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Abstract

Drug discovery and development underpins healthcare but remains costly and
failure-prone. A critical bottleneck lies in predicting molecular properties such
as solubility, potency, and toxicity, which directly determine whether a candidate
can advance from preclinical to clinical trials. Artificial Intelligence (AI) has
accelerated this process, yet its reliability is often undermined by distribution shift,
as experimental conditions frequently diverge from training data. In addition,
conventional point predictions provide only single-value estimates, offering limited
guidance for high-stakes experimental design. We address these challenges with a
conformal prediction framework tailored to label shift. By weighting conformal
scores using marginal label probability ratios, our method produces statistically
rigorous prediction intervals without retraining. This enables robust uncertainty
quantification even when property distributions drift, directly tackling one of the
most pervasive obstacles to applying Al in real-world drug development. By
moving beyond accuracy alone to provide actionable confidence measures, our
approach enhances the trustworthiness of Al-driven predictions. This further aligns
predictive modeling with regulatory demands for transparency and uncertainty
reporting and ultimately supports more reliable decision-making in billion-dollar

development pipelines.

1 Introduction

Drug discovery and development is characterized by prolonged timelines, substantial resource
requirements, and a high likelihood of failure. More specifically, developing and bringing a single new
drug to market can cost from $314 million to $2.8 billion and take over a decade, but failure rates can
reach up to larger than 90% across the entire development life cycle [1]. This remarkable inefficiency
underscores the growing importance of artificial intelligence (AI) because it can substantially reduce
the need for chemical and biological experiments by making predictions on molecular properties such
as solubility, bioavailability, or toxicity. However, the current performance of Al for this purpose does
not appear to be fully compelling to drug development specialists. A key component contributing to
this insufficient performance is the uncertainty embedded in prediction by Al, mainly originating
from data characterization and model training. In response to this limitation, recent FDA guidance
(2025) for artificial intelligence in drug and device development explicitly requires that Al systems
should provide “appropriate confidence intervals” and “uncertainty estimates” when supporting
regulatory submissions [2, 3]. This requirement indicates that actively considering the uncertainty,
thereby improving the reliable predictions, will be a critical part of Al applications to drug discovery

and development.
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The reliability of Al predictions is often undermined by the problem of distribution shift [4], a
scenario where test data differ substantially from the training data. This is particularly an urgent
issue in drug discovery, where novel compounds frequently occupy chemical spaces unseen during
training. The consequence is often summarized as overconfident yet unreliable predictions, which is
an unacceptable risk when billions of dollars and patient outcomes are at stake.

To address this gap, reliable estimation of uncertainty is essential. Conformal prediction, also
known as conformal inference, is a versatile and statistically principled framework that constructs
prediction intervals around model outputs [5, 6, 7]. Its foremost advantage is its distribution-free
and finite-sample validity, which guarantees that prediction intervals will contain the true label
with a user-specified probability (e.g., 90%), regardless of dataset size or underlying distributional
assumptions. This property represents a major improvement over many traditional statistical methods
[7, 8]. Originally pioneered by Vladimir Vovk and his colleagues in the 1990s, the core mechanism
involves a simple calibration step where a small holdout dataset is used to convert an arbitrary
heuristic notion of uncertainty from a pre-trained model into a rigorous one, typically by computing
conformal scores and their empirical quantiles [5, 7, 9].

This methodology is broadly applicable across various machine learning tasks, ranging from image
classification to regression. It has also been significantly extended to address complex real-world
challenges such as covariate shift, distribution drift, and the control of general risks. As a result, it has
become an indispensable tool for reliable uncertainty quantification in high-stakes applications [0, 7].
In drug discovery, this unreliability often stems from two specific types of distribution shift: covariate
shift [6] and label shift [10]. Covariate shift occurs when the distribution of molecular structures
P(z) changes between training and test. For instance, in drug discovery, covariate shift is observed
when a model trained on diverse chemical libraries is applied to a new and more specialized set of
molecules.

On the other hand, label shift, the primary target of this work, arises when the distribution of the
target property P(y) changes, while the conditional distribution of features given the label P(x | y)
remains invariant [1 1, 12, 13]. This situation commonly arises when research priorities shift toward
discovering molecules with property values underrepresented in the original training data, such
as compounds exhibiting exceptionally high potency or low toxicity. Although various machine

learning solutions have been developed to address distribution shifts [6, 10, 14, 15, 16] label shift
remains relatively underexplored, particularly in continuous regression-based tasks that are frequently
encountered in molecular property prediction[ ! 1, 13, 17].

