
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Cold Start or Hot Start? Robust Slow Start in Congestion Control
with A Priori Knowledge for Mobile Web Services

Paper #458, 8 pages body, 9 pages total
Abstract
Mobile web services value a quick loading of contents in the
first page, which is quantified by the above-the-fold time of
the first page (first AFT) and is likely to fall into the slow
start phase in congestion control. However, the widely de-
ployed slow start mechanism is “cold start”, which manually
hardcodes the parameters and is not suitable for the first
AFT of heterogeneous mobile web services. We revisit the
slow start mechanism and find that it could be optimized
with a priori knowledge. However, blindly relying on a priori
knowledge is not robust enough to handle the fluctuating
mobile networks and unpredictable application traffic. In
this paper, we propose WiseStart, a “hot-start-based” slow
start mechanism. WiseStart utilizes the priori knowledge to
set the initial parameters, continuously probes the new con-
nection to handle the fluctuating network conditions, and
carefully adapts to the application-limit scenarios. We imple-
ment WiseStart in a popular mobile web service online in
production. Comprehensive experiments demonstrate that
WiseStart reduces the First AFT by 16.15% and the average
RCT at connection establishment by 25.43% compared to
the default slow start mechanism and other state-of-the-art
baselines.

Keywords
Transport Layer, Slow Start, Mobile Web Service, Hot Start

1 Introduction
Recently, a sharp increase in the usage of mobile web ser-
vices has been observed. The latest statistics demonstrate
that mobile users become the largest proportion of global
Internet users [28]. Mobile web services value the content
in the first page [7] – the loading time of contents above the
fold (above-the-fold time, AFT)1 is important. During the be-
ginning of a connection, the connection has no information
about the network, therefore existing transport protocols
(e.g., TCP or QUIC) and congestion control algorithms has
to probe the network. Such a process is called slow start,
which is also responsible for the loading of those above-the-
fold contents. However, the current design of slow start is
usually a “cold start”, where the start-up phase only relies
on the hard-coded specifications rather than any up-to-date
information about users or applications. This imposes great

1AFT is proposed by Google and defined as the time that the visible part of
the page is loaded.

challenges on optimizing the performance of First AFT. Even
if the hard-coded value is evolving with time (e.g., the initial
congestion window (CWND) goes up from 4 [22] 20 years
ago to 32 [23] in industry practices now), the static setting
of slow start parameters does not match the need of opti-
mizing First AFT under fluctuating and wide-ranging mobile
network conditions.

Our large-scale measurement of one popular mobile web
service further demonstrates the significance of optimizing
slow start in mobile web services. A large amount of appli-
cation data is concentrated when users start to access the
application. We found that 19.38% of total requests, most
of which contribute to the First AFT, are in the slow start
phase. While, the “cold-start-based” slow start mechanism
is insufficient for bandwidth utilization (§2.1). Our further
parameter sweeping in §4.3 shows that even fine-tuning the
parameter, as long as it’s static across connections and time,
is still suboptimal to the First AFT.

This motivates us to revisit the slow start mechanism and
propose WiseStart, a new slow start mechanism for mobile
web services. Our intuition is that with a priori knowledge,
we can directly use the appropriate initial sending rate. In
this case, slow start no longer suffers from blindly probing
like cold start, but is able to utilize the previous application
and network conditions and perform a “hot start”. With the
current routing policy, connections with the same pair of
source IP and destination IP mainly experience the same path
condition. Our large-scale measurements on the server side
also demonstrate that the connection states are similar for
the same access IP address. Therefore, WiseStart utilize the
prior knowledge to set the initial sending parameters (§2.2).

However, merely setting the slow start parameters based
on a priori knowledge can be fatal in some cases. WiseStart
should be robust to the fluctuations of both mobile network
conditions and application traffic. First, the available band-
width can fluctuate and be different from the prior knowl-
edge, especially in mobile networks [17]. Blindly reusing
historical information may lead to performance degradation
when bandwidth fluctuates so much that the prior knowl-
edge is invalid. In response, WiseStart continuously probes
the available bandwidth to update the prediction for the
new connection. WiseStart estimates the available capacity
based on the initial few ACK packets and decides whether to
continue up-probing or drain the queue. Second, the appli-
cation traffic pattern affects the estimation of the available
capacity as well. The request initiation is affected by user

1

behavior, which is unpredictable and might conflict with the
connection’s state. When the connection is intermittently
in the application-limit state [11] and a request is initiated,
the measurement of capacity may be inaccurate. This in turn
affects the effectiveness of the slow start mechanism. There-
fore, we design an application-limit detection mechanism in
WiseStart and adapt WiseStart to cater for the connection
states and traffic patterns (§2.3, §3).
We implement WiseStart atop Cubic based on QUIC in

the production environment of an M Company’s popular
mobile web service with O(10M) daily active users. We com-
pare WiseStart with the default slow start mechanism and
other state-of-the-art baselines. Comprehensive experiments
demonstrate that WiseStart achieves consistent high perfor-
mance, reduces the First AFT by 16.15%, and reduces the
average RCT at the beginning of the connection by 25.43%
against baselines (§4).

In summary, our key contributions in this paper are:
• Through online measurement of a mobile web service
in a production environment, we expose the problems
with the First AFT of mobile web services (§2).
• We propose WiseStart, an adaptive slow start mecha-
nism, which reuses historical connection information
and adapts to the fluctuating mobile networks and the
irregular impulse requests of mobile applications (§3).
• We deploy and evaluate WiseStart in a mobile web ser-
vice at M Company. Our extensive experiments show
that WiseStart achieves consistent high performance
both in production environments and on various locally
emulated network conditions (§4).

