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ABSTRACT

Current knowledge distillation (KD) methods for semantic segmentation focus on
distilling the teacher’s knowledge via logit and feature-based techniques. Recent
work explored the improvement of knowledge distillation methods by incorporat-
ing the uncertainty of the teacher in dense prediction tasks, primarily in object
detection. Yet, its application in knowledge distillation for semantic segmentation
has received limited attention. Moreover, utilizing the uncertainty on the student
side remains largely underexplored. We posit that student-side uncertainty can
serve as a valuable signal for guiding the distillation process in semantic segmen-
tation. To this end, we propose Focus on the Fog (FOTF), a novel uncertainty-
guided distillation approach that estimates and leverages student-side uncertainty
during training. Specifically, we formulate an uncertainty-weighted distillation
loss for semantic segmentation that is dynamically modulated by the student’s un-
certainty, estimated via Monte Carlo Dropout. This amplifies the distillation sig-
nal in spatial regions and semantic classes where the student model exhibits low
certainty, thereby providing more targeted guidance during training. Extensive
experiments on the Cityscapes, CamVid and Pascal VOC datasets demonstrate the
effectiveness of our method, both as a standalone technique and as an add-on to
existing state-of-the-art knowledge distillation methods. The code will be made
publicly available upon acceptance.

1 INTRODUCTION

Semantic segmentation is a fundamental task in computer vision with wide-ranging applications,
such as autonomous driving Cordts et al. (2016) and medical imaging Ronneberger et al. (2015).
Many semantic segmentation models such as DeepLab Chen et al. (2017a; 2018), PSPNet Zhao
et al. (2017), and SegFormer Xie et al. (2021) have achieved strong performance across various
benchmarks. However, their high computational cost makes them impractical for deployment in
real-time or resource-constrained settings, motivating the use of knowledge distillation to transfer
performance to lighter models.

Early work on knowledge distillation focused on transferring softened output distributions from a
large teacher model to a smaller student model Ba & Caruana (2014); Hinton et al. (2015). By
matching these soft targets (Fig. 1a), the student can learn richer inter-class relationships, often
referred to as “dark knowledge” Hinton et al. (2015), which are not captured by hard labels. Sub-
sequent work has revisited knowledge distillation from a theoretical perspective, arguing that its
effectiveness is not solely due to the similarity information provided by the teacher Yuan et al.
(2020). Instead, a significant part of its benefit arises from the regularization effect of the soft tar-
gets, framing it as a form of learned label smoothing Yuan et al. (2020). It follows that students can
benefit from learning with their own soft targets Yuan et al. (2020).

In semantic segmentation, recent work has increasingly focused on feature-based distillation, with
a shift from directly mimicking absolute feature activations to transferring structural dependencies
within feature representations Liu et al. (2019); Yang et al. (2022); Fan et al. (2023). This reflects a
growing recognition that preserving the relational structure encoded by the teacher is more effective
than enforcing strict per-location alignment in dense prediction tasks Liu et al. (2019); Yang et al.
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Figure 1: Uncertainty-aware knowledge distillation: (a) vanilla; (b) teacher-weighted via MC dropout; (c) our
student-weighted via MC dropout.

(2022); Fan et al. (2023). To this end, CIRKD Yang et al. (2022) introduces a framework that aims
to preserve better-structured semantic relations both within individual images and across different
samples. Af-DCD Fan et al. (2023), in contrast to CIRKD, adopts a buffer-free approach. It employs
a masked feature mimicking strategy and performs contrastive learning using both absolute spatial
positions and local neighborhoods.

Nevertheless, existing methods largely overlook the uncertainty present in teacher models, which
can arise from data noise and imperfect training Yi et al. (2024). One approach addresses this by
replacing the teacher with its own inference ensemble, improving the diversity and receptiveness of
the knowledge transferred to the student Zhang et al. (2023). Another line of work estimates un-
certainty using Monte Carlo Dropout and leverages it to guide student training, encouraging deeper
exploration of the latent space Yi et al. (2024). Both of the aforementioned methods estimate uncer-
tainty on the teacher side and use it to guide the student’s training (Fig. 1b).

Motivated by the findings of Yuan et al. (2020), which show that students can benefit from learn-
ing with their own soft targets, we explore the potential of leveraging uncertainty estimated by the
student itself (Fig. 1c). To this end, we introduce Focus on the Fog (FOTF), a novel uncertainty-
guided distillation approach that estimates student uncertainty using Monte Carlo (MC) Dropout
Gal & Ghahramani (2016) and incorporates it into training via an uncertainty-weighted distillation
loss for semantic segmentation (Fig. 1c). We demonstrate that student-driven uncertainty can be a
valuable signal during training. This design avoids the overhead of teacher ensembles, offers a more
efficient route to distillation, and naturally opens avenues toward active learning. To summarize, we
introduce Focus on the Fog (FOTF), a simple yet effective student-driven uncertainty-guided
distillation method that leverages Monte Carlo Dropout to estimate student uncertainty and inte-
grate it into training; FOTF is method-agnostic, works both as a standalone or as an add-on to
existing distillation techniques, and achieves consistent improvements on widely used semantic
segmentation benchmarks.

