research contributes to a deeper understanding of the internal
mechanics of these models. This improved interpretability can help researchers and practitioners
diagnose and mitigate issues related to data bias, model robustness, and unexpected behaviors in AI
systems.

Privacy and Security Considerations: Our findings have direct implications for privacy and security
in AI. Demonstrating how LLMs memorize and potentially recall training data underscores the need
for rigorous data handling and anonymization techniques. It raises awareness about the risks of
inadvertent leakage of sensitive information, thereby informing policy and best practices for data
usage in training large models.

Economic and Societal Impact: As LLMs become more integral to various industries, understanding
their capabilities and limitations can have significant economic and societal implications. Our
research can help businesses and policymakers make informed decisions about deploying these
models, ensuring they are used ethically and effectively. This, in turn, can lead to more reliable and
trustworthy AI systems, fostering greater public trust and acceptance.

C RELATED WORK DETAILS

Understanding LLMs’ capabilities from training data Prystawski et al. (2023) and Wang et al.
(2024) discuss how the reasoning ability of language models is a consequence of their pretraining
data. Prystawski et al. (2023) discusses how chain-of-thought reasoning is effective in autoregressive
language models because of local structure within pretraining data, and Wang et al. (2024) derives
novel conclusions from known facts by aggregating reasoning paths seen in pretraining data. On the
other hand, Xie et al. (2022) and Wang et al. (2023) discuss how in-context learning is a by-product of
learning the pretraining data distribution. They both suggest that language models learn to implicitly
infer a latent variable from the given prompt, as the pretraining data is generated from some unknown
latent variable. Additionally, Chan et al. (2022) propose that the distributional properties of training
data drive emergent in-context learning behaviors in large language models, whereas Razeghi et al.
(2023) shows the influence the pretraining data on the mathematical abilities of LLMs. Chen et al.
(2024) also highlights the significance of parallel structures in pretraining data for the emergence of
in-context learning.
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However, the small-scale nature of such analysis is antithetical to the commonly believed main driving
factor behind the performance of LLMs: scaling. Recently, Kirchenbauer et al. (2024) proposes to
provide statistical evidence of the dependence of a target model capabilities on subsets of its training
data, by estimating the data distribution with an embedding-induced kernel. However, their estimation
is based on a very small portion of the pretraining data (around 0.3%) as computing the embeddings
of a huge dataset is very non-trivial. To get a better estimation of the whole distribution of the
pretraining data, Elazar et al. (2024) construct a retrieval system, WIMBD, that can efficiently search
n-gram phrases over hundreds and thousands of GBs of pretraining data. Merrill et al. (2024) propose
an efficient data structure that enables unbounded-length n-gram searches in massive pretraining
datasets, and find that larger LLMs generate less novel large n-grams compared to human written
texts, and (Shaib et al., 2024) shows how syntactic templates from the training data causes models
to re-use such templates after training. Liu et al. (2024) proposes to build a prefix-based efficient
retrieval system for pretraining corpora, and then construct large-scale ∞-gram language models to
estimate the distribution of text corpora. However, such distribution only models local contextual
dependency, which might not be useful for understanding complex LLM capabilities.

New methods and analysis to investigate these capabilities at scale and to understand the role of
scaling are needed to obtain useful insights into real-world LLMs. In this work, we aim to provide
an in-depth analysis of the origin of the general zero-shot capabilities of LLMs, by performing full
searches across the whole pretraining corpus with the WIMBD and ∞-gram framework.

Memorization v.s. generalization The phenomenon of machine learning models being able to
perfectly memorize the training data has been studied in many previous works. Most of them define
LLM memorization as exactly recalling the training examples by designed prompting, including
the memorization of rare long-tail data, like private information (Zhang et al., 2023), and the
contamination of testing sets (Jiang et al., 2024). Carlini et al. (2022) found that the exact copy and
pasting behaviors are more prevalent in larger LMs. Hartmann et al. (2023) provides a comprehensive
summarization of LLM memorization.

Several papers have studied the interplay between memorization and generalization of training data.
Feldman (2020) prove that memorizing the training data is in fact required for optimal generalization
on testing data. Works along this line (Feldman and Zhang, 2020; Zhang et al., 2023) extend the
original definition of memorization by quantifying the extent of memorizing a training example
with the performance difference when including and excluding this specific example in training
data. However, this definition is impractical for large-scale analysis of LLMs as it requires retraining
an LLM from scratch to analyze one data point. In this paper, we propose a new definition of
distributional memorization by using n-gram counts, which is more suitable for large-scale analysis
with LLMs.

