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ABSTRACT

Time series foundation models (TSFMs) promise to be powerful tools for a wide
range of applications. However, their internal representations and learned con-
cepts are still not well understood. In this study, we investigate the structure
and redundancy of representations across various TSFMs, examining the self-
similarity of model layers within and across different model sizes. This analy-
sis reveals block-like redundancy in the representations, which can be utilized for
informed pruning to improve inference speed and efficiency. Additionally, we ex-
plore the concepts learned by these models—such as periodicity and trends—and
how these can be manipulated through latent space steering to influence model
behavior. Our experiments show that steering interventions can introduce new
features, e.g., adding periodicity or trends to signals that initially lacked them.
These findings underscore the value of representational analysis for optimizing
models and demonstrate how conceptual steering offers new possibilities for more
controlled and efficient time series analysis with TSFMs.

1 INTRODUCTION

Foundation models have taken significant strides in modeling both textual (Brown et al., 2020)
and visual (Dosovitskiy et al., 2020) data, and have made complex language and image processing
accessible to non-experts. These models are pre-trained on massive internet-scale datasets and can
be used to solve multiple tasks across a variety of domains, with little to no adaptation. Recently, a
growing body of work (Garza & Mergenthaler-Canseco, 2023; Goswami et al., 2024; Rasul et al.,
2024; Das et al., 2024; Woo et al., 2024; Ansari et al., 2024) has extended the benefits of this
paradigm to time series data, a modality prevalent in fields such as finance (Taylor, 2008), healthcare
(Goswami et al., 2021), and climate science (Schneider & Dickinson, 1974).

Time series foundation models (TSFMs) have shown promising performance on multiple modeling
tasks such as forecasting, classification, anomaly detection, and imputation, across a wide range of
domains, and in settings with varying amounts of data and supervision. However, the underlying
mechanisms and learned representations of TSFMs remain largely unexplored. Little is known about
the characteristics of learned representations, the kinds of concepts that these models are learning,
and how can these concepts could be manipulated to influence model outputs. A deeper understand-
ing of the inner workings of TSFMs is key to enhancing their performance and trustworthiness. We
address these knowledge gaps, by systematically probing these models and intervening in them.

We begin by analyzing TSFMs from two complementary perspectives: (1) representational simi-
larity (Sec. 3.1), and conceptual understanding (Sec. 3.2). Our first set of experiments are aimed
at answering the fundamental question: Are two TSFMs learning the same thing? We assess this
using the similarity of representations learned by these models. The second set of experiments fo-
cus on identifying “which” human-interpretable concepts TSFMs learn, and “where” these concepts
emerge. Our results in Sec. 4 show find that TSFMs learn redundant representations, and intuitive
concepts such as base patterns (e.g., constant vs. sinusoidal waves), amplitudes, periodicity, and
trends; often in specific layers and patches.

We leverage these insights to improve TSFMs and their trustworthiness in two ways: (1) In Sec. 3.1,
we exploit their redundant representations to perform layer-wise pruning, which reduces model
size, accelerates inference while preserving accuracy. (2) In the following Sec. 3.2, we steer model
predictions along specific conceptual directions (e.g., introducing an upward trend in forecasts) using
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synthetic time series as a way to imbue domain expertise into model predictions without explicit
training. Our work is the first step towards understanding the inner workings of TSFMs and utilizing
this knowledge to devise methods to improve their capabilities and controllability.

2 RELATED WORK

Time Series Foundation Models (TSFMs). TSFMs are versatile neural networks pre-trained on
vast amounts of time series data, and have shown remarkable capabilities in producing accurate
predictions even in zero-shot settings. Recently, a number of TSFMs have been proposed (Garza &
Mergenthaler-Canseco, 2023; Liu et al., 2023; Das et al., 2024; Woo et al., 2024; Goswami et al.,
2024; Ansari et al., 2024; Ekambaram et al., 2024; Talukder et al., 2024). While most TSFMs are
based on variations of the Transformer architecture (Vaswani, 2017), they exhibit notable differences
in tokenization strategies, pre-training datasets, and the specific tasks they are designed to address.
While our methods are broadly applicable to Transformer-based TSFMs, we will primarily focus
on analyzing MOMENT Goswami et al. (2024), Chronos Ansari et al. (2024), and MOIRAI Woo
et al. (2024), three representative TSFMs that are fully open-source and offer distinct approaches to
time series tokenization (patch vs. discrete), architecture (encoder-only vs. encoder-decoder), and
pre-training objectives (imputation vs. forecasting).

Analyzing Representations of Deep Learning Models. Deep learning models often operate as
black boxes, making their internal mechanisms and learned representations difficult to understand.
One approach to gaining insights into these models is by comparing their intermediate represen-
tations. Similarity metrics can be used to determine the similarity or dissimilarity of represen-
tations at different stages of a model, revealing the hierarchy, homogeneity, and redundancy of
learned features. Previous studies focused on quantifying the similarity of neural network repre-
sentations Raghu et al. (2017); Kornblith et al. (2019). Raghu et al. (2021) demonstrated the use
of these metrics for analyzing and comparing representations in vision transformers and CNNs,
providing valuable insights into their functioning. Nguyen et al. (2021) investigated the impact of
model size and training data ratios on similarity patterns by varying the depth and width of different
models. They also explored model pruning based on similarity. Building on these these studies, our
work presents the first comprehensive analysis of representations learned by TSFMs, offering useful
insights into their internal workings.

Identifying and Manipulating Learned Concepts in Pre-trained Models. Understanding the in-
ternal representations learned by pre-trained models has been an active area of research, particularly
in the context of LLMs and vision models. Previous studies have explored whether individual neu-
rons or directions in a model’s latent space correspond to specific features or concepts (Dalvi et al.,
2019; Goh et al., 2021; Gurnee et al., 2023; Elhage et al., 2022). These investigations often focus
on identifying linear representations, where features are encoded as linear combinations of neuron
activations. Recent work has also employed various probing techniques to classify and interpret
these internal representations, addressing aspects such as truthfulness and model robustness (Azaria
& Mitchell, 2023; Zou et al., 2023; Burns et al., 2023; Marks & Tegmark, 2023). While many of
these studies rely on meticulously curated datasets to probe language and vision models, we demon-
strate that for time series models, synthetic data generated using simple mechanisms can effectively
identify, localize, and probe the concepts learned by these models.

3 METHODS: PROBING AND INTERVENING IN TIME SERIES FOUNDATION
MODELS

We study TSFMs using two complementary analysis and intervention methods. In Section 3.1, we
examine learned representations through the lens of similarity, uncovering the redundancy inherent
in TSFM representations. We leverage this redundancy to prune multiple layers of pre-trained mod-
els, thereby improving their efficiency without compromising accuracy. In Section 3.2, we identify
the specific concepts learned by TSFMs, localizing them to specific hidden states. Furthermore,
we explore the ability to steer model predictions along these conceptual directions, enabling us to
influence model outputs in targeted ways.
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3.1 PRUNING TIME SERIES FOUNDATION MODELS

3.1.1 ANALYZING REPRESENTATIONAL SIMILARITY FOR EFFECTIVE PRUNING

To gain a comprehensive understanding of the similarity between learned representations, we con-
sidered several metrics commonly employed in the literature. While our primary analysis relies on
Centered Kernel Alignment (CKA) Kornblith et al. (2019), we also explored Cosine Similarity and
Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017). For brevity, we
provide a brief overview of CKA below, while detailed descriptions of the remaining metrics can be
found in Appendix B.

Representational Similarity using Centered Kernel Alignment (CKA). CKA measures the
similarity of representations by comparing the centered kernel matrices. It has been shown to be
effective in capturing similarities between layers of deep networks (Kornblith et al., 2019). The
general form of CKA between two sets of representations X and Y is defined as:

CKA(X,Y) =
HSIC(X,Y)√

HSIC(X,X) · HSIC(Y,Y)
(1)

where HSIC denotes the Hilbert-Schmidt Independence Criterion (Gretton et al. (2005)).

FFN

Norm

Multi-Head Attn.

Norm

Layer
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l − 1l − 1

Figure 1: For each identified block of layers exhibit-
ing redundant representations (red), we remove the in-
ternal layers of the block by zeroing out their weights
(blue). For example, if a block consists of five layers,
we prune layers 2 through 4, retaining only the first and
last layers to reduce representation redundancy while
maintaining model integrity. More details on pruning
can be found in App. C.

For computational efficiency, we utilized
a linear kernel in our CKA calculations,
resulting in the following simplified for-
mula:

CKAlinear(X,Y) =
∥XTY∥2F

∥XTX∥F · ∥YTY∥F
(2)

where ∥ · ∥F denotes the Frobenius norm.
The denominator in Equation 2 ensures
that the metric value falls within the range
of 0 to 1, facilitating interpretability. A
high CKA value indicates a strong align-
ment between the two sets of representa-
tions, suggesting that the layers are likely
learning similar features or concepts.

Pruning TSFMs Based on Represen-
tational Similarity. Large TSFMs typ-
ically learn redundant representations,
which often manifest as block-like struc-
tures in heatmaps depicting pairwise sim-
ilarity between layer activations (Figure
1). We can leverage this redundancy to
downsize TSFMs, to improve their infer-
ence speed, without affecting their accu-
racy. We build on prior work (Nguyen

et al., 2021) and propose a simple layer pruning strategy, which we call Block-wise Pruning, out-
lined in Algorithm 1. To preserve the structural integrity of each block, we retain the first and last
layers of each block while zeroing out the weights of the intermediate layers. The skip connections
within transformer blocks ensure that signals and gradients continue to flow through the rest of the
network.

3.1.2 RESEARCH QUESTIONS AND EXPERIMENTAL SETUP

To gain a deeper understanding of TSFM representations, we investigate the following research
questions: (RQ1) How similar are the representations learned by models of the same size but be-
longing to different families? (RQ2) How do these representations differ across models of varying
sizes within the same family? (RQ3) How similar are the representations learned by corresponding
layers of different TSFMs within the same family? To answer these questions, we use Centered

3
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Kernel Alignment (CKA) to measure the similarity between representations at different layers of
TSFMs, and visualize the results using heatmaps.