2 RELATED WORK

Knowledge Distillation. Early work on knowledge distillation focused on transferring softened out-
put distributions from teacher to student models Ba & Caruana (2014); Hinton et al. (2015). Later
analyses revealed that much of KD’s benefit stems from the regularization effect of soft labels rather
than inter-class similarity alone Yuan et al. (2020). Further theoretical investigation frames KD
through the lens of the bias–variance trade-off, showing that sample-wise variance can harm dis-
tillation and proposing adaptive weighting of soft targets to mitigate this effect Zhou et al. (2021).
Beyond classification, KD has been applied to detection and dense prediction. For instance, Li et al.
(2017) showed that distilling features from a strong detector can outperform ImageNet pretraining,
motivating feature-based transfer. To better capture the structured nature of dense prediction, Liu
et al. (2020b) proposed distilling structured knowledge rather than treating pixels independently,
achieving stronger generalization. Recent general-purpose methods have explored more flexible or
automated strategies. Huang et al. (2022) replaces the standard KL loss with Pearson correlation to
better capture relational consistency between student and teacher. Li et al. (2023) introduces KD-
Zero, an evolutionary search framework to discover optimal distillation components. Huang et al.
(2023a) proposes masking noisy regions in feature maps, focusing distillation on informative spatial
areas. DiffKD Huang et al. (2023b) introduces a novel approach where student features are denoised
via diffusion models to better match the teacher’s representational quality. Multi-teacher distillation
has also been explored, with Iordache et al. (2025) proposing the combination of teachers trained
on different datasets through a joint fusion module and multi-level feature distillation to improve

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generalizability and reduce overfitting.
Knowledge Distillation in Semantic Segmentation. Reducing the feature map resolution in se-
mantic segmentation models improves efficiency but leads to notable performance degradation. To
address this, He et al. (2019) propose a distillation framework that aligns student and teacher features
in a transferred latent space via a pre-trained autoencoder and incorporates an affinity module to cap-
ture long-range dependencies. For video segmentation, temporal consistency has been addressed by
introducing a temporal loss during training that maintains prediction stability without additional in-
ference cost Liu et al. (2020a). Structured Knowledge Distillation (SKD) Liu et al. (2019) was one
of the earliest to tailor feature-based distillation to segmentation, incorporating pairwise losses and
a GAN-based holistic loss to preserve spatial and semantic consistency. IFVD Wang et al. (2020)
focuses on transferring intra-class variation by aligning pixel-wise features with class-specific proto-
types, while CWD Shu et al. (2021) leverages channel-wise importance to guide distillation toward
semantically meaningful regions. CIRKD Yang et al. (2022) advances this line of work by enforcing
consistency not only within individual images but also across different samples. It aligns pairwise
relations in the latent space, encouraging the student to mimic the semantic structure encoded by
the teacher. Af-DCD Fan et al. (2023) builds on this idea with a buffer-free contrastive framework.
It introduces a masked feature mimicking strategy and formulates a loss across spatial and chan-
nel dimensions by leveraging absolute positions and local neighborhoods. Positive pairs are drawn
from matching positions, while negative pairs are sampled locally, enabling dense and structured
knowledge transfer without memory overhead. Other recent work includes methods that improve
teacher quality through noised supervision and dual-path consistency training Qiu et al. (2024), as
well as approaches designed for heterogeneous architecture distillation Hao et al. (2023); Huang
et al. (2025).

3 METHODOLOGIES

Preliminary. The vanilla knowledge distillation (Vanilla KD) loss encourages the student network
to match the class probabilities predicted by a pre-trained teacher network at each pixel. It is defined
as:

LKD =
1

H ·W
∑
i∈R

KL(qTi ∥ qSi ) (1)

