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ABSTRACT

This work presents Prior Depth Anything, a framework that combines incomplete
but precise metric information in depth measurement with relative but complete
geometric structures in depth prediction, generating accurate, dense, and detailed
metric depth maps for any scene. To this end, we design a coarse-to-fine pipeline
to progressively integrate the two complementary depth sources. First, we in-
troduce pixel-level metric alignment and distance-aware weighting to pre-fill di-
verse metric priors by explicitly using depth prediction. It effectively narrows
the domain gap between prior patterns, enhancing generalization across varying
scenarios. Second, we develop a conditioned monocular depth estimation (MDE)
model to refine the inherent noise of depth priors. By conditioning on the nor-
malized pre-filled prior and prediction, the model further implicitly merges the
two complementary depth sources. Our model showcases impressive zero-shot
generalization across depth completion, super-resolution, and inpainting over 7
real-world datasets, matching or even surpassing previous task-specific methods.
More importantly, it performs well on challenging, unseen mixed priors and en-
ables test-time improvements by switching prediction models, providing a flexible
accuracy-efficiency trade-off while evolving with advancements in MDE models.
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Figure 7: Depth Anything V2. We first train the most capable teacher on precise synthetic images.
Then, to mitigate the distribution shift and limited diversity of synthetic data, we annotate unlabeled
real images with the teacher. Finally, we train student models on high-quality pseudo-labeled images.

Enhance the scene coverage. The diversity of synthetic images is limited, without including enough
real-world scenes. Nevertheless, we can easily cover numerous distinct scenes by incorporating
large-scale unlabeled images from public datasets. Moreover, synthetic images are indeed very
redundant due to being repetitively sampled from pre-defined videos. In comparison, unlabeled real
images are clearly distinguished and very informative. By training on sufficient images and scenes,
models not only demonstrate stronger zero-shot MDE capability (as shown in Figure 6 “+ unlabeled
real images”), but they can also serve as better pre-trained sources for downstream related tasks [72].

Transfer knowledge from the most capable model to smaller ones. We have shown in Figure 5,
that smaller models cannot directly benefit from synthetic-to-real transfer by themselves. However,
armed with large-scale unlabeled real images, they can learn to mimic the high-quality predictions
of the most capable model, similar to knowledge distillation [27]. But differently, our distillation is
enforced at the label level via extra unlabeled real data, instead of at the feature or logit level with
original labeled data. This practice is safer because there is evidence showing feature-level distillation
is not always beneficial, especially when the teacher-student scale gap is huge [48]. Finally, as
supported in Figure 16, unlabeled images boost the robustness of our smaller models tremendously.

5 Depth Anything V2

5.1 Overall Framework

According to all the above analysis, our final pipeline to train Depth Anything V2 is clear (Figure 7).
It consists of three steps:

• train a reliable teacher model based on DINOv2-G purely on high-quality synthetic images.
• produce precise pseudo depth on large-scale unlabeled real images.
• train final student models on pseudo-labeled real images for robust generalization (we will

show the synthetic images are not necessary in this step).

We will release four student models, based on DINOv2 small, base, large, and giant, respectively.

5.2 Details

As shown in Table 7, we use five precise synthetic datasets (595K images) and eight large-scale
pseudo-labeled real datasets (62M images) for training. Same as V1 [89], for each pseudo-labeled
sample, we ignore its top-n-largest-loss regions during training, where n is set as 10%. We consider
them as potentially noisy pseudo labels. Similarly, our models produce affine-invariant inverse depth2.
We use two loss terms for optimization on labeled images: a scale- and shift-invariant loss Lssi and
a gradient matching loss Lgm. These two objective functions are not new, as they are proposed by
MiDaS [56]. But differently, we find Lgm is super beneficial to the depth sharpness when using
synthetic images (Section B.7). On pseudo-labeled images, we follow V1 to add an additional feature
alignment loss to preserve informative semantics from pre-trained DINOv2 encoders.

2To offer capable metric depth models, we further fine-tune our basic models with metric depth (Section 7.3).
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6

Figure 1: Core Motivation. We progressively integrate com-
plementary information from metric measurements (accurate
metrics) and relative predictions (completeness and fine de-
tails) to produce dense and fine-grained metric depth maps.

Fine-detailed and dense metric
depth information is a fundamental
pursuit in computer vision and
robotics applications (Zhang et al.,
2023a; Deng et al., 2022; Chung
et al., 2024; Roessle et al., 2022;
Esser et al., 2023; Wang et al.,
2024; Zhen et al., 2024; Wang
et al., 2019; Wofk et al., 2019).
Although monocular depth estima-
tion (MDE) models (Ranftl et al.,
2020; Yang et al., 2024a;b; Ke et al.,
2024; Bochkovskii et al., 2025; He
et al., 2025; Hu et al., 2024; Yin
et al., 2023) have made significant
progress, enabling complete and
detailed depth predictions, predicted
depths are relative and lack precise metric information. On the other hand, depth measurement
technologies, such as Structure from Motion (SfM) (Schonberger & Frahm, 2016) or depth
sensors (Lange & Seitz, 2001), provide precise but often incomplete and coarse metric information.