Algorithm 1: Block-wise Pruning
Require: Trained modelM with layers
{l1, l2, . . . , ln}; Identified redundant blocks
B = {b1, b2, . . . , bk}

1: for each block bi in B do
2: Let bi consist of layers ls to le {Block edges

at ls and le}
3: for layer index j = s+ 1 to e− 1 do
4: Zero out the weights of layer lj in model

M
5: end for
6: end for
7: return Pruned modelM′

To demonstrate the effectiveness of our pro-
posed pruning strategy, we explore two pruning
configurations, one in which prune all redun-
dant blocks, and the other where prune only a
single block. We compare the performance of
these pruned models to the original, unpruned
TSFMs using standard task-specific accuracy
metrics (Mean Squared Error and Mean Ab-
solute Error) and efficiency metrics (inference
time in milliseconds and theoretical model size
in megabytes). We evaluate these models on
widely used imputation (Zhou et al., 2021) and
forecasting (Ansari et al., 2024) benchmarks in
both zero-shot settings and after linear probing
(Goswami et al., 2024).
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Figure 2: Overview of linear probing, concept localization, and steering. Linear probing involves
training separate linear models for each layer or layer and patch to classify time series x into constant
c and sinusoid s classes. Classifiers fij(h

(j)
i , θ

(j)
i ) are trained on the hidden representation h

(j)
i at

each i-th layer and j-th token to update the parameters θji . Concept localization is achieved by
computing Fisher’s Linear Discriminant Ratio (LDR) between the classes at each layer and token
using mean and variance statistics of h(j)

i for each predicted class, ŷ. The LDR output is scaled
between 0 and 1 using min-max scaling to allow for consistent comparison across layers. Concept
steering vector can be derived for each i-th layer by calculating the difference between the median
activation matrices of the sinusoid and constant time series classes, Mis −Mic and then stacked
into a steering matrix S for the whole model. During model inference, the steering matrix can be
used to steer model predictions towards desired concepts, or classes, by updating the embeddings as
hi ← hi + λSi, where λ is a scalar that controls the strength of the intervention.
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3.2 PROBING AND INTERVENING IN TIME SERIES FOUNDATION MODELS

3.2.1 GENERATING SYNTHETIC DATA FOR CONCEPTUAL ANALYSIS OF TSFMS

To systematically explore the ability of TSFMs to understand intuitive time series concepts, we
randomly generate a large number of synthetic univariate time series. Each randomly generated
time series belong to one of two pattern classes: constant or sinusoidal. Constant patterns, repre-
sented by y(t) = mt + b, capture long-term non-periodic trends. Sinusoidal patterns, modeled as
y(t) = a sin

(
2πt
f

)
, represent periodic processes. By controlling the parameters m, b, a, and f ,

we can systematically generate time series with varying slope, intercept, amplitude, and periodic-
ity, respectively. Despite their simplicity, these data generation mechanisms capture a wide range
of real-world time series patterns. For a detailed description of the data generation process, please
refer to Appendix A.

In this section, we build on the investigation approach outlined in (Marks & Tegmark, 2023). We say
that a feature is linearly represented in a foundation modelM if it is represented as a direction in its
latent space. As a concrete example, consider that we want to identify whetherM can distinguish
between constant and sinusoidal patterns. If this feature is linearly represented inM, we also want
to identify which layer l inM learns this concept in the most discriminant way.
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Figure 3: Examples of synthetic data generated for experiments include constant signals with vary-
ing trend (a), sinusoidal signals with varying frequency (b), and compositions of constant signals
with varying trends and sinusoidal signals, resulting in sinusoidal signals with varying trends (c).
Synthetic data is used in linear probing, concept localization, and concept steering experiments.

3.2.2 IDENTIFYING, LOCALIZING AND STEERING TIME SERIES CONCEPTS

Identifying Linearly Represented Features. To determine whether the feature (sinusoidal vs.
constant time series) is linearly represented, we first generate a synthetic time series dataset by vary-
ing this feature. This dataset comprises of multiple sinusoids and constant time series randomly
sampled using our data generating function. Using this dataset, we extract intermediate representa-
tions of each time series from the residual stream of each layer. Let h(j)

i ∈ Rn×D denote the hidden
representation of a time series x at i-th layer and j-th token ofM, where D is the dimensionality of
the hidden layer. Linear probing involves training separate linear models for each layer and token
to classify time series x as a constant or sinusoid pattern. Classifiers fij(h

(j)
i , θ

(j)
i ) are trained on

the hidden representation h
(j)
i at each i-th layer and each j-th token to update the parameters θji .

Additionally, we perform probing on representations averaged along the token dimension for each
i-th layer. The linear probes are trained to optimize the Fisher Criterion, a function that aims to
maximize the distance between class means while minimizing within-class variance:

LFisher(c, s) = −
(µs − µc)

2

σ2
s + σ2

c

. (3)

Here, µs and µc correspond to the mean embedding values, computed using all time series of a given
class. Similarly, σ2

s and σ2
c correspond to the variance computed across the n dimension for each

class.

Localizing Linearly Represented Features. To localize which layers and tokens learn a specific
concept, we compute the Fisher’s Linear Discriminant Ratio (LDR) between the classes using the
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mean and variance statistics of h(j)
i for each predicted class ŷ, which is determined using the classi-

fier fij during linear probing. The goal of LDR is to maximize the separation between the classes by
comparing the variance σ2 within each class to the difference between the class means, µ. A larger
ratio indicates a clearer separation between the two classes, which can aid in concept localization by
identifying where the classes are well-separated in the feature space. When applied in the context of
neural network activations, LDR helps highlight which layers or features are most discriminative

LDR(h(j)
i |ŷ) =

(µ
h

(j)
i |ŷ=s

− µ
h

(j)
i |ŷ=c

)2

σ2

h
(j)
i |ŷ=s

+ σ2

h
(j)
i |ŷ=c

(4)

=
(µs − µc)

2

σ2
s + σ2

c

. (5)

Here, µs and µc correspond to the mean computed across the n dimension for each class. Similarly,
σ2
s and σ2

c correspond to the variance computed across the sample dimension n for each class. Let
V = [vi,j ] ∈ RL×N be the matrix of LDR values, where vi,j represents the LDR value for the i-th
layer and j-th token, with l layers and N tokens. The LDR output is scaled between 0 and 1 using
min-max scaling to allow for consistent comparison across layers. By visualizing the scaled LDA
values as shown in Figure 2, one can identify which layers and tokens exhibit the highest degree of
separation between classes, offering insights into the network’s internal representations for concept
intervention techniques.

Deriving Steering Matrices for Model Steering. Once we have identified that a feature is linearly
represented in the latent space of theM, we can use steering interventions to manipulate the latent
space and generate time series that reflect intended concepts. For instance, to introduce periodicity to
a constant time series, we can utilize a steering matrix S, as illustrated in Figure 2. By strategically
intervening in M using this steering matrix, we can bias its outputs towards predicting periodic
time series. To construct a steering matrix, we first derive steering vectors Si ∈ RN×D, for each
layer i. These vectors represent the change that activations in layer i must undergo such that M
produces periodic outputs. Si is simply the difference between the median activation matrix of
the constant time series Mic , from that of sinusoids Mis . We stack these vectors for all layers to
derive the steering matrix. This matrix allows us to simultaneously intervene across multiple tokens
and layers during inference, which we found to be more effective than single-token interventions.
During inference, to steer model predictions, at each layer i, we update its hidden representation as
follows: hi ← hi + λSi, where λ ∈ R is a scalar that controls the strength of the intervention.

3.2.3 RESEARCH QUESTIONS AND EXPERIMENTAL SETUP

Through our experiments, we aim to answer the following research questions: (RQ4) Do TSFMs
represent concepts associated with specific data-generating functions distinctly in the latent space?
(RQ5) Are these learned concepts localized to specific layers and tokens within TSFMs? (RQ6)
Can we leverage these learned concepts to bias model predictions towards intended outcomes? For
example, can we add periodicity or an upward trend to a constant time series? (RQ7) Is it possible
to combine multiple steering interventions to manipulate model predictions towards complex com-
positions of various concepts? For instance, can we steer a model to add both trend and periodicity
to a constant signal?

To address these research questions, we will leverage the techniques outlined in previous sections.
We also explore two alternative modalities of intervention: (1) deriving steering vectors using the
mean of hidden activations rather than the median, and (2) steering a single token versus all tokens
throughout the model.

While our methods are broadly applicable to a wide range of transformer-based foundation mod-
els, we focus on two prominent TSFM families for brevity: MOMENT1 (Goswami et al., 2024) and
Chronos2 (Ansari et al., 2024). Both these models are fully open-source, come in different sizes,
yet have fundamentally different design choices. For example, Chronos is forecasting on encoder-
decoder transformer model which takes discretized time series as input, whereas MOMENT is a multi-
task, encoder-only model which takes continuous time series patches as input. Since only the Large

1https://github.com/moment-timeseries-foundation-model/moment
2https://github.com/amazon-science/chronos-forecasting

6

https://github.com/moment-timeseries-foundation-model/moment
https://github.com/amazon-science/chronos-forecasting


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1 3 5 7 9 11131517192123
MOMENT-Large layer

1
3
5
7
9

11
13
15
17
19
21
23

M
O

M
E

N
T-

La
rg

e 
la

ye
r

Similarity Matrix

0.0 0.2 0.4 0.6 0.8 1.0
CKA Similarity

1 3 5 7 9 11131517192123
Chronos-T5-Large layer

1
3
5
7
9

11
13
15
17
19
21
23

C
hr

on
os

-T
5-

La
rg

e 
la

ye
r

Similarity Matrix

0.0 0.2 0.4 0.6 0.8 1.0
CKA Similarity

1 3 5 7 9 11131517192123
Moirai-1.1-R-Large layer

1
3
5
7
9

11
13
15
17
19
21
23

M
oi

ra
i-1

.1
-R

-L
ar

ge
 la

ye
r

Similarity Matrix

0.0 0.2 0.4 0.6 0.8 1.0
CKA Similarity

(i) MOMENT-Large (ii) Chronos-Large (iii) Moirai-1.1-R Large

Figure 5: Pairwise similarity of layer measured using CKA. Lighter shades indicate higher similarity
(dark blue → low similarity, yellow → high similarity). While MOMENT shows substantial redun-
dancy in representations, Chronos shows a more pronounced structure of block patterns. Moirai
exhibits the most distinct block patterns, suggesting clearly defined stages of representation learn-
ing. These plots offer insights into localized regions of representation utility and redundancy across
the three models.
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Figure 6: How does model size influence the patterns of learned representations? Smaller models
exhibit more discrete and distinct block structures, while larger models (Base and Large) display
increasingly intricate and clustered patterns, reflecting more nuanced and gradual transformations
across layers. Notably, the emergence of blocks-like patterns in the Large model appears unpre-
dictable from patterns observed in smaller models.

variant of MOMENT is publicly available at the time of writing this paper, we supplement our repre-
sentation analysis results with Moirai (Woo et al., 2024)3, another another popular TSFM which
comes in different sizes. More information on model parameters can be found in Appendix E.

4 RESULTS
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Figure 4: Similarity between representations learned
by different layers in TSFMs of the same family but
different sizes. Initial layers tend to learn similar rep-
resentations, while the similarity gradually decreases
in the later layers.

Analyzing representations offers inter-
esting insights. Our analysis of model
representations demonstrates that both
model size and internal architecture con-
siderably influence how representations
are organized. Fig. 8) shows heatmaps
which reveal that larger models, such
as MOMENT-Large, Chronos-Large,
and Moirai-1.1-R Large, have sim-
ilar representations across specific groups
of layers forming distinct and intricate
block patterns, which may reflect unique
stages of representation learning. More
complex block patterns are observed with
increasing model size, indicating that scaling may enhance the richness and organization of inter-
nal representations. However, it may also increase redundant knowledge storage through similar

3https://github.com/SalesforceAIResearch/uni2ts
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representations across layers, as suggested by high CKA similarity measured in block patterns. In-
terestingly, within model families (e.g., Chronos and Moirai), scaling does not always result
in predictable heatmap changes. Larger models, like Chronos-Large and Moirai-Large,
demonstrate more refined and complex transformations of representations that are not easily extrap-
olated from their smaller versions as shown in Fig. 15). Moreover, cross-model similarity analysis
results in Fig. 4 reveal that while early layers tend to have high similarity across models of different
sizes, the similarity measures among later layers diverge more notably, particularly in larger models.
This divergence is especially evident in the Chronos family, where early representations are more
consistent across models, but later layers become increasingly specialized as model depth increases
as shown in Fig. 6.

