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Abstract

Drug discovery and development underpins healthcare but remains costly and1

failure-prone. A critical bottleneck lies in predicting molecular properties such2

as solubility, potency, and toxicity, which directly determine whether a candidate3

can advance from preclinical to clinical trials. Artificial Intelligence (AI) has4

accelerated this process, yet its reliability is often undermined by distribution shift,5

as experimental conditions frequently diverge from training data. In addition,6

conventional point predictions provide only single-value estimates, offering limited7

guidance for high-stakes experimental design. We address these challenges with a8

conformal prediction framework tailored to label shift. By weighting conformal9

scores using marginal label probability ratios, our method produces statistically10

rigorous prediction intervals without retraining. This enables robust uncertainty11

quantification even when property distributions drift, directly tackling one of the12

most pervasive obstacles to applying AI in real-world drug development. By13

moving beyond accuracy alone to provide actionable confidence measures, our14

approach enhances the trustworthiness of AI-driven predictions. This further aligns15

predictive modeling with regulatory demands for transparency and uncertainty16

reporting and ultimately supports more reliable decision-making in billion-dollar17

development pipelines.18

1 Introduction19

Drug discovery and development is characterized by prolonged timelines, substantial resource20

requirements, and a high likelihood of failure. More specifically, developing and bringing a single new21

drug to market can cost from $314 million to $2.8 billion and take over a decade, but failure rates can22

reach up to larger than 90% across the entire development life cycle [1]. This remarkable inefficiency23

underscores the growing importance of artificial intelligence (AI) because it can substantially reduce24

the need for chemical and biological experiments by making predictions on molecular properties such25

as solubility, bioavailability, or toxicity. However, the current performance of AI for this purpose does26

not appear to be fully compelling to drug development specialists. A key component contributing to27

this insufficient performance is the uncertainty embedded in prediction by AI, mainly originating28

from data characterization and model training. In response to this limitation, recent FDA guidance29

(2025) for artificial intelligence in drug and device development explicitly requires that AI systems30

should provide “appropriate confidence intervals” and “uncertainty estimates” when supporting31

regulatory submissions [2, 3]. This requirement indicates that actively considering the uncertainty,32

thereby improving the reliable predictions, will be a critical part of AI applications to drug discovery33

and development.34
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The reliability of AI predictions is often undermined by the problem of distribution shift [4], a35

scenario where test data differ substantially from the training data. This is particularly an urgent36

issue in drug discovery, where novel compounds frequently occupy chemical spaces unseen during37

training. The consequence is often summarized as overconfident yet unreliable predictions, which is38

an unacceptable risk when billions of dollars and patient outcomes are at stake.39

To address this gap, reliable estimation of uncertainty is essential. Conformal prediction, also40

known as conformal inference, is a versatile and statistically principled framework that constructs41

prediction intervals around model outputs [5, 6, 7]. Its foremost advantage is its distribution-free42

and finite-sample validity, which guarantees that prediction intervals will contain the true label43

with a user-specified probability (e.g., 90%), regardless of dataset size or underlying distributional44

assumptions. This property represents a major improvement over many traditional statistical methods45

[7, 8]. Originally pioneered by Vladimir Vovk and his colleagues in the 1990s, the core mechanism46

involves a simple calibration step where a small holdout dataset is used to convert an arbitrary47

heuristic notion of uncertainty from a pre-trained model into a rigorous one, typically by computing48

conformal scores and their empirical quantiles [5, 7, 9].49

This methodology is broadly applicable across various machine learning tasks, ranging from image50

classification to regression. It has also been significantly extended to address complex real-world51

challenges such as covariate shift, distribution drift, and the control of general risks. As a result, it has52

become an indispensable tool for reliable uncertainty quantification in high-stakes applications [6, 7].53

In drug discovery, this unreliability often stems from two specific types of distribution shift: covariate54

shift [6] and label shift [10]. Covariate shift occurs when the distribution of molecular structures55

P (x) changes between training and test. For instance, in drug discovery, covariate shift is observed56

when a model trained on diverse chemical libraries is applied to a new and more specialized set of57

molecules.58

On the other hand, label shift, the primary target of this work, arises when the distribution of the59

target property P (y) changes, while the conditional distribution of features given the label P (x | y)60

remains invariant [11, 12, 13]. This situation commonly arises when research priorities shift toward61

discovering molecules with property values underrepresented in the original training data, such62

as compounds exhibiting exceptionally high potency or low toxicity. Although various machine63

learning solutions have been developed to address distribution shifts [6, 10, 14, 15, 16] label shift64

remains relatively underexplored, particularly in continuous regression-based tasks that are frequently65

encountered in molecular property prediction[11, 13, 17].66

Addressing issues related to distribution shifts is becoming increasingly important as more sophisti-67

cated AI models, such as large language models (LLMs) pretrained on large-scale chemical databases68

