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Abstract
Message passing neural networks (MPNNs) operate on graphs by exchanging
information between neigbouring nodes. MPNNs have been successfully applied
to various node-, edge-, and graph-level tasks in areas like molecular science,
computer vision, natural language processing, and combinatorial optimization.
However, most MPNNs require training on large amounts of labeled data, which
can be costly and time-consuming. In this work, we explore the use of various
untrained message passing layers in graph neural networks, i.e. variants of popu-
lar message passing architecture where we remove all trainable parameters that
are used to transform node features in the message passing step. Focusing on link
prediction, we find that untrained message passing layers can lead to competitive
and even superior performance compared to fully trained MPNNs, especially in
the presence of high-dimensional features. We provide a theoretical analysis of
untrained message passing by relating the inner products of features implicitly
produced by untrained message passing layers to path-based topological node
similarity measures. As such, untrained message passing architectures can be
viewed as a highly efficient and interpretable approach to link prediction.

1 Introduction

Graph neural networks (GNNs) are a powerful class of machine learning models that can learn from
graph-structured data, such as social networks, molecular graphs, and knowledge graphs. GNNs
have emerged as an important tool in the machine learning landscape, due to their ability to model
complex relationships and dependencies within data with applications in a variety of fields where data
exhibits a complex topology that can be captured in a graph. This is shown by a multitude of studies,
including [1–5], which highlight the versatility and adaptability of GNNs for machine learning tasks
across a range of fields.

One of the key concepts underlying GNNs is message passing (MP), as introduced by Gilmer et al.
[6], which operates by propagating and aggregating information between nodes in the graph, using
message and update functions possibly with learnable parameters. However, designing and training
effective GNNs can be challenging, as they may suffer from issues such as over-smoothing or
over-parameterization, and since training can be computationally demanding.

In order to address these shortcomings recent efforts have concentrated on finding simplified architec-
tures that are both more interpretable and easier to optimize. In this work, we aim to complement
existing works by analysing simplified and untrained architectures from the perspective of link
prediction [7]. Link prediction is an important task for graph learning algorithms with applications
such as recommender systems, spam mail detection, drug repurposing, and many more [7]. Moreover,
we show that link prediction can also provide a complementary perspective for the theoretical analysis
of GNNs [8, 9].
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In formulating Untrained Message Passing (UTMP) layers, we follow an approach similar to that
of Simplified Graph Convolutional Networks introduced by Wu et al.[10]. This approach simplifies
GNN architectures by removing trainable parameters and nonlinearities resulting, in an architecture
that can be clearly separated into two components: an untrained message passing/feature propagation
steps followed by a linear classifier resulting in models that scale to larger data sets while being
naturally interpretable.

Recent studies underscore the potential of untrained MPNNs and GNNs in approximating graph
measures and identifying robust untrained subnetworks. For instance, [11] demonstrates that MPNNs
with random weights can approximate first-order common neighbor measures, supporting the fea-
sibility of training-free GNN models. Complementary research has leveraged sparsity to discover
effective untrained subnetworks in GNNs, mitigating issues like over-smoothing and enabling deeper
architectures with increased robustness to input perturbations [12]. Building on these foundations,
our study shows that UTMP layers, derived from widely-used MPNN frameworks, compute common
neighbor measures exactly to arbitrary order, enhancing the precision of these untrained models.
Untrained GNNs have also shown promising results in graph classification [13], further supporting
the practical viability of training-free architectures. DotHash [14] aligns with these objectives by
focusing on set similarity measures, although it does not explore broader connections to GNNs or
UTMPs beyond link prediction. Recently, other works have expanded training-free GNN applications
to semi-supervised and transductive node classification in text-attributed graphs [15, 16], reflecting a
growing interest in training-free methods across diverse tasks.

We base our analysis on untrained versions of four widely used MP architectures, namely Graph
Convolutional Networks (GCN)[17], SAGE [18], GraphConv [19] and GIN [20]. We test these
UTMP layers on a variety of datasets and find that for the large majority of datasets, untrained
message passing layers actually result in higher link prediction performances than their fully trained
counterparts while being highly interpretable and much easier to optimize.

In our theoretical analysis we establish a direct connection between features produced by UTMP
layers and path based measures. Path based methods and measures can be seen as a way of capturing
the indirect connection strength between node pairs in the absence of a direct link connecting them
and consequently are widely used in traditional link prediction methods [21, 22] as well as the state
of the art link prediction methods [7, 23]. Our theoretical analysis is based on the assumption that
initial node features are orthonormal which covers widely used initialization schemes such as as
one-hot encodings and high dimensional random features, and also holds approximately for many
empirical data sets with high dimensional features and provide new insights into the effectiveness of
the widely used initialization schemes of one-hot encodings and high dimensional random features in
graph representation learning. Our results show that untrained versions of message passing layers are
highly amenable to theoretical analysis and hence could potentially serve as an general ansatz for the
theoretical analysis of GNNs in settings beyond link prediction.