Forecasting Horizon
Dataset Pruning 96 192 336 720

Exchange Vanilla 0.109 0.215 0.417 1.003
All Pruned 0.113 0.218 0.394 1.066

ETTh1 Vanilla 0.385 0.411 0.423 0.443
All Pruned 0.388 0.414 0.424 0.460

ETTh2 Vanilla 0.287 0.350 0.370 0.404
All Pruned 0.296 0.356 0.382 0.404

ETTm1 Vanilla 0.290 0.330 0.352 0.409
All Pruned 0.29 0.326 0.354 0.414

ETTm2 Vanilla 0.171 0.231 0.287 0.372
All Pruned 0.173 0.236 0.294 0.372

ILI Vanilla 3.260 3.516 3.828 3.989
All Pruned 2.981 3.209 3.479 3.602

Weather Vanilla 0.153 0.197 0.246 0.316
All Pruned 0.152 0.198 0.247 0.317

Figure 7: We fine-tune the vanilla and pruned
variants on MOMENT on widely used long-horizon
forecasting datasets (Zhou et al., 2021) and mea-
sure MSE. We found that the pruned model per-
formed on par with the original model, underscor-
ing the potential of our block-wise pruning ap-
proach. In this particular pruning setup, we re-
duced the memory consumption by more than half
compared to the vanilla model and improved in-
ference time per sample by ≈1 ms.

Block-wise pruning can improve model
throughput, without compromising accu-
racy. We observed consistent improvements
in memory efficiency and inference speed over
their unpruned counterparts. For example,
pruning only Block 3 for MOMENT-Large, re-
sulted in a 11% decrease in estimated model
size with a 5% speed up in inference. Further-
more, this pruned model had lower zero-shot
imputation MAE for 5 of 9 datasets (ETTh2,
ETTm1, ETTm2, Exchange, and Weather) as
shown in Tab. 2. Chronos-Large results
for zero-shot experiments are reported in Tab.
3. Detailed results on memory usage and
speed improvements can be found in Tab. 6.
While pruning consistently improved mem-
ory efficiency and inference speed compared
to unpruned counterparts, performance var-
ied across pruning methods and datasets, with
some methods exhibiting considerable degra-
dation. In addition to zero-shot experiments,
we conducted experiments where models were
fine-tuned post-pruning. For this, we applied
MOMENT-Large for forecasting to compare a
vanilla (unpruned) model to one with all block
redundancies pruned, evaluating the impact of
the most aggressive pruning approach. Fine-
tuning results in Table 7 show that, notably, the pruned model performed nearly as well as the orig-
inal, underscoring the potential of our block-wise pruning approach to maintain performance while
reducing model complexity. Complete finetuning results are provided in Table 5 in Appendix F.
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Figure 8: These heatmaps visualize the linear separability of various concepts at the patch level.
Linear separability refers to the Linear Discriminant Ratio (LDR) computed from model embed-
ding statistics for each predicted class: constant versus sinusoidal patterns (i), increasing versus
decreasing trends (ii), high versus low periodicity (iii), and high versus low sinusoidal amplitude
(iv). Lighter shades indicate higher separability (dark blue → low LDR, yellow → high LDR).
These heatmaps show that certain concepts represented by MOMENT-Large are linearly separable
and that this separability is not consistent but rather emerges at specific layers in the model.
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Steering: Introduce periodicity (i) and trend (ii, iii) to constant time series
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Compositional Steering: Introduce trend and periodicity to constant time series
(MOMENT (top), Chronos (bottom))
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Figure 9: Visualization of the MOMENT’s reconstruction and the Chronos’s forecasting predictions
(bottom), with concept steering applied in the latent space (blue) and the baseline without concept
steering (orange). Concept steering effectively transforms concepts in the latent space, resulting in
model predictions that align with the intended concepts introduced. Steering results are illustrated
for the following experiments: steering a constant signal input to produce (i) a sinusoidal output,
(ii) a constant signal with an increasing(slope > 0), and (iii) decreasing trend (slope < 0). For com-
positional steering experiments, α controls the strength of sinusoidal and increasing trend concepts.
When β = 0.5, models are steered towards a combination of increasing trend and sinusoidal pat-
tern. β = 0 results in steering towards a constant signal with an increasing trend, whereas β = 1
only introduces sinusoidal patterns (iii). Detailed results are available in the Appendix F.

TSFMs learn Intuitive Linear Concepts. Our concept localization results in Fig. 8 show that
certain concepts represented by MOMENT-Large are linearly separable and that this separability
is not consistent but rather emerges at specific layers in the model. We also found intuitive differ-
ences in the locations where these concepts are learned. We observed that certain concepts, such
as distinguishing between constant and sinusoidal patterns, require careful examination of the entire
time series. In contrast, differentiating between increasing and decreasing trends can be achieved
by focusing on the initial and final patches. However, we did not identify specific locations where
models learn to distinguish between time series of different amplitudes. This may be attributed to
the normalization of input time series, a common practice in many TSFMs, including MOMENT.

We can effectively steer TSFM predictions. Our concept steering interventions effectively trans-
form the latent space of TSFMs, resulting in model predictions that align with the intended concepts,
as demonstrated in Fig. 9. We successfully introduced periodicity and trend concepts to constant
time series and demonstrated the ability to combine multiple steering vectors to create more com-
plex patterns. By combining steering vectors representing increasing trends and sinusoidal patterns,
we were able to steer model predictions towards a combination of these features. To evaluate the
effectiveness of steering in the latent space, we analyzed the impact of our interventions on hid-
den representation, by projecting in a two-dimensional space using Principal Component Analysis
(PCA). We found that steering in the latent space is reflected in these lower-dimensional represen-
tations, as illustrated in Fig. 12. Notably, the PCA reduction often captured the concept direction as
one of the principal components. This can be attributed to the careful design of our synthetic data
generation process.
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Interestingly, the method of obtaining the steering matrix, either by computing the mean or median
across embedding concept classes, has no notable effect on the steered output as shown in Fig. 13.
However, applying concept steering interventions across all tokens is necessary to achieve the in-
tended steered concept output compared to applying concept steering interventions to a single token.
Moreover, the λ parameter can have considerable effect on steered output. For Chronos, steering
required tuning the parameter λ ≈ 0.1 for effective performance, whereas MOMENT maintained
effective steering with λ = 1.

5 DISCUSSION

We explored two complementary approaches to probing and intervening in TSFMs. We gained
valuable insights into their internal mechanisms and identified opportunities for improvement. For
instance, our analysis revealed redundancy in learned representations. We leveraged this represen-
tational redundancy, inherent to large over-parameterized TSFMs, to devise a simple block-wise
pruning strategy. This strategy effectively reduced the size and computational cost of these models
without compromising performance, demonstrating the potential for distilling smaller, more efficient
models from larger TSFMs.

We also explored ways to influence model predictions along conceptual directions using steering
matrices. Concept steering has many practical applications, including the ability to correct predic-
tion errors in pre-trained models that may arise from out-of-distribution inference, reflecting the
effects of exogenous factors on model predictions or inducing prior knowledge not fully captured
during training. Additionally, steering provides a method to reduce computational costs by min-
imizing the need for fine-tuning. It can also be used to introduce inductive biases from various
domains into the model. This is particularly valuable for pre-trained models that may lack exposure
to specific concepts due to limited or restricted training data. Such inductive biases can be useful
in domains like healthcare, where, e.g., knowledge of the excitatory or inhibitory effects of treat-
ments can guide pre-trained model predictions about whether a patient’s vital signs should increase
or decrease in response to specific interventions. Moreover, concept steering can be used for data
generation, improving data augmentation techniques and creating more diverse datasets to imxprove
TSFM performance across various tasks. Prior work has already shown that data augmentation tech-
niques can improve TSFM model generalization by enhancing model robustness and exposing it to
a wider variety of patterns (Ansari et al., 2024).

Finally, our findings also underscore the importance of synthetic data in studying and steering
TSFMs. As opposed to meticulously curated datasets used to probe large language and vision mod-
els, we demonstrate that for time series models, synthetic data generated using simple mechanisms
can effectively identify, localize, and probe the linear concepts learned by these models.

Limitations and Future Work. This paper provides insights into how a few basic patterns are
linearly represented in time series foundation models. Future work must evaluate whether time
series foundation models can learn more complex patterns present in real-world time series and
whether steering matrices estimated using synthetic data can be used to steer predictions of out-
of-distribution, real-world time series. While our methods are broadly applicable to different
transformer-based foundation models, future research should explore other architectures such as
state space models (Gu & Dao, 2023) and stacked multi-layer perceptrons (Ekambaram et al., 2024).
Moreover, future studies should evaluate whether our findings hold for other time series foundation
models and tasks such as anomaly detection, and classification. Beyond time series, we hope that
our work inspires the use of synthetic data to steer large language and vision models as well.

ETHICS STATEMENT

While our pruned TSFMs demonstrate promising performance, it is crucial to exercise caution when
using them, especially in high-stakes applications such as healthcare. Before deploying these mod-
els for critical decision-making, we strongly recommend fine-tuning and evaluating them on task-
specific, in-domain datasets using relevant metrics. The ability to steer model predictions offers
numerous benefits but also raises concerns regarding potential biases. We urge users to exercise
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caution when utilizing our proposed steering strategies and to carefully consider the potential impli-
cations of manipulating model outputs.

REPRODUCIBILITY STATEMENT

To ensure reproduciblity, we have made our code anonymously accessible through
https://anonymous.4open.science/r/tsfm-interventions-3452/. All time
series foundation models used for our analysis are publicly available and open-source: Chronos
(https://github.com/amazon-science/chronos-forecasting), MOMENT
(https://github.com/moment-timeseries-foundation-model/moment), and
MOIRAI (https://github.com/SalesforceAIResearch/uni2ts). All models were
trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502 CPUs, 503 GB
of RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. Synthetic datasets used
in our study and the pruned time series foundation models will be released publicly upon paper
acceptance.
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A SYNTHETIC DATA GENERATION

Examples of synthetic data are provided in Fig. 10. Generated time series {xt}Tt=1 patterns include:

• Constant Pattern. The constant pattern captures long-term progression of the time series
and is modeled as:

y(t) = mt+ b,

where α is the slope and β is the intercept. These parameters are sampled from uniform
distributions:

m ∼ U(slopemin, slopemax), b ∼ U(interceptmin, interceptmax).

• Sinusoidal Pattern. The sinusoidal pattern captures patterns of periodic variations and is
modeled as:

y(t) = a sin

(
2πt

f

)
+mt+ b,

where A is the amplitude and P is the period, both sampled from uniform distributions:

a ∼ U(amplitudemin, amplitudemax), f ∼ U(periodmin,periodmax).

Parameter Ranges:

• Constant Case:
a ∼ U(0, 0), f ∼ U(0, 0), m ∼ U(0, 0), b ∼ U(−30, 30).

• Increasing Slope Case:
a ∼ U(0, 0), f ∼ U(0, 0), m ∼ U(0.5, 1), b ∼ U(−30, 30).

• Decreasing Slope Case:
a ∼ U(0, 0), f ∼ U(0, 0), m ∼ U(−1,−0.5), b ∼ U(−30, 30).

• Sine Constant Case (with seasonality parameters):
a ∼ U(50, 50), f ∼ U(128, 128), m ∼ U(0, 0), b ∼ U(−30, 30).

• Sine Increasing Slope Case (with seasonality parameters):
a ∼ U(50, 50), f ∼ U(128, 128), m ∼ U(0.5, 1), b ∼ U(−30, 30).

