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Abstract001

Retrieval-Augmented Generation (RAG) has002
significantly enhanced large language models003
(LLMs) in knowledge-intensive tasks by incor-004
porating external knowledge retrieval. How-005
ever, existing RAG frameworks primarily rely006
on semantic similarity and correlation-driven007
retrieval, limiting their ability to distinguish008
true causal relationships from spurious associ-009
ations. This results in responses that may be010
factually grounded but fail to establish cause-011
and-effect mechanisms, leading to incomplete012
or misleading insights. To address this is-013
sue, we introduce Causal Dynamic Feedback014
for Adaptive Retrieval-Augmented Generation015
(CDF-RAG), a framework designed to improve016
causal consistency, factual accuracy, and ex-017
plainability in generative reasoning. CDF-RAG018
iteratively refines queries, retrieves structured019
causal graphs, and enables multi-hop causal020
reasoning across interconnected knowledge021
sources. Additionally, it validates responses022
against causal pathways, ensuring logically co-023
herent and factually grounded outputs. We024
evaluate CDF-RAG on four diverse datasets,025
demonstrating its ability to improve response026
accuracy and causal correctness over existing027
RAG-based methods.028

1 Introduction029

Large language models (LLMs) such as GPT-030

4 (Achiam et al., 2023), DeepSeek (Liu et al.,031

2024), and LLaMA (Touvron et al., 2023) have032

demonstrated strong performance across a range033

of reasoning tasks, including fact-based question034

answering (Liang et al., 2022), commonsense in-035

ference (Huang et al., 2019), and multi-hop re-036

trieval (Yang et al., 2018; Zhuang et al., 2024).037

Retrieval-Augmented Generation (RAG) (et al.,038

2020) has been introduced to enhance LLMs by039

retrieving external documents, thereby improv-040

ing response reliability in knowledge-intensive041

tasks (Wei et al., 2024; Li et al., 2024). How-042

ever, conventional RAG pipelines typically rely043

on static queries and semantic similarity-based re- 044

trieval, which prioritize topically relevant docu- 045

ments rather than those that provide explanatory or 046

causal insights (Jiang et al., 2024; Chi et al., 2024). 047

While effective for shallow fact recall, these strate- 048

gies often fall short in tasks requiring multi-step 049

causal reasoning (Vashishtha et al.; Jin et al., 2023). 050

This reliance on correlation-driven retrieval in- 051

troduces key challenges for causality-aware rea- 052

soning. Traditional RAG systems (as shown in 053

Figure 1) struggle to distinguish between statisti- 054

cal associations and true causal relationships (Chi 055

et al., 2024), leading to retrieved evidence that 056

may appear relevant but lacks directional or ex- 057

planatory depth. Furthermore, LLMs trained on 058

large-scale observational corpora tend to model co- 059

occurrence patterns rather than causal dependen- 060

cies, making them prone to conflating correlation 061

with causation—especially in the presence of in- 062

complete or ambiguous evidence. These limitations 063

become more pronounced in multi-hop retrieval, 064

where linking causally related pieces of informa- 065

tion is essential for producing coherent reasoning 066

chains (Zhuang et al., 2024). However, conven- 067

tional retrieval strategies typically employ flat or 068

lexical matching techniques, which fail to incorpo- 069

rate causal structure, leading to responses that are 070

locally plausible yet globally inconsistent. 071

Such shortcomings have direct consequences in 072

real-world applications where causal understand- 073

ing is critical. In medical decision-making, for in- 074

stance, associating “high BMI” with “heart disease” 075

may be factually accurate but incomplete without 076

identifying mediating factors such as “hyperten- 077

sion” or “insulin resistance.” When causal evidence 078

is sparse or incorrectly retrieved, LLMs often com- 079

pensate by hallucinating plausible-sounding but 080

unsupported explanations (Sun et al., 2024; Yu 081

et al., 2024), reducing trustworthiness. Addition- 082

ally, static query formulation prevents models from 083

adapting retrieval based on reasoning gaps, fur- 084
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Figure 1: Rethinking Retrieval-Augmented Generation (RAG). (a) Traditional RAG pipelines rely on static
queries and keyword- or similarity-based retrieval, often retrieving topically related but causally irrelevant content,
which can result in hallucinated or incoherent outputs. (b) CDF-RAG addresses these limitations through rein-
forcement learning-based query refinement, dual-path retrieval combining semantic vector search with causal graph
traversal, and causal-consistent generation, leading to improved factuality and reasoning.

ther exacerbating these issues. While recent work085

has explored structured retrieval (Jin et al., 2024),086

multi-hop planning (Ferrando et al., 2024), and087

causal graph construction (et al., 2024), these ap-088

proaches address isolated components rather than089

providing an end-to-end framework for causal rea-090

soning.091

Another key challenge in causal question an-092

swering is that many user queries in QA are093

also vague or underspecified, making effective re-094

trieval even more challenging. While methods like095

RQ-RAG (Chan et al., 2024), RAG-Gym (et al.,096

2025), and SmartRAG (Gao et al., 2024) intro-097

duce query refinement or agentic retrieval mech-098

anisms, they lack dynamic adaptation and causal099

alignment—often retrieving shallow or loosely con-100

nected content. This highlights the need for refine-101

ment strategies that are explicitly optimized for102

causal reasoning.103

To address these challenges, we propose Causal104

Dynamic Feedback for Retrieval-Augmented105

Generation (CDF-RAG), a novel framework that106

integrates reinforcement-learned query refinement,107

multi-hop causal graph retrieval, and alignment-108

based hallucination detection into a dynamic rea-109

soning loop. These components enable CDF-RAG110

to retrieve causally relevant evidence and gener-111

ate logically coherent responses grounded in causal112

structures. Our experiments on CosmosQA (Huang113

et al., 2019), MedQA (Jin et al., 2020), MedM-114

CQA (Pal et al., 2022), and AdversarialQA (Bar-115

tolo et al., 2020) show that CDF-RAG consis-116

tently outperforms standard and refined RAG mod-117

els (Chan et al., 2024; et al., 2025) across key118

metrics—demonstrating its effectiveness for gen-119

erating factually consistent and causally coherent120

responses in complex QA settings– providing a 121

robust foundation for trustworthy reasoning in real- 122

world applications. 123

Contributions. Our paper makes the following 124

contributions: 125

• We introduce CDF-RAG, a unified framework 126

that integrates causal query refinement, multi- 127

hop causal graph retrieval, and hallucination 128

detection into a dynamic feedback loop for 129

causality-aware generation. 130

• We demonstrate that our reinforcement learn- 131

ing (RL)-based query rewriting significantly 132

enhances multi-hop causal reasoning and re- 133

trieval quality, outperforming prior refinement 134

approaches. 135

• We show that CDF-RAG achieves state-of-the- 136

art performance on four QA benchmarks, with 137

consistent improvements in causal correctness, 138

consistency, and interpretability over existing 139

RAG-based models. 140

2 CDF-RAG: Causal Dynamic Feedback 141

for RAG 142

We introduce CDF-RAG, a causality-aware exten- 143

sion of RAG. As illustrated in Figure 2, the sys- 144

tem refines user queries via a query refinement 145

LLM trained with RL, retrieves knowledge using a 146

dual-path retrieval mechanism, rewrites knowledge, 147

and applies a causal graph check to ensure fac- 148

tual consistency. By integrating structured causal 149

reasoning, CDF-RAG mitigates hallucinations and 150

enhances interpretability. This approach enables 151

dynamic query adaptation and precise retrieval for 152



causal reasoning tasks. Implementation details can153

be found in Appendix A154

2.1 Causal Knowledge Graph Construction155

CDF-RAG constructs a directed causal knowledge156

graph G = (V,E) from textual data to capture157

causal dependencies beyond correlation. Using158

UniCausal (Tan et al., 2023), a BERT-based classi-159

fier extracts cause-effect pairs formatted as C → E,160

processing annotated inputs <ARG0> and <ARG1> to161

predict ŷ = g(r[CLS]).162

To ensure logical validity, extracted causal pairs163

are verified by GPT-4 before being encoded into164

G as directed triples (C,E, relation). The graph165

structure enables multi-hop reasoning over causal166

mechanisms, ensuring retrieved knowledge sup-167

ports causal inference tasks.168

2.2 Causal Query Refinement via169

Reinforcement Learning170

Given an initial user query q, CDF-RAG applies171

RL to generate a refined query q̂ optimized for172

causal retrieval. The RL-based query refinement173

agent models this as a Markov Decision Process174

(MDP), where the state s represents the query175

embedding, and the agent selects an action a ∈176

{expand, simplify, decompose}. Expansion en-177

hances specificity by adding relevant causal fac-178

tors, simplification removes extraneous details, and179

decomposition restructures complex queries into180

atomic subqueries.181

The policy πθ(a | s) is initialized via supervised182

fine-tuning (SFT) on labeled refinement examples:183

LSFT = −
T∑
t=1

logPϕ(yt | y<t, x)184

and further optimized using Proximal Policy Opti-185

mization (PPO) (Schulman et al., 2017):186

LPPO(θ) = Et

[
min

(
rt(θ)Ât,187

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
188

where rt(θ) =
πθ(at|st)
πθold (at|st)