D EXPERIMENT DETAILS

Dataset choice The choice of dataset comes from the consideration of balancing different types of
tasks, and we believe the combination of translation + factual QA + reasoning can well represent the
spectrum of possible tasks. To enhance the selection of reasoning tasks, we also add GSM8K as a
new task as described in point 1 of the general response. We found both the performance v.s. n-gram
count results and the distributional generalization results on GSM8K align with our previous findings.

Embedding model choice The choice of embedding model comes from accommodating the need
for different tasks. We use the LASER embedding model for the Translation task because it is
specialized for translation. We use E5 for other tasks because it is a general-purpose sentence
embedding model that performs cosine-similarity-based retrieval.

Task-gram table construction To build a task-gram table, we use a two-step process. First, we
filter all possible input-output n-gram pairs in a supervised dataset by the cosine similarity between
their embeddings. Second, we search through the pretraining corpus and keep n-gram pairs that have
nonzero counts.
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For WMT, we use the Europarl (Koehn, 2005) parallel corpus to construct a large task-gram table.
For TriviaQA, we use its training set, while for MMLU, we use the testing set as there is no training
set available. We employ two different models to filter the n-grams pairs. For translation tasks, we
use the LASER embeddings (Schwenk and Douze, 2017), which provide language-agnostic sentence
representations, in order to assess cross-lingual similarity. We mine n-gram pairs from the Europarl
corpus, which consists of around 20 million parallel sentences extracted from the proceedings of the
European Parliament (Koehn, 2005). For all other tasks, we use E5 (Wang et al., 2022), which are
multilingual sentence representations trained using contrastive learning on a diverse range of tasks.
For TriviaQA, we mine the n-gram pairs from TriviaQA’s training set. For MMLU, since the training
set is very small (100 − 500 examples for each task), we mine the n-gram pairs from the test sets
directly. For GSM8K, due to the short time limitation during rebuttal, we also mine the n-gram pairs
from the 1K test sets directly.

In WMT, the cosine similarity thresholds we use are: 0.85, 0.8, 0.75, and 0.7 for 2 to 5-gram
pairs, respectively; For TriviaQA and MMLU, the values are 0.75 and 0.65 for 3 and 5-gram pairs,
respectively. We use lower thresholds for larger n-grams because larger n-grams inherently impose
stricter alignment, and are therefore less likely. We show a cosine similarity sensitivity ablation in
Figure 6.

Figure 6: Visualization of distributional memorization with different-sized Pythia models on TriviaQA with
different cosine similarity threshold γ ∈ {0.7, 0.75, 0.8}. The trend of distributional memorization does not
change with different thresholds.

We perform our experiments on 8 GPU 40G A100 working stations. Below is the license information
for the datasets we used:

• Pile: MIT license. URL: https://github.com/EleutherAI/the-pile/tree/
master

• Tulu: ODC-BY license. URL: https://huggingface.co/datasets/allenai/
tulu-v2-sft-mixture

• WMT-09: published with the WMT workshop. URL: https://www.statmt.org/
wmt09/translation-task.html

• TriviaQA: Apache License 2.0. URL: https://nlp.cs.washington.edu/
triviaqa/

• MMLU: MIT license. URL: https://github.com/hendrycks/test

Knowledge-intensive MMLU tasks:

’prehistory’, ’business_ethics’, ’philosophy’,
’moral_disputes’, ’medical_genetics’, ’high_school_government_and_politics’,
’human_aging’, ’us_foreign_policy’, ’high_school_macroeconomics’,
’logical_fallacies’, ’international_law’, ’computer_security’,
’sociology’, ’professional_psychology’, ’marketing’, ’human_sexuality’,
’anatomy’, ’high_school_us_history’, ’public_relations’,
’high_school_microeconomics’, ’clinical_knowledge’, ’security_studies’,
’nutrition’, ’world_religions’, ’high_school_psychology’,
’high_school_geography’, ’management’, ’global_facts’,
’high_school_world_history’, ’high_school_european_history’,
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’jurisprudence’, ’virology’, ’astronomy’, ’miscellaneous’

Reasoning-intensive MMLU tasks:

’econometrics’, ’professional_law’, ’abstract_algebra’, ’college_medicine’,
’college_chemistry’, ’moral_scenarios’, ’college_mathematics’,
’high_school_chemistry’, ’professional_accounting’, ’college_computer_science’,
’college_biology’, ’high_school_computer_science’, ’high_school_mathematics’,
’college_physics’, ’professional_medicine’, ’elementary_mathematics’,
’machine_learning’, ’electrical_engineering’, ’high_school_physics’,
’conceptual_physics’, ’high_school_statistics’, ’high_school_biology’

Figure 7: GSM8K accuracy v.s. n-gram pair count in Dolma with different OLMo model sizes.

