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ABSTRACT

Current knowledge distillation (KD) methods for semantic segmentation focus on
distilling the teacher’s knowledge via logit and feature-based techniques. Recent
work explored the improvement of knowledge distillation methods by incorporat-
ing the uncertainty of the teacher in dense prediction tasks, primarily in object
detection. Yet, its application in knowledge distillation for semantic segmentation
has received limited attention. Moreover, utilizing the uncertainty on the student
side remains largely underexplored. We posit that student-side uncertainty can
serve as a valuable signal for guiding the distillation process in semantic segmen-
tation. To this end, we propose Focus on the Fog (FOTF), a novel uncertainty-
guided distillation approach that estimates and leverages student-side uncertainty
during training. Specifically, we formulate an uncertainty-weighted distillation
loss for semantic segmentation that is dynamically modulated by the student’s un-
certainty, estimated via Monte Carlo Dropout. This amplifies the distillation sig-
nal in spatial regions and semantic classes where the student model exhibits low
certainty, thereby providing more targeted guidance during training. Extensive
experiments on the Cityscapes, CamVid and Pascal VOC datasets demonstrate the
effectiveness of our method, both as a standalone technique and as an add-on to
existing state-of-the-art knowledge distillation methods. The code will be made
publicly available upon acceptance.

1 INTRODUCTION

Semantic segmentation is a fundamental task in computer vision with wide-ranging applications,
such as autonomous driving (Cordts et al.| (2016) and medical imaging [Ronneberger et al.| (2015).
Many semantic segmentation models such as DeepLab |Chen et al.| (2017a; 2018), PSPNet [Zhao
et al. (2017), and SegFormer |Xie et al.| (2021) have achieved strong performance across various
benchmarks. However, their high computational cost makes them impractical for deployment in
real-time or resource-constrained settings, motivating the use of knowledge distillation to transfer
performance to lighter models.

Early work on knowledge distillation focused on transferring softened output distributions from a
large teacher model to a smaller student model Ba & Caruana) (2014); |Hinton et al.| (2015). By
matching these soft targets (Fig. [Th), the student can learn richer inter-class relationships, often
referred to as “dark knowledge” Hinton et al.| (2015)), which are not captured by hard labels. Sub-
sequent work has revisited knowledge distillation from a theoretical perspective, arguing that its
effectiveness is not solely due to the similarity information provided by the teacher Yuan et al.
(2020). Instead, a significant part of its benefit arises from the regularization effect of the soft tar-
gets, framing it as a form of learned label smoothing|Yuan et al.|(2020). It follows that students can
benefit from learning with their own soft targets |Yuan et al.| (2020).

In semantic segmentation, recent work has increasingly focused on feature-based distillation, with
a shift from directly mimicking absolute feature activations to transferring structural dependencies
within feature representations [Liu et al.| (2019); |Yang et al.[(2022); Fan et al.|(2023). This reflects a
growing recognition that preserving the relational structure encoded by the teacher is more effective
than enforcing strict per-location alignment in dense prediction tasks [Liu et al.| (2019); [Yang et al.
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Figure 1: Uncertainty-aware knowledge distillation: (a) vanilla; (b) teacher-weighted via MC dropout; (c) our
student-weighted via MC dropout.

(2022); |[Fan et al.| (2023)). To this end, CIRKD |Yang et al.|(2022) introduces a framework that aims
to preserve better-structured semantic relations both within individual images and across different
samples. Af-DCD [Fan et al.|(2023)), in contrast to CIRKD, adopts a buffer-free approach. It employs
a masked feature mimicking strategy and performs contrastive learning using both absolute spatial
positions and local neighborhoods.

Nevertheless, existing methods largely overlook the uncertainty present in teacher models, which
can arise from data noise and imperfect training |Y1 et al.| (2024). One approach addresses this by
replacing the teacher with its own inference ensemble, improving the diversity and receptiveness of
the knowledge transferred to the student Zhang et al.| (2023). Another line of work estimates un-
certainty using Monte Carlo Dropout and leverages it to guide student training, encouraging deeper
exploration of the latent space|Yi et al.|(2024). Both of the aforementioned methods estimate uncer-
tainty on the teacher side and use it to guide the student’s training (Fig. [Tp).

