

FOCUS ON THE FOG: LEVERAGING STUDENT UNCERTAINTY FOR GUIDED KNOWLEDGE DISTILLATION IN SEMANTIC SEGMENTATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Current knowledge distillation (KD) methods for semantic segmentation focus on
 014 distilling the teacher’s knowledge via logit and feature-based techniques. Recent
 015 work explored the improvement of knowledge distillation methods by incorporating
 016 the uncertainty of the teacher in dense prediction tasks, primarily in object
 017 detection. Yet, its application in knowledge distillation for semantic segmentation
 018 has received limited attention. Moreover, utilizing the uncertainty on the student
 019 side remains largely underexplored. We posit that student-side uncertainty can
 020 serve as a valuable signal for guiding the distillation process in semantic segmen-
 021 tation. To this end, we propose Focus on the Fog (FOTF), a novel uncertainty-
 022 guided distillation approach that estimates and leverages student-side uncertainty
 023 during training. Specifically, we formulate an uncertainty-weighted distillation
 024 loss for semantic segmentation that is dynamically modulated by the student’s un-
 025 certainty, estimated via Monte Carlo Dropout. This amplifies the distillation sig-
 026 nal in spatial regions and semantic classes where the student model exhibits low
 027 certainty, thereby providing more targeted guidance during training. Extensive
 028 experiments on the Cityscapes, CamVid and Pascal VOC datasets demonstrate the
 029 effectiveness of our method, both as a standalone technique and as an add-on to
 030 existing state-of-the-art knowledge distillation methods. The code will be made
 031 publicly available upon acceptance.

1 INTRODUCTION

032 Semantic segmentation is a fundamental task in computer vision with wide-ranging applications,
 033 such as autonomous driving Cordts et al. (2016) and medical imaging Ronneberger et al. (2015).
 034 Many semantic segmentation models such as DeepLab Chen et al. (2017a; 2018), PSPNet Zhao
 035 et al. (2017), and SegFormer Xie et al. (2021) have achieved strong performance across various
 036 benchmarks. However, their high computational cost makes them impractical for deployment in
 037 real-time or resource-constrained settings, motivating the use of knowledge distillation to transfer
 038 performance to lighter models.

039 Early work on knowledge distillation focused on transferring softened output distributions from a
 040 large teacher model to a smaller student model Ba & Caruana (2014); Hinton et al. (2015). By
 041 matching these soft targets (Fig. 1a), the student can learn richer inter-class relationships, often
 042 referred to as “dark knowledge” Hinton et al. (2015), which are not captured by hard labels. Sub-
 043 sequent work has revisited knowledge distillation from a theoretical perspective, arguing that its
 044 effectiveness is not solely due to the similarity information provided by the teacher Yuan et al.
 045 (2020). Instead, a significant part of its benefit arises from the regularization effect of the soft
 046 targets, framing it as a form of learned label smoothing Yuan et al. (2020). It follows that students can
 047 benefit from learning with their own soft targets Yuan et al. (2020).

048 In semantic segmentation, recent work has increasingly focused on feature-based distillation, with
 049 a shift from directly mimicking absolute feature activations to transferring structural dependencies
 050 within feature representations Liu et al. (2019); Yang et al. (2022); Fan et al. (2023). This reflects a
 051 growing recognition that preserving the relational structure encoded by the teacher is more effective
 052 than enforcing strict per-location alignment in dense prediction tasks Liu et al. (2019); Yang et al.
 053

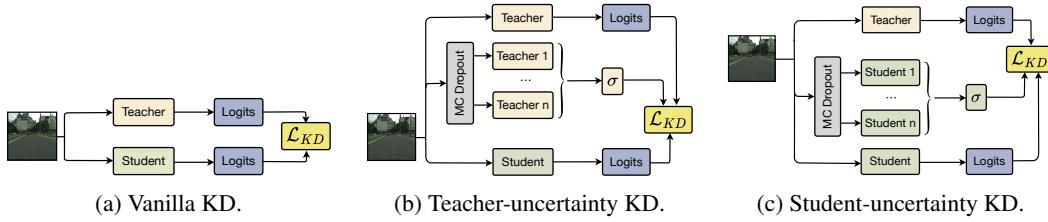


Figure 1: Uncertainty-aware knowledge distillation: (a) vanilla; (b) teacher-weighted via MC dropout; (c) our student-weighted via MC dropout.

(2022); Fan et al. (2023). To this end, CIRKD Yang et al. (2022) introduces a framework that aims to preserve better-structured semantic relations both within individual images and across different samples. Af-DCD Fan et al. (2023), in contrast to CIRKD, adopts a buffer-free approach. It employs a masked feature mimicking strategy and performs contrastive learning using both absolute spatial positions and local neighborhoods.

Nevertheless, existing methods largely overlook the uncertainty present in teacher models, which can arise from data noise and imperfect training Yi et al. (2024). One approach addresses this by replacing the teacher with its own inference ensemble, improving the diversity and receptiveness of the knowledge transferred to the student Zhang et al. (2023). Another line of work estimates uncertainty using Monte Carlo Dropout and leverages it to guide student training, encouraging deeper exploration of the latent space Yi et al. (2024). Both of the aforementioned methods estimate uncertainty on the teacher side and use it to guide the student’s training (Fig. 1b).

Motivated by the findings of Yuan et al. (2020), which show that students can benefit from learning with their own soft targets, we explore the potential of leveraging uncertainty estimated by the student itself (Fig. 1c). To this end, we introduce Focus on the Fog (FOTF), a novel uncertainty-guided distillation approach that estimates student uncertainty using Monte Carlo (MC) Dropout Gal & Ghahramani (2016) and incorporates it into training via an uncertainty-weighted distillation loss for semantic segmentation (Fig. 1c). We demonstrate that student-driven uncertainty can be a valuable signal during training. This design avoids the overhead of teacher ensembles, offers a more efficient route to distillation, and naturally opens avenues toward active learning. To summarize, we introduce **Focus on the Fog (FOTF), a simple yet effective student-driven uncertainty-guided distillation method** that leverages Monte Carlo Dropout to estimate student uncertainty and integrate it into training; FOTF is **method-agnostic**, works both as a **standalone or as an add-on** to existing distillation techniques, and achieves **consistent improvements on widely used semantic segmentation benchmarks**.