In this paper, we explore prior-based monocular depth estimation, which takes RGB images and
measured depth priors as inputs to output detailed and precise metric depth maps. We unify different
depth estimation tasks by abstracting various types of depth measurements as depth prior. To clarify
the scope, we first outline common types of depth priors and their primary applications:

1) Sparse points (depth completion): Depth from LiDAR or SfM (Schonberger & Frahm, 2016) is
typically sparse. Completing sparse depth priors is crucial for applications such as 3D reconstruc-
tion (Roessle et al., 2022; Chung et al., 2024) and autonomous driving (Tao et al., 2022; Häne et al.,

1
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Methods Target Task
Sparse Point Low-

resolution
Missing Area

Mixed
SfM LiDAR Extreme Range Shape Object

Marigold-DC (Viola et al., 2024) Depth Completion ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Omni-DC (Zuo et al., 2024) Depth Completion ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
PromptDA (Lin et al., 2025) Depth Super-resolution ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
DepthLab (Liu et al., 2024a) Depth Inpainting ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Prior Depth Anything All-Rounder ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Applicable scenarios of current prior-based monocular depth estimation models. SfM:
sparse matching points from SfM, LiDAR: sparse LiDAR line patterns, Extreme: extremely sparse
points (100 points), Range: missing depth within a specific range, Shape: missing regular-shaped
areas, Object: missing depth of an object.

2017; Carranza-Garcı́a et al., 2022). 2) Low-resolution (depth super-resolution): Low-power
Time of Flight (ToF) cameras (Lange & Seitz, 2001), commonly used in mobile phones, capture
low-resolution depth maps. Depth super-resolution is essential for spatial perception, VR (Rasla &
Beyeler, 2022), and AR (Slater & Wilbur, 1997) in portable devices (He et al., 2021a). 3) Miss-
ing areas (depth inpainting): Stereo matching failures (Lowe, 2004; Rublee et al., 2011) or 3D
Gaussian splatting edits (Liu et al., 2024b; Yu et al., 2024) may leave large missing areas in depth
maps. Filling these gaps is vital for 3D scene generation and editing (Yu et al., 2024). 4) Mixed
prior: In real-world scenarios, different depth priors often coexist. For instance, structured light
cameras (Herrera et al., 2012) often generate low-resolution and incomplete depth maps, due to
their limited working range. Handling these mixed priors is vital for practical applications.

In Tab. 1, we detail the patterns of each prior. Existing methods mainly focus on specific limited
priors, limiting their use in diverse, real-world scenarios. In this work, we propose Prior Depth Any-
thing, motivated by the complementary advantage between predicted and measured depth maps, as
illustrated in Fig. 1. Technically, we design a coarse-to-fine pipeline to explicitly and progressively
combine the depth prediction with measured depth prior, achieving impressive robustness to any
image with any prior.

We first introduce coarse metric alignment to pre-fill incomplete depth priors using predicted relative
depth maps, which effectively narrows the domain gap between various prior types. Next, we apply
the fine structure refinement to rectify misaligned geometric structures in the pre-filled depth priors
caused by inherent noises in the depth measurements. Specifically, the pre-filled depth prior (with
accurate metric data) and the relative depth prediction (with fine details and structure) are provided
as additional inputs to a conditioned MDE model. Guided by the RGB image input, the model can
combine the strengths of two complementary depth sources for the final output.

We evaluate our model on 7 datasets with varying depth priors. It achieves zero-shot depth com-
pletion, super-resolution, and inpainting within a single model, matching or outperforming previous
models that are specialized for only one of these tasks. More importantly, our model achieves sig-
nificantly better results when different depth priors are mixed, highlighting its effectiveness in more
practical and varying scenarios.

Our contribution can be summarized as follows:

• We propose Prior Depth Anything, a unified framework to estimate fine-detailed and com-
plete metric depth with any depth priors. Our model can seamlessly handle zero-shot depth
completion, super-resolution, inpainting, and adapt to more varied real-world scenarios.

• We introduce coarse metric alignment to pre-fill depth priors, narrowing the domain gap
between different types of depth prior and enhancing the model’s generalization.

• We design fine structure refinement to alleviate the inherent noise in depth measurements.
This involves a conditioned MDE model to granularly merge the pre-filled depth prior and
prediction based on image content.

• Our method exhibits superior zero-shot results across various datasets and tasks, surpassing
even state-of-the-art methods specifically designed for individual tasks.
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2 RELATED WORK

2.1 MONOCULAR DEPTH ESTIMATION

Monocular depth estimation (MDE) is a fundamental computer vision task that predicts the depth of
each pixel from a single color image (Eigen et al., 2014; Fu et al., 2018; Bhat et al., 2021). Recently,
with the success of “foundation models” (Bommasani et al., 2021), some studies (Ranftl et al., 2020;
Yang et al., 2024a;b; Xu et al., 2025; He et al., 2025; Ke et al., 2024; Bochkovskii et al., 2025; Yin
et al., 2023) have attempted to build depth foundation models by scaling up data and using stronger
backbones, enabling them to predict detailed geometric structures for any image.

MiDaS (Ranftl et al., 2020) made the pioneering study by training an MDE model on joint datasets to
improve generalization. Following this line, Depth Anything v1 (Yang et al., 2024a) scaled training
with massive unlabeled image data, while Depth Anything v2 (Yang et al., 2024b) further enhanced
its ability to handle fine details, reflections, and transparent objects by incorporating highly precise
synthetic data (Wang et al., 2021; 2020; Yao et al., 2020; Cabon et al., 2020; Roberts et al., 2021).

Although these methods have demonstrated high accuracy and robustness, they primarily produce
unscaled relative depth maps due to the significant scale differences between indoor and outdoor
scenes. While Metric3D (Yin et al., 2023; Hu et al., 2024) and Depth Pro (Bochkovskii et al., 2025)
achieve zero-shot metric depth estimation through canonical camera transformations, the precision
remains limited compared to measurement technologies.

Our method builds on the strength of existing depth foundation models, which excel at precisely
capturing relative geometric structures and fine details in any image. By progressively integrating
accurate but incomplete metric information in the depth measurements, our model can generate
dense and detailed metric depth maps for any scene.