Motivated by the findings of |Yuan et al.| (2020), which show that students can benefit from learn-
ing with their own soft targets, we explore the potential of leveraging uncertainty estimated by the
student itself (Fig. ). To this end, we introduce Focus on the Fog (FOTF), a novel uncertainty-
guided distillation approach that estimates student uncertainty using Monte Carlo (MC) Dropout
Gal & Ghahramani (2016) and incorporates it into training via an uncertainty-weighted distillation
loss for semantic segmentation (Fig. [Tg). We demonstrate that student-driven uncertainty can be a
valuable signal during training. This design avoids the overhead of teacher ensembles, offers a more
efficient route to distillation, and naturally opens avenues toward active learning. To summarize, we
introduce Focus on the Fog (FOTF), a simple yet effective student-driven uncertainty-guided
distillation method that leverages Monte Carlo Dropout to estimate student uncertainty and inte-
grate it into training; FOTF is method-agnostic, works both as a standalone or as an add-on to
existing distillation techniques, and achieves consistent improvements on widely used semantic
segmentation benchmarks.

2 RELATED WORK

Knowledge Distillation. Early work on knowledge distillation focused on transferring softened out-
put distributions from teacher to student models [Ba & Caruanal (2014); Hinton et al.| (2015). Later
analyses revealed that much of KD’s benefit stems from the regularization effect of soft labels rather
than inter-class similarity alone |Yuan et al.|(2020). Further theoretical investigation frames KD
through the lens of the bias—variance trade-off, showing that sample-wise variance can harm dis-
tillation and proposing adaptive weighting of soft targets to mitigate this effectZhou et al.| (2021).
Beyond classification, KD has been applied to detection and dense prediction. For instance, |L1 et al.
(2017) showed that distilling features from a strong detector can outperform ImageNet pretraining,
motivating feature-based transfer. To better capture the structured nature of dense prediction, |[Liu
et al.[ (2020b) proposed distilling structured knowledge rather than treating pixels independently,
achieving stronger generalization. Recent general-purpose methods have explored more flexible or
automated strategies. [Huang et al.| (2022) replaces the standard KL loss with Pearson correlation to
better capture relational consistency between student and teacher. |Li et al.| (2023)) introduces KD-
Zero, an evolutionary search framework to discover optimal distillation components. [Huang et al.
(2023a) proposes masking noisy regions in feature maps, focusing distillation on informative spatial
areas. DiffKD|Huang et al.|(2023b) introduces a novel approach where student features are denoised
via diffusion models to better match the teacher’s representational quality. Multi-teacher distillation
has also been explored, with [lordache et al.| (2025) proposing the combination of teachers trained
on different datasets through a joint fusion module and multi-level feature distillation to improve
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generalizability and reduce overfitting.

Knowledge Distillation in Semantic Segmentation. Reducing the feature map resolution in se-
mantic segmentation models improves efficiency but leads to notable performance degradation. To
address this, He et al.[(2019) propose a distillation framework that aligns student and teacher features
in a transferred latent space via a pre-trained autoencoder and incorporates an affinity module to cap-
ture long-range dependencies. For video segmentation, temporal consistency has been addressed by
introducing a temporal loss during training that maintains prediction stability without additional in-
ference cost|Liu et al.| (2020a). Structured Knowledge Distillation (SKD)|Liu et al.|(2019) was one
of the earliest to tailor feature-based distillation to segmentation, incorporating pairwise losses and
a GAN-based holistic loss to preserve spatial and semantic consistency. IFVD [Wang et al.| (2020)
focuses on transferring intra-class variation by aligning pixel-wise features with class-specific proto-
types, while CWD |Shu et al.[(2021]) leverages channel-wise importance to guide distillation toward
semantically meaningful regions. CIRKD|Yang et al.| (2022)) advances this line of work by enforcing
consistency not only within individual images but also across different samples. It aligns pairwise
relations in the latent space, encouraging the student to mimic the semantic structure encoded by
the teacher. Af-DCD |Fan et al.| (2023)) builds on this idea with a buffer-free contrastive framework.
It introduces a masked feature mimicking strategy and formulates a loss across spatial and chan-
nel dimensions by leveraging absolute positions and local neighborhoods. Positive pairs are drawn
from matching positions, while negative pairs are sampled locally, enabling dense and structured
knowledge transfer without memory overhead. Other recent work includes methods that improve
teacher quality through noised supervision and dual-path consistency training |Qiu et al.[(2024), as
well as approaches designed for heterogeneous architecture distillation [Hao et al.| (2023)); Huang
et al.[(2025)).