[18, 19, 20], are applied to explore the complex relationships between molecular structure and func-69

tion. However, designing novel molecules with these AI models inherently requires highly accurate70

predictions under distribution shift. In general, AI models trained under the assumption of identically71

distributed data often fail to account for label shift, as this assumption typically leads to overconfident72

yet incorrect single-value predictions for novel and unseen molecules. This underscores the necessity73

of uncertainty quantification, and highlights that the estimated uncertainty must be integrated with AI74

predictions to produce realistic and robust prediction intervals, even for state-of-the-art LLM-based75

AI models.76

In response to these challenges, we propose a new framework that generates reliable prediction77

intervals for molecular properties, even under significant label shift. Our method builds on conformal78

prediction, a machine learning technique that provides distribution-free and finite-sample guarantees79

on prediction intervals [6, 21]. Standard conformal prediction assumes exchangeability between80

training and test data, an assumption violated under label shift. To address this issue, we develop81

a scheme based on weighted conformal prediction. In our framework, the corrective weights are82

derived from the ratio of the target to the source label distributions, which we estimate using83

versatiel approaches such as black box shift estimation (BBSE) [11], regularized learning under label84

shifts (RLLS) [12], and maximum likelihood estimation (MLE) [13].These techniques enhance the85

practicality of our approach, as the label shift can be directly estimated from the outputs of both86

unbiased and biased predictive models.87

In conclusion, our method effectively mitigates the adverse effects of label shift without requiring88

costly model retraining. It generates statistically rigorous prediction intervals that adapt to changing89

property distributions, thereby providing a more realistic assessment of a molecule’s potential.90
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Overall, this work makes a key contribution to the development of reliable AI for drug discovery by91

offering a robust methodology that ensures models remain trustworthy when navigating the uncertain92

frontiers of novel chemical space.s93

2 Methods94

The overall design of our framework is illustrated in Figure 1. The pipeline consists of the following95

steps: (i) the base prediction model is trained using source training set to perform predictions in the96

label shift environment, (ii) to quantify label shift, importance weights, which represent the ratio of97

the target domain’s marginal label distribution to the source domain’s marginal label distribution, are98

estimated using weight set through methods such as BBSE, RLLS, and MLE, (iii) nonconformity99

scores, such as absolute residuals, are computed for each data point in calibration set based on100

the predictions of the trained model and their actual labels, and (iv) the weighted quantile of the101

nonconformity scores is calculated by incorporating the estimated importance weights, which is then102

used to construct statistically valid prediction intervals under label shift for new test points. This103

high-level schema highlights how our approach adapts standard conformal prediction to remain valid104

under label shift.105

Figure 1. Schematic diagram of conformal prediction for molecular properties under label shift.

We now formalize our approach for conformal prediction under label shift.106

2.1 Problem Formulation107

Let the source data be Ds = {(xi, yi)}ni=1, where xi ∈ X is a molecular representation and yi ∈ R is108

the continuous property of interest. These data points are drawn from a distribution p(x, y). We are109

also given a set of unlabeled data from a target domain, Dt = {xj}n+m
j=n+1, drawn from a different110

distribution q(x, y).111

The label shift assumption posits that the conditional distribution of features given the label remains112

constant across domains, while the marginal label distribution changes:113

p(x|y) = q(x|y) and p(y) ̸= q(y) (1)
Our goal is to construct a prediction interval, C(xtest), for a new test input xtest from the target domain114

that satisfies the marginal coverage guarantee at a desired confidence level 1− α:115

P(ytest ∈ C(xtest)) ≥ 1− α (2)

2.2 Binning and Importance Weight Estimation116

To apply classification-based shift estimation techniques, we first discretize the continuous response117

variable y into K bins, creating a pseudo-label ỹ = bin(y) ∈ {0, 1, · · · ,K − 1} These pseudo-labels118
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are used only for estimating weights. The discretization was performed using equally sized bins, and119

the bin range was determined by the minimum and the maximum values of the data used to calculate120

the marginal probability ratios.121

The importance weight for each bin is defined as the ratio of the target and source pseudo-label122

probabilities:123

w(ỹ) =
q(ỹ)

p(ỹ)
(3)

In practice, the source probabilities p(ỹ) are calculated from the empirical frequencies in a held-out124

portion of the source data. The target probabilities q(ỹ) are estimated from the unlabeled target data125

using methods like BBSE, RLLS, or MLE, which leverage the outputs of a model trained on the126

binned source data.127

Since MLE could not directly estimate q(ỹ) from predictions, we adopted a probabilistic approach.128