2 Message Passing Architectures
We start by introducing the notation used throughout the text. Let G(V,E) be an undirected graph
with vertex set V , edges E ⊆ V × V . We denote the adjacency matrix of the graph as A and define
Ã := A+ I, i.e. the adjacency matrix of G that includes all self-loops. We use N (v) to denote the
neighborhood of a node v and use Ñ (v) := N (v) ∪ {v}. Similarly, we denote the degree of a node
v as d(v) and d̃(v) = d(v) + 1. Although we restrict our discussion to undirected and unweighted
graphs the generalization of our definitions and results to weighted graphs is straightforward. Prior to
defining UTMP layers, we first review the GNN architectures these layers are based on.

Graph Convolutional Networks [17]. GCNs were introduced as a scalable approach for semi-
supervised learning on graph-structured data. GCNs are based on an efficient variant of convolutional
neural networks which operate directly on graphs. The MP layer of GCN is given by: h

(l)
v =

W (l),⊤ ∑
u∈Ñ (v)

1√
d̃ud̃v

h
(l−1)
u where h

(l)
v is the feature vector of node v at step l and W (l),⊤ is the

transposed weight matrix for this layer.

GraphSAGE [18]. GraphSAGE is another widely used of GNN architecture that can use different
types of functions to aggregate information from neighboring nodes. We use the following version of
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the SAGE layer: h(l)
v = W

(l)
1 · 1

d̃v

∑
u∈Ñ (v) h

(l−1)
u , which we found to produce superior results for

link prediction.

GIN [20]. The Graph Isomorphism Network Convolution (GIN) is a simple architecture that is
provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman
graph isomorphism test. The mathematical formula for GIN is as follows: h(l)

v = Θ
(
(1+ ϵ) ·h(l−1)

v +∑
u∈N (v) h

(l−1)
u

)
, where Θ denotes a Multilayer Perceptron after each message passing layer.

GraphConv [19]. GraphConv is a generalization of GNNs, designed to take higher-order graph
structures at multiple scales into account. The MP layer of GraphConv is defined as follows:
h
(l)
v = W

(l)
1 h

(l−1)
v +W

(l)
2

∑
u∈N (v) h

(l−1)
u , where W

(l)
{1,2} are learned weight matrices.

2.1 Untrained MP layers

We now define the untrained counterparts of the four MP architectures introduced in the previous
section by eliminating non-linearities and replacing all learnable components with identity matrices.
Resulting in the following MP functions:

UTGCN: h(l)
v =

∑
u∈Ñ (v)

1√
d̃ud̃v

h
(l−1)
u

UTSAGE: h(l)
v = 1

d̃v

∑
u∈Ñ (v) h

(l−1)
u

UTGIN/UTGraphConv: h(l)
v =

∑
u∈Ñ (v) h

(l−1)
u

Where we set ϵ = 0 for GINs which results in the same formula for UTGIN and UTGraphConv.

The untrained message passing layers can also be expressed in matrix form: H(l) = SH(l−1) =
SlH(0), where H(0) ∈ Rn×d is the initial feature matrix, and H(l) the feature matrix after l iterations
of message passing. Following, the definitions of UTMP layers above we have S = D̃−1/2ÃD̃−1/2

for UTGCN, S = D̃−1Ã for UTSAGE and S = Ã for UTGIN, where D̃ is the degree matrix. The
generalization of UTMP layers to undirected weighted graphs can be obtained by simply replacing
the relevant matrices with their weighted counterparts.

Simplified architectures. Following the construction of Wu et al. for the case of node classification
we add a final trained linear layer before the final dot product resulting in an architecture where the
final node features are given by: H(l) = ΘSlH(0), where Θ is the learned weight matrix of the linear
layer. We refer to such architectures as ’simplified’ in accordance with [10] and include an ’S’ in the
abbreviations of these models, e.g. SGCN.

In the case of link prediction features produced by UTMP layers can also be used to construct fully
untrained architectures that only consist of feature propagation steps followed by an inner product. In
practice we found that such architectures based solely on UTMP layers do work well showing that
UTMP layers produce highly informative features for link prediction.

2.2 UTMP layers and path based measures

In the following we show that the inner products of features resulting from untrained message
passing layers can be related to path based measures. Such path based measures quantify the indirect
connection strength between node pairs in the absence of a direct link connecting the nodes. For
this we will assume that initial feature vectors are pairwise orthonormal i.e. < h

(0)
v , h

(0)
u >= δu,v.

Although the condition of orthonormality might seem quite restrictive at first glance it applies in many
practical settings, though in some cases only approximately. High dimensional features of empirical
data sets also show similar characteristics to their random counterparts. For instance, empirical feature
vectors of randomly selected node pairs tend to be approximately orthogonal, although features of
connected node pairs can be highly correlated [24], as can be verified experimentally (see Sec.E).