2 RELATED WORK

Knowledge Distillation. Early work on knowledge distillation focused on transferring softened output distributions from teacher to student models Ba & Caruana (2014); Hinton et al. (2015). Later analyses revealed that much of KD’s benefit stems from the regularization effect of soft labels rather than inter-class similarity alone Yuan et al. (2020). Further theoretical investigation frames KD through the lens of the bias–variance trade-off, showing that sample-wise variance can harm distillation and proposing adaptive weighting of soft targets to mitigate this effect Zhou et al. (2021). Beyond classification, KD has been applied to detection and dense prediction. For instance, Li et al. (2017) showed that distilling features from a strong detector can outperform ImageNet pretraining, motivating feature-based transfer. To better capture the structured nature of dense prediction, Liu et al. (2020b) proposed distilling structured knowledge rather than treating pixels independently, achieving stronger generalization. Recent general-purpose methods have explored more flexible or automated strategies. Huang et al. (2022) replaces the standard KL loss with Pearson correlation to better capture relational consistency between student and teacher. Li et al. (2023) introduces KD-Zero, an evolutionary search framework to discover optimal distillation components. Huang et al. (2023a) proposes masking noisy regions in feature maps, focusing distillation on informative spatial areas. DiffKD Huang et al. (2023b) introduces a novel approach where student features are denoised via diffusion models to better match the teacher’s representational quality. Multi-teacher distillation has also been explored, with Iordache et al. (2025) proposing the combination of teachers trained on different datasets through a joint fusion module and multi-level feature distillation to improve

108 generalizability and reduce overfitting.

109 **Knowledge Distillation in Semantic Segmentation.** Reducing the feature map resolution in semantic segmentation models improves efficiency but leads to notable performance degradation. To address this, He et al. (2019) propose a distillation framework that aligns student and teacher features in a transferred latent space via a pre-trained autoencoder and incorporates an affinity module to capture long-range dependencies. For video segmentation, temporal consistency has been addressed by introducing a temporal loss during training that maintains prediction stability without additional inference cost Liu et al. (2020a). Structured Knowledge Distillation (SKD) Liu et al. (2019) was one of the earliest to tailor feature-based distillation to segmentation, incorporating pairwise losses and a GAN-based holistic loss to preserve spatial and semantic consistency. IFVD Wang et al. (2020) focuses on transferring intra-class variation by aligning pixel-wise features with class-specific prototypes, while CWD Shu et al. (2021) leverages channel-wise importance to guide distillation toward semantically meaningful regions. CIRKD Yang et al. (2022) advances this line of work by enforcing consistency not only within individual images but also across different samples. It aligns pairwise relations in the latent space, encouraging the student to mimic the semantic structure encoded by the teacher. Af-DCD Fan et al. (2023) builds on this idea with a buffer-free contrastive framework. It introduces a masked feature mimicking strategy and formulates a loss across spatial and channel dimensions by leveraging absolute positions and local neighborhoods. Positive pairs are drawn from matching positions, while negative pairs are sampled locally, enabling dense and structured knowledge transfer without memory overhead. Other recent work includes methods that improve teacher quality through noised supervision and dual-path consistency training Qiu et al. (2024), as well as approaches designed for heterogeneous architecture distillation Hao et al. (2023); Huang et al. (2025).

130 3 METHODOLOGIES

131 **Preliminary.** The vanilla knowledge distillation (Vanilla KD) loss encourages the student network to match the class probabilities predicted by a pre-trained teacher network at each pixel. It is defined as:

$$132 \quad \mathcal{L}_{\text{KD}} = \frac{1}{H \cdot W} \sum_{i \in \mathcal{R}} \text{KL}(q_i^T \| q_i^S) \quad (1)$$

$$133 \quad = \frac{1}{H \cdot W} \sum_{i \in \mathcal{R}} \sum_{c=1}^C q_{i,c}^T \cdot \log \left(\frac{q_{i,c}^T}{q_{i,c}^S} \right), \quad (2)$$

134 where H and W denote the image height and width, respectively, $\mathcal{R} \subseteq \{1, \dots, H \cdot W\}$ is the set 135 of all pixel locations, and C is the number of semantic classes. For each pixel $i \in \mathcal{R}$, $q_i^T \in [0, 1]^C$ 136 and $q_i^S \in [0, 1]^C$ represent the softmax output (i.e., class probability distribution) of the teacher and 137 student networks, respectively. The KL divergence is computed at each pixel between the teacher's 138 and student's predicted distributions and averaged over all pixels.

139 **Uncertainty-Weighted KD Loss.** We propose an extension to the vanilla knowledge distillation loss 140 by incorporating an uncertainty-based weighting scheme. The key idea is to emphasize the learning 141 signal in regions where the student model is uncertain about its predictions. Specifically, for pixels or 142 classes where the student exhibits high uncertainty, we increase their contribution to the distillation 143 loss. Conversely, for confident predictions, the loss contribution remains as in standard KD. In this 144 way, the model is encouraged to focus more on ambiguous regions, while maintaining the original 145 KD behavior for more certain predictions. We formalize this idea through the Uncertainty-Weighted 146 Knowledge Distillation (KD) loss, illustrated in Fig. 2. The modified loss is defined as:

$$147 \quad \mathcal{L}_{\text{KD}_{\text{unc}}} = \frac{1}{H \cdot W} \sum_{i \in \mathcal{R}} \sum_{c=1}^C w(i, c) \cdot q_{i,c}^T \cdot \log \left(\frac{q_{i,c}^T}{q_{i,c}^S} \right), \quad (3)$$

148 where $w(i, c) \in \mathbb{R}_{\geq 1}$ is an uncertainty-based weighting function defined per pixel i and class c . 149 This weight increases the contribution of predictions where the student is more uncertain, encouraging 150 the model to pay closer attention to ambiguous or difficult regions. For certain predictions, the 151 weighting factor approaches unity, thereby reducing to the standard knowledge distillation formulation. 152