• Sine Decreasing Slope Case (with seasonality parameters):
a ∼ U(50, 50), f ∼ U(128, 128), m ∼ U(−1,−0.5), b ∼ U(−30, 30).

B ADDITIONAL REPRESENTATION SIMILARITY METRICS

To comprehensively analyze the similarity of learned representations, we considered several metrics
commonly used in the literature. While our primary analysis relies on Centered Kernel Alignment
(CKA) Kornblith et al. (2019), we also explored two additional similarity metrics, namely Cosine
Similarity and Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017). Our
findings consistently demonstrated similar patterns across all these metrics, underscoring the robust-
ness of our results. We provide brief descriptions of Cosine Similarity and SVCCA below.

Cosine Similarity: Cosine similarity measures the cosine of the angle between two vectors, pro-
viding a simple yet effective way to assess similarity. In our case, we work with activation matrices
for multiple samples and compute the average cosine similarity. Given two matrices X and Y,
representing the activations from two layers, the cosine similarity is computed as:

cosine similarity(X,Y) =
1

n

n∑
i=1

xi · yi

∥xi∥∥yi∥
(6)

where xi and yi are the i-th columns of matrices X and Y, and n is the number of samples.

Singular Vector Canonical Correlation Analysis (SVCCA) (Raghu et al., 2017): SVCCA is a
method that compares the similarity of representations by aligning subspaces spanned by the top
singular vectors. It effectively reduces the dimensionality and then compares the correlations of
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Sinusoidal Pattern (y(t) = a sin( 2πtf ) +mt+ b)
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Figure 10: Samples of synthetic time series used in our experiments. We use two base patterns
(constant and sinusoidal). To generate synthetic datasets, we vary the periodicity f , amplitude a,
intercept b, and linear trend m.

the principal components. The SVCCA similarity between two activation matrices X and Y is
computed as follows:

SVCCA(X,Y) = CCA(Uk,Vk) (7)
where Uk and Vk are the top k singular vectors obtained from the singular value decomposition
(SVD) of X and Y, respectively, and CCA denotes the canonical correlation analysis.

C FINDING AND PRUNING REDUNDANT BLOCKS IN TSFMS

The term “block” refers to groups of consecutive layers within a transformer that exhibit high rep-
resentational similarity. Consistent with prior work Phang et al. (2021), we use “layer” to refer to
individual transformer encoder or decoder blocks consistent with prior work, while ”block” refers to
a higher-level structure made up of multiple such layers that share similar representations Nguyen
et al. (2021).

As an example, consider Figure 1 which illustrates the pairwise similarity between the 24 layers of
MOMENT-Large. In this figure, lighter colors (yellow) represent higher representational similarity,
as measured by Centered Kernel Alignment (CKA) Kornblith et al. (2019). The identified blocks are
outlined with red bounding boxes. For example, Block 1 comprises layers 1–5, Block 2 comprises
layers 9–18, and Block 3 comprises layers 19–23.

Our pruning algorithm is summarized in Algorithm 1. Our pruning method involves retaining the
first and last layers of each block while zeroing out the weights of the intermediate layers. This
approach preserves the structural integrity of the block while leveraging the skip connections within
transformer blocks to ensure that signals and gradients continue to flow through the network. In the
case of MOMENT-Large’s Block 3, composed of layers 19–23, this means that layers 19 and 23
are retained, while the weights of layers 20, 21, and 22 are zeroed out. We have added a dedicated
section on pruning in Appendix C to further clarify this process.
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Figure 11: For each identified block of layers exhibiting redundant representations (red), we remove
the internal layers of the block by zeroing out their weights (blue). For example, if a block consists
of five layers, we prune layers 2 through 4, retaining only the first and last layers to reduce represen-
tation redundancy while maintaining model integrity.

Algorithm 2: Block Identification and Filtering
Input: CKA similarity matrix S, similarity threshold τ , minimum block size k

1 blocks← ∅;
2 current block← ∅;
3 Phase 1: Initial block identification;
4 for each encoder block li do
5 if ∀lj ∈ current block : CKA(li, lj) ≥ τ then
6 current block← current block ∪ {li};
7 end
8 else
9 if |current block| ≥ k then

10 blocks← blocks ∪ {current block};
11 end
12 current block← {li};
13 end
14 end
15 Phase 2: Filter small blocks;
16 filtered blocks← {b ∈ blocks : |b| ≥ k};
17 Phase 3: Verify block-wide self-similarity;
18 final blocks← ∅;
19 for each block b ∈ filtered blocks do
20 start, end← indices of first and last layer in b;
21 submatrix← S[start : end, start : end];
22 min similarity← min(submatrix);
23 if min similarity ≥ τ then
24 final blocks← final blocks ∪ {b};
25 end
26 end
27 return final blocks

C.1 A SIMPLE ALGORITHMIC APPROACH TO IDENTIFY REDUNDANT BLOCKS

We identify redundant blocks in a TSFM through visual inspection, which aligns with prior
work Nguyen et al. (2021). Table 1 lists all the identified blocks in MOMENT-Large and
Chronos-Large. In addition to visual inspection, redundant blocks can also be identified us-
ing algorithmic approaches.
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Below we propose a simple algorithm to identify redundant blocks in TSFMs. First, we can define
a block as:

Block = {li, ..., lj} where i < j and lk are adjacent transformer encoder blocks

Then, we can systematically identify these blocks using an algorithm that:

1. Identifies initial candidate blocks by grouping adjacent layers with pairwise CKA similarity
above a threshold

2. Filters out blocks that are too small to be considered meaningful
3. Verifies that each block exhibits high similarity across all its constituent layers by examin-

ing the complete submatrix of similarities

C.2 IDENTIFIED BLOCKS IN MOMENT & CHRONOS

In this paper, identified redundant blocks visually. Below we specify, the redundant blocks for
MOMENT-Large and Chronos-Large:

Models Block 1 Block 2 Block 3 Block 4
MOMENT-Large 1 – 5 9 – 18 19 –23 N/A
Chronos-Large 1 – 4 5 – 9 10 –13 15 – 22

Table 1: Visually identified blocks of redundant layers in MOMENT-Large and Chronos-Large.

D ON STEERING AND THE PARAMETER λ

Below we provide some guidance on selecting good values of λ and insights into its properties:

Selection and Impact of the Steering Strength Parameter λ

• Optimal Range: Based on our empirical experiments, we found that the steering strength
parameter λ is most effective for interventions when its value lies within the interval
[0.1, 2.0].

• Lower Bound Considerations: Values of λ < 0.1 often result in insufficient perturbation
of the activation patterns, leading to suboptimal intervention effects that may not manifest
visibly in the model’s output.

• Upper Bound Effects: Setting λ > 2.0 induces excessive perturbations that push acti-
vations beyond their typical distribution bounds, potentially resulting in degenerate or se-
mantically meaningless outputs. In the PCA/latent space visualizations, these cases simply
appear as more distant points along the steering direction.

Directional Properties

• Reversibility: Multiplying the steering vector by -1 effectively reverses the direction of
intervention, enabling bidirectional control (e.g., transforming concept A → B into B →
A).

• Example application: For a steering vector trained to increase signal magnitude, apply-
ing its negative counterpart (-λS) produces controlled signal decrease, demonstrating the
symmetric nature of the steering operation.

Practical Guidelines

• Initial Calibration: We recommend starting with λ = 1.0 and adjusting based on the
observed intervention strength. In most cases value λ = 1.0 works well and does not need
tuning.
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• Task and Model-Specific Tuning: If λ = 1.0 does not yield satisfactory results, the op-
timal value requires tuning based on both the specific steering objective and target model,
necessitating empirical calibration to achieve the desired intervention strength.

• Monitoring: When applying steering interventions, practitioners should monitor both the
immediate output and latent space representations to ensure meaningful transformations
while maintaining output coherence.

E MODEL DESCRIPTIONS AND SPECIFICATIONS

E.1 MOMENT

The MOMENT model family is designed for general-purpose time-series analysis, utilizing an
encoder-only Transformer architecture. It processes input time series by dividing them into fixed-
length sub-sequences (patches) and encoding each patch into a D-dimensional space. The pre-
training task involves reconstructing masked patches to learn robust representations that generalize
across various tasks.

• Architecture: Encoder-only Transformer, with patch embeddings and masking for recon-
struction.

• Input Representation: Time series split into fixed-length patches, embedded into D-
dimensional vectors.

• Model Variants: MOMENT-Large

E.2 CHRONOS

Chronos models utilize a sequence-to-sequence (encoder-decoder) Transformer architecture based
on the T5 model family. Time series are scaled and quantized into tokens, which are processed by
the encoder. The decoder autoregressively predicts future time steps, generating tokens that are
mapped back into numerical values.

• Architecture: Encoder-decoder Transformer based on T5, with a reduced vocabulary size
of 4096 tokens.

• Input Representation: Time series quantized into discrete tokens for sequence modeling.
• Model Variants: Chronos is available in the following configurations:

– chronos-t5-tiny: 8M parameters
– chronos-t5-mini: 20M parameters
– chronos-t5-small: 46M parameters
– chronos-t5-base: 200M parameters
– chronos-t5-large: 710M parameters

E.3 MOIRAI

Moirai is a time-series foundation model built with an encoder-only Transformer architecture de-
signed for universal forecasting. The model handles varying temporal resolutions with multiple
patch size projection layers and uses any-variate attention for multivariate time series. A mixture
distribution is employed to model probabilistic forecasts.

• Architecture: Encoder-only Transformer with any-variate attention for multivariate time-
series forecasting.

• Input Representation: Time series processed using multi-patch size projections to handle
different frequencies.

• Model Variants: Moirai is available in three configurations:
– Moirai-small: 14M parameters
– Moirai-base: 91M parameters
– Moirai-large: 311M parameters
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F ADDITIONAL RESULTS

F.1 STEERING
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(i) Constant to sinusoidal (ii) Constant to increasing (iii) Constant to decreasing

Figure 12: Visualization of steering effects in latent space reduced using PCA analysis. Here, we
considered steering constant to sinusoidal, constant to increasing, and constant to decreasing series.
As shown, the steering behaves as expected in the embedding space, moving selected constant sam-
ples, into the neighborhood of sinusoidal/increasing/decreasing samples.
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Figure 13: Visualization of different intervention and steering matrix derivation techniques. Ap-
plying concept steering interventions across all tokens is necessary to achieve the intended steered
concept output (iii, iv) compared to applying concept steering interventions to a single token (i, iii).
The method of obtaining the steering matrix, either by computing the mean or median across em-
bedding concept classes, has no notable effect on the steered output.

Application of Concept Steering on a Real-World Dataset We demonstrate the practical utility
of concept steering on the ECG5000 dataset, which contains electrocardiogram readings classified
as either normal or abnormal heart patterns. Using a MOMENT with an SVM classifier, we achieve
strong baseline performance in distinguishing between the two classes.

For the steering experiment, we compute steering matrices using the median method to capture the
concept difference between normal and abnormal patterns. Analysis in the activation space reveals
that our steering approach successfully moves samples toward the target concept (Figure 17). This
bidirectional movement is evident the PCA visualization of activation patterns.