For each sample, we modeled a Gaussian centered at the prediction with standard deviation equal to129

the root mean squared error (RMSE) from the weight set. The probability of the sample falling into a130

bin was then given by the cumulative distribution function (CDF) difference at the bin’s bounds. Any131

negative probabilities arising from numerical errors were set to zero, and the resulting probability132

vector was normalized to ensure that its elements summed to one.133

2.3 Weighted Conformal Prediction under Label Shift134

To ensure the statistical validity of our method, we partition the source data Ds into three disjoint135

subsets, preventing data leakage between steps:136

1. Proper training set (Dtrain): Used to train the base prediction model, f .137

2. Weights set (Dweight): Used to estimate the label shift importance weights.138

3. Calibration set (Dcal): Used to compute nonconformity scores and calibrate the prediction139

intervals.140

The weighted conformal prediction algorithm then proceeds as follows:141

1. For each point (xi, yi) in the calibration set Dcal, compute a nonconformity score. For142

regression, this is typically the absolute residual:143

si = |yi − f(xi)| (4)
2. Assign the corresponding estimated importance weight ŵi = ŵ(ỹi) to each score si, where144

ỹi is the bin of the true label yi.145

3. Compute the weighted quantile q̂w from the set of scores {si} and weights {ŵi}. This146

quantile is the value that satisfies:147

q̂w = inf

{
s :

∑ncal

i=1 ŵi · I{si ≤ s}∑ncal

j=1 ŵj
≥ 1− α

}
(5)

4. For a new test point xt, the final prediction interval is formed by centering the weighted148

quantile around the model’s point prediction:149

C(xt) = [f(xt)− q̂w, f(xt) + q̂w] (6)

By using this weighted quantile, the method corrects for the distributional shift and restores the150

marginal coverage guarantee under the label shift assumption.151

3 Experimental Settings152

3.1 TDC Solubility AqsolDB153

Solubility AqSolDB [22] from the Therapeutics Data Commons (TDC) [23], which provides mea-154

surements of compound solubility in aqueous solutions. This dataset serves as a benchmark for155

studying molecular physicochemical properties and for developing predictive models of drug solubil-156

ity. AqSolDB specifically provides solubility information, which is a critical factor in drug design and157

delivery systems, and consists of 9,982 compounds. For each compound, experimentally measured158

logarithmic solubility values (logS) and molecular structure information are included.159
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3.2 Chemical Large Language Model Finetuning160

The large language model (LLM) employed in this study is based on a BART [24] architecture and has161

been optimized for the analysis of chemical data. The model was pretrained utilizing approximately162

200 million unlabeled SMILES (Simplified Molecular Input Line Entry System) [25] data collected163

from Chembl [26], PubChem [27], ZINC [28], Enamine [29], Coconut [30], and Drugbank [31].164

Through this pretraining, the model acquired enriched representations specific to the chemical domain,165

encompassing approximately 250 million parameters. The fine-tuning process was conducted via full166

fine-tuning of the pretrained LLM.167

3.3 Data Splitting168

We conducted a conformal prediction simulation utilizing split conformal prediction methods to169

address continuous label shift. The objective of this simulation was to ensure that the marginal170

probability ratio-based weights are "exchangeable" between the nonconformity score distributions of171

the training and test datasets when the label distribution Y differs between them. By guaranteeing172

this exchangeability, the constructed prediction intervals satisfy a minimum coverage of 1− α in a173

distribution-free manner.174

The experiment was repeated 1,000 times, and in each iteration, the original data is divided into175

two subsets: source data Ds and target data Dt. The two subsets are split in a 60% to 40% ratio of176

the total data. Here, Ds is divided into three subsets (Dtrain, Dweight, Dcal) of equal size. Dt is split177

into two subsets (Dno_shift, Dshift) to evaluate coverage performance under label shift conditions and178

without label shift. Dno_shift represented 50% of Dt and corresponded to test data without label shift.179

Dshift is generated by sampling with replacement from Dt, excluding Dno_shift. During this sampling180

process, the probability of selecting each data point was proportional to a specific weight, where181

w(y) = exp(yTβ). These weights were assigned based on the magnitude of y.182

4 Experimental Results183

Split conformal prediction fails under label shift As expected, the traditional split conformal184

prediction method exhibited a significant decline in coverage performance on the label-shifted test set185

compared to the non-shifted test set. In Figure 2, the coverage distribution for the shifted data (red) is186

notably shifted to the left relative to the distribution for the non-shifted data (gray), with the average187

coverage falling substantially below the nominal target. These findings highlight the limitations and188

unreliability of standard uncertainty quantification methods under label shift conditions.189

Figure 2. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond
to the mean value of each distribution. The gray and red lines indicate the coverage distributions
obtained by applying standard split conformal prediction to the test data without and with label shift
(non-uniformly subsampled), respectively.