A path of length l is defined as a sequence of l + 1 vertices (v0, v1 . . . vl) such that (vi, vi+1) ∈ E
for all 0 ≤ i < l. We denote the space of a set of all paths of length l between u and v as P l

uv. The
number of paths of length l between any u and v is given by the lth power of the adjacency matrix i.e.
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|P l
uv| = Ãl

uv . Similarly, paths of length l between vertices u and v also determine the probability of
a random walk starting at u reaching v which in matrix form is given by P (u

l−→ v) = (D̃−1Ã)luv .

Now we consider inner products of features after l iterations of message passing: < h
(l)
u , h

(l)
v >=

(SlH(0)H(0)⊤(Sl)⊤)uv. For orthonormal features we have H(0)H(0)⊤ = I and the inner product
reduces to: < h

(l)
u , h

(l)
v >= (Sl(Sl)⊤)uv. For UTGCN we have S = D̃−1/2ÃD̃−1/2 and the inner

product reduces to: < h
(l)
u , h

(l)
v >= 1√

d̃(u)d̃(v)

∑
p∈P 2l

uv

∏
i∈[p]

1
d̃i
, where [p] denotes the path p

with the first and last vertices removed. This in turn is equivalent to
√
P (u

2l−→ v)P (v
2l−→ u) i.e.

the geometric mean of the probabilities that a random walk starting at either u or v to reaches
the other in 2l steps. For UTSAGE we have S = D̃−1Ã and the inner product is given by:
< h

(l)
u , h

(l)
v >=

∑
p∈P 2l

uv

∏
i∈p−m(p)

1
d̃i
, where m(p) is the midpoint of the path p. This is equivalent

to < h
(l)
u , h

(l)
v >=

∑
i P (u

l−→ i)P (v
l−→ i) and hence corresponds to the probability that two

simultaneous random walks starting at u and v, respectively, meet after l steps at some midpoint.
Finally, for UTGIN we have S = Ã and < h

(l)
u , h

(l)
v >= |P 2l

uv|. The relation between UTMP layers
an other path based measures is discussed in appendix (Sec A).

3 Experiments and Results
We evaluate GNN architectures on a variety data sets summarized in Table 2. The data sets cover
both attributed graphs where nodes have high-dimensional features as well as graphs without node
features. Data sources and summary statistics of the data sets can be found in Table 2.

Table 1: Link Prediction accuracy for attributed networks as measured by ROC-AUC. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers.

Models Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP
GCN 92.82 ± 0.83 91.67 ± 1.14 97.87 ± 0.18 94.67 ± 0.51 97.54 ± 0.09 94.22 ± 0.77 96.63 ± 0.12
SGCN 95.3 ± 0.68 96.22 ± 0.4 98.6 ± 0.07 96.82 ± 0.43 97.94 ± 0.16 95.9 ± 0.77 97.1 ± 0.14
UTGCN 93.82 ± 0.68 96.0 ± 0.24 95.72 ± 0.12 93.93 ± 0.45 94.29 ± 0.24 92.74 ± 0.81 94.91 ± 0.32
SAGE 91.41 ± 0.38 90.78 ± 1.79 97.7 ± 0.08 94.38 ± 0.58 95.6 ± 0.18 93.58 ± 0.87 96.16 ± 0.25
SSAGE 94.47 ± 0.64 95.75 ± 0.29 98.23 ± 0.1 95.74 ± 0.6 95.88 ± 0.22 95.14 ± 0.9 96.29 ± 0.12
UTSAGE 92.77 ± 0.5 96.07 ± 0.43 96.85 ± 0.13 93.45 ± 0.81 88.12 ± 0.29 91.78 ± 0.85 93.36 ± 0.31
GIN 91.65 ± 0.73 90.62 ± 1.17 97.69 ± 0.13 94.54 ± 0.32 96.27 ± 0.13 92.88 ± 0.87 96.11 ± 0.25
GraphConv 92.06 ± 0.67 91.24 ± 0.32 97.94 ± 0.11 95.34 ± 0.25 96.39 ± 0.15 92.7 ± 0.73 96.09 ± 0.23
SGIN 92.87 ± 0.37 93.6 ± 0.48 97.82 ± 0.11 95.26 ± 0.41 96.37 ± 0.23 94.13 ± 0.4 95.85 ± 0.11
UTGIN 85.45 ± 1.28 85.7 ± 0.82 88.93 ± 0.35 86.86 ± 0.98 88.76 ± 0.25 91.11 ± 0.93 92.25 ± 0.29

Results for attributed graphs are given in Table 1 where we find that the simplified model SGCN
performs best on all attributed datasets, with performance comparable to more sophisticated state-of-
the-art models [7, 23, 25] (See Table 9 in the Appendix) . Moreover, we find that in general simplified
models perform better than or on par with their fully trained counterparts on almost all datasets,
with the single exception of GIN on DBLP. We also find that the fully untrained (UT) architectures
already provide a very good baseline and some cases even outperform fully trained versions. This
demonstrates that the raw features produced by UTMP layers, which the simplified models are trained
on, are already highly informative for link prediction in accordance with our theoretical results. The
fully untrained (UT) models can be computed very efficiently via sparse matrix multiplication.