3 METHODOLOGIES

Preliminary. The vanilla knowledge distillation (Vanilla KD) loss encourages the student network
to match the class probabilities predicted by a pre-trained teacher network at each pixel. It is defined
as:
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where H and W denote the image height and width, respectively, R C {1,..., H - W} is the set
of all pixel locations, and C' is the number of semantic classes. For each pixel i € R, ¢! € [0,1]¢
and ¢ € [0,1]¢ represent the softmax output (i.e., class probability distribution) of the teacher and
student networks, respectively. The KL divergence is computed at each pixel between the teacher’s
and student’s predicted distributions and averaged over all pixels.

Uncertainty-Weighted KD Loss. We propose an extension to the vanilla knowledge distillation loss
by incorporating an uncertainty-based weighting scheme. The key idea is to emphasize the learning
signal in regions where the student model is uncertain about its predictions. Specifically, for pixels or
classes where the student exhibits high uncertainty, we increase their contribution to the distillation
loss. Conversely, for confident predictions, the loss contribution remains as in standard KD. In this
way, the model is encouraged to focus more on ambiguous regions, while maintaining the original
KD behavior for more certain predictions. We formalize this idea through the Uncertainty-Weighted
Knowledge Distillation (KD) loss, illustrated in Fig. 2} The modified loss is defined as:
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where w(i,c) € R>; is an uncertainty-based weighting function defined per pixel i and class c.
This weight increases the contribution of predictions where the student is more uncertain, encourag-
ing the model to pay closer attention to ambiguous or difficult regions. For certain predictions, the
weighting factor approaches unity, thereby reducing to the standard knowledge distillation formula-
tion.
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Figure 2: The illustration for the distillation process. To estimate model uncertainty, we apply MC
Dropout by performing 7" stochastic forward passes through the student model with dropout enabled.
We then compute the standard deviation of the softmax outputs to quantify uncertainty and apply a
monotonically increasing weighting function for proper guidance. This uncertainty is subsequently
used to modulate both the Kullback-Leibler divergence loss between the student and teacher ((a)
and (c)), as well as the task loss between the student and ground-truth labels ((b) and (c)) with our
uncertainty-based weighting function.

Uncertainty Computation. To compute the model’s uncertainty, we follow a Bayesian approxi-
mation approach based on Monte Carlo Dropout as proposed by |Gal & Ghahramani| (2016);
(2016). This method interprets dropout as approximate variational inference in a deep Gaussian
Process. The key idea is to obtain an approximation of the model’s predictive distribution by per-
forming multiple stochastic forward passes at inference time using dropout. Formally, the predictive
distribution is given by:

T

1
p(y|z,D)~ pr(y | 2, ), (4)
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where w; ~ g(w) are sampled dropout masks, g(w) is a bernoulli-distributed approximate posterior
distribution, p refers to the predictive distribution and 7" is the number of stochastic forward passes.

The corresponding predictive variance, which captures the model’s epistemic uncertainty in part,

can be approximated as [Kendall & Gall (2017):
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where f;, (z) denotes the model’s prediction in the ¢-th forward pass.
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Since MC Dropout approximates a distribution over model parameters, it captures only epistemic
(model) uncertainty. We do not explicitly model aleatoric uncertainty, and therefore treat the pre-
dictive variance as a measure of model confidence alone. In practice, we train the segmentation
network with dropout enabled Srivastava et al.|(2014) and keep dropout active during inference Gal
& Ghahramani| (2016). We perform 7" stochastic forward passes and compute the standard deviation
of the softmax outputs across these samples, after applying the softmax along the class dimension.
This standard deviation is used as a pixel- and channel-wise uncertainty estimate. Formally, for each
pixel i € R and class ¢ € {1,...,C}, we compute the standard deviation of the softmax outputs as:

oie =std ({al},,) ©

where qfc denotes the softmax probability for class c at pixel ¢ in the ¢-th stochastic forward pass.
The resulting uncertainty map u(z, ¢) is used in our loss formulation as an uncertainty-aware weight-
ing factor.