=
1

H ·W
∑
i∈R

C∑
c=1

qTi,c · log

(
qTi,c
qSi,c

)
, (2)

where H and W denote the image height and width, respectively, R ⊆ {1, . . . ,H · W} is the set
of all pixel locations, and C is the number of semantic classes. For each pixel i ∈ R, qTi ∈ [0, 1]C

and qSi ∈ [0, 1]C represent the softmax output (i.e., class probability distribution) of the teacher and
student networks, respectively. The KL divergence is computed at each pixel between the teacher’s
and student’s predicted distributions and averaged over all pixels.
Uncertainty-Weighted KD Loss. We propose an extension to the vanilla knowledge distillation loss
by incorporating an uncertainty-based weighting scheme. The key idea is to emphasize the learning
signal in regions where the student model is uncertain about its predictions. Specifically, for pixels or
classes where the student exhibits high uncertainty, we increase their contribution to the distillation
loss. Conversely, for confident predictions, the loss contribution remains as in standard KD. In this
way, the model is encouraged to focus more on ambiguous regions, while maintaining the original
KD behavior for more certain predictions. We formalize this idea through the Uncertainty-Weighted
Knowledge Distillation (KD) loss, illustrated in Fig. 2. The modified loss is defined as:

LKDunc =
1

H ·W
∑
i∈R

C∑
c=1

w(i, c) · qTi,c · log

(
qTi,c
qSi,c

)
, (3)

where w(i, c) ∈ R≥1 is an uncertainty-based weighting function defined per pixel i and class c.
This weight increases the contribution of predictions where the student is more uncertain, encourag-
ing the model to pay closer attention to ambiguous or difficult regions. For certain predictions, the
weighting factor approaches unity, thereby reducing to the standard knowledge distillation formula-
tion.

3
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Figure 2: The illustration for the distillation process. To estimate model uncertainty, we apply MC
Dropout by performing T stochastic forward passes through the student model with dropout enabled.
We then compute the standard deviation of the softmax outputs to quantify uncertainty and apply a
monotonically increasing weighting function for proper guidance. This uncertainty is subsequently
used to modulate both the Kullback–Leibler divergence loss between the student and teacher ((a)
and (c)), as well as the task loss between the student and ground-truth labels ((b) and (c)) with our
uncertainty-based weighting function.

Uncertainty Computation. To compute the model’s uncertainty, we follow a Bayesian approxi-
mation approach based on Monte Carlo Dropout as proposed by Gal & Ghahramani (2016); Gal
(2016). This method interprets dropout as approximate variational inference in a deep Gaussian
Process. The key idea is to obtain an approximation of the model’s predictive distribution by per-
forming multiple stochastic forward passes at inference time using dropout. Formally, the predictive
distribution is given by:

p(y | x,D) ≈ 1

T

T∑
t=1

p(y | x, ω̂t), (4)

where ω̂t ∼ q(ω) are sampled dropout masks, q(ω) is a bernoulli-distributed approximate posterior
distribution, p refers to the predictive distribution and T is the number of stochastic forward passes.

The corresponding predictive variance, which captures the model’s epistemic uncertainty in part,
can be approximated as Kendall & Gal (2017):

Var(y) ≈ 1

T

T∑
t=1

fω̂t(x)
2 −

(
1

T

T∑
t=1

fω̂t(x)

)2

︸ ︷︷ ︸
epistemic uncertainty

+ σ2
aleatoric︸ ︷︷ ︸

aleatoric uncertainty

,
(5)

where fω̂t(x) denotes the model’s prediction in the t-th forward pass.
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Since MC Dropout approximates a distribution over model parameters, it captures only epistemic
(model) uncertainty. We do not explicitly model aleatoric uncertainty, and therefore treat the pre-
dictive variance as a measure of model confidence alone. In practice, we train the segmentation
network with dropout enabled Srivastava et al. (2014) and keep dropout active during inference Gal
& Ghahramani (2016). We perform T stochastic forward passes and compute the standard deviation
of the softmax outputs across these samples, after applying the softmax along the class dimension.
This standard deviation is used as a pixel- and channel-wise uncertainty estimate. Formally, for each
pixel i ∈ R and class c ∈ {1, . . . , C}, we compute the standard deviation of the softmax outputs as:

σi,c = std
({

qSi,c
}T
t=1

)
, (6)

where qSi,c denotes the softmax probability for class c at pixel i in the t-th stochastic forward pass.
The resulting uncertainty map u(i, c) is used in our loss formulation as an uncertainty-aware weight-
ing factor.
Weighting Function. To incorporate uncertainty into the distillation loss in a meaningful way, we
define a weighting function where we pass σi,c through a continuous, strictly monotonically increas-
ing transformation f : R≥0 → R≥1 that satisfies f(0) = 1. This ensures that confident predictions
(σi,c ≈ 0) retain their original loss contribution, while more uncertain predictions are up-weighted
proportionally. We adopt the following uncertainty-based weighting function, inspired by a formu-
lation previously proposed in the context of uncertainty-guided supervision Stone et al. (2022), and
modify it by introducing a scaling factor m > 0 to better control the influence of uncertainty in our
setting:

w(i, c) = (1 +m · σi,c)
κ, (7)

where σi,c denotes the standard deviation of the softmax outputs across MC Dropout samples at
pixel i and class c, and κ > 0 controls the sharpness of the weighting. We empirically validate the
effectiveness of this weighting function in our setting, with ablations provided later in the paper.
Uncertainty-Weighted Task Loss. To apply our uncertainty weighting to the supervised task loss,
we use the same weighting term w(i, c) to modulate the pixel-wise cross-entropy as follows:

LCEunc =
1

H ·W
∑
i∈R

C∑
c=1

1{yi=c} · w(i, c) ·
[
− log qSi,c

]
=

1

H ·W
∑
i∈R

w(i, yi) ·
[
− log qSi,yi

]
,

(8)

where qSi,yi
is the predicted softmax probability of the ground truth class yi at pixel i and 1{yi=c}

denotes the indicator function. This formulation ensures that uncertain predictions are given more
emphasis during learning, while confident ones contribute less.

4 EXPERIMENTS

4.1 IMPLEMENTATION

Datasets. Our experiments are conducted on three widely-used semantic segmentation datasets,
including Cityscapes Cordts et al. (2016), CamVid Brostow et al. (2008b;a) and Pascal VOC Ever-
ingham et al. (2010); Hariharan et al. (2011).
Network Architectures. In line with previous work Yang et al. (2022); Fan et al. (2023), we adopt
DeepLabV3 Chen et al. (2017a;b), PSPNet Zhao et al. (2017), and SegFormer Xie et al. (2021) as
segmentation heads. For the teacher backbone architectures, we use ResNet-101 (Res101) He et al.
(2016) and Mix Transformer-B4 (MiT-B4) Xie et al. (2021), while ResNet-18 (Res18) and Mix
Transformer-B0 (MiT-B0) are employed as student backbone architectures.
Evaluation Metrics. Following the standard setting used in Yang et al. (2022) and Fan et al. (2023),
we evaluate segmentation performance using mean Intersection-over-Union (mIoU).
Distillation Methods. We compare our approach against state-of-the-art segmentation distillation
methods Liu et al. (2019); Wang et al. (2020); Shu et al. (2021); Yang et al. (2022); Fan et al. (2023).
To demonstrate the effectiveness of our method as a plug-in component, we integrate it into CIRKD
Yang et al. (2022) and Af-DCD Fan et al. (2023).
Training. We follow the training and hyperparameter settings used in CIRKD Yang et al. (2022) and
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Af-DCD Fan et al. (2023). Unless stated otherwise, we perform T = 5 stochastic forward passes
using the student model, with a dropout rate of 0.1. To determine the optimal values of κ and m, we
perform a grid-based search over the candidate sets κ ∈ {1, .., 10} and m ∈ {1, 3, 10}.

4.2 RESULTS

Semantic Segmentation. Tables 1a, 1b, and 1c present semantic segmentation distillation results
on Cityscapes, CamVid, and Pascal VOC using CNN-based students (DeepLabV3-Res18, PSPNet-
Res18) with DeepLabV3-Res101 as the teacher. Across all datasets, our proposed Focus on the Fog
(FOTF) consistently improves performance when combined with various distillation baselines.

Method Model Dataset mIoU ↑
Baseline

DeepLabV3-Res18

Cityscapes 74.21
+ FOTF Cityscapes 75.07 (+0.86)

Baseline CamVid 66.92
+ FOTF CamVid 67.91 (+0.99)

Baseline PascalVOC 73.21
+ FOTF PascalVOC 74.27 (+1.06)

Baseline

PSPNet-Res18

Cityscapes 72.55
+ FOTF Cityscapes 72.85 (+0.30)

Baseline CamVid 66.73
+ FOTF CamVid 67.91 (+1.18)

Baseline PascalVOC 73.33
+ FOTF PascalVOC 73.95 (+0.62)

Table 2: Semantic segmentation results across all datasets for the
baseline and baseline with uncertainty (without knowledge distilla-
tion, only equation 8).

On Cityscapes, FOTF
delivers the largest gain:
DeepLabV3-Res18 im-
proves from 74.21% mIoU
to 77.37% with Vanilla
KD + FOTF (+3.16%),
the best among all meth-
ods. PSPNet-Res18 also
benefits, with CIRKD +
FOTF and Vanilla KD +
FOTF achieving 75.03%
and 74.99%, respectively,
both surpassing strong
baselines. On CamVid,
FOTF-enhanced models
achieve steady improve-
ments, with DeepLabV3-
Res18 reaching 69.66%
(+2.74% over baseline)
using Vanilla KD + FOTF. For PSPNet-Res18, Af-DCD + FOTF achieves the best mIoU of 69.63%,
while other FOTF variants remain competitive.