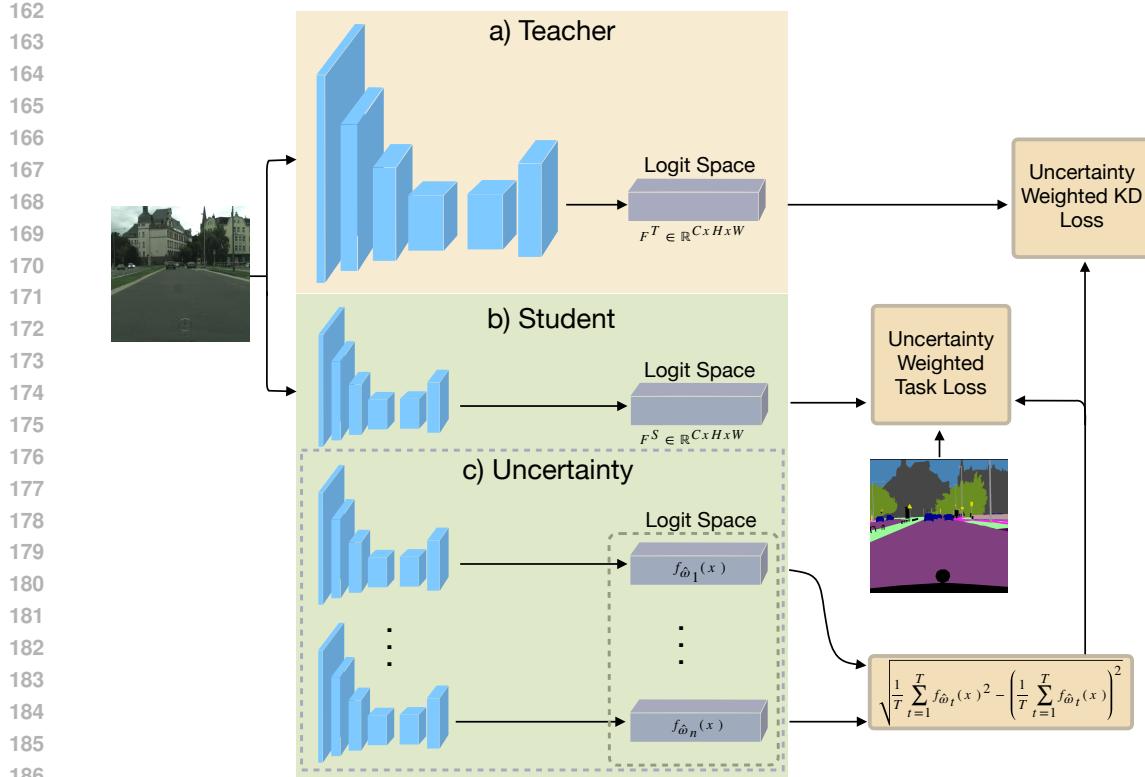


Figure 2: The illustration for the distillation process. To estimate model uncertainty, we apply MC Dropout by performing T stochastic forward passes through the student model with dropout enabled. We then compute the standard deviation of the softmax outputs to quantify uncertainty and apply a monotonically increasing weighting function for proper guidance. This uncertainty is subsequently used to modulate both the Kullback–Leibler divergence loss between the student and teacher ((a) and (c)), as well as the task loss between the student and ground-truth labels ((b) and (c)) with our uncertainty-based weighting function.

Uncertainty Computation. To compute the model’s uncertainty, we follow a Bayesian approximation approach based on Monte Carlo Dropout as proposed by Gal & Ghahramani (2016); Gal (2016). This method interprets dropout as approximate variational inference in a deep Gaussian Process. The key idea is to obtain an approximation of the model’s predictive distribution by performing multiple stochastic forward passes at inference time using dropout. Formally, the predictive distribution is given by:

$$p(y | x, \mathcal{D}) \approx \frac{1}{T} \sum_{t=1}^T p(y | x, \hat{\omega}_t), \quad (4)$$

where $\hat{\omega}_t \sim q(\omega)$ are sampled dropout masks, $q(\omega)$ is a bernoulli-distributed approximate posterior distribution, p refers to the predictive distribution and T is the number of stochastic forward passes.

The corresponding predictive variance, which captures the model’s epistemic uncertainty in part, can be approximated as Kendall & Gal (2017):

$$\text{Var}(y) \approx \underbrace{\frac{1}{T} \sum_{t=1}^T f_{\hat{\omega}_t}(x)^2 - \left(\frac{1}{T} \sum_{t=1}^T f_{\hat{\omega}_t}(x) \right)^2}_{\text{epistemic uncertainty}} + \underbrace{\sigma_{\text{aleatoric}}^2}_{\text{aleatoric uncertainty}}, \quad (5)$$

where $f_{\hat{\omega}_t}(x)$ denotes the model’s prediction in the t -th forward pass.

216 Since MC Dropout approximates a distribution over model parameters, it captures only epistemic
 217 (model) uncertainty. We do not explicitly model aleatoric uncertainty, and therefore treat the pre-
 218 dictive variance as a measure of model confidence alone. In practice, we train the segmentation
 219 network with dropout enabled Srivastava et al. (2014) and keep dropout active during inference Gal
 220 & Ghahramani (2016). We perform T stochastic forward passes and compute the standard deviation
 221 of the softmax outputs across these samples, after applying the softmax along the class dimension.
 222 This standard deviation is used as a pixel- and channel-wise uncertainty estimate. Formally, for each
 223 pixel $i \in \mathcal{R}$ and class $c \in \{1, \dots, C\}$, we compute the standard deviation of the softmax outputs as:

$$\sigma_{i,c} = \text{std} \left(\{q_{i,c}^S\}_{t=1}^T \right), \quad (6)$$

224 where $q_{i,c}^S$ denotes the softmax probability for class c at pixel i in the t -th stochastic forward pass.
 225 The resulting uncertainty map $u(i, c)$ is used in our loss formulation as an uncertainty-aware weight-
 226 ing factor.

227 **Weighting Function.** To incorporate uncertainty into the distillation loss in a meaningful way, we
 228 define a weighting function where we pass $\sigma_{i,c}$ through a continuous, strictly monotonically increasing
 229 transformation $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 1}$ that satisfies $f(0) = 1$. This ensures that confident predictions
 230 ($\sigma_{i,c} \approx 0$) retain their original loss contribution, while more uncertain predictions are up-weighted
 231 proportionally. We adopt the following uncertainty-based weighting function, inspired by a formu-
 232 lation previously proposed in the context of uncertainty-guided supervision Stone et al. (2022), and
 233 modify it by introducing a scaling factor $m > 0$ to better control the influence of uncertainty in our
 234 setting:

$$w(i, c) = (1 + m \cdot \sigma_{i,c})^\kappa, \quad (7)$$

235 where $\sigma_{i,c}$ denotes the standard deviation of the softmax outputs across MC Dropout samples at
 236 pixel i and class c , and $\kappa > 0$ controls the sharpness of the weighting. We empirically validate the
 237 effectiveness of this weighting function in our setting, with ablations provided later in the paper.

238 **Uncertainty-Weighted Task Loss.** To apply our uncertainty weighting to the supervised task loss,
 239 we use the same weighting term $w(i, c)$ to modulate the pixel-wise cross-entropy as follows:

$$\begin{aligned} \mathcal{L}_{\text{CE}_{\text{unc}}} &= \frac{1}{H \cdot W} \sum_{i \in \mathcal{R}} \sum_{c=1}^C \mathbf{1}_{\{y_i=c\}} \cdot w(i, c) \cdot [-\log q_{i,c}^S] \\ &= \frac{1}{H \cdot W} \sum_{i \in \mathcal{R}} w(i, y_i) \cdot [-\log q_{i,y_i}^S], \end{aligned} \quad (8)$$

240 where q_{i,y_i}^S is the predicted softmax probability of the ground truth class y_i at pixel i and $\mathbf{1}_{\{y_i=c\}}$
 241 denotes the indicator function. This formulation ensures that uncertain predictions are given more
 242 emphasis during learning, while confident ones contribute less.