2 Motivation
In this section, we conduct a measurement study on the First
AFT of a popular mobile web service. We first explain that
the bad performance of first AFR comes from the mismatch
between application requirements and transport layer ca-
pabilities in the slow start phase (§2.1). Then, we present
the opportunity of our design choices to address the mis-
match (§2.2), and describe the design challenges (§2.3).
2.1 Why optimize the slow start?
Significant First AFT performance. For mobile web ser-
vices, the performance of First AFT is critical. If the applica-
tion takes too long to load, users may give up waiting and
switch to other applications [24]. Among all the contents on
a page, the content of the first screen (i.e., above the fold) is
undoubtedly the most important – users will be partially sat-
isfied if contents in their sights (above the fold, technically)
are ready. Google reports that ads appearing above the fold
have 30% higher visibility than others [5]. Moreover, such
a phenomenon happens quite often on mobile phones. For
example, mobile users sometimes switch between multiple
applications. The operating system of mobile phones will

0 10 20 30
Time (s)

0
5

10
15
20

PD
F

(%
)

Request Num
Total bytes

(a) Application Initialization

0 10 20 30
Time (s)

0

5

10

15

PD
F

(%
)

Request Num
Total bytes

(b) Connection Establishment
Figure 1: Distribution of the number of requests and total
bytes transferred within each second during the use of the
application. (a) Probability density function (PDF) within
30s after application initialization. (b) Probability density
function (PDF) within 30s after connection establishment.

periodically clean up the applications running in the back-
ground (e.g., minutes in Android [2]). In this case, if a user
stays several minutes at another application and switches
back, the connection has to be set up again and the content
has to be reloaded [1].
We make an in-depth measurement study on one region

of a popular mobile web service of M Company with O(10M)
daily active users, containing one million requests over 10
days. We count the number of requests and total bytes trans-
ferred within each second in each session and present the
probability density within 30 seconds after application ini-
tialization and connection establishment respectively. As
shown in Fig. 1, 19.38% of the requests were initiated within
1 second after application initialization, and their overall
data volume accounted for 12.67% of the full connection data.
This indicates that even one user might use the application
for a long time, and a considerable amount of requests are
only from the first second. A similar situation is observed
after the connection establishment, and the frequency of
new connections is 5.72 times per user per day. Therefore,
improving the load speed of the first page content is crucial
to the user experience.

Mismatch in the slow start phase. At the beginning of
the connection establishment, the transport layer starts from
a small CWND or sending rate and gradually increases them
to probe the available capacity. This process is the slow start
mechanism. However, during the slow start phase, it is not
possible to utilize the bandwidth well. Taking the 2Mbps
bandwidth and 200ms RTT as an example, using the default
slow start algorithm, it takes five RTTs to reach the available
bandwidth, which will last one second. As the capacity can-
not be efficiently used, the request completion time (RCT)
and First AFT increases, and the user experience deteriorates.
To investigate the performance difference of the first second
of the overall connection, we also measure the RCT of re-
quests sent within 1s after connection establishment and the
RCT of the overall connection. Results show that the RCT
for the first second is 1.5 times of the average of the overall
connection, which further exacerbates the first AFT.

2

0.01 0.1 0.5 1 2 10 100
Ratio between connections

0.0

0.5

1.0

CD
F

Ratio of BtlBw
Ratio of minRTT

Figure 2: Distributions of the ratio of
BtlBw and minRTT between two sequen-
tial connections from the same peer IP
address, in our large-scale passive mea-
surement on the server side.

0.0 0.5 1.0 1.5 2.0
Time (s)

0

100

200

Si
ze

(K
B)

Unsent Bytes
Response Size

Figure 3: An example of the application-
limit state. The blue lines show the re-
sponse size of the request sent at that
time, and the orange line shows the un-
sent bytes on the server side.

0 500 1000 1500 2000 2500 3000
Unsent Bytes (KB)

0.25

0.50

0.75

1.00

CD
F

(%
)

Total bytes

Figure 4: Distribution of the unsent bytes
on the server side. There are 14.46% cases
that there is no application data waiting
to be sent at that time.

2.2 Design Opportunity
Now that a static setting of initial CWND is suboptimal, our
intuition is that we can directly use the a priori knowledge
to set the initial CWND and sending rate. Fortunately, for
content providers, it is indeed possible to obtain relevant
information from historical connections or parallel connec-
tions from the same user. On the one hand, mobile web
services may establish multiple connections in a short pe-
riod when users switch between foreground and background.
Two applications of Company M have similar scenarios, with
1.84 and 3.52 connections per user per day, respectively. On
the other hand, the same access IP address belongs to the
same AP or base station, so the connections with the same
access IP have similar access network conditions. Moreover,
connections with the same pair of source IP and destination
IP mainly experience the same path. Therefore, for content
providers, connections with the same client IP will experi-
ence similar path conditions.

Ourmeasurements further verify the above observation on
the similarity of the performance between multiple connec-
tions from the same IP. We record the minimum RTT (min-
RTT) and maximum available bandwidth (BtlBw) of each
connection in another measurement campaign on our mobile
web service. Our measurement lasts 14 days, and contains
information of 2.3 million IPs with 11.65 million connections.
We calculate the ratio of the minRTT (and BtlBw) between
two connections from the same client IP, and plot the Cu-
mulative Distribution Function (CDF) of the ratio results
in Fig. 2. Note that the two connections are not necessary to
be simultaneous – we calculate the ratio for all connections
sharing the same client IP in the 14-day measurement. We
find that in more than 60% of the cases, the difference ratio
of the minRTT of two connections from one client IP is less
than 20%. And from the view of absolute RTT values, in 70%
of the cases, the difference is less than 6 ms. The ratio of
BtlBw shows consistent similarity as well.
2.3 Design Challenges
WiseStart improves the efficiency of the slow start with the
a priori knowledge. However, blindly relying on a priori
knowledge is not robust enough in the following two aspects:
Robust to mobile network. In mobile scenarios, the path