Weighting Function. To incorporate uncertainty into the distillation loss in a meaningful way, we
define a weighting function where we pass o; . through a continuous, strictly monotonically increas-
ing transformation f: R>( — R>; that satisfies f(0) = 1. This ensures that confident predictions
(0i,c = 0) retain their original loss contribution, while more uncertain predictions are up-weighted
proportionally. We adopt the following uncertainty-based weighting function, inspired by a formu-
lation previously proposed in the context of uncertainty-guided supervision [Stone et al.| (2022), and
modify it by introducing a scaling factor m > 0 to better control the influence of uncertainty in our
setting:

w(i,e) =1+ m-o;)", (7
where o0, . denotes the standard deviation of the softmax outputs across MC Dropout samples at
pixel ¢ and class ¢, and x > 0 controls the sharpness of the weighting. We empirically validate the
effectiveness of this weighting function in our setting, with ablations provided later in the paper.
Uncertainty-Weighted Task Loss. To apply our uncertainty weighting to the supervised task loss,
we use the same weighting term w(i, ¢) to modulate the pixel-wise cross-entropy as follows:
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where qui is the predicted softmax probability of the ground truth class y; at pixel ¢ and 1y,
denotes the indicator function. This formulation ensures that uncertain predictions are given more
emphasis during learning, while confident ones contribute less.

4 EXPERIMENTS

4.1 IMPLEMENTATION

Datasets. Our experiments are conducted on three widely-used semantic segmentation datasets,
including Cityscapes (Cordts et al.| (2016), CamVid Brostow et al.| (2008bza) and Pascal VOC [Ever-
ingham et al.|(2010); Hariharan et al.|(2011).

Network Architectures. In line with previous work |Yang et al.|(2022); Fan et al.| (2023)), we adopt
DeepLabV3 |Chen et al|(2017azb), PSPNet Zhao et al|(2017), and SegFormer Xie et al.|(2021) as
segmentation heads. For the teacher backbone architectures, we use ResNet-101 (Res101) |[He et al.
(2016) and Mix Transformer-B4 (MiT-B4) Xie et al.| (2021), while ResNet-18 (Res18) and Mix
Transformer-B0O (MiT-B0) are employed as student backbone architectures.

Evaluation Metrics. Following the standard setting used in|Yang et al.|(2022) and |Fan et al.|(2023),
we evaluate segmentation performance using mean Intersection-over-Union (mloU).

Distillation Methods. We compare our approach against state-of-the-art segmentation distillation
methods|Liu et al.[(2019);|Wang et al.| (2020); |Shu et al.|(2021);|Yang et al.|(2022); |Fan et al.[(2023)).
To demonstrate the effectiveness of our method as a plug-in component, we integrate it into CIRKD
Yang et al.|(2022) and Af-DCD [Fan et al.|(2023).

Training. We follow the training and hyperparameter settings used in CIRKD|Yang et al.[(2022) and
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Af-DCD [Fan et al.|(2023). Unless stated otherwise, we perform 7" = 5 stochastic forward passes
using the student model, with a dropout rate of 0.1. To determine the optimal values of x and m, we
perform a grid-based search over the candidate sets x € {1, ..,10} and m € {1, 3, 10}.

4.2 RESULTS

Semantic Segmentation. Tables and |l c| present semantic segmentation distillation results
on Cityscapes, CamVid, and Pascal VOC using CNN-based students (DeepLabV3-Res18, PSPNet-
Res18) with DeepLabV3-Res101 as the teacher. Across all datasets, our proposed Focus on the Fog
(FOTF) consistently improves performance when combined with various distillation baselines.

On Cityscapes, FOTF
delivers the largest gain:
DeepLabV3-Res18 im-
proves from 74.21% mloU
to 77.37% with Vanilla
KD + FOTF (+3.16%),
the best among all meth-
ods. PSPNet-Res18 also
benefits, with CIRKD +
FOTF and Vanilla KD +
FOTF achieving 75.03%
and 74.99%, respectively,
both  surpassing strong
baselines. On CamVid,
FOTF-enhanced = models
achieve steady improve-
ments, with DeepLabV3-
Res18 reaching 69.66%
(+2.74% over Dbaseline)

Method | Model | Dataset | mloU 1
Baseline Cityscapes 74.21

+ FOTF Cityscapes 75.07 (+0.86)
Baseline CamVid 66.92

+ FOTF DeepLabV3-Res18| Camvid 67.91 (+0.99)
Baseline PascalVOC 73.21

+ FOTF PascalVOC 74.27 (+1.06)
Baseline Cityscapes 72.55

+ FOTF Cityscapes 72.85 (+0.30)
Baseline CamVid 66.73

+ FOTF PSPNet-Res18 CamVid 67.91 (+1.18)
Baseline PascalVOC 73.33

+ FOTF PascalVOC 73.95 (+0.62)

Table 2: Semantic segmentation results across all datasets for the
baseline and baseline with uncertainty (without knowledge distilla-
tion, only equation 8).

using Vanilla KD + FOTF. For PSPNet-Res18, Af-DCD + FOTF achieves the best mloU of 69.63%,
while other FOTF variants remain competitive.