2.2 PRIOR-BASED MONOCULAR DEPTH ESTIMATION

In practical applications, depth measurement methods like multi-view matching (Cordts et al., 2016)
or sensors (Silberman et al., 2012; Geiger et al., 2013) can provide accurate metric information,
but due to their inherent nature or cost limitations, these measurements often capture incomplete
information. Some recent studies have tried to use this measurement data as prior knowledge in
the depth estimation process to achieve dense and accurate metric depth. These methods, however,
primarily focus on specific patterns of depth measurement, which can be categorized into three types
based on their input patterns:

Depth Completion As noted in (Roessle et al., 2022), SfM reconstructions from 19 images often
result in depth maps with only 0.04% valid pixels. Completing the sparse depth maps with observed
RGB images is a fundamental computer vision task (Tang et al., 2024; Cheng et al., 2020; 2019;
Zuo & Deng, 2024; Zhang et al., 2023b; Park et al., 2024). Recent approaches like Omni-DC (Zuo
et al., 2024) and Marigold-DC (Viola et al., 2024) have achieved certain levels of zero-shot general-
ization across diverse scenes and varying sparsity levels. However, due to the lack of explicit scene
geometry guidance, they face challenges in extremely sparse scenarios.

Depth Super-resolution Obtaining high-resolution metric depth maps with depth cameras usually
demands significant power. A more efficient alternative is to use low-power sensors to capture low-
resolution maps and then enhance them using super-resolution. Early efforts (Zhong et al., 2023;
Xian et al., 2020; Zhao et al., 2022; He et al., 2021b), however, show limited generalization to unseen
scenes. Recent PromptDA (Lin et al., 2025) achieves effective zero-shot super-resolution by using
the low-resolution map as a prompt for depth foundation models (Yang et al., 2024b).

Depth Inpainting As discussed in (Yang et al., 2024b; Ke et al., 2024), due to inherent limitations
in stereo matching and depth sensors, even “ground truth” depth data in real-world datasets often
have significant missing regions. Additionally, in applications like 3D Gaussian editing and gener-
ation (Liu et al., 2024b; Yu et al., 2024; Chung et al., 2023), there is a need to fill holes in depth
maps. DepthLab (Liu et al., 2024a) first fills holes using interpolation and then refines the results
with a depth-guided diffusion model. However, interpolation errors reduce its effectiveness for large
missing areas or incomplete depth ranges.
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Figure 2: Prior Depth Anything. Considering RGB images, any form of depth prior Dprior, and
relative prediction Dpred from a frozen MDE model, coarse metric alignment first explicitly com-
bines the metric data in Dprior and geometry structure in Dpred to produce the pre-filled depth map
D̂prior. Fine structure refinement implicitly merges the complementary information to produce the
final metric depth map.

These previous methods have two main limitations: 1) Poor performance when prior is limited.
2) Difficulty generalizing to unseen prior patterns. Our approach, Prior Depth Anything, tackles
these challenges by explicitly using geometric information from depth prediction in a coarse-to-fine
process, achieving impressive generalization and accuracy across various patterns of prior input.

3 PRIOR DEPTH ANYTHING

Advanced monocular depth estimation models excel in predicting detailed, complete relative depth
maps with precise geometric structures for any image. In contrast, depth measurement technologies
can provide metric depth maps but suffer from inherent noise and varying patterns of incomplete-
ness. Inspired by the complementary strengths of estimated and measured depth, we introduce Prior
Depth Anything to progressively and effectively merge the two depth sources. To handle diverse
real-world scenarios, we take measurement depth in any form as the metric prior, producing fine-
grained and complete metric depth maps for any image with any prior.

3.1 PRELIMINARY

Given an RGB image I ∈ R3×H×W and its corresponding metric depth prior Dprior ∈ RH×W ,
prior-based monocular depth estimation takes the I and Dprior as input, aiming to output the depth
map Doutput ∈ RH×W that is detailed, complete, and metrically precise. As discussed in 1, depth
priors obtained by different measurement techniques often display various forms of incompleteness.
To handle various priors with a unified framework, we uniformly represent the coordinates of valid
positions in Dprior as P = {xi, yi}Ni=0, which N pixels are valid.

3.2 COARSE METRIC ALIGNMENT

As shown in Fig. 2, different types of depth priors exhibit distinct missing patterns (e.g. sparse
points, low-resolution grids, or irregular holes). These differences in sparsity and incompleteness
restrict models’ ability to generalize across various priors. To tackle this, we propose pre-filling
missing regions to transform all priors into a shared intermediate domain.

However, interpolation-based filling, used in previous methods (Liu et al., 2024a; Lin et al., 2025),
preserves pixel-level metric information but ignores geometric structure, leading to significant errors
in the filled areas. On the other hand, global alignment (Chung et al., 2024; 2023), which scales
relative depth predictions to match priors, maintains the fine structure of predictions but loses critical
pixel metric details. To address these challenges, we propose pixel-level metric alignment, which
aligns geometry predictions and metric priors at pixel level, preserving both predicted structure and
original metric information.