capacity may be variable. Mobile network conditions fluctu-
ate due to wireless channel fading, user moving or competing
flows [26, 28]. Reports show that fluctuations in bandwidth
can reach more than two times even for one single connec-
tion [17], let alone reusing the information of connections
from a different time. Just as our measurement in Fig. 2
shows, there are 8.5% cases where BtlBw changes by more
than 5 times. When fluctuations are so large that a priori
knowledge is invalid, blindly setting the initial CWND based
on previous (probably large) CWNDs may result in a large
number of packet losses due to overshooting the degraded
network, or unused available capacity due to an unnecessary
small initial CWND. Therefore, WiseStart needs to probe the
available bandwidth as well for new connections.

Robust to application traffic. Meanwhile, the application
traffic, determined by unpredictable user behaviors, is also
fluctuating in mobile web services. Thus, when the appli-
cation plans to send a request, if the connection is in the
application-limit state, the previous parameters will be less
effective as well. Fig. 3 shows an example: if the user’s click
behavior is sparse, there may not be enough application data
to fill the capacity. We replay real-world application traces
extracted from M Company and find that there are 14.46% of
the time that there is no application data, as shown in Fig. 4.
In this case, the estimated bandwidth is limited by the rate
the application generates data and can not reflect the bottle-
neck bandwidth. The inaccurate bandwidth measurement
affects the capacity estimation of new connections, which
in turn affects the timing of exiting WiseStart. Therefore,
WiseStart also needs to adapt the design to handle different,
mainly application-limit, states of the connection.

3 Design
In this section, we present the design of WiseStart. We first
give an overview (§3.1) and then describe three key de-
sign details: (1) How to store and reuse the prior knowl-
edge (§3.2). (2) How to quickly and accurately probe new
connections (§3.3). (3) How to adapt the bandwidth estima-
tion methods to the application-limit scenario (§3.4).
3.1 Design Overview
As shown in Fig. 5, WiseStart has three key design points:

3

Initial
Parameters

Design

Historical Information Table
Historical InformationIP Addr. Connection Information

Sending Phase

Probe
Phase
Drain
Phase

Maintenance Phase

Adaptation
Design

Decision Phase
Adaptation

Design

Probe Design

Figure 5: WiseStart Overview.
Initial parameters. First, WiseStart records the band-

width and minRTT of each connection. When a new connec-
tion is established, it looks up the historical record based on
the IP address and sets the initial CWND and sending rate.
Probe. Second, WiseStart continuously probes the new

connection through three phases. By estimating the band-
width and minRTT of the new connection, WiseStart decides
whether to continue probing or to drain over-sent packets.

Adaptation. Third, we adapt the whole design for the
possible application-limit scenarios.
Wisestart utilizes CWND to manage the in-flight bytes

and enables pacing to regulate the sending rate. It can be
integrated with any congestion control algorithm that in-
cludes a slow start phase. Wisestart is implemented on the
sender side and does not require receiver-side modifications.
Algorithm 1 describes the pseudo-code of how WiseStart
works specifically.
3.2 Set initial parameters with priori knowledge
One key design choice of WiseStart is to store the historical
connection information and set the initial CWND or sending
rate of the new connections accordingly. Ideally, the CWND
should equal to the path capacity. Therefore,WiseStart stores
the round-trip propagation time (RTProp) and the bottleneck
bandwidth (BtlBw) to calculate the capacity.
Record and store historical information. WiseStart uses
a LRU hash table on the server side to cache information
of historical connections. Each table entry comprises four
fields: record timestamp, peer IP address, the maximum deliv-
ery rate (BtlBW), and the minimum RTT (RTProp). When a
connection is closed, WiseStart records the above four states.
Set initial parameters. When a new connection is estab-
lished, WiseStart looks up the hash table for BtlBw (labeled
as Last_BtlBw) and RTProp (labeled as Last_RTProp) based
on the peer IP. WiseStart sets the initial CWND as𝐶𝑊𝑁𝐷 =

𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ∗ 𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 , and paces the packets in the
initial CWND to avoid packet loss caused by this large burst.
Considering the requirement of probing the new connec-
tion, WiseStart sets the pacing rate as 𝑃𝑎𝑐𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 2 ∗
𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 . If there is no record in the hash table for that IP
address, WiseStart falls back to the default slow start mecha-
nism which increases CWND from 10 MSS.
3.3 Probe the new connection
Considering the fluctuation of mobile networks, it is not
enough to set the initial parameters, but also to continue
probing the path. WiseStart estimates the bandwidth of the

Algorithm 1:WiseStart Algorithm
1 Initialization:
2 𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 , 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ← 𝐿𝑜𝑜𝑘𝑈𝑝 (𝐼𝑃);
3 𝛾 ← 6, 𝜅 ← 20 * MSS;
4 On connection establishment (§3.2):
5 begin
6 𝐶𝑊𝑁𝐷 ← 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 * 𝐿𝑎𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 ;
7 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 2 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ;
8 end
9 On each packet sent before the 1st ACK (§3.3.1):