On Pascal VOC, where the
base DeepLabV3-Res18 model
achieves 73.21% mloU, Af-
DCD remains the strongest per-
former with 76.25%, followed
by CIRKD + FOTF at 74.70%.
Although Vanilla KD + FOTF
only reaches 74.21%, it still
outperforms all other baseline
methods except Af-DCD and
CIRKD, demonstrating the ben-
efit of integrating FOTF even
with a simple distillation setup.
For PSPNet-Resl8, Af-DCD
again achieves the highest score
(76.14%), followed by CIRKD
+ FOTF (74.97%). Adding
FOTF to CIRKD yields con-
sistent improvements, with an
average gain of +0.20% mloU
across both architectures.

Table 2] shows the effect of
applying FOTF directly to the

Method Params | mloU 1

T: SegFormer-MiT-B4 64.1M 81.23

S: SegFormer-MiT-B0O 75.58

+ SKD 3.8M 76.43 (+0.85)
+IFVD 76.30 (+0.72)
+CWD 74.80 (-0.78)
+ CIRKD 76.92 (+1.34)
+ Af-DCD 75.89 (+0.31)
S: SegFormer-MiT-BO 75.93

+ FOTF 3.8M 76.71 (+0.78)
+ CIRKD 75.93 (+0.00)
+ CIRKD + FOTF 76.31 (+0.38)

Table 3: Semantic segmentation distillation results on the

Cityscapes validation set using SegFormer-MiT-B0O (student)
with SegFormer-MiT-B4 (teacher). The first subtable presents
the baselines reported in the literature, while the second shows
our reproduced baselines with dropout and our proposed add-on
extensions. Params from |Xie et al.|(2021). Bold = best, underline
= second-best.

baseline models without any additional distillation. The best improvement is observed with PSPNet-
Res18 on CamVid, achieving a gain of +1.18% mloU, while the smallest improvement occurs on
Cityscapes with the same architecture (+0.30% mloU). On average, applying FOTF yields a con-
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Method Params | mloU 1 Method Params | mloU 1
T:DeepLabV3-Res101  61.1M 78.07 T:DeepLabV3-Res101  61.1M 69.84
S:DeepLabV3-Res18 74.21 S:DeepLabV3-Res18 66.92
+SKD 75.42 (+1.21) +SKD 67.46 (+0.54)
+IFVD 75.59 (+1.38)  +IFVD 67.28 (+0.36)
13.6M 13.6M
+CWD 36 75.55 (+1.34) +CWD 67.71 (+0.79)
+CIRKD 76.38 (+2.17) +CIRKD 68.21 (+1.29)
+Af-DCD 77.03 (+2.82) +Af-DCD 69.27 (+2.35)
+Vanilla KD +FOTF 77.37 (+3.16) +Vanilla KD +FOTF 69.66 (+2.74)
+CIRKD +FOTF 13.6M  76.43 (+2.22) +CIRKD +FOTF 13.6M  69.33 (+2.41)
+Af-DCD +FOTF 76.93 (+2.72) +Af-DCD +FOTF 69.63 (+2.71)
S:PSPNet-Res18 72.55 S:PSPNet-Res18 66.73
+SKD 73.29 (+0.74) +SKD 67.83 (+1.10)
+IFVD oM 1371(+116) +IFVD ooy ©7-61(+0.88)
+CWD 74.36 (+1.81) +CWD 67.92 (+1.19)
+CIRKD 74.73 (+2.18) +CIRKD 68.65 (+1.92)
+Af-DCD* 74.21 (+1.66) +Af-DCD 69.48 (+2.75)
+Vanilla KD +FOTF 74.99 (+2.44) +Vanilla KD +FOTF 68.93 (+2.20)
+CIRKD +FOTF 129M  75.03 (+2.48) +CIRKD +FOTF 129M  69.08 (+2.35)
+Af-DCD +FOTF 74.75 (+2.20) +Af-DCD +FOTF 69.63 (+2.90)
(a) Cityscapes (b) CamVid

Method Params |, mloU 1

T:DeepLabV3-Res101  61.1M 77.67

S:DeepLabV3-Res18 73.21

+SKD 73.51 (+0.30)

+IFVD 13.6M 73.85 (+0.64)