.189

The reward function optimizes retrieval effec-190

tiveness and causal consistency:191

R = λ1 · RetrievalCoverage192

+ λ2 · CausalDepth193

+ λ3 · ContextRelevance194

− λ4 · HallucinationPenalty195

By refining queries with these criteria, CDF- 196

RAG dynamically adapts retrieval strategies to en- 197

hance causal reasoning. 198

2.3 Dual-Path Retrieval: Semantic and 199

Causal Reasoning 200

To ensure comprehensive and aligned knowledge 201

access, CDF-RAG adopts a dual-path retrieval strat- 202

egy, integrating semantic vector search with causal 203

graph traversal. 204

Semantic Vector Retrieval. Inspired by dense 205

retrieval methods (Karpukhin et al., 2020), we en- 206

code the refined query q̂ using MiniLM (Wang 207

et al., 2020) and perform similarity search in a 208

vector database. This semantic retrieval pathway 209

returns top-k passages Tsem that offer contextual 210

evidence supporting the query. Unlike sparse re- 211

trieval methods such as BM25 (Robertson et al., 212

2009), which rely on term frequency heuristics, 213

our approach captures contextual relevance through 214

transformer-based embeddings. This enables richer 215

matching, particularly for lexically divergent yet se- 216

mantically similar phrases—a common challenge 217

in biomedical and causal reasoning tasks. 218

Causal Graph Traversal. To complement se- 219

mantic retrieval with structural reasoning, we tra- 220

verse a domain-specific causal graph G. Given q̂, 221

we identify aligned nodes and expand along di- 222

rected edges to surface causally linked variables or 223

events. The resulting paths Cgraph expose mediators, 224

confounders, and downstream effects aligned with 225

the query’s underlying causal semantics. 226

Unified Knowledge Set. We denote the final 227

retrieved knowledge as K = Tsem ∪ Cgraph. This 228

hybrid set blends semantic relevance with causal 229

coherence, enabling downstream modules to gener- 230

ate grounded and causally faithful responses. 231

2.4 Response Generation and Causal Graph 232

Check 233

CDF-RAG generates a response ŷ conditioned 234

on K using a language model. To ensure gener- 235

ated content remains faithful to causal principles, 236

we implement a Causal Graph Check, verifying 237

whether retrieved evidence supports the generated 238

causal claims. The verification process computes a 239

causal consistency score: 240

Scausal =
1

|Cgraph|
∑

(C,E)∈Cgraph

I(C → E |= ŷ), 241

where I is an indicator function that checks if the 242

causal relation is maintained in the generated re- 243
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Figure 2: Overview of CDF-RAG Framework. (a) The CDF-RAG pipeline refines user queries (LLM + RL),
retrieves structured causal and unstructured textual knowledge, applies knowledge rewriting, and ensures factual
consistency through causal verification. (b) The PPO-trained query refinement agent optimizes retrieval coverage
and causal consistency.