10 begin
11 if 𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ≥𝑚𝑖𝑛(𝐶𝑊𝑁𝐷 , 𝜅) then
12 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 0.5 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤
13 end
14 if 𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ≥𝑚𝑖𝑛(𝐶𝑊𝑁𝐷 , 1.5 * 𝜅) then
15 𝑃𝑎𝑐𝑖𝑛𝑔_𝑅𝑎𝑡𝑒 ← 1 * 𝐿𝑎𝑠𝑡_𝐵𝑡𝑙𝐵𝑤
16 end
17 end
18 On the 1st - 𝛾 − 1th ACK (§3.3.2):
19 begin
20 𝐶𝑊𝑁𝐷 ← 𝐶𝑢𝑟_𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 ;
21 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑃𝑎𝑐𝑖𝑛𝑔();
22 end
23 On the 𝛾th ACK (§3.3.3):
24 begin
25 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 ← 𝐶𝑎𝑙𝑐𝑢 (); /* Eq. (1) */

26 if 𝐶𝑊𝑁𝐷 ≥ 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 * 𝐸𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 then
27 𝐷𝑟𝑎𝑖𝑛();
28 else
29 𝑃𝑟𝑜𝑏𝑒 ();
30 end
31 end

new connection by measuring the delivery rate of first sev-
eral packets and makes further decisions on whether to in-
crease the CWNDor drain the queue subsequently.WiseStart
performs path probe through the following three phases.

3.3.1 Sending Phase The Sending phase is from setting
the initial parameters to receiving the first ACK. In the Send-
ing phase,WiseStart sends the first several packets at a higher
rate (2*Last_BtlBw) to probe higher bandwidth, and sends
subsequent packets at a lower send rate (0.5*Last_BtlBwd)
to avoid packet loss due to the over-speed sending. 𝜅 in Al-
gorithm 1 should be higher than the bytes acknowledged by
the first 𝛾 ACK packets, which is the number of ACK packets
used to estimate the available bandwidth.

3.3.2 Maintenance Phase TheMaintenance phase is from
receiving the first ACK packet to receiving the 𝛾th ACK
packet. In theMaintenance phase,WiseStart converges CWND

4

to the BDP and continuously records the information from
the received ACKs. First, when the first ACK is received,
WiseStart disables the pacing mechanism and sets CWND
as the amount of inflight data subtracts the number of bytes
of lost packets. Therefore, packets are allowed to send only
when ACK packets are received, and the CWND gradually
converges to the path BDP. Besides, WiseStart records the
information from ACK packets, including the receiving time,
the number of acknowledged bytes, and the estimated RTT.

3.3.3 Decision Phase The Decision phase occurs when
receiving the 𝛾 th ACK packet. WiseStart estimates the avail-
able bandwidth (labeled as Est_BtlBw) and RTProp (labeled
as Est_RTProp) of the new connection and decides whether
to probe or drain subsequently. First, WiseStart estimates
Est_RTProp as the minRTT over the first 𝛾 ACK packets, and
computes Est_BtlBw based on the acknowledged bytes:

𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 =

∑𝛾

𝑖=2𝐴𝑐𝑘_𝐵𝑦𝑡𝑒𝑠𝑖
𝑅𝑒𝑐𝑣_𝑇𝑠𝑡𝑚𝑝𝛾 − 𝑅𝑒𝑐𝑣_𝑇𝑠𝑡𝑚𝑝1

(1)

Second,WiseStart calculates Est_BDP as𝐸𝑠𝑡_𝐵𝐷𝑃 = 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤∗
𝐸𝑠𝑡_𝑅𝑇𝑃𝑟𝑜𝑝 and compares it with CWND. If Est_BDP is
larger than CWND, WiseStart enters the Probe phase; other-
wise, WiseStart enters the Drain phase.

In the Probe phase, WiseStart increases the CWND from
current CWND, following the default slow start algorithm
of exponentially increasing CWND. In the Drain phase, Wis-
eStart converges to the BDP according to the strategy of the
Maintenance phase.
3.4 Adapt to application-limit scenarios
Implicit in the design of probing the new connection (§3.3)
is the assumption that the amount of application data is suf-
ficient to probe the connection bandwidth. The assumption
exits in two phases:
• Maintenance phase. Maintaining CWND as the in-
flight bytes implicitly assumes that the inflight bytes
reflect the BDP of the path. However, when application
data is insufficient, inflight bytes only reflect the amount
of data generated by the application. The CWND may
be so small that it cannot be sent when the application
has more data in the Maintenance phase.
• Decision phase. When estimating Est_BtlBw, there
is an assumption that the bottleneck is in the network.
However, if the application data is insufficient, the Est_BtlBw
is limited by the rate that application generates data and
can not reflect the bottleneck bandwidth of the path.

However, as §2.3 stated, transient application data shortage
occurs in mobile web services. Therefore, WiseStart adapts
to application-limit scenarios for the above two issues.

Detection of application-limit state. WiseStart performs
real-time detection of application-limit state. Previous solu-

tions [11] are atop CWND-based algorithms, whose detection
criterion is coarse-grained that whether the inflight bytes
fill the current CWND. However, a fine-grained and rate-
based-algorithm-supported detection is needed. WiseStart
measures the actual sending rate (labeled as Est_SendRate)
of the sender and compares it with the pacing rate set by the
sender to decide if the current sending behavior is limited
by the pacing rate or by the application. The measurement
of Est_SendRate lasts in all three phases in §3.3.

Adaption to theMaintenance phase andDecision phase.
In the Maintenance phase, when receiving the first ACK,
WiseStart compares Est_SendRate with the setting rate. If it is
in the application-limit state, WiseStart continues pacing the
packets as the Sending phase. While in the Decision phase,
when receiving the 𝛾th ACK packet, WiseStart compares
Est_BtlBw with Est_SendRate if it is in the application-limit
state. If Est_BtlBw is lower than Est_SendRate, which means
the actual sending data fills the path, WiseStart enters the
Drain phase; if not, WiseStart enters the Probe phase.