253 4 EXPERIMENTS

254 4.1 IMPLEMENTATION

255 **Datasets.** Our experiments are conducted on three widely-used semantic segmentation datasets,
 256 including Cityscapes Cordts et al. (2016), CamVid Brostow et al. (2008b;a) and Pascal VOC Ever-
 257 ingham et al. (2010); Hariharan et al. (2011).

258 **Network Architectures.** In line with previous work Yang et al. (2022); Fan et al. (2023), we adopt
 259 DeepLabV3 Chen et al. (2017a;b), PSPNet Zhao et al. (2017), and SegFormer Xie et al. (2021) as
 260 segmentation heads. For the teacher backbone architectures, we use ResNet-101 (Res101) He et al.
 261 (2016) and Mix Transformer-B4 (MiT-B4) Xie et al. (2021), while ResNet-18 (Res18) and Mix
 262 Transformer-B0 (MiT-B0) are employed as student backbone architectures.

263 **Evaluation Metrics.** Following the standard setting used in Yang et al. (2022) and Fan et al. (2023),
 264 we evaluate segmentation performance using mean Intersection-over-Union (mIoU).

265 **Distillation Methods.** We compare our approach against state-of-the-art segmentation distillation
 266 methods Liu et al. (2019); Wang et al. (2020); Shu et al. (2021); Yang et al. (2022); Fan et al. (2023).
 267 To demonstrate the effectiveness of our method as a plug-in component, we integrate it into CIRKD
 268 Yang et al. (2022) and Af-DCD Fan et al. (2023).

269 **Training.** We follow the training and hyperparameter settings used in CIRKD Yang et al. (2022) and

270 Af-DCD Fan et al. (2023). Unless stated otherwise, we perform $T = 5$ stochastic forward passes
 271 using the student model, with a dropout rate of 0.1. To determine the optimal values of κ and m , we
 272 perform a grid-based search over the candidate sets $\kappa \in \{1, \dots, 10\}$ and $m \in \{1, 3, 10\}$.
 273

274 4.2 RESULTS

275 **Semantic Segmentation.** Tables 1a, 1b, and 1c present semantic segmentation distillation results
 276 on Cityscapes, CamVid, and Pascal VOC using CNN-based students (DeepLabV3-Res18, PSPNet-
 277 Res18) with DeepLabV3-Res101 as the teacher. Across all datasets, our proposed Focus on the Fog
 278 (FOTF) consistently improves performance when combined with various distillation baselines.
 279

280 On Cityscapes, FOTF
 281 delivers the largest gain:
 282 DeepLabV3-Res18 im-
 283 proves from 74.21% mIoU
 284 to 77.37% with Vanilla
 285 KD + FOTF (+3.16%),
 286 the best among all meth-
 287 ods. PSPNet-Res18 also
 288 benefits, with CIRKD +
 289 FOTF and Vanilla KD +
 290 FOTF achieving 75.03%
 291 and 74.99%, respectively,
 292 both surpassing strong
 293 baselines. On CamVid,
 294 FOTF-enhanced models
 295 achieve steady improve-
 296 ments, with DeepLabV3-
 297 Res18 reaching 69.66%
 298 (+2.74% over baseline)
 299 using Vanilla KD + FOTF. For PSPNet-Res18, Af-DCD + FOTF achieves the best mIoU of 69.63%,
 while other FOTF variants remain competitive.

300 On Pascal VOC, where the
 301 base DeepLabV3-Res18 model
 302 achieves 73.21% mIoU, Af-
 303 DCD remains the strongest per-
 304 former with 76.25%, followed
 305 by CIRKD + FOTF at 74.70%.
 306 Although Vanilla KD + FOTF
 307 only reaches 74.21%, it still
 308 outperforms all other baseline
 309 methods except Af-DCD and
 310 CIRKD, demonstrating the ben-
 311 efit of integrating FOTF even
 312 with a simple distillation setup.
 313 For PSPNet-Res18, Af-DCD
 314 again achieves the highest score
 315 (76.14%), followed by CIRKD
 316 + FOTF (74.97%). Adding
 317 FOTF to CIRKD yields con-
 318 sistent improvements, with an
 319 average gain of +0.20% mIoU
 across both architectures.

320 Table 2 shows the effect of
 321 applying FOTF directly to the
 322 baseline models without any additional distillation. The best improvement is observed with PSPNet-
 323 Res18 on CamVid, achieving a gain of +1.18% mIoU, while the smallest improvement occurs on
 Cityscapes with the same architecture (+0.30% mIoU). On average, applying FOTF yields a con-

Method	Model	Dataset	mIoU \uparrow
Baseline + FOTF	DeepLabV3-Res18	Cityscapes	74.21
Baseline + FOTF		Cityscapes	75.07 (+0.86)
Baseline + FOTF	PSPNet-Res18	CamVid	66.92
Baseline + FOTF		CamVid	67.91 (+0.99)
Baseline + FOTF	PSPNet-Res18	PascalVOC	73.21
Baseline + FOTF		PascalVOC	74.27 (+1.06)
Baseline + FOTF	PSPNet-Res18	Cityscapes	72.55
Baseline + FOTF		Cityscapes	72.85 (+0.30)
Baseline + FOTF	PSPNet-Res18	CamVid	66.73
Baseline + FOTF		CamVid	67.91 (+1.18)
Baseline + FOTF	PSPNet-Res18	PascalVOC	73.33
Baseline + FOTF		PascalVOC	73.95 (+0.62)

Table 2: Semantic segmentation results across all datasets for the baseline and baseline with uncertainty (without knowledge distillation, only equation 8).

Method	Params \downarrow	mIoU \uparrow
T: SegFormer-MiT-B4	64.1M	81.23
S: SegFormer-MiT-B0		75.58
+ SKD	3.8M	76.43 (+0.85)
+ IFVD		76.30 (+0.72)
+ CWD		74.80 (-0.78)
+ CIRKD		76.92 (+1.34)
+ Af-DCD		75.89 (+0.31)
S: SegFormer-MiT-B0		75.93
+ FOTF	3.8M	76.71 (+0.78)
+ CIRKD		75.93 (+0.00)
+ CIRKD + FOTF		76.31 (+0.38)

Table 3: Semantic segmentation distillation results on the Cityscapes validation set using SegFormer-MiT-B0 (student) with SegFormer-MiT-B4 (teacher). The first subtable presents the baselines reported in the literature, while the second shows our reproduced baselines with dropout and our proposed add-on extensions. Params from Xie et al. (2021). **Bold** = best, underline = second-best.