Ratios of marginal probabilities recover coverage loss from label shift Our proposed method,190

which integrates weighted conformal prediction (WCP) with marginal probability ratios estimated via191
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BBSE, RLLS, and MLE with bias-corrected temperature scaling (BCTS), provides statistically valid192

and reliable prediction intervals for addressing continuous label shift problems. The experimental193

results demonstrate that the proposed approach achieves improved predictive coverage compared to194

the traditional split conformal prediction (CP) method. Specifically, WCP consistently outperformed195

CP in terms of average coverage, as evidenced by the coverage distribution shown in Figure 3. The196

coverage distribution of WCP shifted to the right relative to CP, indicating that WCP more frequently197

generated prediction intervals that included the true labels. This allowed WCP to effectively achieve198

the desired coverage level, even under label shift conditions. These results provide empirical validation199

that weighted conformal prediction, when its weights are derived from marginal probability ratios,200

can produce more robust and reliable prediction intervals. This approach proves especially effective201

in addressing challenges presented by label shift scenarios.202

Figure 3. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond to
the mean value of each distribution. Coverage distributions are shown for the test data under label
shift: the red line corresponds to standard split conformal prediction, while the purple, green, and
light blue lines correspond to conformal prediction with weights calculated via BBSE, RLLS, and
MLE (BCTS), respectively.

Figure 4. The KDE distributions for 1000 repeated experiments using standard split conformal
prediction and the proposed methods are shown. The triangular markers on the x-axis correspond to
the mean value of each distribution. Interval length distributions are shown for the test data under
label shift: the red line corresponds to standard split conformal prediction, while the purple, green,
and light blue lines correspond to conformal prediction with weights calculated via BBSE, RLLS,
and MLE (BCTS), respectively.

Approaches for estimating marginal probability ratios When comparing the performance of203

BBSE, RLLS, and MLE, we observed that MLE achieved the highest coverage, followed by RLLS and204

then BBSE (Figure 3). Moreover, MLE showed robust performance in coverage recovery with respect205

to the number of bins (Table 2). This improvement can be explained by two factors: first, the use of206
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bias-corrected calibration reduces systematic bias across classes; and second, the MLE algorithm207

benefits from a theoretical guarantee of convergence to a global optimum [13]. Nevertheless, this208

improvement in coverage came with certain trade-offs. The prediction intervals generated by MLE209

were generally wider (Figure 4), whereas BBSE and RLLS produced relatively narrower intervals.210

5 Limitation211

Our approach requires splitting source data into training, weighting, and calibration sets, which212

can reduce effective training size and hurt performance in low-sample regimes. Data augmentation213

methods [32, 33] may mitigate this. Moreover, standard conformal intervals are suboptimal for214

heteroscedastic data; techniques such as Conformalized Quantile Regression (CQR) [21] could215

provide more adaptive intervals. Exploring these directions remains future work.216

6 Summary217

This paper presents a practical and statistically grounded framework for producing reliable prediction218

intervals for molecular property prediction under label shift. By weighting conformal prediction with219

estimates of the target label distribution—obtained via BBSE, RLLS, and MLE—our method restores220

the coverage guarantees that split conformal prediction loses under distribution shift. When tested on221

the AqSolDB dataset with a large-scale pretrained chemical language model, our weighted conformal222

prediction consistently achieves more robust coverage than traditional approaches, with no need for223

costly retraining. The method is compatible with various estimation techniques, while maximum224

likelihood–based corrections achieve the best performance in coverage recovery. Our key contribution225

lies in developing a generalizable and model-agnostic framework that addresses an essential gap226

in the reliability of molecular property prediction. By ensuring statistically rigorous uncertainty227

quantification under label shift, our approach advances AI-based drug discovery toward regulatory228

compliance and real-world adoption, ultimately increasing confidence in high-stakes decisions on229

which compounds progress through the development pipeline.230
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A Detailed Experimental Settings345

All models were trained on NVIDIA A100 SXM4 40GB GPUs. As the model requires approximately346