sponse.244

If Scausal < τ , where τ is a predefined threshold,245

the system triggers Fallback Generation, prompt-246

ing the LLM to regenerate ŷ under stricter ground-247

ing constraints:248

ŷ′ = argmax
y

P (y | K, strict constraints).249

This ensures that the final response aligns with re-250

trieved causal knowledge, reducing inconsistencies251

and hallucinations.252

2.5 Hallucination Detection and Correction253

CDF-RAG detects hallucinations by evaluating the254

logical consistency between ŷ and K. A hallucina-255

tion score is computed as:256

Shallucination = 1− |K ∩ Y|
|Y|

,257

where Y represents extracted claims from ŷ and K258

represents retrieved knowledge. If Shallucination >259

δ, where δ is a predefined threshold, the system260

applies knowledge rewriting:261

ŷ′′ = argmax
y

P (y | K, rewriting constraints).262

This correction mechanism ensures that causal con-263

sistency is enforced without altering the base LLM264

capabilities, preserving factual correctness in gen-265

erated responses.266

3 Experiments 267

3.1 Evaluation Tasks 268

We evaluate the effectiveness of CDF-RAG across 269

both single-hop and multi-hop question answering 270

(QA) tasks that require varying levels of causal rea- 271

soning and knowledge integration. Our evaluations 272

span four benchmark datasets: CosmosQA (Huang 273

et al., 2019), MedQA (Jin et al., 2020), MedM- 274

CQA (Pal et al., 2022), and AdversarialQA (Bar- 275

tolo et al., 2020). CosmosQA and MedQA assess 276

commonsense and domain-specific causal reason- 277

ing, while MedMCQA and AdversarialQA test 278

multi-hop and cross-document reasoning. 279

3.2 Baselines 280

We compare CDF-RAG against three categories of 281

baselines: 282

Standard RAG Methods: These include con- 283

ventional RAG pipelines using semantic retrieval 284

(BM25 (Robertson et al., 2009)/DPR (Karpukhin 285

et al., 2020)) without causal enhancement. We 286

also consider Smart-RAG (Gao et al., 2024) and 287

Causal RAG (Wang et al., 2025) as stronger vari- 288

ants equipped with heuristic multi-hop capabilities 289

and causal priors. 290

Refined Query Methods: We compare to Gym- 291

RAG (et al., 2025) and RQ-RAG (Chan et al., 2024), 292

which leverage query refinement strategies to im- 293

prove retrieval quality. These serve as important 294

baselines for assessing our reinforcement-based 295



causal query rewrites.296

Graph-Augmented Models (G-LLMs): We297

compare against a recent graph-augmented LLM298

framework (Luo et al., 2025) that integrates causal299

filtering and chain-of-thought–driven retrieval over300

large knowledge graphs. This method, known301

as Causal-First Graph RAG, prioritizes cause-302

effect relationships and dynamically aligns retrieval303

with intermediate reasoning steps, improving inter-304

pretability and accuracy on complex medical QA305

tasks.306

All methods are evaluated under consistent re-307

triever and generation configurations for fair com-308

parison. We report results using multiple LLM309

backbones—including GPT-4 (OpenAI, 2023),310

LLaMA 3-8B (Touvron et al., 2023), Mistral (Jiang311

et al., 2023), and Flan-T5 (Chung et al., 2024)—to312

demonstrate model-agnostic improvements. GPT-4313

is accessed via the OpenAI API, while the remain-314

ing models are fine-tuned on our curated multi-task315

dataset using the same training and decoding pa-316

rameters to ensure alignment in evaluation settings.317

Additional details on the experimental setup are318

provided in Appendix B.319

3.3 Metrics320

We evaluate CDF-RAG using both standard answer321

quality metrics and specialized measures tailored322

to causal reasoning and retrieval. Classical QA323

metrics such as accuracy, precision, recall, and F1324

score assess the correctness of the final answer. To325

complement them, we include Context Relevance,326

which quantifies the semantic alignment between327

the user query and the retrieved content using av-328

erage cosine similarity between Sentence-BERT329

embeddings (Reimers and Gurevych, 2019). This330

reflects how lexically and topically well-aligned331

the retrieved evidence is with the original question.332

To assess the causal robustness of the retrieval pro-333

cess, we report Causal Retrieval Coverage (CRC).334

CRC reflects the system’s ability to prioritize cause-335

effect evidence over loosely related or semantically336

correlated content, and serves as a proxy for the337

quality of causal grounding in the retrieval phase.338

Finally, we report Groundedness, which evaluates339

whether the generated answer is explicitly sup-340

ported by the retrieved content. This metric re-341

flects factual consistency and plays a critical role342

in identifying hallucination-prone behaviors.343

Additional metrics and results used in our344

study—are reported in Appendix B.4 and provide345

further insight into the causal reasoning depth, per-346

formance, and robustness of the pipeline. 347

4 Results and Analysis 348

This section presents a detailed empirical evalu- 349

ation of CDF-RAG across four benchmark QA 350

datasets and multiple language model backbones. 351

We compare its performance against existing RAG 352

baselines using standard QA metrics as well as 353

causal and contextual metrics that reflect reasoning 354

depth, evidence grounding, and factual reliability. 355

4.1 Accuracy Performance 356

We report accuracy results in Table 1 across 357

four benchmark QA datasets—CosmosQA (Huang 358

et al., 2019), AdversarialQA (Bartolo et al., 2020), 359

MedQA (Jin et al., 2020), and MedMCQA (Pal et al., 360

2022)—evaluated on four language model back- 361

bones: GPT-4 (OpenAI, 2023), LLaMA 3-8B (Tou- 362

vron et al., 2023), Mistral (Jiang et al., 2023), and 363

Flan-T5 (Chung et al., 2024). Accuracy serves 364

as a fundamental metric for determining whether 365

generated responses match ground-truth answers. 366

This is particularly important in biomedical do- 367

mains, where factual correctness can directly im- 368

pact decision-making. 369

Across all datasets and models, CDF-RAG 370

achieves the highest accuracy scores, demonstrat- 371

ing its generalizability across reasoning types (com- 372

monsense, adversarial, and biomedical) and model 373

scales. On MedMCQA, for example, CDF-RAG 374

attains 0.94 accuracy with GPT-4, and 0.90 with 375

LLaMA 3-8B, outperforming the strongest base- 376

line, Gym-RAG, by 16% and 13% respectively. 377

Similar gains are seen across CosmosQA and Ad- 378

versarialQA, highlighting CDF-RAG’s robustness 379

in both open-domain and medically grounded QA 380

tasks. 381

CDF-RAG’s improvements can be attributed to 382

its carefully integrated architecture. First, high- 383

quality causal pairs are extracted and validated us- 384

ing a GPT-4 assisted pipeline and stored in a Neo4j 385

graph, enabling directionally-aware, multi-hop re- 386

trieval. Unlike semantic retrievers that focus on 387

surface-level similarity, the graph captures deeper 388

cause-effect dependencies that are essential for ex- 389

planatory reasoning. 390

Second, query refinement is performed via a 391

PPO-trained RL agent, which selects between de- 392

composition and expansion strategies. This re- 393

finement aligns the query structure with latent 394

causal chains in the graph and vector database. 395



Table 1: Accuracy Scores of various RAG methods
across datasets and LLM backbones.

Dataset Method GPT-4 LLaMA 3-8B Mistral Flan-T5

AdversarialQA

CDF-RAG 0.89 0.83 0.81 0.79
Gym-RAG 0.78 0.75 0.73 0.70
RQ-RAG 0.76 0.71 0.72 0.66
Smart-RAG 0.74 0.73 0.70 0.64
Causal RAG 0.71 0.71 0.66 0.62
G-LLMs 0.68 0.68 0.65 0.60

CosmosQA

CDF-RAG 0.89 0.88 0.85 0.84
Gym-RAG 0.82 0.80 0.75 0.73
RQ-RAG 0.80 0.79 0.74 0.72
Smart-RAG 0.78 0.77 0.72 0.70
Causal RAG 0.76 0.75 0.70 0.68
G-LLMs 0.73 0.72 0.68 0.66

MedQA

CDF-RAG 0.92 0.89 0.88 0.84
Gym-RAG 0.83 0.79 0.78 0.73
RQ-RAG 0.82 0.78 0.77 0.72
Smart-RAG 0.81 0.77 0.76 0.71
Causal RAG 0.79 0.75 0.74 0.69
G-LLMs 0.76 0.72 0.71 0.67

MedMCQA

CDF-RAG 0.94 0.90 0.88 0.85
Gym-RAG 0.78 0.77 0.76 0.72
RQ-RAG 0.76 0.75 0.74 0.70
Smart-RAG 0.74 0.73 0.72 0.68
Causal RAG 0.72 0.71 0.70 0.66
G-LLMs 0.68 0.68 0.66 0.63

Importantly, all models except GPT-4 are multi-396

task instruction fine-tuned on a carefully curated397

dataset encompassing decomposition, simplifica-398

tion, and expansion tasks (or any combinations in a399

feedback loop)—enabling consistent, controllable400

query rewriting across backbones.401

Compared to other methods, CDF-RAG offers a402

more coherent and complete reasoning stack. Gym-403

RAG performs well due to its reward-guided tra-404

jectory optimization, but it lacks causal grounding405

in its retrieval process and does not validate final406

outputs, leading to gaps in factual correctness. RQ-407

RAG uses static rule-based query rewriting, which408

improves retrieval over raw queries, but it is not409

adaptive and does not distinguish between causal410

and associative evidence, limiting its effectiveness411

on multi-hop queries.412

Smart-RAG includes an RL policy to coordinate413

retrieval and generation steps. However, it lacks414

access to causal graphs and performs no verifica-415

tion of output consistency. Its reliance on semantic416

retrieval alone results in shallow, often incomplete,417

reasoning. Causal RAG, while integrating causal418

paths, depends on weak summarization-based ex-419

traction methods, leading to noisy graph construc-420

tion. It does not dynamically refine queries or fil-421

ter hallucinations. G-LLMs use static knowledge422

graphs but are not designed to support causal re-423

trieval or adaptive refinement, resulting in the low-424

est accuracy across all configurations.425

In contrast, CDF-RAG’s feedback loop between426

query refinement, causal retrieval, and answer veri-427

fication ensures end-to-end causal alignment. This428

alignment not only improves retrieval coverage but 429

also helps the model generate answers that are more 430

accurate and grounded in factually valid causal 431

pathways. 432

These results emphasize the need for RAG 433

frameworks to go beyond surface-level semantic 434

retrieval and incorporate causal structure, dynamic 435

reasoning strategies, and output validation. CDF- 436

RAG embodies these principles, resulting in sub- 437

stantial improvements in accuracy across datasets 438

and model architectures. 439

4.2 Retrieval and Contextual Performance 440

To evaluate the quality of retrieval and its down- 441

stream impact on answer faithfulness, we report 442

three upstream metrics: CRC, Context Relevance, 443

and Groundedness. Together, these metrics assess 444

how well the system identifies causally relevant 445

content, aligns it semantically with the user query, 446

and generates factually supported answers. 447

CRC measures the proportion of retrieved ele- 448

ments—including causal triples from the Neo4j 449

graph and unstructured passages from the vector 450

database—that belong to a verified causal path 451

aligned with the query. For each query, CRC is 452

computed by checking whether the retrieved items 453

match entries in a gold-standard causal graph con- 454

structed using GPT-4 verification. This metric re- 455

flects the system’s ability to prioritize directional, 456

explanatory content over semantically correlated 457

but causally irrelevant material. 458

Context Relevance captures the semantic align- 459

ment between the user query and the retrieved con- 460

tent. We compute this by encoding both the query 461

and the top-k retrieved items using Sentence-BERT 462

embeddings (Reimers and Gurevych, 2019), fol- 463

lowed by averaging cosine similarity scores across 464

the retrieved set. While CRC emphasizes struc- 465

tural fidelity, Context Relevance ensures that the 466

retrieved material is lexically and topically close to 467

the query, which is particularly useful in guiding 468

generation during early inference steps. 469

Groundedness evaluates the factual consistency 470

between the generated answer and the retrieved ev- 471

idence. It assesses whether the key claims made in 472

the answer are explicitly supported by the retrieved 473

content, ensuring that the response is not only flu- 474

ent but also verifiable. To compute this metric, we 475

apply a span-level alignment approach that checks 476

whether the answer content can be traced back to 477

specific supporting phrases or structures within the 478

retrieved passages or causal triples. Grounded- 479



Table 2: Retrieval and Contextual Metrics of CDF-RAG across models and methods.
CRC = Causal Retrieval Coverage, Context = Context Relevance.

Dataset Model CDF-RAG Gym-RAG RQ-RAG Smart-RAG Causal RAG G-LLMs

CRC

AdversarialQA

GPT-4 0.89 0.80 0.77 0.74 0.72 0.68
LLaMA 3-8B 0.85 0.76 0.73 0.70 0.68 0.64
Mistral 0.82 0.74 0.71 0.68 0.66 0.61
Flan-T5 0.78 0.70 0.67 0.64 0.62 0.59

CosmosQA

GPT-4 0.91 0.81 0.79 0.77 0.74 0.71
LLaMA 3-8B 0.87 0.78 0.76 0.74 0.71 0.68
Mistral 0.86 0.79 0.77 0.75 0.72 0.69
Flan-T5 0.82 0.75 0.73 0.71 0.69 0.66

MedMCQA

GPT-4 1.00 0.93 0.90 0.88 0.85 0.82
LLaMA 3-8B 0.98 0.89 0.86 0.84 0.81 0.78
Mistral 0.96 0.91 0.88 0.86 0.83 0.80
Flan-T5 0.95 0.87 0.84 0.82 0.79 0.76

Context (Context Relevance)

AdversarialQA

GPT-4 0.76 0.67 0.64 0.62 0.60 0.56
LLaMA 3-8B 0.73 0.65 0.63 0.60 0.58 0.54
Mistral 0.70 0.63 0.60 0.58 0.56 0.52
Flan-T5 0.68 0.60 0.58 0.56 0.53 0.50