Method Params ↓ mIoU ↑
T: SegFormer-MiT-B4 64.1M 81.23

S: SegFormer-MiT-B0

3.8M

75.58
+ SKD 76.43 (+0.85)
+ IFVD 76.30 (+0.72)
+ CWD 74.80 (-0.78)
+ CIRKD 76.92 (+1.34)
+ Af-DCD 75.89 (+0.31)

S: SegFormer-MiT-B0

3.8M

75.93
+ FOTF 76.71 (+0.78)
+ CIRKD 75.93 (+0.00)
+ CIRKD + FOTF 76.31 (+0.38)

Table 3: Semantic segmentation distillation results on the
Cityscapes validation set using SegFormer-MiT-B0 (student)
with SegFormer-MiT-B4 (teacher). The first subtable presents
the baselines reported in the literature, while the second shows
our reproduced baselines with dropout and our proposed add-on
extensions. Params from Xie et al. (2021). Bold = best, underline
= second-best.

On Pascal VOC, where the
base DeepLabV3-Res18 model
achieves 73.21% mIoU, Af-
DCD remains the strongest per-
former with 76.25%, followed
by CIRKD + FOTF at 74.70%.
Although Vanilla KD + FOTF
only reaches 74.21%, it still
outperforms all other baseline
methods except Af-DCD and
CIRKD, demonstrating the ben-
efit of integrating FOTF even
with a simple distillation setup.
For PSPNet-Res18, Af-DCD
again achieves the highest score
(76.14%), followed by CIRKD
+ FOTF (74.97%). Adding
FOTF to CIRKD yields con-
sistent improvements, with an
average gain of +0.20% mIoU
across both architectures.

Table 2 shows the effect of
applying FOTF directly to the
baseline models without any additional distillation. The best improvement is observed with PSPNet-
Res18 on CamVid, achieving a gain of +1.18% mIoU, while the smallest improvement occurs on
Cityscapes with the same architecture (+0.30% mIoU). On average, applying FOTF yields a con-
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Method Params ↓ mIoU ↑

T:DeepLabV3-Res101 61.1M 78.07

S:DeepLabV3-Res18

13.6M

74.21
+SKD 75.42 (+1.21)
+IFVD 75.59 (+1.38)
+CWD 75.55 (+1.34)
+CIRKD 76.38 (+2.17)
+Af-DCD 77.03 (+2.82)

+Vanilla KD +FOTF
13.6M

77.37 (+3.16)
+CIRKD +FOTF 76.43 (+2.22)
+Af-DCD +FOTF 76.93 (+2.72)

S:PSPNet-Res18

12.9M

72.55
+SKD 73.29 (+0.74)
+IFVD 73.71 (+1.16)
+CWD 74.36 (+1.81)
+CIRKD 74.73 (+2.18)
+Af-DCD∗ 74.21 (+1.66)

+Vanilla KD +FOTF
12.9M

74.99 (+2.44)
+CIRKD +FOTF 75.03 (+2.48)
+Af-DCD +FOTF 74.75 (+2.20)

(a) Cityscapes

Method Params ↓ mIoU ↑

T:DeepLabV3-Res101 61.1M 69.84

S:DeepLabV3-Res18

13.6M

66.92
+SKD 67.46 (+0.54)
+IFVD 67.28 (+0.36)
+CWD 67.71 (+0.79)
+CIRKD 68.21 (+1.29)
+Af-DCD 69.27 (+2.35)

+Vanilla KD +FOTF
13.6M

69.66 (+2.74)
+CIRKD +FOTF 69.33 (+2.41)
+Af-DCD +FOTF 69.63 (+2.71)

S:PSPNet-Res18

12.9M

66.73
+SKD 67.83 (+1.10)
+IFVD 67.61 (+0.88)
+CWD 67.92 (+1.19)
+CIRKD 68.65 (+1.92)
+Af-DCD 69.48 (+2.75)

+Vanilla KD +FOTF
12.9M

68.93 (+2.20)
+CIRKD +FOTF 69.08 (+2.35)
+Af-DCD +FOTF 69.63 (+2.90)

(b) CamVid

Method Params ↓ mIoU ↑

T:DeepLabV3-Res101 61.1M 77.67

S:DeepLabV3-Res18

13.6M

73.21
+SKD 73.51 (+0.30)
+IFVD 73.85 (+0.64)
+CWD 74.02 (+0.81)
+CIRKD 74.50 (+1.29)
+Af-DCD 76.25 (+3.04)

+Vanilla KD +FOTF
13.6M

74.21 (+1.00)
+CIRKD +FOTF 74.70 (+1.49)