4 Evaluation
We first introduce the implementation and experimental
setup (§4.1). We then evaluate WiseStart as follows:
• Performance in the real world.We implementWiseS-

tart in a popular mobile web service. Experiments with
real users show that WiseStart reduces RCT within 1s
of connection establishment by 16.15%, with acceptable
computation and memory overhead (§4.2).
• Consistent high performance. WiseStart achieves

great improvement under different network conditions,
and reduces the First AFT by 25.43% (§4.3).
• Design Effectiveness.We analyze WiseStart’s effec-

tiveness of handling the fluctuating bandwidth and the
application-limit state. We also investigate the fairness
and friendliness of WiseStart (§4.4).

4.1 Experimental Setup

We implement WiseStart atop Cubic based on QUIC2 in user
space. WiseStart only requires modification on the sender
side. We evaluate WiseStart in both large scale production
environment (§4.2) and emulated networks (§4.3, §4.4).

Large scale production environment.We implementWis-
eStart in a popular mobile web service of M Company, with
O(10M) daily active users. We manually modified the server-
side settings to allow a fraction of users to use WiseStart
as the slow start mechanism. We measure the performance
for 73 hours and collect 86 million request logs from more
than 50 countries and regions. When users access to the ap-
plication, the client establishes a persistent connection with
the frontend server and send requests. The load balancer

2We use an IETF QUIC implementation, ngtcp2 [3].
5

hashes the request to one of the front-end servers of the
cluster based on the client IP address. Therefore, WiseStart is
deployed on the front-end server and stores the connection
information locally in the form of a static hash table. The
connection of the same peer IP address will be always routed
to the same front-end server.

Emulated environment. We also evaluate WiseStart in
a controlled environment by emulating different network
conditions with Mahimahi [20] and replaying real applica-
tion traces. In our testbed evaluation, we implement a sim-
ple request-response messaging application atop WiseStart,
which sends requests and responses with application traces,
and collects statistics for evaluation.

Baselines.We compare the performance ofWiseStart respec-
tively with several baselines to demonstrate its effectiveness.
• S-Cubic is a newly proposed slow start approach which
reuses the historical information and enters into con-
gestion avoidance directly at the first ACK [12].
• Cubic32 and Cubic64 statically set the initial CWND to
32 and 64 respectively based on Cubic.
• Cubic and BBR are the default algorithms.

4.2 Real-world performance
RCT Performance. We collect RCT from client side and
show the RCT within 1 second of the connection establish-
ment in Fig. 6. WiseStart achieves the best performance in
real-world scenarios. WiseStart is able to reduce the RCT
within 1 second of connection establishment by 8.56% to
16.15% in real-world scenarios, with a reduction in tail RCT of
22.65% to 52.34%. Although S-Cubic utilizes historical infor-
mation, it directly enters into the congestion avoidance phase
without probing the new connection. On the one hand, the
historical information may fail due to the fluctuation of mo-
bile networks. On the other hand, S-Cubic does not perform
application-limit adaptation, which also makes the CWND
setting much lower when exiting slow start. Therefore, S-
Cubic does not achieve good performance and WiseStart
reduces the RCT by 16.15% compared to S-Cubic. Cubic64
show improvements compared to Cubic. However, due to the
wide range of bandwidth under mobile networks, the fixed
initial CWND may be suboptimal, which is insufficient at
some times and is too large that causes packet loss at other
times. Therefore, both Cubic32 and Cubic64 experience long
tail latency, and WiseStart also reduces the RCT by 15.55%
and 8.56% compared to Cubic32 and Cubic64, respectively.
As for Cubic and BBR, the performance is poorer due to the
small initial CWND and sending rate.

Overhead.We count the hit rate and occupied memory of
hash table in hours. As shown in Fig. 7, the hit rate of the
hash table is only 24.59% within one hour after WiseStart
first deployed. The hit rate gradually increases as the num-

WiseStart
S-Cubic

Cubic
Cubic32

Cubic64BBR

0.2

0.3

0.4

0.5

0.6

R
C

T
(s

)

(a) Distribution of the RCTs.

P90 P95 P990.5

1.0

1.5

No
rm

al
ize

d
 R

CT

WiseStart
S-Cubic
Cubic

Cubic32
Cubic64
BBR

(b) Normalized tail RCTs.
Figure 6: In real world experiments,WiseStart brought 16.15%
reduction on average RCT, and 52.34% for the 99𝑡ℎ percentile
(the tail) completion time within one second of the connec-
tion establishment.

0 10 20 30 40 50 60 70
Time (h)

20

30

40

50

Hi
t R

at
e

(%
)

5

10

15

Si
ze

(M
B)

Mem Space
Hit Rate

Figure 7: The hit rate and memory usage of the hash table.

Parameter Value Range (Min - Max)
RTT(ms) 10 - 50, 50 - 100, 100 - 150, 150 - 300

RTT Jitter / RTT 0 - 0.2, Jitter max = 20ms
Loss rate(%) 0 - 0, 0 - 0.1, 0.1 - 5
Buffer / BDP 0.3 - 0.9, 0.9 - 1.1, 1.1 - 1.5

Table 1: Network condition parameters.
ber of accessed users increases, and reaches 52.66% after 60
hours. This means that the about half of users can reuse
historical connection information. For memory occupation,
since we allocate memory dynamically, the memory occupa-
tion also increases with the number of accessed users, and
the final memory occupation in steady state is about 19MB.
The additional CPU utilization of WiseStart is 3.6%.
4.3 Improvement on First ATF
We evaluate the improvement of WiseStart on the First AFT
through controlled experiments in emulated scenarios with
real user traces. First, we collect and replay traces from
real application, and mark the first-screen requests. Second,
we use the network traces collected and used in previous
works [8, 15, 16, 18, 19] to emulate real mobile network en-
vironment through Mahimahi [20]. Our emulated experi-
ments involve three scenarios: stationary cellular scenario,
highly variable scenario and WiFi scenario, with a total of
70 traces. We set other network parameters randomly se-
lected within the range in Tab. 1. WiseStart and S-Cubic run
through all scenarios sequentially as the other algorithms
did, without pre-recording any information about the sce-
narios. This means that the historical information stored
is about the previous scenario, which may be significantly
different from the current scenario.
We record the final completion time of all first-screen

requests and show the results of all scenarios in Fig. 8. Fig. 8a
6

WiseStart

S-Cubic
Cubic

Cubic32
Cubic64

BBR

0.0

0.5

1.0

1.5

Fi
rs

t A
FT

 (s
)

 AFT
RCT

0.1

0.3

0.5

R
C

T
(s

)
(a) First AFTs and RCTs of the
first-screen requests.