CosmosQA

GPT-4 0.78 0.69 0.67 0.66 0.63 0.60
LLaMA 3-8B 0.75 0.67 0.65 0.63 0.61 0.58
Mistral 0.74 0.67 0.65 0.64 0.62 0.59
Flan-T5 0.72 0.64 0.62 0.61 0.59 0.56

MedMCQA

GPT-4 0.64 0.60 0.58 0.56 0.54 0.51
LLaMA 3-8B 0.62 0.58 0.56 0.54 0.52 0.49
Mistral 0.63 0.59 0.57 0.55 0.53 0.50
Flan-T5 0.61 0.57 0.55 0.53 0.50 0.47

ness is crucial because a model may retrieve high-480

quality context yet still introduce hallucinations or481

unsupported causal links during generation. This482

metric reflects the degree to which the model faith-483

fully uses its retrieved inputs, serving as a proxy484

for factual reliability and evidence-grounded rea-485

soning.486

As shown in Table 2, CDF-RAG consistently487

achieves the highest CRC and Context Relevance488

across all datasets and LLMs. For example, on489

AdversarialQA with GPT-4, CDF-RAG attains a490

CRC of 0.89 and Context score of 0.76, while Gym-491

RAG and RQ-RAG score 0.80/0.67 and 0.77/0.64,492

respectively. On MedMCQA, CDF-RAG achieves493

perfect causal coverage (CRC = 1.00) and the high-494

est semantic alignment (Context = 0.64). These495

metrics explain its ability to retrieve both relevant496

and causally grounded information.497

Figure 3 presents the Groundedness compar-498

ison across four LLMs on the MedQA dataset.499

CDF-RAG outperforms all baselines across ev-500

ery model backbone, achieving a groundedness501

score of 0.67–0.65, depending on the LLM. The502

improvement is especially notable with GPT-4 and503

LLaMA 3-8B, where the margin over Gym-RAG504

and Smart-RAG is over 7%. This gain highlights505

the benefit of our hallucination-aware verification506

loop and causally coherent retrieval. By integrat-507

ing RL-refined queries, causal graph traversal, and508
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Figure 3: Groundedness comparison of different meth-
ods across four LLMs on the MedQA dataset.

structured rewriting, CDF-RAG ensures that gen- 509

eration remains closely tied to verifiable, context- 510

supported content. In contrast, methods such as 511

G-LLMs and Causal-RAG either lack semantic 512

adaptation or perform shallow causal reasoning, 513

resulting in lower groundedness and higher suscep- 514

tibility to hallucinations. Together, these results 515

confirm that CDF-RAG’s retrieval pipeline is both 516

structurally precise and semantically aligned, lead- 517

ing to answers that are not only accurate but also 518

causally and contextually grounded. 519

4.3 Ablation Study 520

To evaluate the contribution of each component 521

in the CDF-RAG framework, we conduct a step- 522

wise ablation study by incrementally enabling key 523
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Figure 4: Ablation study of CDF-RAG across incremental stages. Left: performance metrics including CRC, SRS,
groundedness, and F1 score. Right: HR, where lower values indicate greater factual consistency.

modules. We begin with a baseline RAG setup524

that uses semantic vector retrieval via MiniLM,525

followed by LLM-based generation, without incor-526

porating query refinement or structural retrieval527

mechanisms. We then progressively add RL-based528

query refinement, causal graph retrieval, structured529

knowledge rewriting, and hallucination correction.530

Notably, query refinement is only triggered when531

the RL agent is enabled, and no static prompt engi-532

neering is applied at any stage.533

Each configuration is evaluated on six metrics:534

CRC, causal chain depth (CCD), semantic refine-535

ment score (SRS), groundedness, hallucination rate536

(HR), and F1. CCD measures the average num-537

ber of directed hops in retrieved causal paths from538

the Neo4j graph. SRS is computed as the cosine539

similarity between the original and refined queries,540

quantifying semantic alignment. Groundedness re-541

flects the coherence between retrieved knowledge542

and generated responses, using sentence embed-543

ding similarity. HR denotes the percentage of re-544

sponses flagged as hallucinated by the LLM veri-545

fier.546

F1 captures the balance of precision and recall547

based on overlap with reference answers. As shown548

in Table 3, each added component improves overall549

system performance. For example, enabling the550

causal graph module increases CCD from 1.70 to551

1.92 by exposing deeper multi-hop pathways, while552

the hallucination verifier further reduces HR to 0.07553

and improves groundedness to 0.71. The final stage554

values match those reported in the main results ta-555

ble, confirming that each module contributes both556

independently and synergistically to the robustness557

and reliability of CDF-RAG’s causal reasoning.558

Figure 4 presents the results of our ablation study559

over the CDF-RAG framework, highlighting the560

Table 3: Ablation study on the CDF-RAG framework.
Each stage adds a core module.

Ablation Stage CRC CCD SRS Groundedness HR F1

Baseline RAG 0.74 1.50 0.55 0.52 0.18 0.68
+ RL-based Query
Refinement 0.80 1.70 0.62 0.59 0.14 0.74

+ Causal Graph 0.84 1.92 0.65 0.63 0.12 0.78
+ Rewriter 0.88 2.00 0.70 0.68 0.08 0.82
+ Hallucination
Correction (Ours) 0.89 2.02 0.74 0.71 0.07 0.86

incremental effect of each component. As we pro- 561

gressively add RL-based query refinement, causal 562

graph retrieval, structured rewriting, and hallucina- 563

tion correction, we observe consistent gains across 564

core metrics such as CRC, SRS, groundedness, and 565

F1. The HR shows a marked decline, reflecting 566

enhanced factual reliability at each stage. These 567

results underscore the modular design and cumula- 568

tive benefit of CDF-RAG’s causally grounded and 569

agentic reasoning architecture. 570

5 Conclusion 571

In this paper, we introduce CDF-RAG, a 572

causality-aware RAG framework that integrates 573

reinforcement-learned query refinement, multi-hop 574

causal graph retrieval, and hallucination detection 575

into a dynamic feedback loop. By aligning retrieval 576

with causal structures and enforcing consistency in 577

generation, CDF-RAG enhances factual accuracy 578

and reasoning depth. Our evaluations demonstrate 579

state-of-the-art performance across four QA bench- 580

marks, surpassing existing RAG methods in causal 581

correctness and reliability. These results highlight 582

the effectiveness of structured causal reasoning for 583

adaptive retrieval-augmented generation. 584



Limitations585

While CDF-RAG demonstrates improvements in586

retrieval precision and response coherence through587

causal query refinement, several limitations remain.588

First, the method depends on access to structured589

causal graphs, which may not be readily available590

or complete in all domains, particularly those with591

sparse or noisy causal knowledge. This reliance592

could limit applicability in open-domain or low-593

resource settings. Second, the hallucination detec-594

tion module employs GPT-based validation, which,595

despite its effectiveness, incurs significant compu-596

tational overhead. This may hinder deployment597

in real-time or resource-constrained environments.598

Finally, although our reinforcement learning frame-599

work enables adaptive query refinement, its general-600

ization to highly heterogeneous or informal queries601

requires further investigation. Addressing these602

limitations is essential for broader applicability and603

efficiency in practical settings.604
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A Appendix - Dataset786