7.5 GB of memory for training, it is also feasible to run it on GPUs with lower specifications. Detailed347

model hyperparameters are represented in Table 1.348

Table 1. Hyperparameters for training BBSE, RLLS, and MLE
Hyperparameter BBSE RLLS MLE
Optimizer AdamW [34] AdamW [34] AdamW [34]
Adam betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Learning rate 5e-5 5e-5 5e-5
Weight decay 0.1 0.1 0.1
Warmup steps 100 100 100
Error rate α 0.1 0.1 0.1
Batch size 16 16 16
Max length 150 150 150
Label shift β -0.5 -0.5 -0.5
BART hidden dim 768 768 768
Predictor hidden dims [512, 256] [512, 256] [512, 256]
Calibration None None BCTS
Epochs 10 10 10

B Additional Results349

Coverage recovery performance based on the number of bins We varied the number of bins in350

BBSE, RLLS, and MLE, and for each configuration, the mean and standard deviation of coverage and351

interval length were reported over 1000 trials (Tables 2). The characteristics of the coverage distribu-352

tion vary with the number of bins used in applying WCP through label discretization. Specifically,353

with fewer bins, certain trials exhibited high coverage, but the overall coverage distribution showed354

greater variance. Conversely, as the number of bins increased, the variance of the overall coverage355

distribution decreased, resembling the distribution observed when CP was applied to a non-shifted test356

dataset. This phenomenon can be interpreted as follows: with fewer bins, the coarse discretization of357

nonconformity scores leads to unstable quantile estimation, causing irregular fluctuations in the length358

of prediction intervals and significantly increasing the variance of the overall coverage distribution.359

On the other hand, as the number of bins increases, the estimation errors caused by discretization are360

reduced, resulting in a more stable and narrower (relatively) coverage distribution.361

Table 2. Comparison of average coverage and interval length across different bin numbers for BBSE,
RLLS, and MLE methods.

Bins
BBSE RLLS MLE (BCTS)

Coverage Length Coverage Length Coverage Length
5 0.865 ±0.033 4.346 ±0.316 0.886 ±0.034 4.804 ±0.590 0.899 ±0.034 5.163 ±0.832

15 0.845 ±0.032 3.993 ±0.236 0.877 ±0.032 4.577 ±0.42 0.895 ±0.034 5.031 ±0.620

50 0.804 ±0.033 3.414 ±0.149 0.859 ±0.032 4.204 ±0.297 0.892 ±0.034 4.947 ±0.581

100 0.782 ±0.033 3.165 ±0.123 0.843 ±0.032 3.934 ±0.222 0.858 ±0.031 4.192 ±0.242
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Figure 5. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via BBSE. The
triangular markers on the x-axis indicate the mean value of each distribution.

Figure 6. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via RLLS. The
triangular markers on the x-axis indicate the mean value of each distribution.
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Figure 7. The KDE coverage distribution (top) and interval length distribution (bottom) for 1000
repeated experiments using standard split conformal prediction and the proposed methods are shown.
Each color represents the number of bins used to calculate marginal probability ratios via MLE. The
triangular markers on the x-axis indicate the mean value of each distribution.
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NeurIPS Paper Checklist362

1. Claims363

Question: Do the main claims made in the abstract and introduction accurately reflect the364

paper’s contributions and scope?365

Answer: [Yes]366

Justification: The abstract and introduction clearly state the paper’s contributions and scope,367

and the claims align with the experimental results.368

Guidelines:369

• The answer NA means that the abstract and introduction do not include the claims370

made in the paper.371

• The abstract and/or introduction should clearly state the claims made, including the372

contributions made in the paper and important assumptions and limitations. A No or373

NA answer to this question will not be perceived well by the reviewers.374

• The claims made should match theoretical and experimental results, and reflect how375

much the results can be expected to generalize to other settings.376

• It is fine to include aspirational goals as motivation as long as it is clear that these goals377

are not attained by the paper.378

2. Limitations379

Question: Does the paper discuss the limitations of the work performed by the authors?380

Answer: [Yes]381

Justification: We discussed the limitations in Section 5.382

Guidelines:383

• The answer NA means that the paper has no limitation, while the answer No means384

that the paper has limitations, but those are not discussed in the paper.385

• The authors are encouraged to create a separate "Limitations" section in their paper.386

• The paper should point out any strong assumptions and how robust the results are to387

violations of these assumptions (e.g., independence assumptions, noiseless settings,388

model well-specification, asymptotic approximations only holding locally). The authors389

should reflect on how these assumptions might be violated in practice and what the390

implications would be.391

• The authors should reflect on the scope of the claims made, e.g., if the approach was392

only tested on a few datasets or with a few runs. In general, empirical results often393

depend on implicit assumptions, which should be articulated.394

• The authors should reflect on the factors that influence the performance of the approach.395