WiseStart

S-Cubic
Cubic

Cubic32
Cubic64

BBR

−10

0

10

20

Im
pr

ov
em

en
t (

%
)

(b) Improvement of First
AFT compared to Cubic.

Figure 8: WiseStart reduces the overall First AFT, and shows
a consistent improvement in 91.43% of the scenarios.
shows the Tukey boxplot of the First AFT and the RCT of the
first-screen requests. To further analyze the improvement of
WiseStart, we record the reduction in First AFT for different
algorithms compared to Cubic under each scenario in Fig. 8b,
i.e., positive values imply performance gains.

WiseStart achieves the lowest First AFT, and reduces the
overall First AFT by a median of 5.84% to 25.43%, and 9.64% to
36.81% in the 95𝑡ℎ percentile. As shown in Fig. 8b, WiseStart
shows a consistent improvement and reduces First AFT in
91.43% of the scenarios, with an average reduction of 8.5%.
S-Cubic also reduces First AFT in 81.42% of the scenarios,
with an average reduction of 5.7%. However, since S-Cubic
does not probe new connections, when meeting large new
bandwidth, it takes a long time to converge and a severe
performance degradation occurs. This demonstrates the ne-
cessity of exploring new connections. Cubic32 and Cubic64
only have improvements in about 60% of the scenarios and
the overall performance is degraded. Increasing the initial
CWND could improve the link utilization to some extent,
while it may also introduce significant packet loss. Cubic64
and Cubic32 have 21.67% additional packet loss compared to
WiseStart, and in some scenarios the loss rate even reaches
1.56%. BBR performs worse than Cubic, and it is because BBR
tends to overestimate RTProp and brings packet loss.
4.4 WiseStart Deep Dive
We analyzeWiseStart’s effectiveness of handling the fluctuat-
ing bandwidth (§4.4.1) and the application-limit state (§4.4.2).
Then, we investigate its fairness (§4.4.3).
4.4.1 Fluctuating bandwidth We analyze the resilience
of WiseStart to the fluctuating bandwidth of new connec-
tions. We set the base bandwidth as 24 Mbps with 40 ms
RTT and buffer size of 1 BDP. We vary the ratio of band-
width of the new connection to the base bandwidth from
0.2 to 2.0 and evaluate the performance on the new connec-
tion. We perform experiments using long flows (1024KB) and
record the flow completion time (FCT) and loss bytes. For
WiseStart and S-Cubic, we firstly run an experiment through
base bandwidth once to record the information of the base
connection in WiseStart. Then we run a new experiment
through the new connection. In addition, we directly set the

0.2 0.4 0.6 0.8 1.0
Bandwidth Multiplier

0

100

200

300

400

500

Lo
st

 B
yt

es
 (K

B)

0.0

0.5

1.0

1.5

2.0

FC
T

(s
)

Ideal FCT Cubic FCT
Cubic64 FCT S-Cubic FCT
WiseStart FCT Lost Bytes

(a) BtlBW decreased.

1.1 1.3 1.5 1.7 1.9
Bandwidth Multiplier

0

100

200

300

400

Lo
st

 B
yt

es
 (K

B)

0

100

200

300

400

500

600

FC
T

(m
s)

(b) BtlBW increased.
Figure 9: WiseStart presents robustness to fluctuating band-
widths. WiseStart reduces packet loss by about 20% when
bandwidth decreases and reduces FCT by 29.79% when band-
width increases.
pacing rate and CWND as the bandwidth and BDP of the
new connection respectively, as Ideal.

When the bandwidth of the new connection is lower than
that of the old connection, there is not much space for opti-
mization in the slow start mechanism due to the low band-
width. As shown in Fig. 9a, WiseStart, S-Cubic and Cubic64
are all consistent with the Ideal for the FCT. WiseStart re-
duces packet loss because it probes the new connection and
drains additional queues. In contrast, S-Cubic directly enters
the congestion avoidance phase after reusing old connection
information. Since the buffer is set as one BDP, S-Cubic drops
a lot of packets when the new bandwidth is reduced to less
than half of the old connection. For strategies of increasing
the initial CWND (e.g. Cubic64), when the capacity of the
new connection is smaller than the initial CWND, packet
loss occurs at the initial busrt and it will enter the congestion
avoidance phase immediately. In this case, Cubic suffers from
more packet loss because it increases the CWND and will
exit slow start after one RTT of the packet loss.
For the scenarios where the bandwidth of the new con-

nection is increased compared to the old one, none of the
mechanisms achieve the Ideal because the accurate informa-
tion about the connection is not available at establishment.
WiseStart is the closest to the Ideal, reducing the FCT by
29.79% compared to Cubic when the bandwidth is increased
by a factor of two (Fig. 9b). Increasing the initial CWND (e.g.
Cubic64) can also accelerate the slow start, while its im-
provement becomes worse as the difference between the
path capacity and the initial CWND increases. In addition,
WiseStart, Cubic and Cubic64 all suffer from packet loss. This
is because that these algorithms all inevitably use loss to de-
termine whether to exit the slow start mechanism. S-Cubic
does not drop packets because it does not probe new connec-
tions. However, its performance degrades as the difference
between the bandwidth of the new connection and the old
one increases, and is sometimes even inferior to Cubic.