This appendix provides additional implementation787

and experimental details to support the results and788

claims presented in the main paper. It includes com-789

prehensive documentation of our data construction790

process, fine-tuning setup, and evaluation proce-791

dures. We also provide prompt templates used for792

multi-task instruction tuning, detailed ablation met-793

rics, and further discussions of design choices and794

observations.795

A.1 Data Collection and Causal Graph796

Construction797

Our data collection process supports two major ob-798

jectives: (1) training the query refinement module799

with multi-task instruction examples, and (2) con-800

structing structured causal knowledge graphs that801

power CDF-RAG’s graph-based retrieval. We col-802

lect and process data from four benchmark QA803

datasets—CosmosQA, AdversarialQA, MedQA,804

and MedMCQA—chosen for their coverage of com-805

monsense, adversarial, and biomedical reasoning806

tasks. Each dataset is used to extract causally rele-807

vant triples and generate query refinement prompts808

across decomposition, expansion, and simplifica-809

tion modes.810

To enable structured causal retrieval, we imple-811

ment a dedicated preprocessing pipeline named812

CausalFusion. This component combines fine-813

tuned causal classification with LLM-based valida-814

tion to extract high-confidence cause-effect pairs815

from each dataset. Specifically, we build on the816

UniCausal (Tan et al., 2023) framework and fo-817

cus on the Causal Pair Classification task. Sen-818

tences from each dataset are annotated with candi-819

date argument spans (<ARG0> and <ARG1>), which820

are passed through a BERT-based encoder trained821

to predict whether a causal relationship exists be-822

tween them. The model outputs binary judgments823

that filter candidate pairs down to high-quality824

causal candidates.825

Following this step, we apply a GPT-4 refine-826

ment stage to all accepted causal pairs. GPT-4827

serves as a semantic verifier and reformulator: it828

rephrases each pair into a fluent, logically coherent829

causal statement, flags inconsistencies, and rejects830

biologically implausible or semantically invalid831

pairs. The output for each instance includes the832

original dataset name, cause and effect variables,833

predicted directionality, and the refined natural lan-834

guage causal explanation.835

All validated and rephrased causal pairs are 836

stored as directed triples in a Neo4j knowledge 837

graph. To support fast and semantically aware re- 838

trieval, we encode each node (cause or effect) into a 839

384-dimensional embedding using MiniLM-based 840

sentence encoders. These embeddings are stored in 841

a vector database alongside their graph identifiers, 842

enabling hybrid semantic and path-based retrieval 843

during inference. This graph forms the foundation 844

for multi-hop causal reasoning in CDF-RAG and 845

is continuously updated as new validated pairs are 846

added. 847

This hybrid symbolic-neural representation en- 848

sures that retrieval can traverse explicit causal paths 849

while remaining robust to lexical variation in user 850

queries. It also provides a structured backbone for 851

measuring retrieval depth, validating generation, 852

and supporting hallucination detection via graph- 853

based entailment. 854

A.2 Causal Prompt Design for Pair 855

Verification 856

To ensure the factual and causal correctness of 857

extracted pairs in our CDF pipeline, we design a 858

GPT-4-based verification module using structured 859

natural language prompts. Each extracted causal 860

pair undergoes a validation stage, where it is con- 861

verted into a prompt and sent to GPT-4 for semantic 862

and causal assessment. The goal is to ensure that 863

only high-confidence, directionally accurate, and 864

domain-valid causal links are retained for inclusion 865

in the Neo4j causal graph. 866

We adopt a contextualized causal prompting 867

strategy inspired by the causal wrapper component 868

in ALCM (Khatibi et al., 2024). Each prompt in- 869

cludes: 870

• Instruction—Defining GPT-4’s role in assess- 871

ing the causal pair. 872

• Contextual Metadata—Information about 873

the dataset, domain, and source extraction 874

model. 875

• Causal Pair—The specific cause-effect rela- 876

tionship being assessed. 877

• Task Definition—Explicit questions about 878

the validity, direction, and justification of the 879

causal link. 880

• Output Format—A structured template in- 881

cluding a binary correctness flag, refined 882



causal direction, confidence score, and expla-883

nation.884

This causal prompt design enables the LLM to885

reason explicitly about the plausibility and correct-886

ness of each candidate link. It also facilitates stan-887

dardized post-processing by producing consistent,888

machine-readable outputs. Verified causal pairs are889

then re-integrated into the graph database, ensuring890

that downstream query refinement and multi-hop891

reasoning are grounded in trustworthy knowledge.892

An illustrative example of such a prompt is893

shown below:894

Causal Pair to Verify: {Cause:895

High blood pressure, Effect:896

Stroke}897

Correctness: True898

Refined Causal Statement: "High899

blood pressure causes stroke"900

Confidence: High901

Explanation: Chronic902

hypertension is a well-known903

risk factor for stroke based on904

medical literature.905

Causal Verification Prompt Template

You are an expert in {DOMAIN} with deep knowledge
of causal relationships and evidence-based reasoning.
Given a candidate causal relationship extracted from
a document or algorithm, your task is to evaluate its
validity and direction.

Contextual Metadata:

• Domain: {DOMAIN}

• Dataset: {DATASET NAME}

• Source Model: {MODEL or METHOD}

Causal Pair to Verify:

• Cause: {ARG0}

• Effect: {ARG1}

Task:

1. Is the causal relationship valid and supported?
(True/False)

2. If the direction is incorrect, provide the cor-
rected direction.

3. Give a one-sentence justification.

4. Estimate confidence (High / Medium / Low)

Output Format:

• Correctness: True / False

• Refined: "{ARG0}" causes "{ARG1}" or vice
versa

906

• Confidence: High / Medium / Low

• Explanation: Short justification
grounded in domain knowledge

907

A.3 Reinforcement Learning for Query 908

Refinement. 909

To dynamically optimize query rewriting strategies 910

in CDF-RAG, we train a RL agent using the Prox- 911

imal Policy Optimization (PPO) algorithm. The 912

agent learns a policy π(a|s) that maps the semantic 913

embedding of a raw query s to one of three refine- 914

ment actions: Expand, Simplify, or Decompose. 915

Each action corresponds to a rewriting strategy 916

aimed at improving causal specificity and retriev- 917

ability. The agent interacts with a custom Gym en- 918

vironment, where each state s is a 384-dimensional 919

embedding of the input query (from MiniLM), and 920

the action space is discrete over refinement types. 921

The reward function integrates downstream per- 922

formance metrics critical for causal reasoning. Af- 923

ter each refinement action, the system executes the 924

retrieval and generation pipeline and computes four 925

normalized metrics: retrieval relevance (r), causal 926

depth (d), semantic similarity (s), and hallucination 927

rate (h). The reward function is defined as: 928

R = λ1r + λ2d+ λ3s+ λ4(1− h) 929

where each component is normalized to the 930

range [0, 1], and λi are tunable weights control- 931

ling the importance of each term. Relevance mea- 932

sures whether the refinement improves the match 933

between retrieved context and query intent; causal 934

depth quantifies the number of multi-hop causal 935

links retrieved; semantic similarity evaluates align- 936

ment with the original query; and hallucination 937

penalizes factual inconsistency in generated out- 938

puts. 939

We train the agent using PPO with a two-layer 940

MLP policy network (hidden size 256), batch size 941

64, learning rate 3× 10−4, and entropy regulariza- 942

tion of 0.01. Training is run for 100 epochs with 943

500 steps per query. The training curriculum covers 944

diverse domains by sampling queries from MedQA, 945

CosmosQA, and AdversarialQA. All models ex- 946

cept GPT-4 are trained using this RL framework 947

after multi-task instruction fine-tuning. 948

At inference time, the trained policy π(a|s) se- 949

lects the optimal refinement action given an unseen 950

input query. This enables the system to adaptively 951

reformulate questions in a way that aligns with 952



both the causal structure of the knowledge graph953

and the semantic requirements of the task, thereby954

improving downstream accuracy, coherence, and955

explainability.956

A.4 Prompt Design for Multi-task Instruction957

Fine-tuning958

To enable the query refinement module in CDF-959

RAG to adaptively rewrite input questions, we con-960

struct a multi-task instruction dataset covering three961

core refinement actions: Simplify, Decompose, and962

Expand. These refinement strategies correspond to963

key capabilities required for causal reasoning: clar-964

ifying ambiguous questions, breaking down com-965

plex ones into causal subcomponents, and enrich-966

ing underspecified queries with relevant scope. For967

each action type, we design a specialized prompt968

template to guide GPT-4 in generating high-quality969

supervision examples. These templates are used970

to fine-tune the LLMs (LLaMA 3-8B, Mistral, and971

Flan-T5) using LoRA, while GPT-4 is accessed via972

API at inference time without fine-tuning.973

Simplification Prompt As shown in Prompt974

Box A.4, we provide GPT-4 with detailed instruc-975

tions for simplifying complex questions while pre-976

serving their original intent. This template is used977

to rephrase complex, ambiguous, or overly verbose978

queries into concise and direct questions while pre-979

serving their original intent. The goal is to strip980

away unnecessary syntactic or semantic complex-981

ity to improve retrievability and alignment with the982

knowledge base. The model is instructed to out-983

put a single-line question that is self-contained and984

interpretable, which is essential for enhancing the985

precision of retrieval in high-noise or cross-domain986

settings.987

Prompting Strategy. To enable query simplifica-988

tion within CDF-RAG, we adopt a dual-prompting989

approach tailored for both system implementa-990

tion and interpretability. For fine-tuning and in-991

ference, we use a concise instruction-tuning format992

("Refine the following query for better993

causal retrieval") to streamline training across994

hundreds of examples. To complement this, we de-995

fine a structured prompt template with explicit steps996

and guidelines for simplification, which is used997

in our paper to illustrate the design intent behind998

simplification behavior. This alignment between999

lightweight instructional prompts and a principled1000

template ensures both efficiency and transparency1001

in how simplification is operationalized within the 1002

framework. 1003

Simplification Prompt Template

Your task is to simplify complex or ambiguous ques-
tions into a clearer, more direct version that preserves
the original intent. This should reduce complexity
while retaining meaning.