+CWD 74.02 (+0.81)

+CIRKD 74.50 (+1.29)

+Af-DCD 76.25 (+3.04)

+Vanilla KD +FOTF 13.6M 74.21 (+1.00)

+CIRKD +FOTF ’ 74.70 (+1.49)

S:PSPNet-Res18 73.33

+SKD 74.07 (+0.74)

+IFVD 73.54 (+0.21)

12.9M

+CWD 73.99 (+0.66)

+CIRKD 74.78 (+1.45)

+Af-DCD 76.14 (+2.81)

+Vanilla KD +FOTF 12.9M 74.22 (+0.89)

+CIRKD +FOTF ' 74.97 (+1.64)

(c) Pascal VOC

Table 1: Semantic segmentation distillation results on Cityscapes, CamVid, and Pascal VOC using
DeepLabV3-Res18 and PSPNet-Res18 as students with DeepLabV3-Res101 as teacher. Vanilla
KD uses KL divergence. Params from [Yang et al.|(2022). Best in bold, second-best underlined.
*Reproduced using the official code.

sistent boost of +0.84% mloU across datasets and architectures, demonstrating its standalone effec-
tiveness even without teacher supervision.

Furthermore, Table 3] presents results for a high-performing transformer-based segmentation
architecture—SegFormer-MiT-B0 as the student and MiT-B4 as the teacher—on the Cityscapes val-
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W \ logits pixel channel sample
H ‘ (1+O_)H 61@0’ (1_’_0_);& eHU (1_’_0_),% eno‘ (1+U)H 6KJ

1 75.52 75.93 75.69 76.28 75.83 75.78 75.40 75.33
3 76.14 75.96 75.95 75.96 76.46 75.95 76.09 75.54
5 75.58 75.61 75.64 76.09 76.13 75.72 76.06 76.00
average | 75.75 75.83 75.76 76.11 76.14 75.82 75.85 75.62

Table 4: Semantic segmentation performance on Cityscapes for DeepLabV3 using different un-
certainty merging strategies across various aggregation dimensions: logits, pixels, channels, and
samples. For each dimension, we compare two weighting functions—(1 4+ ¢)" and "’ —and evalu-
ate results for x € {1, 3,5}. As areference, the vanilla knowledge distillation baseline yields a score
of 75.65 % mloU. The best-performing method is shown in bold, and the second-best is underlined.

idation set. The uncertainty-guided approach (FOTF) improves both the baseline model and its
combination with CIRKD. Specifically, applying FOTF alone boosts the baseline from 75.93% to
76.71%, while CIRKD + FOTF achieves 76.31%, outperforming the CIRKD baseline reproduced
with dropout. Overall, the proposed method remains highly competitive, with the exception of the
case where CIRKD without dropout slightly outperforms the FOTF-enhanced baseline (76.92%).
Ablation Analysis. The results for ablation experiments with different uncertainty merging strate-
gies and weighting functions are presented in Table 4] Here, merging denotes the process of aver-
aging uncertainty estimates across a particular dimension. Nearly all configurations that incorporate
uncertainty outperform vanilla knowledge distillation (75.65% mloU), demonstrating the consistent
benefit of uncertainty guidance. The two best-performing configurations are channel-wise merging
with (1 + 0)" (76.14% mloU) and pixel-wise merging with ¢ (76.11% mloU), with the former
selected as the default due to its superior performance.

Building upon this, Table [5] inves-

tigates whether applying uncertainty W ‘ yes no

to the task loss provides additional

=

gains. Using the best configuration ! 76.08 75.83
from the previous ablation as a base 3 76.30 76.46
(76.14% mloU), adding pixel-wise 5 76.45 76.13

uncertainty-weighted task loss yields
an improved score of 76.28% mloU. average | 76.28 76.14

These results confirm that once un-

certainty is incorporated into the dis- Table 5: Ablation study evaluating the impact of applying
tillation objective, extending it to the uncertainty-weighted task loss, using pixel-wise uncertainty
task loss is beneficial. merging and the weighting function (1 4 ¢)”. Best in bold.

Table [6] presents the additional

relative training time when per-
forming MC Dropout with vary- student
ing numbers of stochastic for- teacher

ward passes on the teacher and 0
student models. As expected,
the training time increases sig- 5
nificantly when MC Dropout is
applied to both sides. Using

0 5 10 15 20

100.0 1529 205.7 260.0 312.8

3429 3957 4500 5214 5643

g Table 6: Profiling results (relative runtime; 100 = reference) for
5 stochastic passes on the stu-  vaupifjy KD and MC Dropout on Cityscapes with varying num-
dent increases runtime t0 152.9  perg of stochastic forward passes for both teacher and student.