E PROMPT OPTIMIZATION DETAILS

Corpus Dataset Memorization Generalization

Pile
TriviaQA Deliver an exact single word or concise

phrase in response to the factual question.
(avg. 3-gram count: 557948.5)

Formulate a distinctive and concise term or
phrase to clearly answer the factual ques-
tion. (avg. 3-gram count: 1714.9)

GSM8K Carefully analyze each math word problem
presented, break it down step-by-step, and
clearly state the final answer. (avg. 3-gram
count: 45028.9)

Dissect each math word problem into
straightforward, logical steps; solve each
part systematically for precise solutions.
(avg. 3-gram count: 43.1)

Dolma
TriviaQA Provide a single word or concise phrase in

response to the following factual question.
(Avg. 3-gram count: 5566475.5)

Provide a clear and specific word or brief
phrase in response to the factual question
below. (Avg. 3-gram count: 43436.2)

GSM8K Solve the following math word problem by
methodically breaking it down into simple,
clear steps to find the correct solution effi-
ciently. (Avg. 3-gram count: 3736735.0)

Solve the upcoming math word problem
by sequentially explaining each calculation
and logical step, ensuring clarity and coher-
ence in your solution. (Avg. 3-gram count:
4563.6)

Table 2: Prompts optimized for memorization and generalization for TriviaQA and GSM8K.

Text in the square brackets are comments that are not involved in the actual prompt.
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Meta prompt for prompt optimization

* * Task Desc r i p t i on * * :

You are tasked wi th op t im i z i ng a given prompt to guide an open−source language model (LM)
i n complet ing a s p e c i f i c task e f f e c t i v e l y . You w i l l rece ive :

− The cu r ren t prompt f o r the task .
− I t s corresponding memorizat ion score ( Average frequency o f task − r e l a t e d n−grams found i n

the LM’ s p r e t r a i n i n g corpus ) .
− A few example input −output pa i r s i l l u s t r a t i n g the intended task .
− A h i s t o r y o f prev ious prompt o p t i m i z a t i o n i t e r a t i o n s .

* * Opt im iza t ion Goals * * :

C lea r l y descr ibe the intended task wi th a general i n s t r u c t i o n t h a t e f f e c t i v e l y guides the
LM to perform the task .

[ I f t r y i n g to encourage reasoning . . . ]

Min imiz ing the memorizat ion score o f the updated prompt . The memorizat ion score r e f l e c t s
the d i s t r i b u t i o n a l c o r r e l a t i o n between the prompt and the LM’ s p r e t r a i n i n g corpus . A
lower score encourages the LM to generate more novel outputs .

[ I f t r y i n g to encourage memorizat ion . . . ]

Maximize the memorizat ion score o f the updated prompt . The memorizat ion score r e f l e c t s the
d i s t r i b u t i o n a l c o r r e l a t i o n between the prompt and the LM’ s p r e t r a i n i n g corpus . A
h igher score encourages b e t t e r a l ignment w i th the LM’ s learned knowledge .

* * Example task input −output pa i r s * * :

[ Example input −output pa i r s f o r cu r ren t task ]

* * Output * * :

Produce an updated prompt t h a t balances c l a r i t y o f task i n s t r u c t i o n wi th an lower
memorizat ion score .

F n-GRAM PAIR EXAMPLES

In this section, we present some representative examples collected from the analysis for the different
tasks evaluating, including Translation and Question-Answering (MMLU, TriviaQA). In order to
show examples from the different experiments, we show examples with different model sizes and
number of n-grams.

G MODEL GENERATIONS VS. n-GRAM FREQUENCY IN PRETRAINING

To further analyze the behavior of a model based on the pairs found in pretraining, we compared the
alignment of the generations of the model when that n-gram was generated, vs. n-gram frequency in
the pretraining corpus. We found that as the n-gram frequency increased, the model n-gram pairs the
model generated were more aligned.
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Figure 8: Examples of mined pairs for the translation Task (English to Spanish) using Pythia Models with
4-Gram analysis. Models evaluated include those with 12 billion and 410 million parameters.

Figure 9: Examples of mined pairs for the translation Task (English to Spanish) using Pythia Models with
2-Gram analysis. Models evaluated include those with 12 billion and 410 million parameters.
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Figure 10: Examples of mined pairs for the MMLU Task using Pythia Models with bigram and 5-gram analysis.
Models include 12 billion and 6.9 billion parameters.

Figure 11: Examples of mined pairs for the TriviaQA Task using Pythia Models (12b) with trigram analysis.
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Figure 12: Model translation generations alignment for pair instances identifies in pretraining. As n-gram rises,
the larger models are able to reproduce more aligned pairs from pretraining.
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