Steps:

1. Identify ambiguity, compound phrasing, or in-
direct wording.

2. Reformulate as a concise, self-contained single
question.

3. Ensure the result is independently interpretable
and answerable.

Guidelines:

• Use precise language; avoid abstract or techni-
cal phrasing.

• Do not generate multiple sub-questions.

• Keep the simplified question to one line.

• Preserve the core intent of the original.

Example Task:

• Provided Contexts: Medical QA task
related to diabetic nephropathy

• Original Question: Why does diabetes cause
kidney damage in elderly patients,
and what factors contribute to this
progression over time?

• Simplified Query: How does diabetes cause
kidney damage in elderly patients?

1004

Decomposition Prompt The decomposition 1005

prompt (see Prompt Box A.4) teaches the model 1006

to break down multihop or causally entangled 1007

questions into 2–4 atomic sub-questions that col- 1008

lectively reconstruct the original reasoning chain. 1009

Each sub-question should be answerable indepen- 1010

dently and follow a logical progression that mirrors 1011

multi-hop causal inference. This prompt is partic- 1012

ularly important for enabling causal retrieval over 1013

multi-node paths in the Neo4j graph and for pro- 1014

moting modular reasoning within the generation 1015

phase. 1016



Decomposition Prompt Template

Your task is to decompose complex, multi-
hop questions into simpler, manageable
sub-questions. These decomposed queries
should help isolate and uncover causal or ex-
planatory mechanisms relevant to the origi-
nal question.

Please follow the steps below carefully:

1. Analyze the multihop question to iden-
tify its underlying causal or semantic
components.

2. Reformulate the question into a list of
2–4 clear, concise, self-contained sub-
questions that can be independently an-
swered.

3. Maintain logical flow between sub-
questions (i.e., each one should build
toward answering the original ques-
tion).

Guidelines:

• Avoid repeating the same phrasing
across sub-questions.

• Each sub-question should be answer-
able on its own.

• Use one line per sub-question, and in-
sert a line break between each.

• Do not include numbered bullets or ex-
planations—only the raw list of sub-
questions.

Here is your task:

• Provided Contexts: {OPTIONAL
— leave blank or include
background passages}

• Multihop Question: {INSERT MAIN
QUESTION}

• Decomposed Queries:
1017

Prompting Strategy. For decomposition, we em-1018

ploy a structured prompt that guides the model to1019

break down complex, multihop questions into logi-1020

cally ordered sub-questions (see Prompt Box A.4).1021

While this instructional format is used for trans-1022

parency and design illustration, the deployed sys- 1023

tem leverages a compact instruction-tuning vari- 1024

ant during fine-tuning and inference (e.g., "Break 1025

this question into sub-questions for 1026

causal reasoning."). This alignment allows us 1027

to retain explainability in prompt engineering while 1028

maintaining efficiency and generalizability in real- 1029

time execution. 1030

Decomposition Prompt Template

Your task is to decompose complex, multi-
hop questions into simpler, manageable
sub-questions. These decomposed queries
should help isolate and uncover causal or ex-
planatory mechanisms relevant to the origi-
nal question.
Here is your task:

• Provided Contexts: Healthcare
domain — diabetes and kidney
disease

• Multihop Question: Why does
diabetes lead to kidney failure
in aging populations over time?

• Decomposed Queries:

What physiological changes does diabetes
cause in the kidneys?
How does chronic hyperglycemia damage
kidney function over time?
What role does aging play in accelerating
diabetic kidney complications?
Why are older adults more susceptible to
renal decline with diabetes?

1031

Expansion Prompt For queries that are vague or 1032

underspecified, the expansion prompt (see Prompt 1033

Box A.4) guides the model to make the question 1034

more complete by adding relevant causal factors, 1035

domain-specific constraints, or example conditions. 1036

The objective is to surface latent context or scope 1037

that may be implicitly expected but is missing in 1038

the original query. This expanded form allows 1039

the retrieval system to access a broader and more 1040

causally aligned evidence space. 1041



Expansion Prompt Template

Your task is to expand a vague or underspec-
ified question into a more detailed version
that makes its intent clear and specific. This
should help clarify the scope of the question
by introducing relevant dimensions, factors,
or examples.

Please follow the steps below carefully:

1. Identify missing context or implicit as-
sumptions in the question.

2. Reformulate the question to explic-
itly mention key entities, causal mech-
anisms, or domains relevant to the
query.

3. Ensure the expanded question guides a
more targeted and informative answer.

Guidelines:

• Use a single line for the expanded ques-
tion.

• Avoid changing the core topic, but add
specificity or scope.

• Preserve the original intent, while mak-
ing the question more complete or in-
formative.

Here is your task:

• Provided Contexts: {OPTIONAL
— leave blank or include
background passages}

• Original Question: {INSERT VAGUE OR
INCOMPLETE QUESTION}

• Expanded Query:
1042

Prompting Strategy. The expansion prompt is1043

designed to elicit more informative and context-1044

aware reformulations for vague or under-specified1045

queries (see Prompt Box A.4). While this prompt1046

is used to train the model to surface latent causal1047

factors and clarify scope, the system implemen-1048

tation uses a condensed instruction-tuned variant1049

(e.g., "Make the question more specific for1050

causal reasoning"). This dual-prompting setup1051

ensures that the model learns how to expand queries1052

both accurately and efficiently, while also preserv-1053

ing interpretability and alignment during prompt 1054

analysis and dataset curation. 1055

Expansion Prompt Template

Your task is to expand a vague or underspec-
ified question into a more detailed version
that makes its intent clear and specific. This
should help clarify the scope of the question
by introducing relevant dimensions, factors,
or examples.
Here is your task:

• Provided Contexts: Societal health
disparities and stress

• Original Question: Why is stress a
public health concern?

• Expanded Query:

Why is chronic stress considered a public
health concern in relation to socioeconomic
status, mental health, and long-term disease
risk?