4 Conclusion
In this work, we explored the application of untrained message passing layers to link prediction.
Our experimental evaluation shows that simplifying GNNs architectures by eliminating trainable
parameters and non-linearities not only enhances the link prediction performance of GNNs, but
also improves their interpretability and offer a computationally efficient alternative to trained Mp
layers counterparts that naturally scales to large graphs while producing results comparable to the
state-of-the-art. Link prediction also offers a complementary theoretical perspective, analytically
establishing a link UTMP layers and path-based topological measures and widely used initialization
schemes such as random features and one-hot encodings.
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A Triadic closure and other path based measures
Triadic closure, also known as transitivity, refers to the tendency for nodes in real-world networks
to form connections if they share (many) common neighbors. As such triadic closure has been
widely studied as a mechanism that drives link formation in complex real-world networks [26, 27].
Moreover, node similarity measures that build on triadic closure in social networks have been used
for similarity-based link prediction algorithms [28].

Given a pair of nodes (u, v), the tendency of them to be connected due to triadic closure can
be quantified by simply counting the number of common neighbours between the two vertices
i.e. T (u, v) = |N(u) ∩ N(v)| which corresponds to l = 1 for UTGIN, assuming that u and
v are not connected in the graph as is customary in a link prediction scenario. In practice, one
might further want to account for the fact that in general nodes with higher degrees also have a
larger probability of having common neighbours, for instance by normalizing by the degrees, i.e.:
Td(u, v) = |N(u) ∩ N(v)|/d̃(u)d̃(v), which corresponds to l = 1 for UTSAGE. One can go one
step further and also take into account the degrees of the common neighbours themselves since high
degree nodes are by definition common neighbours of more node pairs, for instance by weighing
common neighbours according to their degree Tn(u, v) =

1√
d̃(u)d̃(v)

∑
i∈N(u)∩N(v)

1
d̃i

which in our

case corresponds to UTGCN with l = 1.

Our results also link UTMP layers to other topological similarity measures that are widely used
in link prediction heuristics such as the Adamic-Adar (AA) index [29], Resource Allocation (RA)
[30], the Katz index [31], rooted PageRank [32] and SimRank [33]. For instance the AA index,
given by AA(u, v) =

∑
i∈N(u)∩N(v)

1
log d̃i

, and RA(u, v) =
∑

i∈N(u)∩N(v)
1
d̃i

differ only slightly
from the triadic closure measures we obtained for UTMP layers. Similar results also hold for
other path based measures such as rooted PageRank, the Katz index and SimRank which can be
defined in terms of power series over paths of different lengths. For instance, SimRank similarity
between nodes u and v is defined as s(x, y) =

∑
l Puv(l)γ

l where Puv(l) is the probability that
two random walks starting at u and v meet after l steps and 0 < γ < 1 is a free parameter.
Similarly the Katz index is defined as Katz(u, v) =

∑
l A

l
uvγ

l and rooted PageRank is defined as

PR(u, v) = (1− γ)
∑

l
P (u

l−→v)+P (v
l−→u)

2 γl again with 0 < γ < 1 being a free parameter. Hence,
the Katz index is closely realted to UTGIN and rooted PageRank is closely related to UTGCN,
the main difference being that these measures also include paths of odd length which UTGIN and
UTGCN include only indirectly through the inclusion of self loops in their formulation.

B Dataset details
Summary statistics of the datasers are given in Tab 2.

C Experimental Setup
To ensure a fair comparison among models we maintain the same overall architectures across all
experiments where each trainable message passing layer is followed by an Exponential Linear Unit
(ELU) and the optimal number of layers for models is determined via hyperparameter search. Upon
completion of the message passing layers, we introduce a final linear layer for both trained and
simplified models. We also consider untrained (UT) models that do not include this final linear layer
and directly take the inner product between the propagated features of the source and target nodes
resulting in a parameter-free and hence fully untrained model.
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Table 2: Overview of the datasets, sources, and node features for attributed graphs (top group) used
in our experimental evaluation.

Dataset |V| |E| Features Metric
Cora small [34] 2,708 10,556 1,433 ROC-AUC
CiteSeer small [34] 3,327 9,104 3,703 ROC-AUC
Cora [35] 19,793 126,842 8,710 ROC-AUC
Cora ML [35] 2,995 16,316 2,879 ROC-AUC
PubMed [35] 19,717 88,648 500 ROC-AUC
CiteSeer [35] 4,230 10,674 602 ROC-AUC
DBLP [35] 17,716 105,734 1,639 ROC-AUC
NS [36] 1,461 2,742 - ROC-AUC
Celegans [37] 297 2,148 - ROC-AUC
PB [38] 1,222 16,714 - ROC-AUC
Power [37] 4,941 6,594 - ROC-AUC
Router [39] 5,022 6,258 - ROC-AUC
USAir [40] 332 2,126 - ROC-AUC
Yeast [41] 2,375 11,693 - ROC-AUC
E-coli [42] 1,805 15,660 - ROC-AUC

For each model, the optimal values of the learning rate, the number of layers, and hidden dimensions
are determined through an exhaustive search over the values given in Table 3). The optimal hyperpa-
rameters values for attributed and non-attributed datasets are given in Table 4 and Table 5, respectively.
We implement a three-fold cross-validation procedure to select the optimal hyperparameter values.