4.4.2 Application-limit state To evaluate the effective-
ness of WiseStart’s adaptation for the application-limit state,
we additionally disable the adaptation module (WiseStart-

7

Cubic
WiseStart

WiseStart-wa

0.4

0.8

1.2

Fi
rs

t A
FT

 (s
)

(a) First AFT

WiseStart
WiseStart-wa

0

20

40

60

C
W

N
D

 (K
B

)

(b) CWND after the
fisrt ACK

WiseStart
WiseStart-wa

0

2

4

6

B
tlb

w
 (M

bp
s)

(c) 𝐸𝑠𝑡_𝐵𝑡𝑙𝐵𝑤 in De-
cision phase

Figure 10: The adaptation to application-limit state con-
tributes 14.6% to the reduction of the First AFT.

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic Cubic

(a)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart WiseStart

(b)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart Cubic

(c)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic Cubic

(d)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

WiseStart WiseStart

(e)

0 20 40 60
Times (s)

0

20

Th
pt

.(M
bp

s)

Cubic WiseStart

(f)
Figure 11: Temporal dynamics of two competing flows.
(a)(b)(c) Start simultaneously, (d)(e)(f) Start with 5s interval
wa) and compare its performance with WiseStart. The ex-
perimental setup is the same as §4.3. As shown in Fig. 10a,
WiseStart reduces the First AFT by 14.6% on average and the
tail First AFT by 31.98% compared to WiseStart-wa. On the
one hand, when the first ACK is received, WiseStart-wa sets
the CWND to the inflight bytes, which might be smaller than
the BDP. As shown in Fig. 10b, CWND after the first ACK of
WiseStart-wa is 76.26% lower than WiseStart, which is 37.8
KB lower on average. On the other hand, the new connec-
tion BDP estimated by WiseStart-wa is lower (Fig. 10c), and
thus WiseStart-wa may enter the Drain phase incorrectly.
WiseStart-wa had a 4.5% higher probability of entering the
Drain phase than WiseStart. Theses results demonstrate the
necessity of the adaptation for application-limit states.

4.4.3 Fairness and friendliness We evaluate WiseStart’s
fairness and friendliness. We set up two server-client pairs
sharing the same bottleneck link with 24 Mbps bandwidth,
40ms RTT, and buffer size of 1 BDP. We consider both the
case where two flows start simultaneously and where the lat-
ter flow starts after the former one converges (5 seconds later
in our experiment). Note that each WiseStart flow has run
through the bottleneck alone in advance and stored the his-
torical information. As shown in Fig. 11, WiseStart achieves
a high degree of fairness towards its own competing flows.
Also, when a WiseStart flow enters a link with a converged

WiseStart flow, WiseStart converges significantly faster than
Cubic (about 10 seconds faster in Fig. 11e). As for the friend-
liness, the WiseStart flow can achieve the same throughput
with Cubic flow, and converge fast when entering the path
of existing Cubic flows.

5 Related work
In the last decades, bandwidth has grown so rapidly that the
default TCP slow start mechanism can no longer accommo-
date current bandwidth conditions. When the default initial
window within Linux was designed, the average connection
speed was about 1.7 Mbps [10]. While the current report
shows that as of late 2021, the median Wi-Fi bandwidth is
153 Mbps, while the median 5G bandwidth merely reaches
304 Mbps [27]. Therefore, plenty of works are dedicated to
improving the initial window and many CDN providers have
increased the initial window to 32 segments or even 100 seg-
ments [6, 23]. However, due to the wide range of bandwidths
under mobile networks, it is difficult to obtain clear improve-
ments for all path BDPs using static initial windows. There
are also works that use dynamic initial window settings
based on historical information, including coarse-grained
user group information [21, 25] and fine-grained connection
information [12, 13]. However, for mobile networks, initial
window settings are not all-inclusive. Even if the historical
information is accurate, the fluctuating mobile networks may
invalidate the historical information. Therefore, WiseStart
not only reuses the historical connection information, but
also performs path probe and convergence accordingly.
In addition to the initial CWND, it is critical to properly

design the timing of the exit from slow start. The CWND
growth exponentially in the slow start phase. As the CWND
approaches the BDP of the path, it may also overshoot the
link capacity, causing unnecessary congestion, which was
also observed in our experiments (Fig. 9). Therefore, some
researches focused on the exit point of slow start, such as set-
ting a new threshold to decelerate the slow start [4] and using
richer metrics (e.g. RTT) to determine [9, 14]. WiseStart can
be combined with any of these optimization methods, and
in our experiments, WiseStart uses Hystart++ algorithm [9].

6 Conclusion
We propose WiseStart, a new slow start mechanism for mo-
bile web services. WiseStart reuses priori knowledge for the
new connection, continuously probes the new connection
to handle the fluctuating network conditions, and carefully
adapts to the possible application-limit scenarios. We im-
plement WiseStart in a popular mobile web service, and
evaluate it in both emulated and production environments.
Experiments show that WiseStart reduces the First AFT by
16.15% to 52.34% in different scenarios.

This work does not raise any ethical issues.

8

References
[1] android - service is killed after a short period of time (1 minute) - stack

overflow. https://stackoverflow.com/questions/51458421/service-is-
killed-after-a-short-period-of-time-1-minute.