(152.9 relative to the baseline of  \feasured over 50 iterations on an RTX 3090 Ti.
100), while applying the same to

the teacher leads to a significantly higher cost of 342.9. Even with 20 passes, student-only dropout
remains more efficient at 312.8—still below the cost of applying just 5 passes to the teacher. The
approach adopted in this work relies solely on student-side uncertainty, which provides a favorable
trade-off between performance and efficiency. This design avoids additional computational burden
on the teacher and ensures that the distillation process remains scalable, while still benefiting from
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uncertainty-guided learning.
Expected Calibration Error. Table[7]reports the expected calibration error (ECE)|Guo et al[(2017)
alongside mloU for various methods, with and without the proposed FOTF enhancement.

In all cases, FOTF leads to a

reduction in ECE, indicating im- Method mlIOoU 1 ECE |
proved calibration. However,

the improvements are relatively Baseline 66.96 4.46
small (e.g., -0.14 for the base- +FOTF 67.91 4.32 (-0.14)
line, —0.17 for CIRKD, and -0.02 CIRKD 68.15 3.51
for Af-DCD), and therefore not +FOTF 69.33 3.34 (-0.17)

significant enough to draw strong

conclusions.  The slight decrease Af-DCD 69.27 3.28

in ECE observed in some of the +FOTF 69.63 3.26 (-0.02)
high-performing models may be

attributed to the increase in over- Table 7: Semantic segmentation performance (mloU) and
all accuracy. Nonetheless, a key expected calibration error (ECE) |Guo et al| (2017) for
takeaway is that FOTF does not the baseline and its variants augmented with our proposed
degrade model calibration, and in FOTF method, across all datasets. ECE is computed over
most cases, results in modest im- the full CamVid test set using 10 bins.

provements.

5 LIMITATIONS

MC Dropout adds training overhead due to multiple stochastic passes, but this remains manage-
able as it is applied only on the student and can be further reduced with efficient implementation.
MC Dropout may also lack reliability in estimating uncertainty, where alternative methods could
offer more robust estimates and warrant further investigation. In some cases, such as DeepLabV3
with Af-DCD on Cityscapes, the proposed method does not produce an improvement (e.g. —0.1%
mloU), indicating that uncertainty-guided weighting may not always enhance performance. How-
ever, the overall results suggest that this direction remains promising and merits continued explo-
ration. Lastly, the current use of grid-based search for hyperparameters such as x and m may not
be optimal and adaptive or data-driven parameter selection techniques could further improve perfor-
mance.

6 CONCLUSION

In this paper, we propose Focus on the Fog (FOTF), a novel uncertainty-guided distillation ap-
proach that incorporates the student uncertainty into the distillation training. Comprehensive ex-
periments on both CNN-based and transformer-based architectures demonstrate the effectiveness of
our method in improving student model performance across a variety of datasets and distillation
frameworks. Albeit the identified limitations, relying solely on student-side uncertainty emerges
as a viable and efficient training signal. Our approach is model-agnostic and can be easily applied
to existing KD methods, holding promise for broader applicability beyond semantic segmentation.
Future work could extend this strategy to other tasks and architectures, while also addressing current
limitations such as more reliable uncertainty estimation and adaptive weighting schemes.

LLM USAGE
We used a large language model (LLM) to assist in polishing the writing and improving readability

of the manuscript, as well as in formatting tables for clarity.
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A APPENDIX

A.1 DATASETS

Cityscapes. (Cordts et al.[(2016) is an urban scene parsing dataset that contains 5000 finely annotated
images, where 2975/500/1525 images are used for train/val/test. The segmentation performance is
reported on 19 classes.

CamVid. Brostow et al.| (2008bfa) is an automotive dataset that contains 367/101/233 images for
train/val/test with 11 semantic classes.

Pascal VOC. Everingham et al.[(2010) is a visual object segmentation dataset, which contains 20
foreground classes and 1 background class. Following |Yang et al. (2022); [Fan et al| (2023)), we
employ the augmented dataset with extra annotations provided by |Hariharan et al.| (2011) resulting
in 10582/1449 images for train/val.