We use Adam [43] as an optimization function and employ binary cross entropy with logits as our
loss function. All datasets are transformed by normalizing the node features and randomly splitting
the dataset, with 10% allocated to the test set, 5% to the validation set, and the remainder to the
training set. Each model configuration is run 10 times, with the results averaged over these runs. Our
training and testing procedures are based on the methodology outlined in [44], where we perform
a new round of negative edge sampling for each training epoch. We limit the maximum number
of epochs to 10,000 and also incorporate an early stopping mechanism in our training process by
terminating training whenever there is no improvement in the validation set results over a span of 250
epochs.

For the simplified models we pre-compute node features corresponding to the untrained message
passing layers as these do not change during training. We use one-hot encoding as initial node
features for the non-attributed datasets. To ensure replicability of our results, we make our code
available online 2.

D Hyperparameter choices

All hyperparameter searches and experiments were conducted on a workstation with AMD Ryzen
Threadripper PRO 5965WX 24-Cores with 256 GB of memory and two Nvidia GeForce RTX 3090
Super GPU, and also AMD Ryzen 9 7900X 12-Cores with 64 GB of memory and an Nvidia GeForce
RTX 4080 GPU.

Table 3: The hyperparameter space for our experiments. It is worth noting that only the number of
MPNN layers applies to the untrained models.

Hyperparameter Values
Number of MPNN layers 1,2,3
Learning Rate 0.2, 0.1,0.01, 0.001, 0.0001
Hidden Dimensions 16, 64, 128

2https://zenodo.org/records/11237762
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Table 4: Optimal hyperparameter values for attributed datasets (MaxEpochs=10,000).
Cora small CiteSeer small Cora Cora ML PubMed CiteSeer DBLP

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.001 128 1 0.001 128 1 0.001 64 1 0.001 64 1 0.01 64 1 0.01 64 1 0.001 128 1
SGCN 0.001 64 1 0.001 128 1 0.001 128 1 0.001 128 2 0.001 128 1 0.001 128 2 0.2 128 2
UTGCN 2 2 2 2 2 3 2
SAGE 0.01 128 1 0.01 16 1 0.01 128 1 0.001 128 1 0.01 128 1 0.001 128 1 0.001 64 1
SSAGE 0.0001 128 1 0.0001 128 2 0.1 64 1 0.001 64 1 0.001 128 2 0.01 128 3 0.01 64 2
UTSAGE 2 2 2 2 2 2 2
GIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1
GraphConv 0.0001 64 1 0.0001 128 1 0.001 64 1 0.0001 128 1 0.0001 128 1 0.001 128 1 0.001 128 1
SGIN 0.001 64 1 0.0001 128 2 0.0001 128 1 0.001 64 1 0.01 128 1 0.0001 128 1 0.001 128 1
UTGIN 1 1 1 1 1 1 1

Table 5: Hyperparameter choices for each model in each of the non-attributed dataset.
NS Celegans PB Power Router USAir Yeast E-coli

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.01 64 3 0.001 128 1 0.01 128 2 0.001 64 3 0.2 128 3 0.001 128 2 0.01 64 3 0.1 128 1
SGCN 0.1 128 3 0.01 128 2 0.1 128 2 0.001 128 3 0.2 64 3 0.1 64 2 0.01 128 2 0.01 16 1
UTGCN 3 2 2 3 2 2 2 2
SAGE 0.01 64 2 0.01 128 2 0.01 128 2 0.01 64 3 0.2 16 1 0.01 64 1 0.01 64 2 0.01 128 1
SSAGE 0.01 128 1 0.01 16 2 0.01 128 1 0.001 128 3 0.001 64 3 0.1 64 2 0.001 128 1 0.01 128 1
UTSAGE 2 2 2 3 2 2 2 2
GIN 0.001 128 3 0.001 64 1 0.001 128 1 0.01 128 3 0.1 128 2 0.0001 128 2 0.001 128 1 0.01 128 1
GraphConv 0.001 128 1 0.0001 128 1 0.0001 64 1 0.0001 128 3 0.001 16 1 0.01 64 2 0.0001 64 1 0.01 64 1
SGIN 0.0001 128 2 0.01 128 1 0.2 64 1 0.0001 128 2 0.0001 128 1 0.1 64 1 0.001 128 1 0.001 64 1
UTGIN 2 1 1 3 2 2 2 1

E Orthogonality of node features in empirical data sets
The distribution of inner products of initial node features for attributed datasets is given in Figure
1. We find that the inner products of feature vectors of randomly selected node pairs are in general
close to zero. Note that, the feature vectors of all datasets are non-negative as they represent word
occurrences. As expected, for connected nodes the inner products of feature vectors tend to be higher
reflecting the increased feature similarity.