Method	Params ↓	mIoU ↑	Method	Params ↓	mIoU ↑
T:DeepLabV3-Res101	61.1M	78.07	T:DeepLabV3-Res101	61.1M	69.84
S:DeepLabV3-Res18		74.21	S:DeepLabV3-Res18		66.92
+SKD		75.42 (+1.21)	+SKD		67.46 (+0.54)
+IFVD		75.59 (+1.38)	+IFVD		67.28 (+0.36)
+CWD	13.6M	75.55 (+1.34)	+CWD	13.6M	67.71 (+0.79)
+CIRKD		76.38 (+2.17)	+CIRKD		68.21 (+1.29)
+Af-DCD		<u>77.03</u> (+2.82)	+Af-DCD		69.27 (+2.35)
+Vanilla KD +FOTF		77.37 (+3.16)	+Vanilla KD +FOTF		69.66 (+2.74)
+CIRKD +FOTF	13.6M	76.43 (+2.22)	+CIRKD +FOTF	13.6M	69.33 (+2.41)
+Af-DCD +FOTF		76.93 (+2.72)	+Af-DCD +FOTF		<u>69.63</u> (+2.71)
S:PSPNet-Res18		72.55	S:PSPNet-Res18		66.73
+SKD		73.29 (+0.74)	+SKD		67.83 (+1.10)
+IFVD		73.71 (+1.16)	+IFVD		67.61 (+0.88)
+CWD	12.9M	74.36 (+1.81)	+CWD	12.9M	67.92 (+1.19)
+CIRKD		74.73 (+2.18)	+CIRKD		68.65 (+1.92)
+Af-DCD*		74.21 (+1.66)	+Af-DCD		69.48 (+2.75)
+Vanilla KD +FOTF		<u>74.99</u> (+2.44)	+Vanilla KD +FOTF		68.93 (+2.20)
+CIRKD +FOTF	12.9M	75.03 (+2.48)	+CIRKD +FOTF	12.9M	69.08 (+2.35)
+Af-DCD +FOTF		74.75 (+2.20)	+Af-DCD +FOTF		69.63 (+2.90)

(a) Cityscapes

(b) CamVid

Method	Params ↓	mIoU ↑
T:DeepLabV3-Res101	61.1M	77.67
S:DeepLabV3-Res18		73.21
+SKD		73.51 (+0.30)
+IFVD		73.85 (+0.64)
+CWD	13.6M	74.02 (+0.81)
+CIRKD		74.50 (+1.29)
+Af-DCD		76.25 (+3.04)
+Vanilla KD +FOTF		74.21 (+1.00)
+CIRKD +FOTF	13.6M	<u>74.70</u> (+1.49)
S:PSPNet-Res18		73.33
+SKD		74.07 (+0.74)
+IFVD		73.54 (+0.21)
+CWD	12.9M	73.99 (+0.66)
+CIRKD		74.78 (+1.45)
+Af-DCD		76.14 (+2.81)
+Vanilla KD +FOTF		74.22 (+0.89)
+CIRKD +FOTF	12.9M	74.97 (+1.64)

(c) Pascal VOC

Table 1: Semantic segmentation distillation results on Cityscapes, CamVid, and Pascal VOC using DeepLabV3-Res18 and PSPNet-Res18 as students with DeepLabV3-Res101 as teacher. Vanilla KD uses KL divergence. Params from Yang et al. (2022). Best in **bold**, second-best underlined. *Reproduced using the official code.

sistent boost of +0.84% mIoU across datasets and architectures, demonstrating its standalone effectiveness even without teacher supervision.

Furthermore, Table 3 presents results for a high-performing transformer-based segmentation architecture—SegFormer-MiT-B0 as the student and MiT-B4 as the teacher—on the Cityscapes val-

κ	merge	logits		pixel		channel		sample	
		$(1+\sigma)^\kappa$	$e^{\kappa\sigma}$	$(1+\sigma)^\kappa$	$e^{\kappa\sigma}$	$(1+\sigma)^\kappa$	$e^{\kappa\sigma}$	$(1+\sigma)^\kappa$	$e^{\kappa\sigma}$
1		75.52	75.93	75.69	76.28	75.83	75.78	75.40	75.33
3		76.14	75.96	75.95	75.96	76.46	75.95	76.09	75.54
5		75.58	75.61	75.64	76.09	76.13	75.72	76.06	76.00
average		75.75	75.83	75.76	<u>76.11</u>	76.14	75.82	75.85	75.62

Table 4: Semantic segmentation performance on Cityscapes for DeepLabV3 using different uncertainty merging strategies across various aggregation dimensions: logits, pixels, channels, and samples. For each dimension, we compare two weighting functions— $(1 + \sigma)^\kappa$ and $e^{\kappa\sigma}$ —and evaluate results for $\kappa \in \{1, 3, 5\}$. As a reference, the vanilla knowledge distillation baseline yields a score of 75.65 % mIoU. The best-performing method is shown in bold, and the second-best is underlined.

uation set. The uncertainty-guided approach (FOTF) improves both the baseline model and its combination with CIRKD. Specifically, applying FOTF alone boosts the baseline from 75.93% to 76.71%, while CIRKD + FOTF achieves 76.31%, outperforming the CIRKD baseline reproduced with dropout. Overall, the proposed method remains highly competitive, with the exception of the case where CIRKD without dropout slightly outperforms the FOTF-enhanced baseline (76.92%).

Ablation Analysis. The results for ablation experiments with different uncertainty merging strategies and weighting functions are presented in Table 4. Here, merging denotes the process of averaging uncertainty estimates across a particular dimension. Nearly all configurations that incorporate uncertainty outperform vanilla knowledge distillation (75.65% mIoU), demonstrating the consistent benefit of uncertainty guidance. The two best-performing configurations are channel-wise merging with $(1 + \sigma)^\kappa$ (76.14% mIoU) and pixel-wise merging with $e^{\kappa\sigma}$ (76.11% mIoU), with the former selected as the default due to its superior performance.

Building upon this, Table 5 investigates whether applying uncertainty to the task loss provides additional gains. Using the best configuration from the previous ablation as a base (76.14% mIoU), adding pixel-wise uncertainty-weighted task loss yields an improved score of 76.28% mIoU. These results confirm that once uncertainty is incorporated into the distillation objective, extending it to the task loss is beneficial.

Table 6 presents the additional relative training time when performing MC Dropout with varying numbers of stochastic forward passes on the teacher and student models. As expected, the training time increases significantly when MC Dropout is applied to both sides. Using 5 stochastic passes on the student increases runtime to 152.9 (152.9 relative to the baseline of 100), while applying the same to the teacher leads to a significantly higher cost of 342.9. Even with 20 passes, student-only dropout remains more efficient at 312.8—still below the cost of applying just 5 passes to the teacher. The approach adopted in this work relies solely on student-side uncertainty, which provides a favorable trade-off between performance and efficiency. This design avoids additional computational burden on the teacher and ensures that the distillation process remains scalable, while still benefiting from

κ	uncert.	yes		no
		yes	no	no
1		76.08		75.83
3		76.30		76.46
5		76.45		76.13
average		76.28		76.14

Table 5: Ablation study evaluating the impact of applying uncertainty-weighted task loss, using pixel-wise uncertainty merging and the weighting function $(1 + \sigma)^\kappa$. Best in bold.

student teacher					
	0	5	10	15	20
0	100.0	152.9	205.7	260.0	312.8
5	342.9	395.7	450.0	521.4	564.3

Table 6: Profiling results (relative runtime; 100 = reference) for Vanilla KD and MC Dropout on Cityscapes with varying numbers of stochastic forward passes for both teacher and student. Measured over 50 iterations on an RTX 3090 Ti.