1056

Together, these prompt templates form the back- 1057

bone of our instruction fine-tuning strategy, en- 1058

abling each model to learn not only how to execute 1059

a refinement action, but also when and why such 1060

rewrites are useful for causal alignment. Each gen- 1061

erated example is filtered for consistency and cor- 1062

rectness before being added to the training dataset. 1063

During inference, the PPO-trained policy network 1064

selects among these three refinement actions for 1065

each input query, enabling dynamic adaptation to 1066

the structure and intent of unseen questions. 1067

B Appendix - Experimental Details 1068

1069

B.1 Training and Fine-tuning Setup 1070

We fine-tune all LLM backbones (except GPT- 1071

4, which is accessed via API) using LoRA with 1072

instruction-style supervision. Each model is trained 1073

on our multi-task dataset for one epoch with a learn- 1074

ing rate of 2e-5 and 3% warmup steps. 1075

B.2 Comparison with Related Work 1076

CDF-RAG introduces a comprehensive and agen- 1077

tic approach to RAG by combining causal graph 1078

retrieval, RL-driven query refinement, multi-hop 1079

reasoning, and hallucination correction into a uni- 1080

fied framework. This integrated design enables the 1081



model to explicitly reason over structured cause-1082

effect relationships while adaptively optimizing1083

queries and validating outputs through a closed-1084

loop process. Unlike existing methods that focus1085

on isolated components of the RAG pipeline, CDF-1086

RAG emphasizes the causal alignment and coher-1087

ence of both retrieved and generated content.1088

In contrast, methods like RQ-RAG and Smar-1089

tRAG provide query refinement capabilities—via1090

decomposition or RL—but do not incorporate1091

causal graph retrieval or hallucination mitiga-1092

tion. RAG-Gym offers process-level optimization1093

through nested MDPs and includes a hallucination-1094

aware reward model, but lacks structural causal1095

reasoning. Causal Graph RAG and Causal Graphs1096

Meet Thoughts integrate causal graphs but fall1097

short in dynamic feedback, multi-agent coordina-1098

tion, and hallucination control. Overall, CDF-RAG1099

is distinguished by its holistic design that tightly1100

couples causal retrieval, adaptive refinement, and1101

output validation—resulting in improved factuality,1102

reasoning depth, and consistency.1103

B.3 Implementation and Agentic Design1104

Our CDF-RAG framework is implemented using1105

the LangChain library, which provides modular1106

primitives for constructing agentic workflows in1107

language model systems. We structure the pipeline1108

as a multi-step LangGraph agent, where each node1109

represents a semantically grounded reasoning mod-1110

ule: query refinement, causal retrieval, knowledge1111

rewriting, response generation, hallucination de-1112

tection, and correction. The use of LangGraph1113

allows us to declaratively define state transitions1114

and orchestrate feedback loops, enabling condi-1115

tional routing and dynamic re-entry into refinement1116

or correction stages based on internal evaluation1117

metrics (e.g., hallucination confidence or causal1118

coverage).1119

CDF-RAG is inherently an agentic system in1120

that it models reasoning as an autonomous, self-1121

adaptive process. Rather than a fixed sequence1122

of API calls, our agent selects actions (e.g., re-1123

querying, rewriting, regenerating) based on the1124

evolving context of the task. This is made pos-1125

sible by integrating reinforcement learning (RL)1126

for policy-driven refinement, and a hallucination-1127

aware validation agent that triggers corrective sub-1128

routines when inconsistencies are detected. Each1129

component is instantiated as a callable LangChain1130

module, with memory and state passed explicitly1131

between steps—fulfilling the agentic paradigm of1132

planning, acting, observing, and adapting. This 1133

design enables the system to reason causally, re- 1134

cover from failures, and adapt its strategy based on 1135

downstream performance. 1136

B.4 Additional Results 1137

1138

We include additional results on metric break- 1139

downs by task and model, alternative retrieval con- 1140

figurations, and the impact of hallucination correc- 1141

tion. We also report groundedness and CRC scores 1142

per refinement type to demonstrate the effective- 1143

ness of individual modules in isolation. Across all 1144

experiments, CDF-RAG was evaluated on approx- 1145

imately 2,200 queries spanning four benchmark 1146

datasets—CosmosQA, MedQA, MedMCQA, and 1147

AdversarialQA—across multiple LLM backbones. 1148

B.4.1 Quality Performance 1149

We report quantitative results in Table 4 1150

and Table 5 across four benchmark QA 1151

datasets—CosmosQA (Huang et al., 2019), Adver- 1152

sarialQA (Bartolo et al., 2020), MedQA (Jin et al., 1153

2020), and MedMCQA (Pal et al., 2022)—evalu- 1154

ated on four LLM backbones (GPT-4 (OpenAI, 1155

2023), LLaMA 3-8B (Touvron et al., 2023), 1156

Mistral (Jiang et al., 2023), and Flan-T5 (Chung 1157

et al., 2024)). Across all combinations, CDF-RAG 1158

outperforms existing RAG variants in accuracy, 1159

precision, recall, and F1 score, while maintaining 1160

the lowest HR. This demonstrates the effectiveness 1161

of our fully integrated framework—combining 1162

reinforcement-learned query refinement, causal 1163

graph-augmented retrieval, structured rewriting, 1164

and hallucination-aware output validation. 1165



Table 4: Quality Metrics of CDF-RAG across models
and methods. HR = Hallucination Rate, F1 = F1 Score.

Dataset Model Method HR Acc. Prec. Rec. F1

AdversarialQA

GPT-4 CDF-RAG 0.07 0.89 0.850 0.87 0.860
Gym-RAG 0.14 0.78 0.735 0.76 0.745
RQ-RAG 0.15 0.76 0.715 0.74 0.725
Smart-RAG 0.16 0.74 0.700 0.72 0.710
Causal RAG 0.18 0.71 0.670 0.69 0.680
G-LLMs 0.20 0.68 0.640 0.66 0.650

LLaMA 3-8B CDF-RAG 0.08 0.83 0.805 0.82 0.815
Gym-RAG 0.13 0.75 0.700 0.72 0.710
RQ-RAG 0.12 0.71 0.660 0.68 0.670
Smart-RAG 0.15 0.73 0.675 0.69 0.680
Causal RAG 0.17 0.71 0.655 0.67 0.660
G-LLMs 0.19 0.68 0.620 0.64 0.630

Mistral CDF-RAG 0.09 0.81 0.790 0.79 0.785
Gym-RAG 0.15 0.73 0.680 0.70 0.690
RQ-RAG 0.16 0.72 0.660 0.68 0.670
Smart-RAG 0.17 0.70 0.645 0.66 0.655
Causal RAG 0.17 0.66 0.600 0.62 0.615
G-LLMs 0.21 0.65 0.590 0.61 0.600

Flan-T5 CDF-RAG 0.10 0.79 0.760 0.77 0.765
Gym-RAG 0.16 0.70 0.640 0.66 0.650
RQ-RAG 0.15 0.66 0.600 0.61 0.615
Smart-RAG 0.16 0.64 0.590 0.60 0.605
Causal RAG 0.18 0.62 0.560 0.58 0.570
G-LLMs 0.20 0.60 0.540 0.56 0.550

CosmosQA

GPT-4 CDF-RAG 0.06 0.89 0.86 0.85 0.855
Gym-RAG 0.11 0.82 0.77 0.79 0.78
RQ-RAG 0.11 0.80 0.75 0.77 0.76
Smart-RAG 0.16 0.78 0.74 0.76 0.75
Causal RAG 0.17 0.76 0.71 0.73 0.72
G-LLMs 0.20 0.73 0.68 0.70 0.69

LLaMA 3-8B CDF-RAG 0.07 0.88 0.85 0.84 0.845
Gym-RAG 0.12 0.80 0.76 0.77 0.765
RQ-RAG 0.14 0.79 0.74 0.75 0.745
Smart-RAG 0.18 0.77 0.72 0.73 0.725
Causal RAG 0.18 0.75 0.70 0.71 0.705
G-LLMs 0.21 0.72 0.67 0.69 0.68

Mistral CDF-RAG 0.08 0.85 0.82 0.81 0.815
Gym-RAG 0.14 0.75 0.70 0.72 0.71
RQ-RAG 0.15 0.74 0.68 0.70 0.69
Smart-RAG 0.18 0.72 0.66 0.68 0.67
Causal RAG 0.20 0.70 0.63 0.66 0.645
G-LLMs 0.22 0.68 0.60 0.63 0.615

Flan-T5 CDF-RAG 0.10 0.84 0.80 0.79 0.795
Gym-RAG 0.15 0.73 0.68 0.70 0.69
RQ-RAG 0.16 0.72 0.66 0.68 0.67
Smart-RAG 0.19 0.70 0.64 0.66 0.65
Causal RAG 0.21 0.68 0.61 0.64 0.625
G-LLMs 0.24 0.66 0.59 0.61 0.60

Table 5: Quality Metrics of CDF-RAG across models
and methods. HR = Hallucination Rate, F1 = F1 Score.

Dataset Model Method HR Acc. Prec. Rec. F1

MedQA

GPT-4 CDF-RAG 0.05 0.92 0.890 0.91 0.900
Gym-RAG 0.12 0.83 0.760 0.78 0.770
RQ-RAG 0.13 0.82 0.745 0.77 0.755
Smart-RAG 0.15 0.81 0.730 0.76 0.745
Causal RAG 0.17 0.79 0.710 0.74 0.725
G-LLMs 0.21 0.76 0.680 0.71 0.695

LLaMA 3-8B CDF-RAG 0.07 0.89 0.860 0.88 0.870
Gym-RAG 0.11 0.79 0.735 0.75 0.740
RQ-RAG 0.13 0.78 0.720 0.74 0.730
Smart-RAG 0.15 0.77 0.705 0.72 0.710
Causal RAG 0.17 0.75 0.675 0.69 0.680
G-LLMs 0.20 0.72 0.640 0.66 0.650

Mistral CDF-RAG 0.08 0.88 0.845 0.87 0.855
Gym-RAG 0.14 0.78 0.720 0.74 0.730
RQ-RAG 0.16 0.77 0.705 0.73 0.715
Smart-RAG 0.18 0.76 0.690 0.71 0.700
Causal RAG 0.20 0.74 0.665 0.68 0.670
G-LLMs 0.23 0.71 0.630 0.65 0.640

Flan-T5 CDF-RAG 0.11 0.84 0.800 0.82 0.810
Gym-RAG 0.17 0.73 0.670 0.69 0.680
RQ-RAG 0.19 0.72 0.655 0.68 0.665
Smart-RAG 0.21 0.71 0.640 0.66 0.650
Causal RAG 0.23 0.69 0.615 0.64 0.625
G-LLMs 0.26 0.67 0.590 0.62 0.605

MedMCQA

GPT-4 CDF-RAG 0.04 0.94 0.910 0.93 0.920
Gym-RAG 0.13 0.78 0.735 0.75 0.740
RQ-RAG 0.15 0.76 0.720 0.73 0.725
Smart-RAG 0.18 0.74 0.700 0.71 0.705
Causal RAG 0.21 0.72 0.670 0.69 0.680
G-LLMs 0.25 0.68 0.635 0.66 0.650