D̂prior(x, y) = Dpred(x, y), where (x, y) ∈ P (1)
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For each missing pixel (x̂, ŷ), we first identify its K closest valid points {xk, yk}Kk=1 from the valid
pixel set P using k-nearest neighborhood (kNN). Then, we compute the optimal scale s and shift t
parameter that minimizes the least-squares error between the depth values of Dpred and Dprior at the
K supporting points:

s, t = argmin
s,t

K∑
k=1

∥s ·Dpred(xk, yk) + t−Dprior(xk, yk)∥2 (2)

With the optimal scale s and shift t, we fill the missing pixels in D̂prior by linearly aligning the
predicted depth value at (x̂, ŷ) to metric prior:

D̂prior(x̂, ŷ) = s ·Dpred(x̂, ŷ) + t (3)

To handle this issue, we further introduce distance-aware weighting for more smooth and accurate
alignment. Within the alignment objective of Eq. 2, we re-weight each supporting point based on its
distance to the query pixel, modifying Eq. 2 to:

s, t = argmin
s,t

K∑
k=1

∥s ·Dpred(xk, yk) + t−Dprior(xk, yk)∥2
∥(x̂, ŷ)− (xk, yk)∥2

(4)

This simple modification ensures smoother transitions between regions and improves robustness by
emphasizing geometrically closer measurements.

In summary, by explicitly integrating the accurate metric information from Dprior and the fine ge-
ometric structures from Dpred, we cultivate the pre-filled dense prior D̂prior, which offers two main
advantages: 1) Similar Pattern: Filling the missing area narrows the differences between various
prior types, improving the generalization across different scenarios. 2) Fine Geometry: The filled
regions, derived from linear transformations of depth prediction, natively preserve the fine geometric
structures, significantly boosting performance when prior information is limited.

3.3 FINE STRUCTURE REFINEMENT

Although the prefilled coarse dense depth is generally accurate in metric, the parameter-free ap-
proach is sensitive to noise in depth priors. A single noisy pixel on blurred edges can disrupt all
filled regions relying on it as a supporting point. To tackle these errors, we further implicitly lever-
age the MDE model’s ability in capturing precise geometric structures in RGB images, learning to
rectify the noise in priors and produce refined depth.
Metric Condition Specifically, we incorporate the pre-filled prior D̂prior as extra conditions to the
pre-trained MDE model. With the guidance of RGB images, the conditioned MDE model is trained
to correct the potential noise and error in D̂prior. To this end, we introduce a condition convolutional
layer parallel to the RGB input layer, as shown in Fig. 2. By initializing the condition layer to zero,
our model can natively inherit the ability of pre-trained MDE model.
Geometry Condition In addition to leveraging the MDE model’s inherent ability in capturing
geometric structures from RGB input, we also incorporate existing depth predictions as an external
geometry condition to help refine the coarse pre-filled prior. The depth prediction Dpred, obtained
from the frozen MDE model, is also passed into the condition MDE model through a zero-initialized
conv layer.
Scale Normalization Then, we normalize the metric condition D̂prior and geometry condition
Dpred to [0,1] for two key benefits: 1) Better Scene Generalization: different scenes (e.g. indoor
vs. outdoor) have significant depth scale differences. Normalization removes this scale variance,
improving performance across diverse scenes. 2) Better MDE Model Generalization: predictions
from different frozen MDE models also have varying scales. Normalizing Dpred enables test-time
model switching, offering flexible accuracy-efficiency trade-offs for diverse demands, and enabling
seamless improvements as MDE models advance.
Synthetic Training Data As discussed in (Ke et al., 2024; Yang et al., 2024b), real depth datasets
often face issues such as blurred edges and missing values. Therefore, we leverage synthetic
datasets, Hypersim (Roberts et al., 2021) and vKITTI (Cabon et al., 2020), with precise GT to
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Model Encoder
NYUv2 ScanNet ETH-3D DIODE KITTI

S+M L+M S+L S+M L+M S+L S+M L+M S+L S+M L+M S+L S+M L+M S+L

DAv2 ViT-L 4.59 4.95 5.08 4.34 4.55 4.62 6.82 10.99 7.49 11.57 10.23 12.46 10.20 11.12 10.97
Depth Pro ViT-L 4.46 4.87 5.41 4.22 4.44 4.51 6.39 7.08 9.29 12.92 8.42 8.91 6.29 9.24 9.18

Omni-DC - 2.86 3.26 3.81 2.88 2.76 3.64 2.09 4.17 4.59 4.23 4.80 5.40 4.36 8.63 9.02
Marigold-DC SDv2 2.26 3.38 3.82 2.19 2.87 3.37 2.15 4.77 5.13 4.98 6.73 7.25 5.82 9.67 10.05

DepthLab SDv2 6.33 3.96 5.80 5.16 3.38 5.24 7.87 4.70 7.45 8.83 6.40 8.62 39.29 23.12 30.96
PromptDA ViT-L 17.00 3.76 17.13 15.27 4.21 15.44 18.34 9.01 18.73 18.24 9.97 18.55 21.61 54.35 22.14

PriorDA
(ours)

DAv2-B+ViT-S 2.09 2.88 3.17 2.14 2.56 2.94 1.65 3.96 4.16 3.76 4.43 4.89 3.97 8.38 8.53
DAv2-B+ViT-B 2.04 2.82 3.09 2.11 2.50 2.86 1.56 3.84 4.08 3.62 4.30 4.73 3.86 8.40 8.57

Depth Pro+ViT-B 2.01 2.82 3.08 2.06 2.48 2.82 1.61 3.83 4.05 3.40 4.23 4.60 3.37 8.12 8.25

Table 2: Zero-shot depth estimation with mixed prior. All results are reported in AbsRel ↓. “S”:
“Extreme” setting in sparse points, “L”: “×16” in low-Resolution, “M”: “Shape” (square masks
of 160) in missing area. We highlight Best, second best results. “Depth Pro+ViT-B” indicates the
frozen MDE and conditioned MDE. DAv2-B: Depth Anything v2 ViT-B (Yang et al., 2024b), SDv2:
Stable Diffusion v2. (Rombach et al., 2022).