432 uncertainty-guided learning.

433 **Expected Calibration Error.** Table 7 reports the expected calibration error (ECE) Guo et al. (2017)
 434 alongside mIoU for various methods, with and without the proposed FOTF enhancement.

435 In all cases, FOTF leads to a
 436 reduction in ECE, indicating im-
 437 proved calibration. However,
 438 the improvements are relatively
 439 small (e.g., -0.14 for the base-
 440 line, -0.17 for CIRKD, and -0.02
 441 for Af-DCD), and therefore not
 442 significant enough to draw strong
 443 conclusions. The slight decrease
 444 in ECE observed in some of the
 445 high-performing models may be
 446 attributed to the increase in over-
 447 all accuracy. Nonetheless, a key
 448 takeaway is that FOTF does not
 449 degrade model calibration, and in
 450 most cases, results in modest im-
 451 provements.

Method	mIoU \uparrow	ECE \downarrow
Baseline	66.96	4.46
+FOTF	67.91	4.32 (-0.14)
CIRKD	68.15	3.51
+FOTF	69.33	3.34 (-0.17)
Af-DCD	69.27	3.28
+FOTF	69.63	3.26 (-0.02)

452 Table 7: Semantic segmentation performance (mIoU) and
 453 expected calibration error (ECE) Guo et al. (2017) for
 454 the baseline and its variants augmented with our proposed
 455 FOTF method, across all datasets. ECE is computed over
 456 the full CamVid test set using 10 bins.

5 LIMITATIONS

457 MC Dropout adds training overhead due to multiple stochastic passes, but this remains manag-
 458 able as it is applied only on the student and can be further reduced with efficient implementation.
 459 MC Dropout may also lack reliability in estimating uncertainty, where alternative methods could
 460 offer more robust estimates and warrant further investigation. In some cases, such as DeepLabV3
 461 with Af-DCD on Cityscapes, the proposed method does not produce an improvement (e.g. -0.1%
 462 mIoU), indicating that uncertainty-guided weighting may not always enhance performance. How-
 463 ever, the overall results suggest that this direction remains promising and merits continued explo-
 464 ration. Lastly, the current use of grid-based search for hyperparameters such as κ and m may not
 465 be optimal and adaptive or data-driven parameter selection techniques could further improve per-
 466 formance.

6 CONCLUSION

467 In this paper, we propose Focus on the Fog (FOTF), a novel uncertainty-guided distillation ap-
 468 proach that incorporates the student uncertainty into the distillation training. Comprehensive ex-
 469 periments on both CNN-based and transformer-based architectures demonstrate the effectiveness of
 470 our method in improving student model performance across a variety of datasets and distillation
 471 frameworks. Albeit the identified limitations, relying solely on student-side uncertainty emerges
 472 as a viable and efficient training signal. Our approach is model-agnostic and can be easily applied
 473 to existing KD methods, holding promise for broader applicability beyond semantic segmentation.
 474 Future work could extend this strategy to other tasks and architectures, while also addressing current
 475 limitations such as more reliable uncertainty estimation and adaptive weighting schemes.

477 LLM USAGE

478 We used a large language model (LLM) to assist in polishing the writing and improving readability
 479 of the manuscript, as well as in formatting tables for clarity.

483 REFERENCES

484 Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In *Advances in Neural*
 485 *Information Processing Systems*, volume 27, pp. 2654–2662, 2014.

486 Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
 487 high-definition ground truth database. *Pattern Recognition Letters*, 30:88–97, 2008a.
 488

489 Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and recog-
 490 nition using structure from motion point clouds. In *Proceedings of the European Conference on*
 491 *Computer Vision*, pp. 44–57, 2008b.

492 Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
 493 DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
 494 fully connected CRFs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40:
 495 834–848, 2017a.

496 Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
 497 convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587*, 2017b.

498 Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
 499 decoder with atrous separable convolution for semantic image segmentation. In *Proceedings of*
 500 *the European Conference on Computer Vision*, pp. 801–818, 2018.

501 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
 502 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
 503 urban scene understanding. In *Proceedings of the IEEE Conference on Computer Vision and*
 504 *Pattern Recognition*, pp. 3213–3223, 2016.

505 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
 506 The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88:
 507 303–338, 2010.

508 Jiawei Fan, Chao Li, Xiaolong Liu, Meina Song, and Anbang Yao. Augmentation-free dense con-
 509 trastive knowledge distillation for efficient semantic segmentation. *Advances in Neural Infor-
 510 mation Processing Systems*, 36:51359–51370, 2023.

511 Yarin Gal. *Uncertainty in Deep Learning*. PhD thesis, University of Cambridge, 2016.

512 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
 513 uncertainty in deep learning. In *Proceedings of the 33rd International Conference on Machine*
 514 *Learning*, pp. 1050–1059, 2016.

515 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 516 networks. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 1321–
 517 1330, 2017.

518 Zhiwei Hao, Jianyuan Guo, Kai Han, Yehui Tang, Han Hu, Yunhe Wang, and Chang Xu. One-for-
 519 all: Bridge the gap between heterogeneous architectures in knowledge distillation. *Advances in*
 520 *Neural Information Processing Systems*, 36:79570–79582, 2023.

521 Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Se-
 522 mantic contours from inverse detectors. In *IEEE International Conference on Computer Vision*,
 523 pp. 991–998, 2011.

524 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 525 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 526 770–778, 2016.

527 Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, and Youliang Yan. Knowledge
 528 adaptation for efficient semantic segmentation. In *Proceedings of the IEEE/CVF Conference on*
 529 *Computer Vision and Pattern Recognition*, pp. 578–587, 2019.

530 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 531 *preprint arXiv:1503.02531*, 2015.

532 Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
 533 teacher. *Advances in Neural Information Processing Systems*, 35:33716–33727, 2022.

540 Tao Huang, Yuan Zhang, Shan You, Fei Wang, Chen Qian, Jian Cao, and Chang Xu. Masked distil-
 541 lation with receptive tokens. In *International Conference on Learning Representations*, 2023a.
 542

543 Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowl-
 544 edge diffusion for distillation. *Advances in Neural Information Processing Systems*, 36:65299–
 545 65316, 2023b.