S:PSPNet-Res18

12.9M

73.33
+SKD 74.07 (+0.74)
+IFVD 73.54 (+0.21)
+CWD 73.99 (+0.66)
+CIRKD 74.78 (+1.45)
+Af-DCD 76.14 (+2.81)

+Vanilla KD +FOTF
12.9M

74.22 (+0.89)
+CIRKD +FOTF 74.97 (+1.64)

(c) Pascal VOC

Table 1: Semantic segmentation distillation results on Cityscapes, CamVid, and Pascal VOC using
DeepLabV3-Res18 and PSPNet-Res18 as students with DeepLabV3-Res101 as teacher. Vanilla
KD uses KL divergence. Params from Yang et al. (2022). Best in bold, second-best underlined.
∗Reproduced using the official code.

sistent boost of +0.84% mIoU across datasets and architectures, demonstrating its standalone effec-
tiveness even without teacher supervision.

Furthermore, Table 3 presents results for a high-performing transformer-based segmentation
architecture—SegFormer-MiT-B0 as the student and MiT-B4 as the teacher—on the Cityscapes val-
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κ
merge logits pixel channel sample

(1+σ)κ eκσ (1+σ)κ eκσ (1+σ)κ eκσ (1+σ)κ eκσ

1 75.52 75.93 75.69 76.28 75.83 75.78 75.40 75.33
3 76.14 75.96 75.95 75.96 76.46 75.95 76.09 75.54
5 75.58 75.61 75.64 76.09 76.13 75.72 76.06 76.00

average 75.75 75.83 75.76 76.11 76.14 75.82 75.85 75.62

Table 4: Semantic segmentation performance on Cityscapes for DeepLabV3 using different un-
certainty merging strategies across various aggregation dimensions: logits, pixels, channels, and
samples. For each dimension, we compare two weighting functions—(1+σ)κ and eκσ—and evalu-
ate results for κ ∈ {1, 3, 5}. As a reference, the vanilla knowledge distillation baseline yields a score
of 75.65 % mIoU. The best-performing method is shown in bold, and the second-best is underlined.

idation set. The uncertainty-guided approach (FOTF) improves both the baseline model and its
combination with CIRKD. Specifically, applying FOTF alone boosts the baseline from 75.93% to
76.71%, while CIRKD + FOTF achieves 76.31%, outperforming the CIRKD baseline reproduced
with dropout. Overall, the proposed method remains highly competitive, with the exception of the
case where CIRKD without dropout slightly outperforms the FOTF-enhanced baseline (76.92%).
Ablation Analysis. The results for ablation experiments with different uncertainty merging strate-
gies and weighting functions are presented in Table 4. Here, merging denotes the process of aver-
aging uncertainty estimates across a particular dimension. Nearly all configurations that incorporate
uncertainty outperform vanilla knowledge distillation (75.65% mIoU), demonstrating the consistent
benefit of uncertainty guidance. The two best-performing configurations are channel-wise merging
with (1 + σ)κ (76.14% mIoU) and pixel-wise merging with eκσ (76.11% mIoU), with the former
selected as the default due to its superior performance.

κ
uncert. yes no

1 76.08 75.83

3 76.30 76.46

5 76.45 76.13

average 76.28 76.14

Table 5: Ablation study evaluating the impact of applying
uncertainty-weighted task loss, using pixel-wise uncertainty
merging and the weighting function (1 + σ)κ. Best in bold.

Building upon this, Table 5 inves-
tigates whether applying uncertainty
to the task loss provides additional
gains. Using the best configuration
from the previous ablation as a base
(76.14% mIoU), adding pixel-wise
uncertainty-weighted task loss yields
an improved score of 76.28% mIoU.
These results confirm that once un-
certainty is incorporated into the dis-
tillation objective, extending it to the
task loss is beneficial.

teacher
student

0 5 10 15 20

0 100.0 152.9 205.7 260.0 312.8

5 342.9 395.7 450.0 521.4 564.3

Table 6: Profiling results (relative runtime; 100 = reference) for
Vanilla KD and MC Dropout on Cityscapes with varying num-
bers of stochastic forward passes for both teacher and student.
Measured over 50 iterations on an RTX 3090 Ti.