Model Encoder
NYUv2 ScanNet ETH-3D DIODE KITTI

SfM LiDAR Extreme SfM LiDAR Extreme SfM LiDAR Extreme SfM LiDAR Extreme SfM LiDAR Extreme

DAv2 ViT-L 5.31 4.85 4.77 5.88 4.60 4.68 5.84 7.41 6.61 12.45 12.55 14.37 9.83 8.86 9.25
Depth Pro ViT-L 4.80 4.47 4.41 5.27 4.12 4.23 5.68 5.31 6.51 10.53 9.08 8.98 6.45 6.05 6.19

Omni-DC - 2.87 2.12 2.63 6.09 2.02 2.71 2.57 1.88 1.98 4.99 3.96 4.13 3.34 5.27 4.17
Marigold-DC SDv2 2.65 1.90 2.13 4.32 1.76 2.12 4.65 2.27 2.03 8.41 5.12 4.77 6.19 6.88 5.62

DepthLab SDv2 5.92 4.30 6.30 9.87 3.56 5.09 13.82 6.40 8.01 16.67 7.45 8.66 25.91 37.17 40.29
PromptDA ViT-L 18.68 17.59 16.96 18.13 15.99 15.18 25.02 18.86 18.18 25.46 18.58 17.93 22.26 21.96 21.39

PriorDA
(ours)

DAv2-B+ViT-S 2.42 2.01 2.01 3.90 2.19 2.09 3.26 1.90 1.61 5.25 3.88 3.65 3.73 4.81 3.76
DAv2-B+ViT-B 2.38 1.95 1.97 3.85 2.15 2.04 3.10 1.82 1.50 5.16 3.77 3.64 3.74 4.73 3.76

Depth Pro+ViT-B 2.36 1.96 1.96 3.84 2.14 2.01 3.13 1.84 1.54 5.07 3.66 3.37 3.35 4.12 3.28

Table 3: Zero-shot depth completion (e.g. sparse points prior). All results are reported in AbsRel
↓. “SfM”: points sampled with SIFT (Lowe, 2004) and ORB (Rublee et al., 2011), “LiDAR”: 8
LiDAR lines, “Extreme”: 100 random points.

drive our conditioned MDE model to rectify the noise in measurements. From the precise ground
truth, we randomly sample sparse points, create square missing areas, or apply downsampling to
construct different synthetic priors. To mimic real-world measurement noise, we add outliers and
boundary noise to perturb the sampled prior, following (Zuo et al., 2024).
Learning Objective As mentioned earlier, both the metric and geometry conditions are normal-
ized. Thus, we apply the de-normalization transformation to convert the output into the ground truth
scale. Following ZoeDepth (Bhat et al., 2023), we use the scale-invariant log loss for pixel-level
supervision.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Implementation Details During training, we utilize the Depth Anything V2 ViT-B model as the
frozen MDE model to produce relative depth predictions. During inference, the frozen MDE model
can be swapped with any other pre-trained model. The k-value of the kNN process in Sec. 3.2 is set
to 5. We initialize the conditioned MDE Model with two versions of Depth Anything V2: ViT-S and
ViT-B. We train the conditioned MDE model for 200K steps with a batch size of 64, using 8 GPUs.
The AdamW optimizer with a cosine scheduler is employed, where the base learning rate is set to
5e-6 for the MDE encoder and 5e-5 for the MDE decoder.

Benchmarks Our method aims to provide accurate and complete metric depth maps in a zero-shot
manner for any image with any prior. To cover “any image”, we evaluate models on 7 unseen real-
world datasets, including NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017) for indoor,
ETH3D (Schops et al., 2017) and DIODE (Vasiljevic et al., 2019) for indoor/outdoor, KITTI (Geiger
et al., 2012) for outdoor, ARKitScenes (Baruch et al., 2021) and RGB-D-D (He et al., 2021b) for cap-
tured low-resolution depth. To cover “any prior”, we construct 9 individual patterns: sparse points
(SfM, LiDAR, Extremely sparse), low-resolution (captured, x8, x16), and missing areas (Range,
Shape, Object). We also mix these patterns to simulate more complex scenarios.
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Model Encoder
ARKitScenes RGB-D-D NYUv2 ScanNet ETH-3D DIODE KITTI

AbsRel↓ RMSE↓ AbsRel↓ RMSE↓ 8× 16× 8× 16× 8× 16× 8× 16× 8× 16×
DAv2 ViT-L 3.67 0.0764 4.67 0.1116 4.77 5.13 4.64 4.85 6.27 7.38 12.49 11.20 9.54 11.22

Depth Pro ViT-L 3.25 0.0654 4.28 0.1030 4.48 4.83 4.17 4.40 5.88 6.79 8.20 8.33 6.76 9.16

Omni-DC - 2.14 0.0435 2.09 0.0685 1.57 3.11 1.29 2.65 1.86 4.09 2.81 4.71 4.05 8.35
Marigold-DC SDv2 2.17 0.0448 2.15 0.0672 1.83 3.32 1.63 2.83 2.33 4.75 4.28 6.60 5.17 9.47

DepthLab SDv2 2.10 0.0411 2.13 0.0624 2.60 3.73 1.89 3.19 2.60 4.50 4.42 6.16 17.17 22.90
PromptDA ViT-L 1.34 0.0347 2.79 0.0708 1.61 1.75 1.87 1.93 1.80 2.56 3.18 3.73 3.92 4.95

PriorDA
(ours)

DAv2-B+ViT-S 2.09 0.0414 2.07 0.0597 1.73 2.79 1.60 2.50 2.06 3.91 3.09 4.36 4.54 8.20
DAv2-B+ViT-B 1.94 0.0404 2.02 0.0581 1.72 2.73 1.61 2.45 2.00 3.79 3.10 4.23 4.65 8.24

Depth Pro+ViT-B 1.95 0.0408 2.02 0.0581 1.72 2.74 1.58 2.43 1.99 3.77 3.01 4.15 4.44 7.99

Table 4: Zero-shot depth super-resolution (e.g. low-resolution prior). ARKitScenes and RGB-D-
D provide captured low-resolution depth. For other datasets, results are reported in AbsRel ↓, with
low-resolution maps created by downsampling the GT depths.