LLaMA 3-8B CDF-RAG 0.08 0.90 0.870 0.91 0.890
Gym-RAG 0.13 0.77 0.720 0.74 0.730
RQ-RAG 0.15 0.75 0.705 0.72 0.715
Smart-RAG 0.18 0.73 0.685 0.70 0.690
Causal RAG 0.20 0.71 0.660 0.68 0.670
G-LLMs 0.24 0.68 0.625 0.65 0.640

Mistral CDF-RAG 0.09 0.88 0.850 0.89 0.870
Gym-RAG 0.14 0.76 0.710 0.73 0.720
RQ-RAG 0.16 0.74 0.695 0.71 0.700
Smart-RAG 0.19 0.72 0.670 0.69 0.680
Causal RAG 0.22 0.70 0.645 0.67 0.655
G-LLMs 0.26 0.66 0.610 0.63 0.620

Flan-T5 CDF-RAG 0.12 0.85 0.810 0.84 0.825
Gym-RAG 0.18 0.72 0.680 0.70 0.690
RQ-RAG 0.20 0.70 0.660 0.68 0.670
Smart-RAG 0.23 0.68 0.635 0.66 0.650
Causal RAG 0.26 0.66 0.610 0.63 0.620
G-LLMs 0.29 0.63 0.580 0.60 0.590



The consistent superiority of CDF-RAG across1166

both open-domain (e.g., CosmosQA) and domain-1167

specific (e.g., MedQA) datasets indicates its robust-1168

ness in both commonsense and biomedical reason-1169

ing tasks. On MedMCQA, for instance, CDF-RAG1170

with GPT-4 achieves an F1 of 0.920 and HR of1171

0.04—substantially outperforming Gym-RAG (F11172

= 0.740, HR = 0.13) (et al., 2025) and RQ-RAG1173

(F1 = 0.725, HR = 0.15) (Chan et al., 2024).1174

CDF-RAG’s performance gains stem from three1175

complementary innovations. First, causal graph1176

retrieval introduces directional constraints and en-1177

ables multi-hop traversal over verified cause-effect1178

pairs, outperforming semantic or correlation-based1179

retrieval methods. Second, RL-guided query re-1180

finement uses a PPO-trained agent to dynamically1181

expand, simplify, or decompose queries based on1182

causal depth and retrieval feedback, improving1183

query intent alignment. Third, causal verifica-1184

tion applies post-generation consistency checks in-1185

spired by counterfactual reasoning (Pearl, 2009) to1186

detect unsupported or inverted causal statements1187

and regenerate outputs accordingly. By jointly1188

leveraging these components in a closed feed-1189

back loop, CDF-RAG preserves both semantic and1190

causal alignment across the entire RAG pipeline,1191

yielding more consistent, accurate, and trustworthy1192

outputs.1193

RQ-RAG (Chan et al., 2024) enhances query1194

clarity via rewriting and decomposition but lacks1195

structural guidance or post-generation validation.1196

Gym-RAG (et al., 2025) trains reward models to1197

optimize process-level behavior but does not in-1198

tegrate causal priors or hallucination mitigation.1199

SmartRAG (Gao et al., 2024) performs joint op-1200

timization across retrieval and generation using1201

RL, but still relies on semantic-level retrieval, mak-1202

ing it susceptible to spurious correlations. Causal1203

Graph RAG (Samarajeewa et al., 2024) and Causal1204

Graphs Meet Thoughts (Luo et al., 2025) incor-1205

porate causality via vector embeddings and sum-1206

marization heuristics. However, their extraction1207

methods are noisy, graph traversal is not adaptive,1208

and there is no RL optimization or hallucination1209

correction. G-LLMs represent graph-augmented1210

models that lack causal reasoning, making them1211

insufficient for multi-hop logical chains.1212

CDF-RAG is distinguished by its holistic inte-1213

gration of causally grounded retrieval, RL-based1214

query adaptation, and hallucination-aware post-1215

verification, enabling superior factuality and rea-1216

soning depth across QA tasks.1217

In contrast, Gym-RAG and RQ-RAG demon- 1218

strate strong but lower performance due to their 1219

reliance on process supervision and query rewrit- 1220

ing respectively. While these methods improve 1221

retrieval quality and answer coherence, they lack 1222

explicit causal validation. RQ-RAG refines am- 1223

biguous queries through rewriting and decomposi- 1224

tion, but fails to enforce causal entailment in the 1225

retrieved or generated content. Gym-RAG benefits 1226

from reward-guided search trajectories but does 1227

not incorporate structural causal priors or halluci- 1228

nation mitigation. This leads to higher HR and 1229

slightly lower precision and recall compared to 1230

CDF-RAG. Smart-RAG performs competitively 1231

with a lightweight joint RL framework that learns 1232

when to retrieve and when to generate. However, it 1233

lacks structured causal graph grounding and post- 1234

hoc verification, making it prone to hallucinations 1235

and inconsistent multi-hop reasoning. Similarly, 1236

Causal RAG utilizes causal vector graphs but 1237

depends on weak summarizer-based pair extrac- 1238

tion, leading to noisy graph structures and unstable 1239

downstream performance. 1240

Finally, G-LLMs consistently lag behind due to 1241

their reliance on static semantic graphs or unstruc- 1242

tured correlation-based retrieval. These models 1243

lack query adaptation, causal reasoning, and hallu- 1244

cination correction—all of which are essential for 1245

high-quality answers in complex QA tasks. This 1246

explains their lower precision, recall, and F1 scores 1247

across all datasets in Table 4 and Table 5, and justi- 1248

fies the significant performance gains achieved by 1249

CDF-RAG. 1250

B.4.2 Case Study: End-to-End Causal 1251

Answering with CDF-RAG 1252

To illustrate how CDF-RAG operates end-to-end, 1253

we present a complete walkthrough in Prompt 1254

Box B.4.2. Given the vague user query, "Why 1255

do people get sick from poor living conditions?", 1256

the RL-trained query refinement agent selects a 1257

Decompose strategy and rewrites the input into 1258

three causally grounded sub-questions. These sub- 1259

queries guide both structured and unstructured re- 1260

trieval components. 1261

The structured retriever accesses a Neo4j causal 1262

graph and surfaces multi-hop, directionally valid 1263

causal chains, such as Poor Housing → Mold 1264

Exposure → Asthma. In parallel, a dense retriever 1265

fetches semantically similar passages from a vector 1266

database. The LLM then generates a comprehen- 1267

sive explanation using both sources, linking poor 1268



housing, sanitation, and overcrowding to health1269

outcomes. This response is passed through the1270

causal verifier, which confirms the alignment of1271

each claim with the retrieved causal graph and1272

textual evidence. As shown in the final output,1273

CDF-RAG produces a response that is not only1274

accurate and coherent but also causally consistent1275

and evidence-backed. This example highlights how1276

each module in the pipeline—query refinement,1277

graph-based retrieval, generation, and hallucination1278

detection—contributes to grounded and trustwor-1279

thy QA.1280

End-to-End CDF-RAG Workflow Example

Input Query:
Why do people get sick from poor
living conditions?

Step 1: Query Refinement (RL Agent)
Refinement Type: Decompose
Refined Subqueries:

• How does poor housing quality cause
chronic illness?

• How does lack of sanitation contribute
to disease?

• How does overcrowding affect respira-
tory health?

Step 2: Structured Retrieval (Causal
Graph)
Retrieved Causal Paths from Neo4j:

• Poor Housing → Mold Exposure →
Asthma

• Poor Sanitation → Water Contamina-
tion → Diarrheal Disease

• Overcrowding → Airborne Transmis-
sion → Respiratory Infection

Step 3: Dense Retrieval (Vector
Database)
Top Supporting Passages:

• “Exposure to indoor mold from poor
housing is strongly linked to asthma in
urban populations.”

• “Contaminated water due to poor sani-
tation infrastructure remains a leading
cause of diarrhea globally.”

1281

• “Airborne diseases such as tuberculosis
are more likely to spread in densely
crowded living environments.”

Step 4: Initial Answer Generation (LLM)
Generated Answer:
Poor living conditions lead to
illness through multiple causal
pathways. Poor housing causes
mold exposure, increasing asthma
risk. Lack of sanitation
results in contaminated water,
causing diarrhea. Overcrowding
spreads airborne infections like
tuberculosis.

Step 5: Causal Verification (LLM Veri-
fier)
Result: No hallucinations detected. All
claims supported by retrieved causal paths
and documents.

Final Output:
Poor living conditions contribute
to illness through overlapping and
well-established causal pathways.
Poor housing quality leads to
mold and inadequate ventilation,
increasing respiratory illness
risk. Inadequate sanitation causes
waterborne diseases like diarrhea.
Overcrowding facilitates the
transmission of airborne illnesses
such as tuberculosis. Together,
these conditions elevate disease
burdens in vulnerable populations.

1282
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