For example, a facial recognition algorithm may perform poorly when image resolution396

is low or images are taken in low lighting. Or a speech-to-text system might not be397

used reliably to provide closed captions for online lectures because it fails to handle398

technical jargon.399

• The authors should discuss the computational efficiency of the proposed algorithms400

and how they scale with dataset size.401

• If applicable, the authors should discuss possible limitations of their approach to402

address problems of privacy and fairness.403

• While the authors might fear that complete honesty about limitations might be used by404

reviewers as grounds for rejection, a worse outcome might be that reviewers discover405

limitations that aren’t acknowledged in the paper. The authors should use their best406

judgment and recognize that individual actions in favor of transparency play an impor-407

tant role in developing norms that preserve the integrity of the community. Reviewers408

will be specifically instructed to not penalize honesty concerning limitations.409

3. Theory assumptions and proofs410

Question: For each theoretical result, does the paper provide the full set of assumptions and411

a complete (and correct) proof?412

Answer: [NA]413
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Justification: Our paper does not include theoretical results.414

Guidelines:415

• The answer NA means that the paper does not include theoretical results.416

• All the theorems, formulas, and proofs in the paper should be numbered and cross-417

referenced.418

• All assumptions should be clearly stated or referenced in the statement of any theorems.419

• The proofs can either appear in the main paper or the supplemental material, but if420

they appear in the supplemental material, the authors are encouraged to provide a short421

proof sketch to provide intuition.422

• Inversely, any informal proof provided in the core of the paper should be complemented423

by formal proofs provided in appendix or supplemental material.424

• Theorems and Lemmas that the proof relies upon should be properly referenced.425

4. Experimental result reproducibility426

Question: Does the paper fully disclose all the information needed to reproduce the main ex-427

perimental results of the paper to the extent that it affects the main claims and/or conclusions428

of the paper (regardless of whether the code and data are provided or not)?429

Answer: [Yes]430

Justification: We provide all necessary experimental information of our method in Section 2,431

Section 3, and Appendix A.432

Guidelines:433

• The answer NA means that the paper does not include experiments.434

• If the paper includes experiments, a No answer to this question will not be perceived435

well by the reviewers: Making the paper reproducible is important, regardless of436

whether the code and data are provided or not.437

• If the contribution is a dataset and/or model, the authors should describe the steps taken438

to make their results reproducible or verifiable.439

• Depending on the contribution, reproducibility can be accomplished in various ways.440

For example, if the contribution is a novel architecture, describing the architecture fully441

might suffice, or if the contribution is a specific model and empirical evaluation, it may442

be necessary to either make it possible for others to replicate the model with the same443

dataset, or provide access to the model. In general. releasing code and data is often444

one good way to accomplish this, but reproducibility can also be provided via detailed445

instructions for how to replicate the results, access to a hosted model (e.g., in the case446

of a large language model), releasing of a model checkpoint, or other means that are447

appropriate to the research performed.448

• While NeurIPS does not require releasing code, the conference does require all submis-449

sions to provide some reasonable avenue for reproducibility, which may depend on the450

nature of the contribution. For example451

(a) If the contribution is primarily a new algorithm, the paper should make it clear how452

to reproduce that algorithm.453

(b) If the contribution is primarily a new model architecture, the paper should describe454

the architecture clearly and fully.455

(c) If the contribution is a new model (e.g., a large language model), then there should456

either be a way to access this model for reproducing the results or a way to reproduce457

the model (e.g., with an open-source dataset or instructions for how to construct458

the dataset).459

(d) We recognize that reproducibility may be tricky in some cases, in which case460

authors are welcome to describe the particular way they provide for reproducibility.461

In the case of closed-source models, it may be that access to the model is limited in462

some way (e.g., to registered users), but it should be possible for other researchers463

to have some path to reproducing or verifying the results.464

5. Open access to data and code465

Question: Does the paper provide open access to the data and code, with sufficient instruc-466

tions to faithfully reproduce the main experimental results, as described in supplemental467

material?468
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Answer: [Yes]469

Justification: It will be made publicly available in the future.470

Guidelines:471

• The answer NA means that paper does not include experiments requiring code.472

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/473

public/guides/CodeSubmissionPolicy) for more details.474

• While we encourage the release of code and data, we understand that this might not be475

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not476

including code, unless this is central to the contribution (e.g., for a new open-source477

benchmark).478

• The instructions should contain the exact command and environment needed to run to479

reproduce the results. See the NeurIPS code and data submission guidelines (https:480

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.481

• The authors should provide instructions on data access and preparation, including how482

to access the raw data, preprocessed data, intermediate data, and generated data, etc.483