546 Yanglin Huang, Kai Hu, Yuan Zhang, Zhineng Chen, and Xieping Gao. Distilling knowledge from
 547 heterogeneous architectures for semantic segmentation. In *Proceedings of the AAAI Conference
 548 on Artificial Intelligence*, volume 39, pp. 3824–3832, 2025.

549

550 Adrian Iordache, Bogdan Alexe, and Radu Tudor Ionescu. Multi-level feature distillation of joint
 551 teachers trained on distinct image datasets. In *2025 IEEE/CVF Winter Conference on Applications
 552 of Computer Vision*, pp. 7133–7142, 2025.

553

554 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 555 vision? In *Advances in Neural Information Processing Systems*, volume 30, 2017.

556

557 Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and Ya Yang. Kd-zero: Evolving knowledge
 558 distiller for any teacher-student pairs. In *Advances in Neural Information Processing Systems*,
 559 volume 36, pp. 69490–69504, 2023.

560

561 Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very efficient network for object detection.
 562 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6356–
 563 6364, 2017.

564

565 Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and Jingdong Wang. Structured
 566 knowledge distillation for semantic segmentation. In *Proceedings of the IEEE/CVF Conference
 567 on Computer Vision and Pattern Recognition*, pp. 2604–2613, 2019.

568

569 Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong Wang. Efficient semantic video segmen-
 570 tation with per-frame inference. In *European Conference on Computer Vision*, pp. 352–368.
 571 Springer, 2020a.

572

573 Yifan Liu, Changyong Shu, Jingdong Wang, and Chunhua Shen. Structured knowledge distillation
 574 for dense prediction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45:7035–
 575 7049, 2020b.

576

577 Shoumeng Qiu, Jie Chen, Xinrun Li, Ru Wan, Xiangyang Xue, and Jian Pu. Make a strong teacher
 578 with label assistance: A novel knowledge distillation approach for semantic segmentation. In
 579 *European Conference on Computer Vision*, pp. 371–388. Springer, 2024.

580

581 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 582 image segmentation. In *International Conference on Medical Image Computing and
 583 Computer-Assisted Intervention*, pp. 234–241. Springer, 2015.

584

585 Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and Chunhua Shen. Channel-wise knowledge
 586 distillation for dense prediction. In *Proceedings of the IEEE/CVF International Conference on
 587 Computer Vision*, pp. 5311–5320, 2021.

588

589 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 590 Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning
 591 Research*, 15:1929–1958, 2014.

592

593 Rebecca S Stone, Nishant Ravikumar, Andrew J Bulpitt, and David C Hogg. Epistemic uncertainty-
 594 weighted loss for visual bias mitigation. In *Proceedings of the IEEE/CVF Conference on Com-
 595 puter Vision and Pattern Recognition*, pp. 2898–2905, 2022.

596

597 Yukang Wang, Wei Zhou, Tao Jiang, Xiang Bai, and Yongchao Xu. Intra-class feature variation
 598 distillation for semantic segmentation. In *Proceedings of the European Conference on Computer
 599 Vision*, pp. 346–362, 2020.

594 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
 595 former: Simple and efficient design for semantic segmentation with transformers. *Advances in*
 596 *Neural Information Processing Systems*, 34:12077–12090, 2021.

597

598 Chuanguang Yang, Helong Zhou, Zhulin An, Xue Jiang, Yongjun Xu, and Qian Zhang. Cross-image
 599 relational knowledge distillation for semantic segmentation. In *Proceedings of the IEEE/CVF*
 600 *Conference on Computer Vision and Pattern Recognition*, pp. 12319–12328, 2022.

601

602 Junfei Yi, Jianxu Mao, Tengfei Liu, Mingjie Li, Hanyu Gu, Hui Zhang, Xiaojun Chang, and Yaonan
 603 Wang. Teaching with uncertainty: Unleashing the potential of knowledge distillation in object
 604 detection. *arXiv preprint arXiv:2406.06999*, 2024.

605

606 Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation
 607 via label smoothing regularization. In *Proceedings of the IEEE/CVF Conference on Computer*
 608 *Vision and Pattern Recognition*, pp. 3903–3911, 2020.

609

610 Yuan Zhang, Weihua Chen, Yichen Lu, Tao Huang, Xiuyu Sun, and Jian Cao. Avatar knowledge
 611 distillation: self-ensemble teacher paradigm with uncertainty. In *Proceedings of the 31st ACM*
 612 *International Conference on Multimedia*, pp. 5272–5280, 2023.

613

614 Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
 615 network. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 616 pp. 2881–2890, 2017.

617

618 Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang.
 619 Rethinking soft labels for knowledge distillation: A bias–variance tradeoff perspective. In *Inter-
 620 national Conference on Learning Representations*, 2021.

621

622

A APPENDIX

A.1 DATASETS

623 **Cityscapes.** Cordts et al. (2016) is an urban scene parsing dataset that contains 5000 finely annotated
 624 images, where 2975/500/1525 images are used for train/val/test. The segmentation performance is
 625 reported on 19 classes.

626 **CamVid.** Brostow et al. (2008b;a) is an automotive dataset that contains 367/101/233 images for
 627 train/val/test with 11 semantic classes.

628 **Pascal VOC.** Everingham et al. (2010) is a visual object segmentation dataset, which contains 20
 629 foreground classes and 1 background class. Following Yang et al. (2022); Fan et al. (2023), we
 630 employ the augmented dataset with extra annotations provided by Hariharan et al. (2011) resulting
 631 in 10582/1449 images for train/val.

A.2 TRAINING DETAILS

632 **DeeplabV3, PSPNet.** We follow the general settings in Yang et al. (2022); Fan et al. (2023). Ran-
 633 dom flipping and scaling in the range of [0.5, 2] are employed to augment the data. All experiments
 634 are optimized by SGD with a momentum of 0.9, a batch size of 16, an initial learning rate of 0.02
 635 and a weight decay of 0.0001. The number of total training iterations is 40K. The learning rate is de-
 636 cayed by $(1 - \frac{iter}{total_iter})^{0.9}$ following the polynomial annealing policy Chen et al. (2017b). For crop
 637 size during the training phase, we use 512×1024, 360×360 and 512×512 for Cityscapes, CamVid
 638 and Pascal VOC, respectively.