Model Encoder
NYUv2 ScanNet ETH-3D DIODE KITTI

Range Shape Object Range Shape Object Range Shape Object Range Shape Object Range Shape Object

DAv2 ViT-L 17.40 5.24 6.56 16.75 4.64 6.74 68.76 8.23 19.22 51.55 29.20 13.41 31.12 14.93 17.94
Depth Pro ViT-L 10.89 9.20 6.52 16.76 15.39 6.80 10.37 34.28 17.28 37.44 34.74 13.53 14.51 16.11 8.19

Omni-DC - 23.24 5.94 13.79 22.89 5.44 8.71 29.47 4.81 17.97 38.83 7.75 25.43 35.42 8.94 15.06
Marigold-DC SDv2 19.83 2.37 6.18 17.14 1.97 6.66 25.36 2.15 7.72 39.33 7.59 18.97 33.44 9.21 7.72

DepthLab SDv2 23.85 2.66 10.87 21.17 2.08 10.40 30.61 2.75 10.53 41.01 6.51 17.17 40.43 13.60 18.66
PromptDA ViT-L 36.67 20.88 23.14 35.86 17.87 21.89 46.21 24.94 27.42 49.50 25.66 28.29 55.79 32.74 38.29

PriorDA
(ours)

DAv2-B+ViT-S 16.86 2.30 5.72 14.29 2.01 5.87 21.16 1.98 6.52 36.59 5.58 10.77 30.04 6.67 7.99
DAv2-B+ViT-B 16.61 2.30 5.49 14.48 1.99 5.73 21.90 1.76 6.09 36.64 5.94 9.72 30.79 6.29 7.52

Depth Pro+ViT-B 16.31 2.17 5.59 14.18 1.98 5.87 22.72 1.76 6.21 34.90 4.86 11.99 30.44 5.47 6.04

Table 5: Zero-shot depth inpainting (e.g. missing area prior). All results are reported in AbsRel
↓. Metrics are calculated only on the masked (inpainted) regions. “Range”: masks for depth beyond
3m (indoors) and 15m (outdoors), “Shape”: average result for square masks of sizes 80, 120, 160,
and 200, “Object”: object segmentation masks detected by YOLO (Jocher et al., 2023).

4.2 COMPARISON ON MIXED DEPTH PRIOR

We quantitatively evaluate the ability to handle challenging unseen mixed priors in Tab 2. In terms of
absolute performance, all versions of our model outperform compared baselines. More importantly,
our model is less impacted by the additional patterns. For example, compared to the setting that only
uses sparse points in Tab 3, adding missing areas or low-resolution results in only minor performance
drops (1.96→2.01, 3.08 in NYUv2). In contrast, Omni-DC (2.63→2.86, 3.81), and Marigold-DC
(2.13→2.26, 3.82) show larger declines. These results highlight the robustness of our method to
different prior inputs.

4.3 COMPARISON ON INDIVIDUAL DEPTH PRIOR

Zero-shot Depth Completion Tab 3 shows the zero-shot depth completion results with different
kinds and sparsity levels of sparse points as priors. Compared to Omni-DC (Zuo et al., 2024) and
Marigold-DC (Viola et al., 2024), which are specifically designed for depth completion and rely
on sophisticated, time-consuming structures, our approach achieves better overall performance with
simpler and more efficient designs.
Zero-shot Depth Super-resolution In Tab 4, we present results for super-resolution depth maps.
On benchmarks where low-resolution maps are created through downsampling (e.g. NYUv2 (Silber-
man et al., 2012), ScanNet (Dai et al., 2017), etc), our approach achieves performance comparable
to state-of-the-art methods. However, since downsampling tends to include overly specific details
from the GT depths, directly replicating noise and blurred boundaries from GT leads to better results
instead. Therefore, ARKitScenes (Baruch et al., 2021) and RGB-D-D (He et al., 2021b) are more
representative and practical, as they use low-power cameras to capture the low-resolution depths.
On these two benchmarks, our method achieves leading performance compared to other zero-shot
methods.
Zero-shot Depth Inpainting In Tab 5, we evaluate the performance of inpainting missing regions
in depth maps. In the practical and challenging “Range” setting, our method achieves superior
results, which is highly meaningful for improving depth sensors with limited effective working
ranges. Additionally, it outperforms all alternatives in filling square and object masks, demonstrating
its potential for 3D content generation and editing.
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RGB image Ours Marigold-DC Omni-DC PromptDA DepthLab

Figure 3: Qualitative comparisons with previous methods. The depth prior or error map is shown
below each sample.

RGB image OursGT & Prior Error

Figure 4: Error analysis on widely used but indeed noisy benchmarks (Silberman et al., 2012; Dai
et al., 2017). Red means higher error, while blue indicates lower error.

4.4 QUALITATIVE ANALYSIS

In Fig 3, we provide a qualitative comparison of the outputs from different models. Our model
consistently outperforms previous approaches, offering richer details, sharper boundaries, and more
accurate metrics.