Table 6 presents the additional
relative training time when per-
forming MC Dropout with vary-
ing numbers of stochastic for-
ward passes on the teacher and
student models. As expected,
the training time increases sig-
nificantly when MC Dropout is
applied to both sides. Using
5 stochastic passes on the stu-
dent increases runtime to 152.9
(152.9 relative to the baseline of
100), while applying the same to
the teacher leads to a significantly higher cost of 342.9. Even with 20 passes, student-only dropout
remains more efficient at 312.8—still below the cost of applying just 5 passes to the teacher. The
approach adopted in this work relies solely on student-side uncertainty, which provides a favorable
trade-off between performance and efficiency. This design avoids additional computational burden
on the teacher and ensures that the distillation process remains scalable, while still benefiting from
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uncertainty-guided learning.
Expected Calibration Error. Table 7 reports the expected calibration error (ECE) Guo et al. (2017)
alongside mIoU for various methods, with and without the proposed FOTF enhancement.

Method mIOU ↑ ECE ↓

Baseline 66.96 4.46
+FOTF 67.91 4.32 (-0.14)

CIRKD 68.15 3.51
+FOTF 69.33 3.34 (-0.17)

Af-DCD 69.27 3.28
+FOTF 69.63 3.26 (-0.02)

Table 7: Semantic segmentation performance (mIoU) and
expected calibration error (ECE) Guo et al. (2017) for
the baseline and its variants augmented with our proposed
FOTF method, across all datasets. ECE is computed over
the full CamVid test set using 10 bins.

In all cases, FOTF leads to a
reduction in ECE, indicating im-
proved calibration. However,
the improvements are relatively
small (e.g., –0.14 for the base-
line, –0.17 for CIRKD, and –0.02
for Af-DCD), and therefore not
significant enough to draw strong
conclusions. The slight decrease
in ECE observed in some of the
high-performing models may be
attributed to the increase in over-
all accuracy. Nonetheless, a key
takeaway is that FOTF does not
degrade model calibration, and in
most cases, results in modest im-
provements.

5 LIMITATIONS

MC Dropout adds training overhead due to multiple stochastic passes, but this remains manage-
able as it is applied only on the student and can be further reduced with efficient implementation.
MC Dropout may also lack reliability in estimating uncertainty, where alternative methods could
offer more robust estimates and warrant further investigation. In some cases, such as DeepLabV3
with Af-DCD on Cityscapes, the proposed method does not produce an improvement (e.g. –0.1%
mIoU), indicating that uncertainty-guided weighting may not always enhance performance. How-
ever, the overall results suggest that this direction remains promising and merits continued explo-
ration. Lastly, the current use of grid-based search for hyperparameters such as κ and m may not
be optimal and adaptive or data-driven parameter selection techniques could further improve perfor-
mance.

6 CONCLUSION

In this paper, we propose Focus on the Fog (FOTF), a novel uncertainty-guided distillation ap-
proach that incorporates the student uncertainty into the distillation training. Comprehensive ex-
periments on both CNN-based and transformer-based architectures demonstrate the effectiveness of
our method in improving student model performance across a variety of datasets and distillation
frameworks. Albeit the identified limitations, relying solely on student-side uncertainty emerges
as a viable and efficient training signal. Our approach is model-agnostic and can be easily applied
to existing KD methods, holding promise for broader applicability beyond semantic segmentation.
Future work could extend this strategy to other tasks and architectures, while also addressing current
limitations such as more reliable uncertainty estimation and adaptive weighting schemes.

LLM USAGE

We used a large language model (LLM) to assist in polishing the writing and improving readability
of the manuscript, as well as in formatting tables for clarity.

REFERENCES

Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural
Information Processing Systems, volume 27, pp. 2654–2662, 2014.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30:88–97, 2008a.

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and recog-
nition using structure from motion point clouds. In Proceedings of the European Conference on
Computer Vision, pp. 44–57, 2008b.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40:
834–848, 2017a.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017b.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of
the European Conference on Computer Vision, pp. 801–818, 2018.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3213–3223, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88:
303–338, 2010.

Jiawei Fan, Chao Li, Xiaolong Liu, Meina Song, and Anbang Yao. Augmentation-free dense con-
trastive knowledge distillation for efficient semantic segmentation. Advances in Neural Informa-
tion Processing Systems, 36:51359–51370, 2023.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine
Learning, pp. 1050–1059, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning, pp. 1321–
1330, 2017.

Zhiwei Hao, Jianyuan Guo, Kai Han, Yehui Tang, Han Hu, Yunhe Wang, and Chang Xu. One-for-
all: Bridge the gap between heterogeneous architectures in knowledge distillation. Advances in
Neural Information Processing Systems, 36:79570–79582, 2023.
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A APPENDIX

A.1 DATASETS

Cityscapes. Cordts et al. (2016) is an urban scene parsing dataset that contains 5000 finely annotated
images, where 2975/500/1525 images are used for train/val/test. The segmentation performance is
reported on 19 classes.
CamVid. Brostow et al. (2008b;a) is an automotive dataset that contains 367/101/233 images for
train/val/test with 11 semantic classes.
Pascal VOC. Everingham et al. (2010) is a visual object segmentation dataset, which contains 20
foreground classes and 1 background class. Following Yang et al. (2022); Fan et al. (2023), we
employ the augmented dataset with extra annotations provided by Hariharan et al. (2011) resulting
in 10582/1449 images for train/val.