To validate our approach quantitatively, we applied the steering transformations to 30 samples.
While these samples were initially classified correctly with 100% accuracy as normal heartbeats,
after steering, all of these samples swapped output classes, confirming successful concept transfer.
These results suggest that concept steering can effectively capture and manipulate clinically relevant
patterns in physiological data.
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(iii) Trend and periodicity, β = 0.5 (iv) More trend, some periodicity, β = 0.75
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Figure 14: Compositional Steering for Forecasting using the MOMENT model. The parameter β
influences compositional steering, where both sinusoidal and increasing trend concepts are observed
in the steered output when β=0.5, showcasing how the steering technique can interpolate between
different concept combinations in the latent space (ii). Steered output changes from sinusodial
concepts to increasing trend concepts by varying β ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
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Figure 15: Self-similarity heatmaps comparing layer-to-layer CKA similarity matrices across
different-sized models in the Moirai family. The Small and Base models exhibit similar patterns,
with a distinct dissimilar layer at the end. The Base model has one additional dissimilar layer just
before the final one. In contrast, the Large model presents a notably different structure, showing a
two-block pattern where the layers are divided into two distinct groups, with the first block compris-
ing roughly one-third of the model, and the second block covering the remaining two-thirds. This
indicates a more pronounced hierarchical representation in the larger model.
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Figure 16: Compositional Steering for Forecasting using the Chronos model. The parameter β
influences compositional steering, where both sinusoidal and increasing trend concepts are observed
in the steered output when β=0.5, showcasing how the steering technique can interpolate between
different concept combinations in the latent space (ii). Steered output changes from sinusoidal
concepts to increasing trend concepts by varying β ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
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Figure 17: Visualization of Concept Steering on ECG Data. The figure shows PCA projections of
the activation space, where arrows indicate the direction of steering. Blue and red points represent
normal (class 0) and abnormal (class 1) samples respectively, with green points showing the original
samples and orange points showing their steered versions.
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F.2 PRUNING

Model name Vanilla Block 1 Block 2 Block 3 All

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.395 0.371 0.448 0.449 0.521 0.614 0.420 0.424 0.548 0.673
ETTh2 0.243 0.132 0.268 0.153 0.290 0.176 0.243 0.133 0.296 0.185
ETTm1 0.287 0.204 0.321 0.233 0.358 0.307 0.287 0.221 0.345 0.284
ETTm2 0.185 0.080 0.198 0.088 0.218 0.107 0.178 0.076 0.220 0.112
Electricity 0.372 0.250 0.446 0.342 0.716 0.757 0.428 0.327 0.727 0.819
Exchange rate 0.125 0.034 0.124 0.032 0.170 0.061 0.111 0.027 0.174 0.067
Illness 0.393 0.421 0.448 0.502 0.547 0.669 0.423 0.446 0.552 0.648
Traffic 0.492 0.790 0.552 0.906 0.861 1.562 0.606 0.940 0.878 1.633
Weather 0.129 0.079 0.134 0.082 0.170 0.107 0.117 0.074 0.176 0.120

Table 2: Zero-shot imputation performance of MOMENT. Results averaged across four different
masking rates: {12.5%, 25%, 37.5%, 50%} and five runs with different masking seeds. This table
presents the Model Performance Metrics (Mean Absolute Error and Mean Squared Error) on a sub-
set of the Time Series Pile (Goswami et al., 2024; Zhou et al., 2021). The model names include:
”Vanilla” MOMENT-Large without any pruning, ”Block 1-3” for cases where only one block is
pruned, and ”All” for all three blocks being pruned. The best results per dataset are bolded. For full
results refer to 4

Dataset Vanilla Block 1 Block 2 Block 3 Block 4 All
MASE WQL MASE WQL MASE WQL MASE WQL MASE WQL MASE WQL

0 ETTh 0.776 0.076 0.848 0.088 0.765 0.078 0.778 0.079 0.899 0.098 1.093 0.100
1 ETTm 0.716 0.068 0.820 0.076 0.864 0.084 0.721 0.063 0.724 0.074 0.978 0.084
2 dominick 0.820 0.331 0.829 0.335 0.824 0.334 0.809 0.332 0.835 0.337 0.886 0.359
3 ercot 0.627 0.020 0.694 0.022 0.697 0.027 0.624 0.018 0.909 0.024 1.281 0.042
4 exchange rate 2.310 0.012 2.394 0.014 2.061 0.013 2.256 0.014 1.877 0.012 1.713 0.013
5 m4 quarterly 1.217 0.082 1.255 0.084 1.193 0.081 1.223 0.082 1.213 0.082 1.270 0.085
6 m4 yearly 3.559 0.133 3.537 0.132 3.495 0.129 3.507 0.131 3.502 0.129 3.359 0.123
7 m5 0.943 0.586 0.942 0.586 0.954 0.591 0.939 0.587 0.941 0.622 0.956 0.644
8 monash australian electricity 1.427 0.076 1.417 0.077 1.372 0.073 1.445 0.083 1.638 0.084 2.593 0.143
9 monash car parts 0.903 1.041 0.883 1.046 0.867 0.998 0.892 1.027 0.833 0.960 0.816 0.956
10 monash cif 2016 0.989 0.012 1.058 0.019 0.944 0.013 0.998 0.018 1.096 0.011 1.275 0.017
11 monash covid deaths 43.251 0.058 42.444 0.052 44.001 0.078 42.357 0.060 41.915 0.053 45.544 0.062
12 monash fred md 0.517 0.021 0.520 0.019 0.507 0.024 0.553 0.029 0.504 0.016 0.600 0.017
13 monash hospital 0.704 0.056 0.724 0.057 0.690 0.055 0.703 0.055 0.718 0.058 0.726 0.060
14 monash m1 monthly 1.075 0.127 1.117 0.132 1.057 0.125 1.107 0.130 1.222 0.141 1.321 0.155
15 monash m1 quarterly 1.728 0.106 1.743 0.102 1.659 0.105 1.727 0.092 1.748 0.105 1.753 0.098
16 monash m1 yearly 4.336 0.183 4.275 0.174 4.113 0.174 4.375 0.163 4.400 0.182 4.100 0.170
17 monash m3 monthly 0.855 0.096 0.887 0.100 0.845 0.094 0.864 0.096 0.909 0.102 0.968 0.108
18 monash m3 quarterly 1.183 0.075 1.204 0.075 1.178 0.073 1.199 0.075 1.204 0.074 1.301 0.077
19 monash m3 yearly 3.034 0.145 2.972 0.146 2.908 0.143 2.980 0.143 3.017 0.144 2.870 0.137
20 monash nn5 weekly 0.936 0.090 0.961 0.092 0.924 0.090 0.939 0.090 0.941 0.090 0.985 0.095
21 monash tourism monthly 1.746 0.099 1.847 0.101 1.613 0.088 1.996 0.103 2.178 0.191 2.970 0.217
22 monash tourism quarterly 1.647 0.072 1.729 0.065 1.615 0.059 1.666 0.063 2.011 0.072 2.034 0.071
23 monash tourism yearly 3.565 0.180 3.683 0.185 3.574 0.173 3.724 0.188 3.596 0.174 3.568 0.175
24 monash traffic 0.794 0.253 0.808 0.247 0.797 0.253 0.808 0.255 0.916 0.275 1.046 0.290
25 monash weather 0.819 0.139 0.900 0.153 0.826 0.140 0.845 0.144 1.013 0.173 1.002 0.170
26 nn5 0.574 0.157 0.584 0.160 0.599 0.165 0.571 0.154 0.792 0.219 0.905 0.255

Table 3: Zero-shot forecasting performance of Chronos-Large. This table presents zero-
shot performance evaluated with Mean Absolute Scaled Error (MASE) and Weighted Quantile Loss
(WQL). Results are presented for the model without any pruning (Vanilla), when individual blocks
pruned Block i, and when all blocks are pruned (All).
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All Block 1 Block 2 Block 3 Vanilla

Dataset Mask Ratio Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.125 0.541 0.662 0.016 0.069 0.448 0.446 0.023 0.084 0.516 0.608 0.016 0.072 0.426 0.425 0.038 0.119 0.398 0.370 0.034 0.091
0.25 0.548 0.667 0.015 0.049 0.445 0.441 0.019 0.056 0.520 0.605 0.021 0.073 0.418 0.420 0.026 0.073 0.393 0.365 0.026 0.061
0.375 0.550 0.674 0.015 0.035 0.447 0.446 0.011 0.033 0.522 0.612 0.016 0.045 0.418 0.422 0.019 0.056 0.394 0.368 0.014 0.033
0.5 0.551 0.687 0.011 0.036 0.452 0.463 0.012 0.037 0.525 0.630 0.011 0.041 0.420 0.429 0.011 0.035 0.397 0.380 0.010 0.027

mean 0.548 0.673 0.014 0.046 0.448 0.449 0.016 0.052 0.521 0.614 0.015 0.056 0.420 0.424 0.024 0.071 0.395 0.371 0.021 0.054

ETTh2 0.125 0.290 0.179 0.005 0.016 0.269 0.155 0.008 0.016 0.292 0.177 0.010 0.020 0.240 0.130 0.010 0.015 0.243 0.131 0.007 0.015
0.25 0.298 0.188 0.008 0.015 0.271 0.159 0.011 0.019 0.294 0.182 0.010 0.019 0.245 0.136 0.010 0.015 0.247 0.136 0.012 0.017
0.375 0.296 0.186 0.005 0.009 0.266 0.151 0.011 0.015 0.286 0.172 0.008 0.013 0.245 0.135 0.007 0.010 0.242 0.130 0.011 0.014
0.5 0.298 0.187 0.005 0.010 0.266 0.150 0.008 0.011 0.288 0.174 0.006 0.011 0.242 0.132 0.006 0.008 0.242 0.129 0.007 0.010

mean 0.296 0.185 0.006 0.012 0.268 0.153 0.009 0.015 0.290 0.176 0.008 0.015 0.243 0.133 0.008 0.012 0.243 0.132 0.009 0.013

ETTm1 0.125 0.344 0.281 0.013 0.039 0.322 0.236 0.012 0.023 0.361 0.313 0.016 0.035 0.284 0.216 0.008 0.026 0.288 0.208 0.011 0.025
0.25 0.343 0.280 0.010 0.026 0.319 0.230 0.012 0.026 0.357 0.304 0.012 0.029 0.284 0.216 0.008 0.024 0.284 0.199 0.013 0.028
0.375 0.345 0.283 0.005 0.014 0.319 0.230 0.005 0.013 0.356 0.302 0.006 0.016 0.288 0.222 0.004 0.011 0.286 0.199 0.006 0.016
0.5 0.347 0.292 0.004 0.010 0.322 0.238 0.004 0.009 0.357 0.309 0.002 0.006 0.291 0.229 0.002 0.010 0.288 0.207 0.003 0.008

mean 0.345 0.284 0.009 0.024 0.321 0.233 0.009 0.018 0.358 0.307 0.010 0.023 0.287 0.221 0.006 0.018 0.287 0.204 0.008 0.020