Fig 4 visualizes the error maps of our model. The errors mainly occur around blurred edges in the
“ground truth” of real data. Our method effectively corrects the noise in labels while aligning with
the metric information from the prior. These “beyond ground truth” cases highlight the potential of
our approach in addressing the inherent noise in depth measurement techniques. More visualizations
can be found in the supp.
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S L M S+M L+M S+L

Interpolation 7.93 3.88 8.96 8.38 4.55 7.99
Ours (w/o re-weight) 2.92 3.44 6.91 3.22 4.53 4.36

Ours 2.42 3.51 6.70 2.60 4.32 4.40

Table 6: Accuracy of pre-filled depth maps with
different strategies. We compare the pre-filled
dense prior (i.e., D̂prior) with ground truth.

Metric Geometry S L M S+M L+M S+L

✗ ✓ 5.46 5.29 5.48 5.36 5.30 5.46
✓ ✗ 2.10 2.94 2.58 2.17 3.02 3.31
✓ ✓ 1.96 2.74 2.48 2.01 2.82 3.08

Table 7: Effect of each condition for condi-
tioned MDE models.

Model Encoder S L M S+M L S+L

Depth
Anything V2

ViT-S 2.15 2.77 2.68 2.22 2.87 3.20
ViT-B 1.97 2.73 2.50 2.02 2.82 3.09
ViT-L 1.92 2.71 2.29 1.97 2.79 3.04
ViT-G 1.87 2.70 2.22 1.94 2.76 3.02

Depth Pro ViT-L 1.96 2.74 2.35 2.01 2.82 3.08

Table 8: Effect of using different frozen MDE
models. The conditioned MDE model is ViT-B
version here.

Seen Unseen
S L M S+M L+M S+L

None 2.50 3.71 46.07 2.50 3.74 3.64
Interpolation 3.40 2.68 4.28 3.53 2.94 3.56

Ours (w/o re-weight) 2.13 2.86 2.58 2.19 2.94 3.25
Ours 1.99 2.82 2.26 2.06 2.90 3.11

Table 9: Effect of pre-filled strategies on gener-
alization. We train models with various pre-fill
strategies using only sparse points and evaluate
their ability to generalize to unseen types.

4.5 ABLATION STUDY

We use Depth Anything V2 ViT-B as the frozen MDE and ViT-S as the conditioned MDE for abla-
tion studies by default. All results are evaluated on NYUv2.

Accuracy of different pre-fill strategy As shown in Fig 6, our pre-fill method outperforms simple
interpolation across all scenarios by explicitly utilizing the precise geometric structures in depth
prediction. Additionally, the re-weight mechanism further enhances performance.

Effectiveness of fine structure refinement Comparing the pre-filled coarse depth maps in Tab 6
with the final output accuracy in Tab 3, 4, 5 and 2, the performance improvements after fine struc-
ture refinement (sparse points: 2.42→2.01, low-resolution: 3.51→2.79, missing areas: 6.70→2.48,
S+M: 2.60→2.09, L+M: 4.32→2.88, S+L: 4.40→3.17) demonstrate its effectiveness in rectifying
misaligned geometric structures in pre-filled depth maps while maintaining its metric information.

Effectiveness of metric and geometry condition We evaluate the impact of metric and geometry
guidance for the conditioned MDE model in Tab 7. The results show that combining both conditions
achieves the best performance, emphasizing the importance of reinforcing geometric information
during the fine structure refinement stage.

Testing-time improvement We investigate the potential of test-time improvements in Tab 8. Our
findings reveal that larger and stronger frozen MDE models consistently bring higher accuracy, while
smaller models maintain competitive performance and enhance the efficiency of the entire pipeline.
These findings underscore the flexibility of our model and its adaptability to various scenarios.

Pre-fill strategy for generalization From Tab 9, we observe that our pixel-level metric alignment
helps the model generalize to new prior patterns, and the re-weighting strategy further enhances the
robustness by improving the accuracy of the pre-filled depth map.

5 CONCLUSION

In this work, we present Prior Depth Anything, a robust and powerful solution for prior-based
monocular depth estimation. We propose a coarse-to-fine pipeline to progressively integrate the
metric information from incomplete depth measurements and the geometric structure from relative
depth predictions. The model offers three key advantages: 1) delivering accurate and fine-grained
depth estimation with any type of depth prior; 2) offering flexibility to adapt to extensive applica-
tions through test-time module switching; and 3) showing the potential to rectify inherent noise and
blurred boundaries in real depth measurements.
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A APPLICATION

Monocular Depth Estimation Multi-view Depth Estimation

NYU ETH-3D KITTI ETH-3D KITTI

VGGT 3.54 (-) 4.94 (-) 6.56 (-) 2.46 (-) 18.75 (-)

+Omni-DC 4.12 (0.58) 6.08 (1.14) 6.85 (0.29) 2.64 (0.18) 18.66 (-0.09)
+Marigold-DC 4.06 (0.52) 5.43 (0.49) 7.63 (1.07) 2.81 (0.35) 18.86 (0.11)
+DepthLab 3.56 (0.02 ) 4.92 (-0.02) 7.97 (1.41) 2.25 (-0.21) 19.47 (0.72)
+PromptDA 3.43 (-0.11) 4.97 (0.03) 6.50 (-0.06) 2.48 (0.02) 18.91 (0.16)
+PriorDA 3.45 (-0.09) 4.43 (-0.51) 6.39 (-0.17) 1.99 (-0.47) 18.61 (-0.14)

Table 10: Results of refining VGGT depth prediction with different methods. All results are reported
as AbsRel.

To demonstrate our model’s real-world applicability, we employ prior-based monocular depth esti-
mation models to refine the depth predictions from VGGT Wang et al. (2025), a state-of-the-art 3D
reconstruction foundation model. VGGT provides both a depth and confidence map. We take the
top 30% most confident pixels as depth prior and apply different prior-based models to obtain finer
depth predictions. 1

Table 10 reports VGGT’s performance in monocular and multi-view depth estimation, along with
the effectiveness of different prior-based methods as refiners. We observe that only our PriorDA
consistently improves VGGT’s predictions, primarily due to its ability to adapt to diverse priors.
These surprising results highlight PriorDA’s broad application potential.