In the case of non-attributed graphs (Table 10) we observe that models based on UTMP layers achieve
the highest score on 6 out of 8 datasets, with the exceptions being NS and Router datasets. Moreover,
we find that the fully untrained UTGCN model outperforms all other models on the ’Celegans’, ’PB’,
’USAir’, ’E-coli’ which can be attributed to the reduced dimension of the learned features that come
with the linear layers present in the simplified and fully trained models. In contrast to the trained
variants UTGCN maintains the higher initial dimensionality of the features and hence can more
efficiently discriminate between local neighborhoods by maintaining orthogonality. Furthermore,
as we used one hot encodings as initial node features for the unattributed datasets orthonormality
is satisfied exactly and therefore there is a one-to-one correspondence between node similarities
produced by UTGCN and path based topological measures.

F Additional experimental results

Table 6: Link Prediction accuracy for non-attributed networks as measured by ROC-AUC. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers.

Models NS Celegans PB Power Router USAir Yeast E-coli
GCN 95.22 ± 1.8 87.98 ± 1.45 92.91 ± 0.3 74.68 ± 2.67 91.42 ± 0.44 93.56 ± 1.53 94.49 ± 0.61 98.48 ± 0.22
SGCN 95.17 ± 0.96 89.38 ± 1.42 93.86 ± 0.42 81.08 ± 1.2 77.51 ± 1.85 94.08 ± 1.43 95.74 ± 0.33 98.32 ± 0.2
UTGCN 94.76 ± 1.03 91.47 ± 1.4 94.49 ± 0.38 72.97 ± 1.27 61.68 ± 1.01 94.81 ± 1.1 94.0 ± 0.43 99.37 ± 0.1
SAGE 95.9 ± 0.86 87.32 ± 1.61 92.94 ± 0.57 74.17 ± 2.03 62.6 ± 3.3 93.37 ± 1.2 94.43 ± 0.67 98.22 ± 0.13
SSAGE 95.21 ± 1.09 88.05 ± 1.8 91.66 ± 0.43 81.84 ± 1.49 70.1 ± 1.3 92.25 ± 1.45 95.72 ± 0.31 93.59 ± 0.14
UTSAGE 94.72 ± 1.07 84.48 ± 1.87 86.46 ± 0.64 72.96 ± 1.26 61.47 ± 0.99 87.94 ± 1.58 93.45 ± 0.45 85.56 ± 0.37
GIN 95.24 ± 1.22 86.74 ± 2.3 93.04 ± 0.99 71.97 ± 2.3 87.84 ± 3.05 92.14 ± 0.98 94.7 ± 0.45 98.43 ± 0.24
GraphConv 95.73 ± 1.4 86.64 ± 2.31 92.99 ± 0.87 74.31 ± 1.93 80.84 ± 1.28 91.16 ± 1.76 94.94 ± 0.38 98.32 ± 0.22
SGIN 95.48 ± 0.88 88.31 ± 1.3 93.72 ± 0.48 73.73 ± 1.69 72.83 ± 1.28 93.02 ± 1.37 95.63 ± 0.49 97.68 ± 0.2
UTGIN 94.62 ± 1.05 86.48 ± 1.29 92.77 ± 0.51 72.93 ± 1.27 61.67 ± 1.02 93.44 ± 0.84 92.94 ± 0.41 95.81 ± 0.22

G Increased numbers of layers
Finally, we also examine the effect of increasing the number of UTMP layers using fully untrained
(UT) models. Our results in Fig.2 indicate that, in general, UTGCN and UTSAGE maintain their
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Figure 1: The distribution of feature dot products for pairs of connected and random node pairs for
the attributed datasets.

performance as the number of layers is increased whereas the performance of UTGIN decreases
sharply with more layers. This behavior can be attributed to the lack of degree based normalization
in the formulation of GIN (see Sec.2.2) which leads UTGIN to be dominated by longer paths, and
hence longer distance correlations, as the number of layers increases.
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Figure 2: The effect of increased layer size for fully untrained models.
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H Runtime Analysis and Training Efficency

Efficiency of SMPNNs. While we allocated a very generous limit of 10,000 epochs for training
models in the main paper to ensure models can reach their best possible performance in order to
compare the computational efficiency of the simplified models to their fully trained counterparts we
also consider an experimental setting where we restrict the maximum number of training epochs
to 100. We find that simplified models achieved convergence even for larger learning rates and
considerably faster than their fully trained models. Even when constrained to 100 training epochs
simplified models maintain scores that are almost identical to those presented in Table 8, while fully
trained architectures suffer from the increased learning rates and require in general more epochs to
converge. This leads to training efficiency gains similar to those reported by [10] in the case of node
classification.