• The authors should provide scripts to reproduce all experimental results for the new484

proposed method and baselines. If only a subset of experiments are reproducible, they485

should state which ones are omitted from the script and why.486

• At submission time, to preserve anonymity, the authors should release anonymized487

versions (if applicable).488

• Providing as much information as possible in supplemental material (appended to the489

paper) is recommended, but including URLs to data and code is permitted.490

6. Experimental setting/details491

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-492

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the493

results?494

Answer: [Yes]495

Justification: We provide all necessary experimental settings and details in Section 3 and496

Appendix A.497

Guidelines:498

• The answer NA means that the paper does not include experiments.499

• The experimental setting should be presented in the core of the paper to a level of detail500

that is necessary to appreciate the results and make sense of them.501

• The full details can be provided either with the code, in appendix, or as supplemental502

material.503

7. Experiment statistical significance504

Question: Does the paper report error bars suitably and correctly defined or other appropriate505

information about the statistical significance of the experiments?506

Answer: [Yes]507

Justification: We report the standard deviation of coverage and interval length over 1000508

trials for BBES, RLLS, and MLE methods in Table 2.509

Guidelines:510

• The answer NA means that the paper does not include experiments.511

• The authors should answer "Yes" if the results are accompanied by error bars, confi-512

dence intervals, or statistical significance tests, at least for the experiments that support513

the main claims of the paper.514

• The factors of variability that the error bars are capturing should be clearly stated (for515

example, train/test split, initialization, random drawing of some parameter, or overall516

run with given experimental conditions).517

• The method for calculating the error bars should be explained (closed form formula,518

call to a library function, bootstrap, etc.)519

• The assumptions made should be given (e.g., Normally distributed errors).520
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• It should be clear whether the error bar is the standard deviation or the standard error521

of the mean.522

• It is OK to report 1-sigma error bars, but one should state it. The authors should523

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis524

of Normality of errors is not verified.525

• For asymmetric distributions, the authors should be careful not to show in tables or526

figures symmetric error bars that would yield results that are out of range (e.g. negative527

error rates).528

• If error bars are reported in tables or plots, The authors should explain in the text how529

they were calculated and reference the corresponding figures or tables in the text.530

8. Experiments compute resources531

Question: For each experiment, does the paper provide sufficient information on the com-532

puter resources (type of compute workers, memory, time of execution) needed to reproduce533

the experiments?534

Answer: [Yes]535

Justification: We provide experimental compute resources of our method in Appendix A.536

Guidelines:537

• The answer NA means that the paper does not include experiments.538

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,539

or cloud provider, including relevant memory and storage.540

• The paper should provide the amount of compute required for each of the individual541

experimental runs as well as estimate the total compute.542

• The paper should disclose whether the full research project required more compute543

than the experiments reported in the paper (e.g., preliminary or failed experiments that544

didn’t make it into the paper).545

9. Code of ethics546

Question: Does the research conducted in the paper conform, in every respect, with the547

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?548

Answer: [Yes]549

Justification: Our research does not involve research on human subjects or participants, and550

therefore, it does not pose any social impacts or potential harmful outcomes.551

Guidelines:552

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.553

• If the authors answer No, they should explain the special circumstances that require a554

deviation from the Code of Ethics.555

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-556

eration due to laws or regulations in their jurisdiction).557

10. Broader impacts558

Question: Does the paper discuss both potential positive societal impacts and negative559

societal impacts of the work performed?560

Answer: [NA]561

Justification: We discussed the impact on the field of drug development, but did not address562

the societal impact.563

Guidelines:564

• The answer NA means that there is no societal impact of the work performed.565

• If the authors answer NA or No, they should explain why their work has no societal566

impact or why the paper does not address societal impact.567

• Examples of negative societal impacts include potential malicious or unintended uses568

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations569

(e.g., deployment of technologies that could make decisions that unfairly impact specific570

groups), privacy considerations, and security considerations.571

16

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied572

to particular applications, let alone deployments. However, if there is a direct path to573

any negative applications, the authors should point it out. For example, it is legitimate574

to point out that an improvement in the quality of generative models could be used to575

generate deepfakes for disinformation. On the other hand, it is not needed to point out576

that a generic algorithm for optimizing neural networks could enable people to train577

models that generate Deepfakes faster.578

• The authors should consider possible harms that could arise when the technology is579

being used as intended and functioning correctly, harms that could arise when the580

technology is being used as intended but gives incorrect results, and harms following581

from (intentional or unintentional) misuse of the technology.582

• If there are negative societal impacts, the authors could also discuss possible mitigation583

strategies (e.g., gated release of models, providing defenses in addition to attacks,584