ETTm2 0.125 0.222 0.113 0.005 0.008 0.200 0.089 0.004 0.002 0.221 0.110 0.005 0.004 0.179 0.078 0.005 0.004 0.188 0.082 0.005 0.004
0.25 0.220 0.112 0.006 0.005 0.197 0.086 0.005 0.004 0.216 0.105 0.006 0.005 0.177 0.074 0.004 0.003 0.184 0.078 0.004 0.003
0.375 0.219 0.112 0.003 0.003 0.198 0.088 0.003 0.002 0.216 0.106 0.004 0.003 0.178 0.075 0.002 0.002 0.184 0.080 0.003 0.002
0.5 0.219 0.111 0.001 0.002 0.198 0.088 0.003 0.003 0.218 0.107 0.004 0.004 0.178 0.075 0.002 0.001 0.185 0.080 0.003 0.003

mean 0.220 0.112 0.004 0.005 0.198 0.088 0.004 0.003 0.218 0.107 0.005 0.004 0.178 0.076 0.003 0.003 0.185 0.080 0.004 0.003

electricity 0.125 0.736 0.838 0.019 0.037 0.449 0.345 0.009 0.011 0.722 0.769 0.013 0.025 0.425 0.321 0.010 0.015 0.375 0.253 0.012 0.014
0.25 0.725 0.816 0.011 0.021 0.443 0.338 0.006 0.007 0.715 0.755 0.009 0.016 0.428 0.325 0.004 0.007 0.371 0.249 0.006 0.007
0.375 0.722 0.809 0.007 0.012 0.444 0.341 0.002 0.003 0.712 0.750 0.005 0.008 0.430 0.331 0.003 0.003 0.369 0.248 0.004 0.004
0.5 0.725 0.814 0.002 0.002 0.447 0.345 0.004 0.004 0.714 0.754 0.002 0.004 0.431 0.332 0.003 0.003 0.371 0.249 0.002 0.002

mean 0.727 0.819 0.012 0.023 0.446 0.342 0.006 0.007 0.716 0.757 0.009 0.016 0.428 0.327 0.006 0.009 0.372 0.250 0.007 0.008

exchange rate 0.125 0.164 0.059 0.010 0.014 0.129 0.035 0.007 0.006 0.178 0.065 0.010 0.008 0.109 0.027 0.010 0.002 0.131 0.037 0.010 0.006
0.25 0.172 0.064 0.010 0.012 0.122 0.031 0.006 0.003 0.167 0.059 0.001 0.002 0.108 0.025 0.007 0.001 0.122 0.033 0.008 0.004
0.375 0.178 0.070 0.005 0.009 0.122 0.032 0.004 0.002 0.167 0.059 0.008 0.004 0.112 0.028 0.009 0.004 0.123 0.033 0.008 0.004
0.5 0.180 0.073 0.008 0.014 0.123 0.032 0.007 0.003 0.170 0.061 0.009 0.006 0.114 0.029 0.005 0.002 0.125 0.034 0.011 0.006

mean 0.174 0.067 0.010 0.013 0.124 0.032 0.006 0.004 0.170 0.061 0.008 0.006 0.111 0.027 0.008 0.003 0.125 0.034 0.009 0.005

national illness 0.125 0.612 0.840 0.122 0.477 0.521 0.722 0.157 0.597 0.619 0.916 0.164 0.660 0.454 0.590 0.129 0.522 0.443 0.588 0.145 0.541
0.25 0.563 0.662 0.066 0.205 0.457 0.509 0.078 0.283 0.552 0.674 0.069 0.284 0.425 0.449 0.060 0.246 0.403 0.430 0.080 0.255
0.375 0.512 0.545 0.039 0.148 0.408 0.403 0.056 0.204 0.501 0.547 0.054 0.208 0.407 0.383 0.036 0.177 0.364 0.348 0.057 0.183
0.5 0.521 0.544 0.019 0.084 0.406 0.374 0.031 0.139 0.516 0.538 0.032 0.147 0.407 0.361 0.028 0.119 0.360 0.320 0.040 0.130

mean 0.552 0.648 0.078 0.279 0.448 0.502 0.098 0.353 0.547 0.669 0.098 0.383 0.423 0.446 0.071 0.297 0.393 0.421 0.089 0.312

traffic 0.125 0.880 1.647 0.018 0.052 0.559 0.915 0.023 0.060 0.860 1.572 0.015 0.028 0.609 0.950 0.027 0.068 0.503 0.803 0.025 0.068
0.25 0.887 1.660 0.015 0.032 0.550 0.909 0.008 0.054 0.871 1.589 0.016 0.018 0.602 0.936 0.023 0.065 0.492 0.793 0.014 0.056
0.375 0.874 1.620 0.011 0.034 0.548 0.901 0.012 0.052 0.860 1.553 0.011 0.028 0.603 0.931 0.015 0.043 0.487 0.780 0.006 0.044
0.5 0.869 1.603 0.012 0.037 0.549 0.898 0.013 0.046 0.854 1.534 0.012 0.035 0.608 0.943 0.007 0.021 0.487 0.783 0.006 0.035

mean 0.878 1.633 0.015 0.043 0.552 0.906 0.015 0.049 0.861 1.562 0.014 0.033 0.606 0.940 0.018 0.049 0.492 0.790 0.015 0.049

weather 0.125 0.175 0.121 0.004 0.007 0.134 0.082 0.003 0.006 0.171 0.108 0.004 0.005 0.115 0.071 0.005 0.009 0.130 0.078 0.004 0.007
0.25 0.176 0.120 0.002 0.005 0.134 0.081 0.005 0.004 0.169 0.105 0.006 0.007 0.116 0.073 0.002 0.003 0.128 0.077 0.004 0.004
0.375 0.177 0.121 0.001 0.002 0.134 0.083 0.005 0.007 0.168 0.107 0.005 0.006 0.117 0.076 0.003 0.006 0.129 0.080 0.005 0.007
0.5 0.176 0.119 0.002 0.003 0.135 0.084 0.004 0.007 0.170 0.107 0.004 0.006 0.118 0.076 0.003 0.006 0.130 0.081 0.004 0.007

mean 0.176 0.120 0.002 0.004 0.134 0.082 0.004 0.006 0.170 0.107 0.005 0.006 0.117 0.074 0.003 0.006 0.129 0.079 0.004 0.006

Table 4: Zero-shot imputation performance of MOMENT. Results averaged across five runs with
different masking seeds. This table presents the Model Performance Metrics (Mean Absolute Error
and Mean Squared Error) on a subset of the Time Series Pile (Goswami et al., 2024; Zhou et al.,
2021). The model names include: ”Vanilla” MOMENT-Large without any pruning, ”Block 1-3”
for cases where only one block is pruned, and ”All” for all three blocks being pruned.
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Vanilla All Pruned
MAE MSE MAE MSE

Dataset Horizon

Exchange 96 0.236 0.109 0.240 0.113
192 0.333 0.215 0.335 0.218
336 0.474 0.417 0.460 0.394
720 0.757 1.003 0.780 1.066

ETTh1 96 0.409 0.385 0.409 0.388
192 0.426 0.411 0.426 0.414
336 0.437 0.423 0.437 0.424
720 0.464 0.443 0.470 0.460

ETTh2 96 0.346 0.287 0.351 0.296
192 0.386 0.350 0.389 0.356
336 0.409 0.370 0.413 0.382
720 0.440 0.404 0.439 0.404

ETTm1 96 0.347 0.290 0.346 0.29
192 0.373 0.330 0.369 0.326
336 0.386 0.352 0.386 0.354
720 0.420 0.409 0.422 0.414

ETTm2 96 0.260 0.171 0.262 0.173
192 0.300 0.231 0.304 0.236
336 0.337 0.287 0.343 0.294
720 0.392 0.372 0.395 0.372

ILI 24 1.307 3.260 1.219 2.981
36 1.347 3.516 1.286 3.209
48 1.405 3.828 1.374 3.479
60 1.428 3.989 1.387 3.602

Weather 96 0.209 0.153 0.209 0.152
192 0.248 0.197 0.248 0.198
336 0.285 0.246 0.287 0.247
720 0.337 0.316 0.337 0.317

Table 5: Fine-tuned forecasting performance of MOMENT. This table presents model perfor-
mance metrics (Mean Absolute Error and Mean Squared Error) on a subset of the Time Series Pile
(Goswami et al., 2024; Zhou et al., 2021). Metrics are presented for MOMENT-Large without any
pruning (Vanilla) and for all blocks pruned (All). Results are gathered from the best performance on
the test set across 3 epochs of training with a batch size 64 and learning rate of 0.0001.
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Method Pruned Part

Encoder
Sparsity

(%)

Model
Sparsity

(%)

Estimated
Model Size

(MB)

Average
Time
(ms)

Standard
Deviation

(ms)

MOMENT

None 0.00 0.00 1301.76 20.88 0.42
Block 1 12.50 11.29 1154.76 19.42 0.27
Block 2 33.33 30.11 909.76 19.71 0.31
Block 3 12.50 11.29 1154.76 19.56 0.29
All Blocks 58.33 52.70 615.76 19.82 0.43

Chronos-T5

None 0.00 0.00 2704.48 59.95 0.26
Block 1 8.33 3.55 2608.48 58.22 0.58
Block 2 12.50 5.32 2560.48 56.80 0.78
Block 3 8.33 3.55 2608.48 56.94 0.27
Block 4 25.00 10.65 2416.48 57.55 0.84
All Blocks 54.17 23.07 2080.48 56.82 0.58

Table 6: Inference performance under various pruning configurations. This table presents the
inference performance metrics of the MOMENT-Large and Chronos-Large models with dif-
ferent pruning configurations. Results are presented for MOMENT-Large and Chronos without
any pruning (None), when individual blocks pruned Block i, and when all blocks are pruned (All
Blocks). Inference time estimation was performed by aggregating times from 100 passes of a one-
batch, one-channel sample of length 512.
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Figure 18: Combined visualization of classification accuracy and anomaly detection metrics
(F1 Score and VUS-ROC) comparing pruned and non-pruned models. Classification results are
based on 91 UCR datasets (MOMENT0 and MOMENT0 pruned), where the mean accuracy is 79.4%
and 78.1% respectively (see Table 9). Anomaly detection uses a subset of 44 datasets from the UCR
Anomaly Archive (MOMENTLP and MOMENTLP pruned). See Tables 10 and 8 for detailed results.
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Statistic Category Metric Mean Difference Standard Deviation Original Better Pruned Better Equal Pearson Correlation Coefficient
Classification Accuracy 0.0128 0.0489 54 28 9 0.945

Anomaly Detection Adjusted Best F1 0.2117 0.3026 28 7 6 0.634
VUS-ROC 0.1007 0.0995 36 2 3 0.512

Table 7: Summary of differences between MOMENTpruned (all blocks pruned) and MOMENT.
Detailed results are provided in Tables 8 and 10. For classification, we observed a slight deterioration
in performance, whereas for anomaly detection the deterioration was more severe.