In Table 8, it is evident that the simplified models consistently outperform the fully trained models
across all datasets by a considerable margin. Furthermore, as demonstrated in Table 1, the fully
trained models nearly achieve their peak accuracy within just 100 epochs, indicating that extended
training offers minimal additional benefit. This also implies that the Simplified models are more
efficient in terms of both time and resources required for training.

The hyperpameter space used for the computational efficiency experiments is the same as in Table4,
except that we only use 100 epochs.

Efficiency of UTMP. In Figure 3, we presented the training times for both simplified and fully
trained models. The prediction times for UT models are excluded, as they require only a single
"epoch" for making the predictions, unlike other methods that necessitate prolonged training periods.
This characteristic of UT models leads to a substantial reduction in both time consumption and
electricity costs.

Despite a minor trade-off in accuracy on attributed graphs, UT models frequently outperform in terms
of accuracy on unattributed graphs across numerous datasets. In practical applications, the efficiency
of UTMP models could translate to significant savings in energy consumption and hence environ-
mental footprint which can outweigh marginal improvements in accuracy in settings where either
computational resources are limited or reducing energy consumption/cost and environmental impact
of models take priority. This makes UT models particularly appealing for large-scale applications
where operational efficiency and cost reduction are critical. Additionally, the societal impact of using
UT models includes a lower environmental footprint due to reduced energy consumption, aligning
with sustainable and environmentally friendly practices.

Table 7: Optimal hyperparameter values for attributed datasets for MaxEpochs=100.
Cora small CiteSeer small Cora Cora ML PubMed CiteSeer DBLP

lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl. lr. hd. nl.
GCN 0.01 128 1 0.01 128 1 0.01 64 1 0.01 64 1 0.01 64 1 0.01 64 1 0.01 128 1
SGCN 0.1 128 1 0.1 128 2 0.01 128 1 0.01 128 1 0.01 128 1 0.01 64 2 0.1 128 2
SAGE 0.01 128 1 0.01 128 1 0.01 64 1 0.01 64 1 0.01 128 1 0.01 128 1 0.01 128 1
SSAGE 0.2 128 2 0.1 128 2 0.01 128 1 0.01 128 1 0.01 128 1 0.01 64 1 0.1 128 2
GIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.01 64 1 0.01 64 1
GraphConv 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.01 128 1 0.001 128 1
SGIN 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1 0.001 128 1

Table 8: Link Prediction accuracy for attributed networks as measured by ROC-AUC. Red values
correspond to the overall best model for each dataset, and blue values indicate the best-performing
model within the same category of message passing layers. The models are trained only for MaxE-
pochs = 100.

Models Cora small CiteSeer small Cora Cora ML PubMed CiteSeer DBLP
GCN 91.44 ± 1.31 91.48 ± 0.67 96.45 ± 0.29 93.95 ± 0.54 96.56 ± 0.22 93.48 ± 0.81 95.57 ± 0.18
SGCN 94.58 ± 1.27 96.4 ± 0.97 97.99 ± 0.06 96.75 ± 0.3 97.1 ± 0.17 95.41 ± 0.76 96.95 ± 0.1
SAGE 90.2 ± 1.67 90.34 ± 1.87 95.42 ± 0.22 92.53 ± 0.69 92.68 ± 0.5 91.29 ± 1.32 94.36 ± 0.32
SSAGE 93.98 ± 1.08 95.77 ± 1.02 97.72 ± 0.08 95.61 ± 0.38 94.52 ± 0.18 94.48 ± 0.96 96.34 ± 0.12
GIN 90.39 ± 0.6 88.27 ± 0.61 95.38 ± 0.29 93.75 ± 0.24 94.84 ± 0.28 90.94 ± 0.72 94.71 ± 0.26
GraphConv 91.57 ± 1.33 90.79 ± 0.91 96.68 ± 0.16 94.56 ± 0.48 95.17 ± 0.3 92.04 ± 0.96 94.94 ± 0.11
SGIN 92.72 ± 1.23 93.11 ± 0.25 97.29 ± 0.08 95.43 ± 0.27 95.95 ± 0.21 93.18 ± 0.56 95.84 ± 0.15
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Figure 3: Average runtimes (in seconds) for training and inference for attributed data sets.

Figure 3 illustrates that the simplified models, when trained for extended periods, generally achieve
higher accuracy and converge faster to their optimal values compared to fully trained models. Notably,
when trained for a shorter duration (100 epochs), the simplified models not only outperform the fully
trained counterparts by a larger margin but also require considerably fewer epochs to reach relatively
high accuracies. Additionally, the accuracy gap between shorter and longer training durations is
smaller for simplified models than for fully trained models.