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from585

feedback over time, improving the efficiency and accessibility of ML).586

11. Safeguards587

Question: Does the paper describe safeguards that have been put in place for responsible588

release of data or models that have a high risk for misuse (e.g., pretrained language models,589

image generators, or scraped datasets)?590

Answer: [NA]591

Justification: The paper does not use assets with a high risk of misuse, such as externally592

pretrained language models or scraped datasets.593

Guidelines:594

• The answer NA means that the paper poses no such risks.595

• Released models that have a high risk for misuse or dual-use should be released with596

necessary safeguards to allow for controlled use of the model, for example by requiring597

that users adhere to usage guidelines or restrictions to access the model or implementing598

safety filters.599

• Datasets that have been scraped from the Internet could pose safety risks. The authors600

should describe how they avoided releasing unsafe images.601

• We recognize that providing effective safeguards is challenging, and many papers do602

not require this, but we encourage authors to take this into account and make a best603

faith effort.604

12. Licenses for existing assets605

Question: Are the creators or original owners of assets (e.g., code, data, models), used in606

the paper, properly credited and are the license and terms of use explicitly mentioned and607

properly respected?608

Answer: [Yes]609

Justification: We cited the original papers that produced the code packages or datasets used610

in the paper.611

Guidelines:612

• The answer NA means that the paper does not use existing assets.613

• The authors should cite the original paper that produced the code package or dataset.614

• The authors should state which version of the asset is used and, if possible, include a615

URL.616

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.617

• For scraped data from a particular source (e.g., website), the copyright and terms of618

service of that source should be provided.619

• If assets are released, the license, copyright information, and terms of use in the620

package should be provided. For popular datasets, paperswithcode.com/datasets621

has curated licenses for some datasets. Their licensing guide can help determine the622

license of a dataset.623
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• For existing datasets that are re-packaged, both the original license and the license of624

the derived asset (if it has changed) should be provided.625

• If this information is not available online, the authors are encouraged to reach out to626

the asset’s creators.627

13. New assets628

Question: Are new assets introduced in the paper well documented and is the documentation629

provided alongside the assets?630

Answer: [Yes]631

Justification: The code, data, and model checkpoints required to reproduce the experiments632

mentioned in the paper have been included in the zip file. The data can be downloaded from633

the original source at tdcommons.ai, following the guidelines mentioned in [23].634

Guidelines:635

• The answer NA means that the paper does not release new assets.636

• Researchers should communicate the details of the dataset/code/model as part of their637

submissions via structured templates. This includes details about training, license,638

limitations, etc.639

• The paper should discuss whether and how consent was obtained from people whose640

asset is used.641

• At submission time, remember to anonymize your assets (if applicable). You can either642

create an anonymized URL or include an anonymized zip file.643

14. Crowdsourcing and research with human subjects644

Question: For crowdsourcing experiments and research with human subjects, does the paper645

include the full text of instructions given to participants and screenshots, if applicable, as646

well as details about compensation (if any)?647

Answer: [NA]648

Justification: This paper does not involve crowdsourcing nor research with human subjects.649

Guidelines:650

• The answer NA means that the paper does not involve crowdsourcing nor research with651

human subjects.652

• Including this information in the supplemental material is fine, but if the main contribu-653

tion of the paper involves human subjects, then as much detail as possible should be654

included in the main paper.655

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,656

or other labor should be paid at least the minimum wage in the country of the data657

collector.658

15. Institutional review board (IRB) approvals or equivalent for research with human659

subjects660

Question: Does the paper describe potential risks incurred by study participants, whether661

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)662

approvals (or an equivalent approval/review based on the requirements of your country or663

institution) were obtained?664

Answer: [NA]665

Justification: This paper does not involve crowdsourcing nor research with human subjects.666

Guidelines:667

• The answer NA means that the paper does not involve crowdsourcing nor research with668

human subjects.669

• Depending on the country in which research is conducted, IRB approval (or equivalent)670

may be required for any human subjects research. If you obtained IRB approval, you671

should clearly state this in the paper.672

• We recognize that the procedures for this may vary significantly between institutions673

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the674

guidelines for their institution.675
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• For initial submissions, do not include any information that would break anonymity (if676

applicable), such as the institution conducting the review.677

16. Declaration of LLM usage678

Question: Does the paper describe the usage of LLMs if it is an important, original, or679

non-standard component of the core methods in this research? Note that if the LLM is used680

only for writing, editing, or formatting purposes and does not impact the core methodology,681

scientific rigorousness, or originality of the research, declaration is not required.682

Answer: [NA]683

Justification: We did not use LLMs for describing core aspects such as the core method.684

Guidelines:685

• The answer NA means that the core method development in this research does not686

involve LLMs as any important, original, or non-standard components.687

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)688

for what should or should not be described.689
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