Addressing issues related to distribution shifts is becoming increasingly important as more sophisti-
cated Al models, such as large language models (LLMs) pretrained on large-scale chemical databases
[18, 19, 20], are applied to explore the complex relationships between molecular structure and func-
tion. However, designing novel molecules with these Al models inherently requires highly accurate
predictions under distribution shift. In general, Al models trained under the assumption of identically
distributed data often fail to account for label shift, as this assumption typically leads to overconfident
yet incorrect single-value predictions for novel and unseen molecules. This underscores the necessity
of uncertainty quantification, and highlights that the estimated uncertainty must be integrated with Al
predictions to produce realistic and robust prediction intervals, even for state-of-the-art LLM-based
Al models.

In response to these challenges, we propose a new framework that generates reliable prediction
intervals for molecular properties, even under significant label shift. Our method builds on conformal
prediction, a machine learning technique that provides distribution-free and finite-sample guarantees
on prediction intervals [6, 21]. Standard conformal prediction assumes exchangeability between
training and test data, an assumption violated under label shift. To address this issue, we develop
a scheme based on weighted conformal prediction. In our framework, the corrective weights are
derived from the ratio of the target to the source label distributions, which we estimate using
versatiel approaches such as black box shift estimation (BBSE) [ | 1], regularized learning under label
shifts (RLLS) [12], and maximum likelihood estimation (MLE) [13].These techniques enhance the
practicality of our approach, as the label shift can be directly estimated from the outputs of both
unbiased and biased predictive models.

In conclusion, our method effectively mitigates the adverse effects of label shift without requiring
costly model retraining. It generates statistically rigorous prediction intervals that adapt to changing
property distributions, thereby providing a more realistic assessment of a molecule’s potential.
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Overall, this work makes a key contribution to the development of reliable Al for drug discovery by
offering a robust methodology that ensures models remain trustworthy when navigating the uncertain
frontiers of novel chemical space.s

2 Methods

The overall design of our framework is illustrated in Figure 1. The pipeline consists of the following
steps: (i) the base prediction model is trained using source training set to perform predictions in the
label shift environment, (ii) to quantify label shift, importance weights, which represent the ratio of
the target domain’s marginal label distribution to the source domain’s marginal label distribution, are
estimated using weight set through methods such as BBSE, RLLS, and MLE, (iii) nonconformity
scores, such as absolute residuals, are computed for each data point in calibration set based on
the predictions of the trained model and their actual labels, and (iv) the weighted quantile of the
nonconformity scores is calculated by incorporating the estimated importance weights, which is then
used to construct statistically valid prediction intervals under label shift for new test points. This
high-level schema highlights how our approach adapts standard conformal prediction to remain valid
under label shift.
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Figure 1. Schematic diagram of conformal prediction for molecular properties under label shift.
We now formalize our approach for conformal prediction under label shift.

2.1 Problem Formulation

Let the source data be Dy = {(x;,y;)}!, where x; € X is a molecular representation and y; € R is
the continuous property of interest. These data points are drawn from a distribution p(z, y). We are
also given a set of unlabeled data from a target domain, D; = {x; };L;r:fi_l drawn from a different
distribution g(x, y).

The label shift assumption posits that the conditional distribution of features given the label remains
constant across domains, while the marginal label distribution changes:

p(zly) = q(zly) and p(y) # q(y) (1

Our goal is to construct a prediction interval, C'( s ), for a new test input x from the target domain
that satisfies the marginal coverage guarantee at a desired confidence level 1 —

]P(ylest S C(l'test)) >1-« 2)
2.2 Binning and Importance Weight Estimation

To apply classification-based shift estimation techniques, we first discretize the continuous response
variable y into K bins, creating a pseudo-label § = bin(y) € {0, 1, -- , K — 1} These pseudo-labels
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are used only for estimating weights. The discretization was performed using equally sized bins, and
the bin range was determined by the minimum and the maximum values of the data used to calculate
the marginal probability ratios.

The importance weight for each bin is defined as the ratio of the target and source pseudo-label
probabilities:
q(y)

w(y) = () 3)

In practice, the source probabilities p(y) are calculated from the empirical frequencies in a held-out
portion of the source data. The target probabilities ¢(¥) are estimated from the unlabeled target data
using methods like BBSE, RLLS, or MLE, which leverage the outputs of a model trained on the
binned source data.