Adj. Best F1 VUSROC
Model name AnomalyNearestNeighbors AnomalyTransformer MOMENTLP MOMENTLP pruned DGHL GPT4TS TimesNet AnomalyNearestNeighbors AnomalyTransformer MOMENTLP MOMENTLP pruned DGHL GPT4TS TimesNet

Dataset name

1sddb40 0.720 0.030 0.540 0.380 0.390 0.190 0.680 0.680 0.640 0.750 0.570 0.640 0.660 0.720
BIDMC1 1.000 0.990 1.000 0.950 1.000 1.000 1.000 0.660 0.690 0.650 0.620 0.720 0.630 0.740

CHARISfive 0.090 0.010 0.130 0.080 0.020 0.020 0.080 0.830 0.360 0.400 0.500 0.510 0.450 0.460
CHARISten 0.020 0.020 0.110 0.060 0.040 0.100 0.030 0.520 0.430 0.540 0.500 0.520 0.510 0.530

CIMIS44AirTemperature3 1.000 0.060 0.980 0.490 0.500 0.180 0.470 0.860 0.640 0.750 0.670 0.740 0.620 0.740
CIMIS44AirTemperature5 0.990 0.390 0.990 0.070 0.960 0.200 0.710 0.900 0.780 0.810 0.500 0.920 0.560 0.720

ECG2 0.860 1.000 1.000 1.000 0.620 0.900 1.000 0.840 0.830 0.840 0.720 0.630 0.780 0.600
ECG3 1.000 0.360 0.980 0.770 0.800 0.840 0.480 0.760 0.540 0.770 0.540 0.680 0.450 0.610

Fantasia 0.770 0.750 0.950 0.970 0.660 0.870 0.550 0.610 0.730 0.640 0.500 0.710 0.650 0.610
GP711MarkerLFM5z4 1.000 0.930 1.000 0.760 0.500 0.640 0.950 0.790 0.540 0.730 0.540 0.600 0.620 0.720
GP711MarkerLFM5z5 1.000 0.760 0.970 0.390 0.310 0.480 0.900 0.980 0.690 0.720 0.670 0.520 0.630 0.840

InternalBleeding5 0.910 0.940 1.000 0.990 1.000 0.920 1.000 0.880 0.460 0.690 0.690 0.760 0.630 0.940
Italianpowerdemand 0.060 0.010 0.740 0.030 0.590 0.010 0.440 0.630 0.450 0.770 0.600 0.700 0.480 0.710

Lab2Cmac011215EPG5 0.460 0.990 0.980 0.980 0.340 0.600 0.990 0.760 0.770 0.630 0.660 0.710 0.640 0.610
Lab2Cmac011215EPG6 0.240 0.410 0.100 0.140 0.260 0.100 0.170 0.600 0.700 0.480 0.460 0.600 0.520 0.450
MesoplodonDensirostris 1.000 1.000 0.840 0.970 0.790 1.000 1.000 0.780 0.850 0.720 0.710 0.740 0.690 0.790

PowerDemand1 0.800 0.870 0.440 0.210 0.490 0.760 0.950 0.800 0.720 0.540 0.490 0.530 0.600 0.750
TkeepFirstMARS 0.400 0.010 0.150 0.200 0.020 0.020 0.230 0.510 0.520 0.760 0.740 0.460 0.500 0.790

TkeepSecondMARS 0.950 0.830 1.000 1.000 0.160 0.120 0.950 0.750 0.720 0.910 0.640 0.970 0.810 0.980
WalkingAceleration5 0.950 0.990 1.000 1.000 0.910 0.870 0.930 0.910 0.940 0.870 0.730 0.930 0.910 0.850

apneaecg 0.360 0.400 0.200 0.250 0.250 0.310 0.260 0.700 0.580 0.690 0.560 0.590 0.580 0.760
apneaecg2 1.000 0.650 1.000 0.970 1.000 1.000 0.650 0.760 0.790 0.740 0.570 0.730 0.650 0.610

gait1 1.000 0.180 0.360 0.710 0.070 0.410 0.520 0.640 0.630 0.570 0.570 0.600 0.580 0.600
gaitHunt1 0.020 0.080 0.430 0.030 0.020 0.100 0.300 0.570 0.810 0.680 0.510 0.570 0.710 0.840

insectEPG2 0.710 0.120 0.230 0.050 0.140 0.810 0.960 0.760 0.650 0.820 0.410 0.650 0.560 0.730
insectEPG4 0.650 0.980 1.000 0.110 0.460 0.210 0.850 0.760 0.690 0.720 0.540 0.730 0.490 0.650

ltstdbs30791AS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.760 0.780 0.810 0.700 0.770 0.740 0.670
mit14046longtermecg 0.600 0.450 0.590 0.560 0.530 0.580 0.600 0.720 0.790 0.660 0.650 0.640 0.610 0.840

park3m 0.550 0.150 0.640 0.900 0.200 0.630 0.930 0.730 0.630 0.780 0.660 0.650 0.540 0.780
qtdbSel1005V 0.390 0.410 0.650 0.350 0.400 0.390 0.530 0.550 0.520 0.640 0.600 0.490 0.610 0.540

qtdbSel100MLII 0.500 0.420 0.840 0.360 0.410 0.600 0.870 0.540 0.620 0.620 0.550 0.590 0.580 0.650
resperation1 0.020 0.000 0.150 0.050 0.030 0.010 0.030 0.620 0.750 0.670 0.640 0.740 0.470 0.670

s20101mML2 0.130 0.690 0.710 0.090 0.150 0.050 0.080 0.730 0.640 0.720 0.720 0.690 0.640 0.690
sddb49 0.360 0.890 1.000 0.590 0.880 0.940 1.000 0.690 0.660 0.730 0.660 0.740 0.580 0.680

sel840mECG1 0.350 0.160 0.660 0.330 0.280 0.210 0.360 0.740 0.620 0.720 0.680 0.870 0.650 0.600
sel840mECG2 0.150 0.150 0.390 0.390 0.320 0.280 0.210 0.680 0.590 0.690 0.600 0.490 0.520 0.520

tilt12744mtable 0.060 0.070 0.240 0.060 0.100 0.000 0.030 0.690 0.480 0.740 0.730 0.660 0.510 0.640
tilt12754table 0.130 0.230 0.640 0.040 0.040 0.060 0.050 0.730 0.600 0.820 0.590 0.790 0.550 0.750

tiltAPB2 0.690 0.920 0.980 0.790 0.360 0.830 0.380 0.710 0.770 0.770 0.660 0.710 0.600 0.700
tiltAPB3 0.060 0.170 0.850 0.040 0.030 0.050 0.090 0.640 0.680 0.650 0.530 0.540 0.440 0.580

weallwalk 0.500 0.000 0.580 0.250 0.070 0.130 0.170 0.820 0.730 0.930 0.830 0.860 0.870 0.850

Table 8: Anomaly detection using Adjusted Best F1 and VUS-ROC for a subset of 44 datasets
sampled from the UCR Anomaly archive. MOMENTLP and pruned (all blocks) MOMENTLP pruned.

MOMENT0 pruned MOMENT0

Mean 0.781 0.794
Std 0.146 0.148

Min 0.300 0.369
25% 0.697 0.714
50% 0.776 0.815
75% 0.915 0.916
Max 1.000 1.000

Table 9: Statistic: Classification accuracy of methods across 91 UCR datasets. MOMENT0 without
fine-tuning and pruned (all blocks) MOMENT0 pruned. See full table:10
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Dataset MOMENT0pruned MOMENT0 TS2Vec T-Loss TNC TS-TCC TST DTW CNN Encoder FCN MCDNN MLP ResNet t-LeNet TWIESN

GestureMidAirD2 0.531 0.608 0.469 0.546 0.362 0.254 0.138 0.608 0.518 0.480 0.631 0.500 0.545 0.668 0.038 0.575
UWaveGestureLibraryX 0.812 0.821 0.795 0.785 0.781 0.733 0.569 0.728 0.721 0.771 0.754 0.726 0.768 0.781 0.127 0.608

GesturePebbleZ2 0.671 0.816 0.873 0.899 0.316 0.430 0.380 0.671 0.778 0.796 0.781 0.720 0.701 0.777 0.184 0.843
ECG5000 0.940 0.942 0.935 0.933 0.937 0.941 0.928 0.924 0.928 0.941 0.940 0.933 0.930 0.935 0.584 0.922
OSULeaf 0.707 0.785 0.851 0.760 0.723 0.723 0.545 0.591 0.482 0.554 0.979 0.419 0.560 0.980 0.182 0.628

MedicalImages 0.758 0.762 0.789 0.750 0.754 0.747 0.632 0.737 0.671 0.664 0.778 0.627 0.719 0.770 0.514 0.649
Ham 0.638 0.581 0.714 0.724 0.752 0.743 0.524 0.467 0.720 0.682 0.707 0.718 0.699 0.758 0.514 0.768

DistalPhalanxTW 0.640 0.612 0.698 0.676 0.669 0.676 0.568 0.590 0.671 0.694 0.695 0.685 0.610 0.663 0.285 0.591
ProximalPhalanxOutlineCorrect 0.835 0.856 0.887 0.859 0.866 0.873 0.770 0.784 0.807 0.768 0.907 0.866 0.730 0.920 0.684 0.817

FreezerRegularTrain 0.986 0.982 0.986 0.956 0.991 0.989 0.922 0.899 0.987 0.760 0.997 0.973 0.906 0.998 0.500 0.946
TwoLeadECG 0.793 0.847 0.986 0.999 0.993 0.976 0.871 0.905 0.877 0.784 0.999 0.806 0.753 1.000 0.500 0.949

GunPointMaleVersusFemale 0.991 0.991 1.000 0.997 0.994 0.997 1.000 0.997 0.977 0.978 0.997 0.952 0.980 0.992 0.525 0.988
Trace 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 0.952 0.740 1.000 0.902 0.806 1.000 0.240 0.934

SmoothSubspace 0.847 0.820 0.980 0.960 0.913 0.953 0.827 0.827 0.976 0.964 0.975 0.963 0.980 0.980 0.333 0.849
MiddlePhalanxTW 0.545 0.532 0.584 0.591 0.571 0.610 0.506 0.506 0.551 0.597 0.501 0.562 0.536 0.495 0.286 0.569

SyntheticControl 0.980 0.990 0.997 0.987 1.000 0.990 0.490 0.993 0.987 0.973 0.989 0.953 0.973 0.997 0.167 0.879
ShapesAll 0.807 0.815 0.902 0.848 0.788 0.773 0.733 0.768 0.617 0.679 0.894 0.599 0.776 0.926 0.017 0.643

AllGestureWiimoteX 0.569 0.607 0.777 0.763 0.703 0.697 0.259 0.716 0.411 0.475 0.713 0.261 0.477 0.741 0.100 0.522
Wafer 0.993 0.997 0.998 0.992 0.994 0.994 0.991 0.980 0.961 0.998 0.997 0.992 0.996 0.998 0.892 0.916

FaceFour 0.830 0.852 0.932 0.920 0.659 0.773 0.511 0.830 0.905 0.852 0.930 0.711 0.836 0.955 0.295 0.857
CricketX 0.721 0.749 0.782 0.713 0.623 0.731 0.385 0.754 0.535 0.644 0.794 0.513 0.591 0.799 0.074 0.627

DistalPhalanxOutlineCorrect 0.714 0.717 0.761 0.775 0.754 0.754 0.728 0.717 0.772 0.724 0.760 0.759 0.727 0.770 0.583 0.711
ChlorineConcentration 0.771 0.765 0.832 0.749 0.760 0.753 0.562 0.648 0.608 0.583 0.817 0.662 0.800 0.853 0.533 0.554

Chinatown 0.962 0.965 0.965 0.951 0.977 0.983 0.936 0.957 0.977 0.966 0.980 0.945 0.872 0.978 0.726 0.825
GestureMidAirD1 0.654 0.646 0.608 0.608 0.431 0.369 0.208 0.569 0.534 0.528 0.695 0.518 0.575 0.698 0.038 0.549

MiddlePhalanxOutlineAgeGroup 0.494 0.461 0.636 0.656 0.643 0.630 0.617 0.500 0.534 0.577 0.535 0.558 0.522 0.545 0.571 0.578
UMD 0.951 0.993 1.000 0.993 0.993 0.986 0.910 0.993 0.960 0.771 0.988 0.842 0.949 0.990 0.333 0.835
Crop 0.733 0.734 0.756 0.722 0.738 0.742 0.710 0.665 0.670 0.760 0.738 0.687 0.618 0.743 0.042 0.489