[2] Background execution limits | android developers. https://developer.
android.com/about/versions/oreo/background#services.

[3] ngtcp2. https://github.com/ngtcp2/ngtcp2.
[4] Limited Slow-Start for TCP with Large Congestion Windows. RFC

3742, March 2004.
[5] The Importance of Being Seen. https://think.storage.googleapis.com

/docs/the-importance-of-being-seen_study.pdf, 2014.
[6] Initcwnd settings of major CDN providers. https://www.cdnplanet.

com/blog/initcwnd-settings-major-cdn-providers/, 2017.
[7] Is “the fold” still a thing in today’s scrolling and skimming culture?

https://www.mobilespoon.net/2019/05/fold-still-thing-in-todays-sc
rolling.html, 2019.

[8] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. Classic meets
modern: A pragmatic learning-based congestion control for the inter-
net. In ACM SIGCOMM, 2020.

[9] P Balasubramanian, Y Huang, and M Olson. Hystart++: Mod-
ified slow start for tcp. Internet-Draft draft-balasubramanian-
tcpmhystartplusplus-03, Internet Engineering Task Force, 2020.

[10] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. In-
creasing tcp’s initial window. Technical report, 2013.

[11] Gorry Fairhurst, Arjuna Sathiaseelan, and Raffaello Secchi. Updating
tcp to support rate-limited traffic. Technical report, 2015.

[12] Lingfeng Guo and Jack YB Lee. Stateful-tcp—a new approach to
accelerate tcp slow-start. IEEE Access, 8:195955–195970, 2020.

[13] Lingfeng Guo, Yan Liu, et al. Stateful-bbr–an enhanced tcp for emerg-
ing high-bandwidth mobile networks. In 2021 IEEE/ACM 29th Interna-
tional Symposium on Quality of Service (IWQOS). IEEE, 2021.

[14] Sangtae Ha and Injong Rhee. Taming the elephants: New tcp slow
start. Computer Networks, 55(9):2092–2110, 2011.

[15] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, DanWang, Xiangxiang
Wang, Meng Shen, and Rashid Mijumbi. A measurement study on
multi-path tcp with multiple cellular carriers on high speed rails. In
ACM SIGCOMM, 2018.

[16] Zili Meng, Yaning Guo, Yixin Shen, et al. Practically deploying heavy-
weight adaptive bitrate algorithms with teacher-student learning.
IEEE/ACM TON, 29(2):723–736, 2021.

[17] Zili Meng, Yaning Guo, Chen Sun, et al. Achieving consistent low la-
tency for wireless real-time communications with the shortest control
loop. In ACM SIGCOMM, 2022.

[18] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, et al.
Lumos5g: Mapping and predicting commercial mmwave 5g through-
put. In ACM IMC, 2020.

[19] Arvind Narayanan, Xumiao Zhang, et al. A variegated look at 5g in the
wild: performance, power, and qoe implications. In ACM SIGCOMM,
2021.

[20] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, et al.
Mahimahi: Accurate record-and-replay for http. In USENIX ATC, 2015.

[21] Xiaohui Nie, Youjian Zhao, et al. Reducing web latency through
dynamically setting tcp initial window with reinforcement learning.
In IEEE/ACM IWQoS, 2018.

[22] Dr. Craig Partridge, Sally Floyd, and Mark Allman. Rfc2414-increasing
tcp’s initial window. 1998.

[23] Jan Rüth and Oliver Hohlfeld. Demystifying tcp initial window con-
figurations of content distribution networks. In IEEE TMA, 2018.

[24] SPEED MATTERS. Designing for Mobile Performance, 2017.
https://www.awwwards.com/brainfood-mobile-performance-
vol3.pdf.

[25] Ruitao Xie, Xiaohua Jia, and Kaishun Wu. Adaptive online decision
method for initial congestion window in 5g mobile edge computing
using deep reinforcement learning. IEEE Journal on Selected Areas in
Communications, 38(2):389–403, 2019.

[26] Yaxiong Xie, Fan Yi, et al. PBE-CC: Congestion control via endpoint-
centric, physical-layer bandwidth measurements. In ACM SIGCOMM,
2020.

[27] Xinlei Yang, Hao Lin, Zhenhua Li, et al. Mobile access bandwidth in
practice: Measurement, analysis, and implications. In ACM SIGCOMM,
2022.

[28] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie
Yang, Miao Zhang, and Yang Yue. Wisetrans: Adaptive transport
protocol selection for mobile web service. In Proceedings of the Web
Conference, pages 284–294, 2021.

9

https://stackoverflow.com/questions/51458421/service-is-killed-after-a-short-period-of-time-1-minute
https://stackoverflow.com/questions/51458421/service-is-killed-after-a-short-period-of-time-1-minute
https://developer.android.com/about/versions/oreo/background#services
https://developer.android.com/about/versions/oreo/background#services
https://github.com/ngtcp2/ngtcp2
https://think.storage.googleapis.com/docs/the-importance-of-being-seen_study.pdf
https://think.storage.googleapis.com/docs/the-importance-of-being-seen_study.pdf
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-providers/
https://www.mobilespoon.net/2019/05/fold-still-thing-in-todays-scrolling.html
https://www.mobilespoon.net/2019/05/fold-still-thing-in-todays-scrolling.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Why optimize the slow start?
	2.2 Design Opportunity
	2.3 Design Challenges

	3 Design
	3.1 Design Overview
	3.2 Set initial parameters with priori knowledge
	3.3 Probe the new connection
	3.4 Adapt to application-limit scenarios

	4 Evaluation
	4.1 Experimental Setup
	4.2 Real-world performance
	4.3 Improvement on First ATF
	4.4 WiseStart Deep Dive

	5 Related work
	6 Conclusion
	References