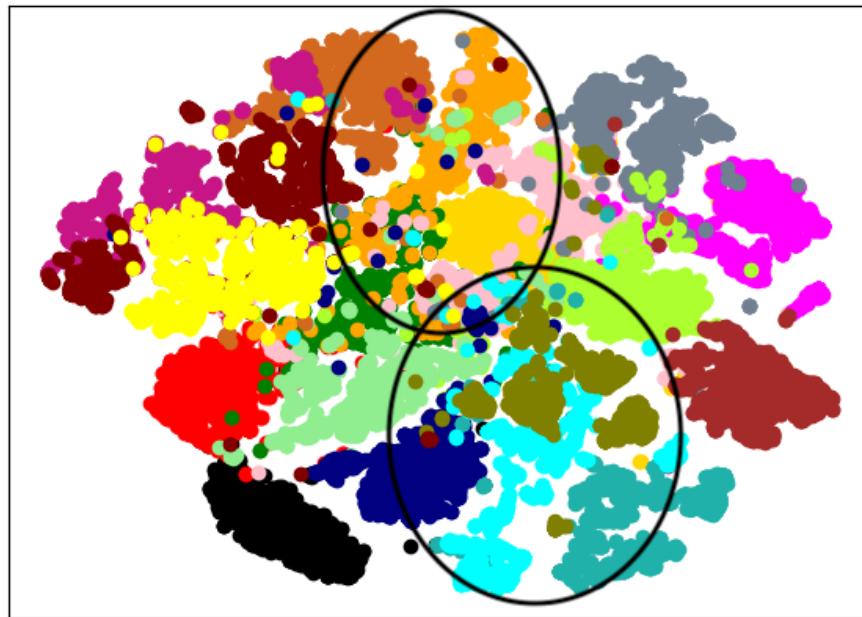
639 **SegFormer.** We follow the general settings in Yang et al. (2022). Random flipping and scaling in the
 640 range of [0.5, 2] are employed to augment the data. All experiments are optimized by AdamW ??
 641 with a batch size of 8, an initial learning rate of 0.0002 and a weight decay of 0.0001. The number
 642 of total training iterations is 160K. The learning rate is decayed by $(1 - \frac{iter}{total_iter})^{0.9}$ following the
 643 polynomial annealing policy Chen et al. (2017b). For crop size during the training phase, we use
 644 1024×1024 for Cityscapes.

648 A.3 HYPERPARAMETER SETTINGS
649650 A.3.1 CITYSCAPES
651652 **DeepLabV3.** We employ the following (κ, m) tuples: (5, 1) for Baseline+FOTF, (5, 1) for Vanilla
653 KD+FOTF, (1, 1) for CIRKD+FOTF and (7, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
654 FOTF, we increase the weight decay to 0.0005.655 **PSPNet.** We employ the following (κ, m) tuples: (7, 1) for Baseline+FOTF, (6, 1) for Vanilla
656 KD+FOTF, (5, 1) for CIRKD+FOTF and (5, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
657 FOTF, we increase the weight decay to 0.0005.658 **SegFormer.** We employ the following (κ, m) tuples: (5, 1) for Baseline+FOTF and (1, 1) for
659 CIRKD+FOTF.
660660 A.3.2 CAMVID
661662 **DeepLabV3.** We employ the following (κ, m) tuples: (3, 1) for Baseline+FOTF, (10, 10) for
663 Vanilla KD+FOTF, (7, 1) for CIRKD+FOTF and (1, 3) for Af-DCD+FOTF.
664 **PSPNet.** We employ the following (κ, m) tuples: (1, 1) for Baseline+FOTF, (2, 1) for Vanilla
665 KD+FOTF, (10, 1) for CIRKD+FOTF and (3, 3) for Af-DCD+FOTF.
666666 A.3.3 PASCAL VOC
667668 **DeepLabV3.** We employ the following (κ, m) tuples: (9, 1) for Baseline+FOTF, (3, 1) for
669 Vanilla KD+FOTF, (3, 1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for
670 CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported results due to high variance
671 in training.672 **PSPNet.** We employ the following (κ, m) tuples: (3, 3) for Baseline+FOTF, (3, 1) for Vanilla
673 KD+FOTF, (1, 1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for Vanilla
674 KD+FOTF and to 0.016 for CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported
675 results due to high variance in training.
676677 A.4 ABLATION: UNCERTAINTY MERGING FOR TASK LOSS
678679 Table 8 presents the ablation results for different uncertainty merging strategies in the task loss. On
680 average, the pixel-wise variant achieves the highest score across merging strategies. In comparison,
681 the sample-wise approach performs reasonably well but remains inferior to pixel-wise, while the
682 channel-wise variant fails to produce competitive results.
683

κ \ merge	pixel	channel	sample
1	76.08	75.30	75.79
3	76.30	74.99	76.44
5	76.45	74.59	75.27
average	76.28	74.96	<u>75.83</u>

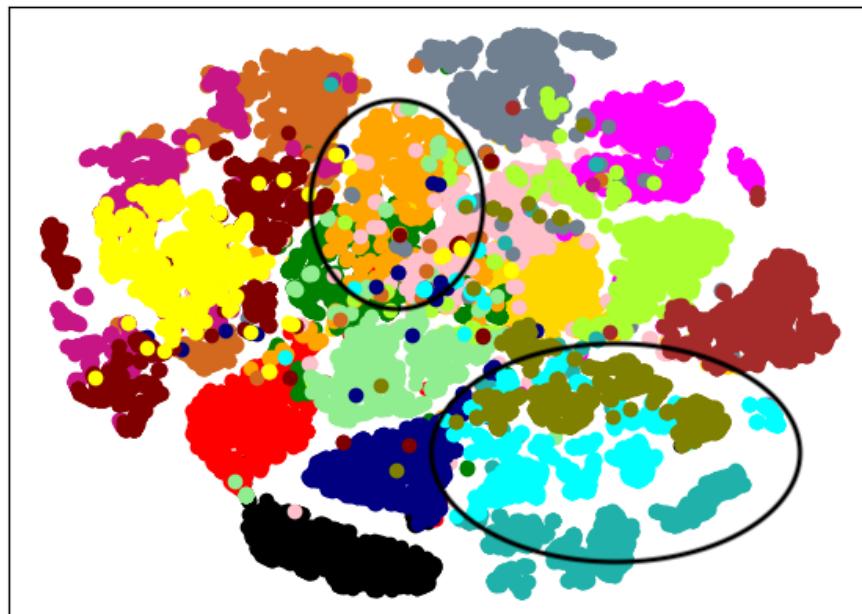
690 Table 8: Ablation study on uncertainty merging strategies for task loss, comparing pixel-wise,
691 channel-wise, and sample-wise variants across different values of κ . The best-performing method is
692 shown in bold, and the second-best is underlined.
693694
695 A.5 T-SNE VISUALIZATION
696697 Figure 3, shows a t-SNE visualization of the learned feature embeddings on the Cityscapes dataset
698 for CIRKD (Fig. 3a) and CIRKD+FOTF (Fig. 3b). In the dense central region, where classes
699 overlap and higher uncertainty would be expected, the uncertainty-based CIRKD+FOTF produces
700 tighter clusters, indicating improved separation of challenging, ambiguous samples.
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730



(a) CIRKD.

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753



(b) CIRKD + FOTF.

754
755

Figure 3: T-SNE visualization of learned feature embeddings on Cityscapes Cordts et al. (2016) using PSPNet Zhao et al. (2017).