GesturePebbleZ1 0.808 0.849 0.930 0.919 0.378 0.395 0.500 0.791 0.844 0.821 0.880 0.769 0.792 0.901 0.163 0.840
WordSynonyms 0.668 0.688 0.676 0.691 0.630 0.531 0.422 0.649 0.568 0.557 0.561 0.470 0.599 0.617 0.219 0.506

ArrowHead 0.771 0.743 0.857 0.766 0.703 0.737 0.771 0.703 0.717 0.630 0.843 0.678 0.784 0.838 0.303 0.689
Wine 0.667 0.537 0.870 0.815 0.759 0.778 0.500 0.574 0.519 0.556 0.611 0.500 0.541 0.722 0.500 0.744

Coffee 0.929 0.893 1.000 1.000 1.000 1.000 0.821 1.000 1.000 0.886 1.000 0.979 0.993 1.000 0.507 0.979
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.719 0.709 0.740 0.725 0.748 0.727 0.712 0.748 0.748

Herring 0.594 0.594 0.641 0.594 0.594 0.594 0.594 0.531 0.531 0.512 0.644 0.572 0.491 0.600 0.594 0.625
Beef 0.733 0.833 0.767 0.667 0.733 0.600 0.500 0.633 0.767 0.707 0.680 0.507 0.713 0.753 0.200 0.527

MiddlePhalanxOutlineCorrect 0.498 0.467 0.838 0.825 0.818 0.818 0.753 0.698 0.744 0.752 0.795 0.796 0.755 0.826 0.570 0.743
ECGFiveDays 0.740 0.804 1.000 1.000 0.999 0.878 0.763 0.768 0.874 0.842 0.985 0.800 0.973 0.966 0.497 0.723

Yoga 0.822 0.834 0.887 0.837 0.812 0.791 0.830 0.837 0.786 0.753 0.837 0.741 0.856 0.867 0.536 0.626
Adiac 0.629 0.688 0.762 0.675 0.726 0.767 0.550 0.604 0.393 0.318 0.841 0.620 0.391 0.833 0.023 0.428

MoteStrain 0.732 0.774 0.861 0.851 0.825 0.843 0.768 0.835 0.885 0.872 0.936 0.691 0.855 0.924 0.539 0.809
Strawberry 0.946 0.951 0.962 0.954 0.951 0.965 0.916 0.941 0.952 0.959 0.975 0.958 0.959 0.980 0.643 0.911

InsectWingbeatSound 0.609 0.607 0.630 0.597 0.549 0.415 0.266 0.355 0.585 0.630 0.392 0.587 0.604 0.499 0.091 0.435
DodgerLoopWeekend 0.826 0.826 0.964 NaN NaN NaN 0.732 0.949 0.974 0.983 0.904 0.978 0.978 0.952 0.739 0.954

Meat 0.933 0.917 0.950 0.950 0.917 0.883 0.900 0.933 0.913 0.787 0.803 0.787 0.893 0.990 0.333 0.970
MelbournePedestrian 0.886 0.876 0.959 0.944 0.942 0.949 0.741 0.791 0.813 0.884 0.912 0.840 0.863 0.909 0.100 0.730

FaceAll 0.760 0.791 0.771 0.786 0.766 0.813 0.504 0.808 0.774 0.794 0.938 0.720 0.794 0.867 0.080 0.673
FacesUCR 0.835 0.811 0.924 0.884 0.789 0.863 0.543 0.905 0.873 0.867 0.943 0.775 0.831 0.954 0.143 0.641

AllGestureWiimoteY 0.584 0.666 0.793 0.726 0.699 0.741 0.423 0.729 0.479 0.509 0.784 0.420 0.571 0.794 0.100 0.600
ShakeGestureWiimoteZ 0.840 0.960 0.940 0.920 0.820 0.860 0.760 0.860 0.580 0.756 0.884 0.516 0.548 0.880 0.100 0.864

BME 0.940 0.960 0.993 0.993 0.973 0.933 0.760 0.900 0.947 0.827 0.836 0.896 0.905 0.999 0.333 0.819
FordB 0.767 0.798 0.794 0.793 0.733 0.815 0.507 0.620 0.749 0.777 0.772 0.698 0.707 0.813 0.503 0.512

Fish 0.783 0.800 0.926 0.891 0.817 0.817 0.720 0.823 0.855 0.734 0.961 0.720 0.848 0.981 0.126 0.878
SonyAIBORobotSurface2 0.827 0.829 0.871 0.889 0.834 0.907 0.745 0.831 0.831 0.844 0.980 0.804 0.831 0.975 0.617 0.635

FiftyWords 0.776 0.802 0.771 0.732 0.653 0.653 0.525 0.690 0.624 0.658 0.646 0.611 0.708 0.740 0.125 0.518
ToeSegmentation1 0.912 0.925 0.917 0.939 0.864 0.930 0.807 0.772 0.598 0.706 0.961 0.559 0.589 0.957 0.526 0.882
FreezerSmallTrain 0.865 0.902 0.870 0.933 0.982 0.979 0.920 0.753 0.739 0.676 0.683 0.688 0.686 0.832 0.500 0.917

TwoPatterns 0.989 0.994 1.000 0.999 1.000 0.999 0.466 1.000 0.991 1.000 0.870 0.976 0.948 1.000 0.259 0.875
ShapeletSim 0.933 0.961 1.000 0.672 0.589 0.683 0.489 0.650 0.497 0.510 0.706 0.498 0.513 0.782 0.500 0.546

Plane 0.990 0.990 1.000 0.990 1.000 1.000 0.933 1.000 0.962 0.964 1.000 0.952 0.977 1.000 0.143 1.000
GestureMidAirD3 0.300 0.369 0.292 0.285 0.292 0.177 0.154 0.323 0.317 0.368 0.326 0.278 0.382 0.340 0.038 0.275

DiatomSizeReduction 0.889 0.879 0.984 0.984 0.993 0.977 0.961 0.967 0.954 0.880 0.346 0.646 0.909 0.301 0.301 0.914
CricketZ 0.713 0.731 0.792 0.708 0.682 0.713 0.403 0.754 0.501 0.651 0.810 0.484 0.629 0.809 0.062 0.643

Lightning7 0.712 0.726 0.863 0.795 0.767 0.685 0.411 0.726 0.647 0.696 0.825 0.559 0.616 0.827 0.260 0.608
UWaveGestureLibraryY 0.738 0.738 0.719 0.710 0.697 0.641 0.348 0.634 0.626 0.676 0.642 0.639 0.699 0.666 0.121 0.497

GunPointAgeSpan 0.959 0.962 0.987 0.994 0.984 0.994 0.991 0.918 0.912 0.890 0.996 0.887 0.934 0.997 0.494 0.965
DistalPhalanxOutlineAgeGroup 0.655 0.669 0.727 0.727 0.741 0.755 0.741 0.770 0.758 0.761 0.718 0.729 0.647 0.718 0.433 0.705

SwedishLeaf 0.914 0.923 0.941 0.914 0.880 0.923 0.738 0.792 0.884 0.902 0.967 0.841 0.845 0.963 0.064 0.837
CBF 0.972 0.960 1.000 0.983 0.983 0.998 0.898 0.997 0.959 0.977 0.994 0.908 0.869 0.996 0.332 0.896

BeetleFly 0.650 0.900 0.900 0.800 0.850 0.800 1.000 0.700 0.900 0.620 0.910 0.630 0.880 0.850 0.500 0.790
AllGestureWiimoteZ 0.504 0.537 0.746 0.723 0.646 0.689 0.447 0.643 0.375 0.396 0.692 0.287 0.439 0.726 0.100 0.516

DodgerLoopDay 0.475 0.438 0.562 NaN NaN NaN 0.200 0.500 0.312 0.487 0.143 0.305 0.160 0.150 0.160 0.593
GunPointOldVersusYoung 0.943 0.981 1.000 1.000 1.000 1.000 1.000 0.838 0.922 0.923 0.989 0.926 0.941 0.989 0.524 0.975

FordA 0.905 0.936 0.936 0.928 0.902 0.930 0.568 0.555 0.896 0.928 0.914 0.863 0.816 0.937 0.510 0.555
ItalyPowerDemand 0.941 0.911 0.925 0.954 0.928 0.955 0.845 0.950 0.954 0.964 0.963 0.966 0.953 0.962 0.499 0.871

ProximalPhalanxOutlineAgeGroup 0.873 0.863 0.834 0.844 0.854 0.839 0.854 0.805 0.812 0.872 0.825 0.839 0.849 0.847 0.488 0.839
GunPoint 0.927 0.927 0.980 0.980 0.967 0.993 0.827 0.907 0.948 0.784 1.000 0.907 0.928 0.991 0.493 0.989

ProximalPhalanxTW 0.732 0.712 0.824 0.771 0.810 0.800 0.780 0.761 0.777 0.791 0.761 0.775 0.767 0.773 0.341 0.784
PickupGestureWiimoteZ 0.600 0.620 0.820 0.740 0.620 0.600 0.240 0.660 0.608 0.496 0.744 0.412 0.604 0.704 0.100 0.616

SonyAIBORobotSurface1 0.739 0.729 0.903 0.902 0.804 0.899 0.724 0.725 0.690 0.729 0.958 0.655 0.692 0.961 0.429 0.725
PowerCons 0.933 0.894 0.961 0.900 0.933 0.961 0.911 0.878 0.960 0.971 0.863 0.929 0.977 0.879 0.500 0.852

PhalangesOutlinesCorrect 0.686 0.652 0.809 0.784 0.787 0.804 0.773 0.728 0.799 0.745 0.818 0.795 0.756 0.845 0.613 0.656
BirdChicken 0.750 0.850 0.800 0.850 0.750 0.650 0.650 0.750 0.710 0.510 0.940 0.540 0.740 0.880 0.500 0.620

ToeSegmentation2 0.915 0.915 0.892 0.900 0.831 0.877 0.615 0.838 0.752 0.702 0.889 0.649 0.745 0.894 0.815 0.794
CricketY 0.715 0.746 0.749 0.728 0.597 0.718 0.467 0.744 0.582 0.639 0.793 0.521 0.598 0.810 0.085 0.652

ElectricDevices 0.659 0.646 0.721 0.707 0.700 0.686 0.676 0.602 0.686 0.702 0.706 0.653 0.593 0.728 0.242 0.605
DodgerLoopGame 0.710 0.623 0.841 NaN NaN NaN 0.696 0.877 0.816 0.810 0.768 0.877 0.865 0.710 0.478 0.716

Fungi 0.828 0.898 0.957 1.000 0.527 0.753 0.366 0.839 0.961 0.934 0.018 0.051 0.863 0.177 0.063 0.439
Symbols 0.928 0.936 0.976 0.963 0.885 0.916 0.786 0.950 0.808 0.754 0.955 0.644 0.836 0.893 0.174 0.798

UWaveGestureLibraryZ 0.749 0.765 0.770 0.757 0.721 0.690 0.655 0.658 0.630 0.684 0.727 0.645 0.697 0.749 0.121 0.573
ECG200 0.870 0.760 0.920 0.940 0.830 0.880 0.830 0.770 0.816 0.884 0.888 0.838 0.914 0.874 0.640 0.874

Table 10: Classification accuracy of methods across 91 UCR datasets. Results are shown for
MOMENT0 (without fine-tuning) and its pruned version, MOMENT0 pruned (all blocks). We report
that MOMENT0 achieves 54 wins, 9 ties, and 28 losses compared to MOMENT0 pruned.
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