A.2 TRAINING DETAILS

DeeplabV3, PSPNet. We follow the general settings in|Yang et al.| (2022); |[Fan et al.| (2023). Ran-
dom flipping and scaling in the range of [0.5, 2] are employed to augment the data. All experiments
are optimized by SGD with a momentum of 0.9, a batch size of 16, an initial learning rate of 0.02
and a weight decay of 0.0001. The number of total training iterations is 40K. The learning rate is de-
cayed by (1 — tjfﬂter )09 following the polynomial annealing policy Chen et al. (2017b). For crop
size during the training phase, we use 512x1024, 360x360 and 512x512 for Cityscapes, CamVid
and Pascal VOC, respectively.

SegFormer. We follow the general settings in|Yang et al.|(2022). Random flipping and scaling in the
range of [0.5, 2] are employed to augment the data. All experiments are optimized by AdamW ?2?
with a batch size of 8, an initial learning rate of 0.0002 and a weight decay of 0.0001. The number
of total training iterations is 160K. The learning rate is decayed by (1 — %)0'9 following the
polynomial annealing policy |Chen et al.| (2017b). For crop size during the training phase, we use
1024x1024 for Cityscapes.

12
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A.3 HYPERPARAMETER SETTINGS

A.3.1 CITYSCAPES

DeepLabV3. We employ the following (x,m) tuples: (5, 1) for Baseline+FOTF, (5, 1) for Vanilla
KD+FOTF, (1, 1) for CIRKD+FOTF and (7, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
FOTF, we increase the weight decay to 0.0005.

PSPNet. We employ the following (x,m) tuples: (7,1) for Baseline+FOTF, (6, 1) for Vanilla
KD+FOTF, (5, 1) for CIRKD+FOTF and (5, 1) for Af-DCD+FOTF. Moreover, for Vanilla KD +
FOTF, we increase the weight decay to 0.0005.

SegFormer. We employ the following (x,m) tuples: (5,1) for Baseline+FOTF and (1, 1) for
CIRKD+FOTFE.

A.3.2 CAMVID

DeepLabV3. We employ the following (k,m) tuples: (3,1) for Baseline+FOTF, (10, 10) for
Vanilla KD+FOTEF, (7, 1) for CIRKD+FOTF and (1, 3) for Af-DCD+FOTF.

PSPNet. We employ the following (x,m) tuples: (1,1) for Baseline+FOTF, (2,1) for Vanilla
KD+FOTF, (10, 1) for CIRKD+FOTF and (3, 3) for Af-DCD+FOTF.

A.3.3 PAscAL VOC

DeepLabV3. We employ the following (x,m) tuples: (9,1) for Baseline+FOTF, (3,1) for
Vanilla KD+FOTF, (3, 1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for
CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported results due to high variance
in training.

PSPNet. We employ the following (k,m) tuples: (3,3) for Baseline+FOTF, (3,1) for Vanilla
KD+FOTF, (1,1) for CIRKD+FOTF. Moreover, we decrease the learning rate to 0.015 for Vanilla
KD+FOTF and to 0.016 for CIRKD+FOTF. For Af-DCD, we were unable to reproduce the reported
results due to high variance in training.

A.4 ABLATION: UNCERTAINTY MERGING FOR TASK LOSS

Table 8] presents the ablation results for different uncertainty merging strategies in the task loss. On
average, the pixel-wise variant achieves the highest score across merging strategies. In comparison,
the sample-wise approach performs reasonably well but remains inferior to pixel-wise, while the
channel-wise variant fails to produce competitive results.

N ‘ pixel channel sample

1 76.08 75.30 75.79
3 76.30 74.99 76.44
5 76.45 74.59 75.27
average | 76.28 74.96 75.83

Table 8: Ablation study on uncertainty merging strategies for task loss, comparing pixel-wise,
channel-wise, and sample-wise variants across different values of . The best-performing method is
shown in bold, and the second-best is underlined.

A.5 T-SNE VISUALIZATION

Figure [3] shows a t-SNE visualization of the learned feature embeddings on the Cityscapes dataset
for CIRKD (Fig. [3ad) and CIRKD+FOTF (Fig. [3b). In the dense central region, where classes
overlap and higher uncertainty would be expected, the uncertainty-based CIRKD+FOTF produces
tighter clusters, indicating improved separation of challenging, ambiguous samples.
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(a) CIRKD.

(b) CIRKD + FOTF.

Figure 3: T-SNE visualization of learned feature embeddings on Cityscapes |Cordts et al.| (2016)

using PSPNet (2017).
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