Since MLE could not directly estimate ¢(%) from predictions, we adopted a probabilistic approach.
For each sample, we modeled a Gaussian centered at the prediction with standard deviation equal to
the root mean squared error (RMSE) from the weight set. The probability of the sample falling into a
bin was then given by the cumulative distribution function (CDF) difference at the bin’s bounds. Any
negative probabilities arising from numerical errors were set to zero, and the resulting probability
vector was normalized to ensure that its elements summed to one.

2.3 Weighted Conformal Prediction under Label Shift

To ensure the statistical validity of our method, we partition the source data D, into three disjoint
subsets, preventing data leakage between steps:

1. Proper training set (Dy,i,): Used to train the base prediction model, f.

2. Weights set (Dyeign): Used to estimate the label shift importance weights.

3. Calibration set (D,,): Used to compute nonconformity scores and calibrate the prediction
intervals.

The weighted conformal prediction algorithm then proceeds as follows:

1. For each point (z;,y;) in the calibration set D.,, compute a nonconformity score. For
regression, this is typically the absolute residual:

si = |yi — f()] “4)

2. Assign the corresponding estimated importance weight w; = w(¥;) to each score s;, where
v; is the bin of the true label y;.

3. Compute the weighted quantile g, from the set of scores {s;} and weights {w;}. This
quantile is the value that satisfies:

Necal 7
~ . tw; s < s
Qw =inf < s: 2izi flml {Al < s} >1—« &)
Zj:l wj
4. For a new test point x, the final prediction interval is formed by centering the weighted
quantile around the model’s point prediction:

Cla) = [f(x) = quw,  f(20) + o] ©)

By using this weighted quantile, the method corrects for the distributional shift and restores the
marginal coverage guarantee under the label shift assumption.

3 Experimental Settings

3.1 TDC Solubility AqsolDB

Solubility AqSolDB [22] from the Therapeutics Data Commons (TDC) [23], which provides mea-
surements of compound solubility in aqueous solutions. This dataset serves as a benchmark for
studying molecular physicochemical properties and for developing predictive models of drug solubil-
ity. AqSolDB specifically provides solubility information, which is a critical factor in drug design and
delivery systems, and consists of 9,982 compounds. For each compound, experimentally measured
logarithmic solubility values (l0ogS) and molecular structure information are included.
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3.2 Chemical Large Language Model Finetuning

The large language model (LLM) employed in this study is based on a BART [24] architecture and has
been optimized for the analysis of chemical data. The model was pretrained utilizing approximately
200 million unlabeled SMILES (Simplified Molecular Input Line Entry System) [25] data collected
from Chembl [26], PubChem [27], ZINC [28], Enamine [29], Coconut [30], and Drugbank [31].
Through this pretraining, the model acquired enriched representations specific to the chemical domain,
encompassing approximately 250 million parameters. The fine-tuning process was conducted via full
fine-tuning of the pretrained LLM.

3.3 Data Splitting

We conducted a conformal prediction simulation utilizing split conformal prediction methods to
address continuous label shift. The objective of this simulation was to ensure that the marginal
probability ratio-based weights are "exchangeable" between the nonconformity score distributions of
the training and test datasets when the label distribution Y differs between them. By guaranteeing
this exchangeability, the constructed prediction intervals satisfy a minimum coverage of 1 — ain a
distribution-free manner.

The experiment was repeated 1,000 times, and in each iteration, the original data is divided into
two subsets: source data D, and target data D,. The two subsets are split in a 60% to 40% ratio of
the total data. Here, D; is divided into three subsets (Diain, Dweight> Deal) Of equal size. D is split
into two subsets (Dpo_shift» Dshift) to evaluate coverage performance under label shift conditions and
without label shift. Dy, shise represented 50% of D; and corresponded to test data without label shift.
Dqnire 1s generated by sampling with replacement from Dy, excluding Dy, snire. During this sampling
process, the probability of selecting each data point was proportional to a specific weight, where
w(y) = exp(y”' B). These weights were assigned based on the magnitude of .