I Comparison to state-of-the-art
In Table 9 we compare UTMP architectures to three state-of-the-art link prediction methods, namely
SEAL [7], WalkPool [25] and NBFNet [23] on attributed datasets. Compared to SEAL SGCN
achieves higher scores on all 3 datasets. While NBFNet outperforms SGCN on Cora and PubMed by
a small margin SGCN achieves a significantly higher score on CiteSeer. For WalkPoll the results on
Cora and Citeseer are within one standard deviation of each other while WalkPool does better on
PubMed.

For the unattributed datasets (see Table 10) we find that UTGCN has the highest overall score for
E-coli while being within a standard deviation of the other methods on Celegans with WalkPool
performing best on the remaining datasets. Note that WalkPool can be set up with different base
methods as can be seen in Table 9 and hence using SGCN or UTGCN as a base method for WalkPool
could potentially lead to performance improvements, which however is beyond the scope of this
paper. It should also be noted that SGCN is considerably more efficient than all three methods, which
rely either on subgraph extraction (SEAL and WalkPool) or learning explicit path representations
(NBFNet).
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Table 9: Link Prediction accuracy for attributed networks as measured by ROC-AUC compared to
state-of-the-art models SEAL and NBFNet. ROC-AUC values for NBFNet and SEAL are from [23]
(no standard deviations reported) and results for WalkPool from [25].

Models Cora (small) CiteSeer (small) PubMed
SEAL 93.3 90.5 97.8
NBFNet 95.6 92.3 98.3
WalkPool (VGAE) 94.64 ± 0.55 94.32 ± 0.90 98.49 ± 0.13
WalkPool (ARGVA) 94.71 ± 0.85 94.53 ± 1.77 98.52 ± 0.14
WalkPool (GIC) 95.90 ± 0.50 95.94 ± 0.59 98.72 ± 0.10
GCN 92.82 ± 0.83 91.67 ± 1.14 97.54 ± 0.09
SGCN 95.3 ± 0.68 96.22 ± 0.4 97.94 ± 0.16
UTGCN 93.82 ± 0.68 96.0 ± 0.24 94.29 ± 0.24

Table 10: Link Prediction accuracy for non-attributed networks as measured by ROC-AUC compared
to state-of-the-art models SEAL and WalkPool. ROC-AUC values SEAL are taken from [7] and for
WalkPool from [25].

Models NS Celegans PB Power Router USAir Yeast E-coli
SEAL 97.71±0.93 89.54±2.04 95.01±0.34 84.18±1.82 95.68±1.22 97.09±0.70 97.20±0.64 97.22±0.28
WalkPool 98.95±0.41 92.79±1.09 95.60±0.37 92.56±0.60 97.27±0.28 98.68±0.48 98.37±0.25 98.58±0.19
GCN 95.22 ± 1.8 87.98 ± 1.45 92.91 ± 0.3 74.68 ± 2.67 91.42 ± 0.44 93.56 ± 1.53 94.49 ± 0.61 98.48 ± 0.22
SGCN 95.17 ± 0.96 89.38 ± 1.42 93.86 ± 0.42 81.08 ± 1.2 77.51 ± 1.85 94.08 ± 1.43 95.74 ± 0.33 98.32 ± 0.2
UTGCN 94.76 ± 1.03 91.47 ± 1.4 94.49 ± 0.38 72.97 ± 1.27 61.68 ± 1.01 94.81 ± 1.1 94.0 ± 0.43 99.37 ± 0.1
SAGE 95.9 ± 0.86 87.32 ± 1.61 92.94 ± 0.57 74.17 ± 2.03 62.6 ± 3.3 93.37 ± 1.2 94.43 ± 0.67 98.22 ± 0.13
SSAGE 95.21 ± 1.09 88.05 ± 1.8 91.66 ± 0.43 81.84 ± 1.49 70.1 ± 1.3 92.25 ± 1.45 95.72 ± 0.31 93.59 ± 0.14
UTSAGE 94.72 ± 1.07 84.48 ± 1.87 86.46 ± 0.64 72.96 ± 1.26 61.47 ± 0.99 87.94 ± 1.58 93.45 ± 0.45 85.56 ± 0.37
GIN 95.24 ± 1.22 86.74 ± 2.3 93.04 ± 0.99 71.97 ± 2.3 87.84 ± 3.05 92.14 ± 0.98 94.7 ± 0.45 98.43 ± 0.24
GraphConv 95.73 ± 1.4 86.64 ± 2.31 92.99 ± 0.87 74.31 ± 1.93 80.84 ± 1.28 91.16 ± 1.76 94.94 ± 0.38 98.32 ± 0.22
SGIN 95.48 ± 0.88 88.31 ± 1.3 93.72 ± 0.48 73.73 ± 1.69 72.83 ± 1.28 93.02 ± 1.37 95.63 ± 0.49 97.68 ± 0.2
UTGIN 94.62 ± 1.05 86.48 ± 1.29 92.77 ± 0.51 72.93 ± 1.27 61.67 ± 1.02 93.44 ± 0.84 92.94 ± 0.41 95.81 ± 0.22
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