A.2 TRAINING DETAILS

DeeplabV3, PSPNet. We follow the general settings in Yang et al. (2022); Fan et al. (2023). Ran-
dom flipping and scaling in the range of [0.5, 2] are employed to augment the data. All experiments
are optimized by SGD with a momentum of 0.9, a batch size of 16, an initial learning rate of 0.02
and a weight decay of 0.0001. The number of total training iterations is 40K. The learning rate is de-
cayed by (1− iter

total iter )
0.9 following the polynomial annealing policy Chen et al. (2017b). For crop

size during the training phase, we use 512×1024, 360×360 and 512×512 for Cityscapes, CamVid
and Pascal VOC, respectively.
SegFormer. We follow the general settings in Yang et al. (2022). Random flipping and scaling in the
range of [0.5, 2] are employed to augment the data. All experiments are optimized by AdamW ??
with a batch size of 8, an initial learning rate of 0.0002 and a weight decay of 0.0001. The number
of total training iterations is 160K. The learning rate is decayed by (1− iter

total iter )
0.9 following the

polynomial annealing policy Chen et al. (2017b). For crop size during the training phase, we use
1024×1024 for Cityscapes.
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A.3 HYPERPARAMETER SETTINGS

A.3.1 CITYSCAPES

DeepLabV3. We employ the following (κ,m) tuples: (5, 1) for Baseline+FOTF, (5, 1) for Vanilla
KD+FOTF, (1, 1) for CIRKD+FOTF and (7, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
FOTF, we increase the weight decay to 0.0005.
PSPNet. We employ the following (κ,m) tuples: (7, 1) for Baseline+FOTF, (6, 1) for Vanilla
KD+FOTF, (5, 1) for CIRKD+FOTF and (5, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
FOTF, we increase the weight decay to 0.0005.
SegFormer. We employ the following (κ,m) tuples: (5, 1) for Baseline+FOTF and (1, 1) for
CIRKD+FOTF.

A.3.2 CAMVID

DeepLabV3. We employ the following (κ,m) tuples: (3, 1) for Baseline+FOTF, (10, 10) for
Vanilla KD+FOTF, (7, 1) for CIRKD+FOTF and (1, 3) for Af-DCD+FOTF.
PSPNet. We employ the following (κ,m) tuples: (1, 1) for Baseline+FOTF, (2, 1) for Vanilla
KD+FOTF, (10, 1) for CIRKD+FOTF and (3, 3) for Af-DCD+FOTF.

A.3.3 PASCAL VOC

DeepLabV3. We employ the following (κ,m) tuples: (9, 1) for Baseline+FOTF, (3, 1) for
Vanilla KD+FOTF, (3, 1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for
CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported results due to high variance
in training.
PSPNet. We employ the following (κ,m) tuples: (3, 3) for Baseline+FOTF, (3, 1) for Vanilla
KD+FOTF, (1, 1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for Vanilla
KD+FOTF and to 0.016 for CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported
results due to high variance in training.

A.4 ABLATION: UNCERTAINTY MERGING FOR TASK LOSS

Table 8 presents the ablation results for different uncertainty merging strategies in the task loss. On
average, the pixel-wise variant achieves the highest score across merging strategies. In comparison,
the sample-wise approach performs reasonably well but remains inferior to pixel-wise, while the
channel-wise variant fails to produce competitive results.

κ
merge pixel channel sample

1 76.08 75.30 75.79

3 76.30 74.99 76.44

5 76.45 74.59 75.27

average 76.28 74.96 75.83

Table 8: Ablation study on uncertainty merging strategies for task loss, comparing pixel-wise,
channel-wise, and sample-wise variants across different values of κ. The best-performing method is
shown in bold, and the second-best is underlined.

A.5 T-SNE VISUALIZATION

Figure 3, shows a t-SNE visualization of the learned feature embeddings on the Cityscapes dataset
for CIRKD (Fig. 3a) and CIRKD+FOTF (Fig. 3b). In the dense central region, where classes
overlap and higher uncertainty would be expected, the uncertainty-based CIRKD+FOTF produces
tighter clusters, indicating improved separation of challenging, ambiguous samples.
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(a) CIRKD.

(b) CIRKD + FOTF.

Figure 3: T-SNE visualization of learned feature embeddings on Cityscapes Cordts et al. (2016)
using PSPNet Zhao et al. (2017).
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