4 Experimental Results

Split conformal prediction fails under label shift As expected, the traditional split conformal
prediction method exhibited a significant decline in coverage performance on the label-shifted test set
compared to the non-shifted test set. In Figure 2, the coverage distribution for the shifted data (red) is
notably shifted to the left relative to the distribution for the non-shifted data (gray), with the average
coverage falling substantially below the nominal target. These findings highlight the limitations and
unreliability of standard uncertainty quantification methods under label shift conditions.

no shift (CP)
401 shift (CP)
30
B
5) 201
101
0 ; , A . A
0.65 0.70 0.75 0.80 0.85 0.90 0.95

coverage (90%)

Figure 2. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond
to the mean value of each distribution. The gray and red lines indicate the coverage distributions
obtained by applying standard split conformal prediction to the test data without and with label shift
(non-uniformly subsampled), respectively.

Ratios of marginal probabilities recover coverage loss from label shift Our proposed method,
which integrates weighted conformal prediction (WCP) with marginal probability ratios estimated via
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BBSE, RLLS, and MLE with bias-corrected temperature scaling (BCTS), provides statistically valid
and reliable prediction intervals for addressing continuous label shift problems. The experimental
results demonstrate that the proposed approach achieves improved predictive coverage compared to
the traditional split conformal prediction (CP) method. Specifically, WCP consistently outperformed
CP in terms of average coverage, as evidenced by the coverage distribution shown in Figure 3. The
coverage distribution of WCP shifted to the right relative to CP, indicating that WCP more frequently
generated prediction intervals that included the true labels. This allowed WCP to effectively achieve
the desired coverage level, even under label shift conditions. These results provide empirical validation
that weighted conformal prediction, when its weights are derived from marginal probability ratios,
can produce more robust and reliable prediction intervals. This approach proves especially effective
in addressing challenges presented by label shift scenarios.

shift (CP)
— shift (BBSE_CP, 5 bins)
— shift (RLLS_CP, 5 bins)
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Figure 3. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond to
the mean value of each distribution. Coverage distributions are shown for the test data under label
shift: the red line corresponds to standard split conformal prediction, while the purple, green, and
light blue lines correspond to conformal prediction with weights calculated via BBSE, RLLS, and
MLE (BCTS), respectively.
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Figure 4. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond to
the mean value of each distribution. Interval length distributions are shown for the test data under
label shift: the red line corresponds to standard split conformal prediction, while the purple, green,
and light blue lines correspond to conformal prediction with weights calculated via BBSE, RLLS,
and MLE (BCTS), respectively.

Approaches for estimating marginal probability ratios When comparing the performance of
BBSE, RLLS, and MLE, we observed that MLE achieved the highest coverage, followed by RLLS and
then BBSE (Figure 3). Moreover, MLE showed robust performance in coverage recovery with respect
to the number of bins (Table 2). This improvement can be explained by two factors: first, the use of
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bias-corrected calibration reduces systematic bias across classes; and second, the MLE algorithm
benefits from a theoretical guarantee of convergence to a global optimum [13]. Nevertheless, this
improvement in coverage came with certain trade-offs. The prediction intervals generated by MLE
were generally wider (Figure 4), whereas BBSE and RLLS produced relatively narrower intervals.

5 Limitation

Our approach requires splitting source data into training, weighting, and calibration sets, which
can reduce effective training size and hurt performance in low-sample regimes. Data augmentation
methods [32, 33] may mitigate this. Moreover, standard conformal intervals are suboptimal for
heteroscedastic data; techniques such as Conformalized Quantile Regression (CQR) [21] could
provide more adaptive intervals. Exploring these directions remains future work.

6 Summary

This paper presents a practical and statistically grounded framework for producing reliable prediction
intervals for molecular property prediction under label shift. By weighting conformal prediction with
estimates of the target label distribution—obtained via BBSE, RLLS, and MLE—our method restores
the coverage guarantees that split conformal prediction loses under distribution shift. When tested on
the AqSolDB dataset with a large-scale pretrained chemical language model, our weighted conformal
prediction consistently achieves more robust coverage than traditional approaches, with no need for
costly retraining. The method is compatible with various estimation techniques, while maximum
likelihood—based corrections achieve the best performance in coverage recovery. Our key contribution
lies in developing a generalizable and model-agnostic framework that addresses an essential gap
in the reliability of molecular property prediction. By ensuring statistically rigorous uncertainty
quantification under label shift, our approach advances Al-based drug discovery toward regulatory
compliance and real-world adoption, ultimately increasing confidence in high-stakes decisions on
which compounds progress through the development pipeline.
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A Detailed Experimental Settings
All models were trained on NVIDIA A100 SXM4 40GB GPUs. As the model requires approximately

7.5 GB of memory for training, it is also feasible to run it on GPUs with lower specifications. Detailed
model hyperparameters are represented in Table 1.