B INFERENCE EFFICIENCY ANALYSIS

Model Encoder Param Latency(ms)

Omni-DC - 85M 223
Marigold-DC SDv2 1,290M 28,607

DepthLab SDv2 2,080M 9,078
PromptDA ViT-L 340M 108

PriorDA
(ours)

DAv2-B+ViT-S 97M+25M 79 49+9+21
DAv2-B+ViT-B 97M+98M 107 49+9+49

Depth Pro+ViT-B 952M+98M 941 883+9+49

Table 11: Analysis of inference efficiency. “x+x+x” represents the latency of the frozen MDE model,
coarse metric alignment, and conditioned MDE model, respectively.

In Tab 11, we analyze the inference efficiency of different models on one A100 GPU for an image
resolution of 480×640. Overall, compared to previous approaches, our model variants achieve lead-
ing performance while demonstrating certain advantages in parameter number and inference latency.
For a more detailed breakdown, we provide the time consumption for each stage of our method. No-
tably, the coarse metric alignment, which relies on kNN and least squares, introduces negligible
overhead. Our method demonstrates significant efficiency advantages over previous methods.

C MORE ABLATION STUDY

Effect of k-value in Coarse Metric Alignment In Tab 12, we analyze the impact of the k-value
on the accuracy of the final output Doutput. Overall, our method is non-sensitive to the selection of
k-value, with most selections yielding strong structural results. This highlights the effectiveness of
the nearest neighbor approach in preserving detailed metric information.

1For models less adept at handling missing pixels (DepthLab, PromptDA), the entire VGGT depth prediction
was provided as prior.
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S L M S+M L+M S+L

k=3 2.00 2.52 2.74 2.10 2.83 3.07
k=5 1.97 2.16 2.73 2.04 2.82 3.09
k=10 2.00 2.31 2.74 2.09 2.83 3.12
k=20 2.10 2.27 2.76 2.16 2.83 3.14

Table 12: Impact of different k-value on the accuracy of the final output Doutput.

NYU
S L M S+M L+M S+L

Omni-DC 2.6 3.1 6.6 2.8 3.3 3.8
PromptDA 17.0 1.8 21.4 17.0 3.8 17.1

PriorDASP-only 2.0 2.8 2.3 2.1 2.9 3.1
PriorDALW-only 2.2 3.0 3.4 2.4 3.3 3.7

PriorDAALL 2.0 2.7 2.5 2.0 2.8 3.1

Table 13: Impact of used prior patterns during training.

Trained on Single Prior PriorDA trained with sparse point or low-resolution prior is compared
with baselines in Tab. 13, showing advantages over baseline trained with same single prior. This
indicates that our method’s ability to generalize to any form of prior stems from the coarse metric
alignment, rather than the use of multiple patterns during training.

D MORE QUALITATIVE RESULTS

To further explore the boundaries of our model’s capabilities and its potential to rectify the “ground
truth” depth, we offer more error analysis with different patterns of priors on the 7 unseen datasets
(Figure 5 for RGB-D-D, Figure 6 for ARKitScenes, Figure 7 for NYUv2, Figure 8 for ScanNet,
Figure 9 for ETH-3D, Figure 10 for DIODE, Figure 11 for KITTI).

E MORE TRAINING DETAILS

For each training sample, we randomly select one of three patterns (e.g., sparse points, low-
resolution, or missing areas) with equal probability to sample the depth prior from the ground truth
depth map. Specifically: for sparse points, we randomly select 100 to 2000 pixels as valid; for
low-resolution, we downsample the GT map by a factor of 8; and for missing areas, we generate
a random square mask with a side length of 160 pixels. It is worth mentioning that, we find that
using multiple patterns or only using sparse points lead to similar results, as shown in Tab 13. This
indicates that our method’s ability to generalize to any form of prior stems from the coarse metric
alignment, rather than the use of multiple patterns during training.

F MORE DISSCUSION

Why PromptDA preforms poor in mixed prior, sparse point and missing area? PromptDA
is only trained on low-resolution but complete priors. Therefore, it struggles to handle incomplete
priors, even if we already apply DepthLab’s pre-processing to fill in missing areas.

G USAGE OF LARGE LANGUAGE MODELS

In this work, we employed Large Language Models (LLMs) in the writing phase for sentence-level
polishing.
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H LIMITATIONS AND FUTURE WORKS

Currently, our largest conditioned MDE model is initialized with Depth Anything v2 ViT-B. Given
that larger versions of the Depth Anything v2 model exhibit stronger capabilities, training condi-
tioned MDE models based on larger backbones is an important direction for future work. Addition-
ally, following Depth Anything, all training images are resized to 518×518. In contrast, PromptDA
is natively trained at 1440×1920 resolution. Therefore, training at higher resolutions to better handle
easily accessible high-resolution RGB images is another crucial direction for our future research.

RGB image OursGT & Prior Error

Figure 5: Error analysis on RGB-D-D.

RGB image OursGT & Prior Error

Figure 6: Error analysis on ARKitScenes.
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RGB image OursGT & Prior Error

Figure 7: Error analysis on NYUv2.

RGB image OursGT & Prior Error

Figure 8: Error analysis on ScanNet.
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RGB image OursGT & Prior Error

Figure 9: Error analysis on ETH-3D.

RGB image OursGT & Prior Error

Figure 10: Error analysis on DIODE.
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RGB image

Ours

GT & Prior

Error

Figure 11: Error analysis on KITTI.
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