Table 1. Hyperparameters for training BBSE, RLLS, and MLE

Hyperparameter BBSE RLLS MLE
Optimizer AdamW [34] AdamW [34] AdamW [34]
Adam betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Learning rate Se-5 Se-5 Se-5
Weight decay 0.1 0.1 0.1
Warmup steps 100 100 100

Error rate o 0.1 0.1 0.1

Batch size 16 16 16

Max length 150 150 150

Label shift 3 -0.5 -0.5 -0.5
BART hidden dim 768 768 768
Predictor hidden dims  [512, 256] [512, 256] [512, 256]
Calibration None None BCTS
Epochs 10 10 10

B Additional Results

Coverage recovery performance based on the number of bins We varied the number of bins in
BBSE, RLLS, and MLE, and for each configuration, the mean and standard deviation of coverage and
interval length were reported over 1000 trials (Tables 2). The characteristics of the coverage distribu-
tion vary with the number of bins used in applying WCP through label discretization. Specifically,
with fewer bins, certain trials exhibited high coverage, but the overall coverage distribution showed
greater variance. Conversely, as the number of bins increased, the variance of the overall coverage
distribution decreased, resembling the distribution observed when CP was applied to a non-shifted test
dataset. This phenomenon can be interpreted as follows: with fewer bins, the coarse discretization of
nonconformity scores leads to unstable quantile estimation, causing irregular fluctuations in the length
of prediction intervals and significantly increasing the variance of the overall coverage distribution.
On the other hand, as the number of bins increases, the estimation errors caused by discretization are
reduced, resulting in a more stable and narrower (relatively) coverage distribution.

Table 2. Comparison of average coverage and interval length across different bin numbers for BBSE,
RLLS, and MLE methods.

Bins BBSE RLLS MLE (BCTS)
Coverage Length Coverage Length Coverage Length

5 0.865 o033  4.346 +o0316 | 0.886 +003¢  4.804 tosoo | 0.899 toosa 5.163 +os3

15 0.845 ooz 3.993 +o236 | 0.877 20032 4.577 o042 | 0.895 o034  5.031 0620

50 0.804 +o033 3.414 +oaa9 | 0.859 0032  4.204 0297 | 0.892 +0034  4.947 o581

100 | 0.782 o033  3.165 xo0123 | 0.843 10032 3.934 10222 | 0.858 o031 4.192 10242
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Figure 5. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via BBSE. The
triangular markers on the x-axis indicate the mean value of each distribution.
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Figure 6. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via RLLS. The
triangular markers on the x-axis indicate the mean value of each distribution.
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Figure 7. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via MLE. The
triangular markers on the x-axis indicate the mean value of each distribution.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions and scope,
and the claims align with the experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary experimental information of our method in Section 2,
Section 3, and Appendix A.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: It will be made publicly available in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all necessary experimental settings and details in Section 3 and
Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation of coverage and interval length over 1000
trials for BBES, RLLS, and MLE methods in Table 2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide experimental compute resources of our method in Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve research on human subjects or participants, and
therefore, it does not pose any social impacts or potential harmful outcomes.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We discussed the impact on the field of drug development, but did not address
the societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not use assets with a high risk of misuse, such as externally
pretrained language models or scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original papers that produced the code packages or datasets used
in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code, data, and model checkpoints required to reproduce the experiments
mentioned in the paper have been included in the zip file. The data can be downloaded from
the original source at tdcommons.ai, following the guidelines mentioned in [23].

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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676 * For initial submissions, do not include any information that would break anonymity (if

677 applicable), such as the institution conducting the review.

678 16. Declaration of LLM usage

679 Question: Does the paper describe the usage of LLMs if it is an important, original, or
680 non-standard component of the core methods in this research? Note that if the LLM is used
681 only for writing, editing, or formatting purposes and does not impact the core methodology,
682 scientific rigorousness, or originality of the research, declaration is not required.

683 Answer: [NA]

684 Justification: We did not use LLMs for describing core aspects such as the core method.
685 Guidelines:

686 * The answer NA means that the core method development in this research does not
687 involve LLMs as any important, original, or non-standard components.

688 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
689 for what should or should not be described.
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