
Learngene Tells You How to Customize:
Task-Aware Parameter Initialization at Flexible Scales

Jiaze Xu 1 2 Shiyu Xia 1 2 Xu Yang 1 2 Jiaqi Lv 1 2 Xin Geng 1 2

Abstract
Appropriate parameter initialization strategies
are essential for reducing the high computational
costs of training large pretrained models in
various task scenarios. Graph HyperNetwork
(GHN), a parameter initialization method, has
recently demonstrated strong performance in
initializing models. However, GHN still faces
several challenges, including limited effectiveness
in initializing larger models, poor performance
on smaller datasets, and the requirement of
task-specific GHN training, where each new task
necessitates retraining the GHN model, leading
to increased computational and storage overhead.
To overcome these challenges, motivated by
the recently proposed Learngene framework,
we propose a novel method called Task-Aware
Learngene (TAL). Briefly, our approach pretrains
a TAL model under the guidance of a well-trained
model and then performs multi-task tuning to
obtain a shared TAL model that enables parameter
prediction based on both model architectures and
task-specific characteristics. Extensive experi-
ments show the superiority of TAL. Models initial-
ized with TAL outperform those initialized using
GHN method by an average of 24.39% in terms of
accuracy across Decathlon datasets. We provide
the code at https://github.com/mathieuxu/Task-
Aware-Learngene.

1. Introduction
Pretrained models have achieved remarkable success in com-
puter vision (Dosovitskiy, 2020; Radford et al., 2021), natural
language processing (Radford et al., 2019; Touvron et al.,

1School of Computer Science and Engineering, Southeast Uni-
versity, Nanjing 210096, China 2Key Laboratory of New Gener-
ation Artificial Intelligence Technology and Its Interdisciplinary
Applications (Southeast University), Ministry of Education, China.
Correspondence to: Jiaqi Lv <is.jiaqi.lv@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2023), and other fields. However, pretraining such models
requires computational resources and training costs (Radford
et al., 2021; Touvron et al., 2023; Yang et al., 2024; Peng
et al., 2025), thus making it challenging and costly to obtain
well-trained models in many task scenarios with resource con-
straints (Mehta & Rastegari, 2021; Fu et al., 2025). So that an
appropriate model initialization strategy becomes crucial, as
effective parameter initialization not only accelerates model
convergence but also enhances model performance (He et al.,
2015; Zhang et al., 2018; Wang et al., 2022; 2024; Yao et al.,
2025), thereby significantly reducing overall training costs.

Recently, Graph HyperNetwork (GHN) (Zhang et al., 2018;
Knyazev et al., 2021; 2023) has been proposed as an approach
to make model pretraining more accessible by reducing com-
putational costs and enabling parameter initialization for
models of multiple scales. Formally, given a set of neural
network architectures f as training data, where each archi-
tecture is represented as a computational graph fG (Knyazev
et al., 2021), a GHN (denoted as HD and parameterized
by θ) learns to predict the parameters of these neural net-
works. The prediction process can be formulated as wpred=
HD(f

G,θ), where wpred represents the predicted network
parameters. During training, the GHN is optimized to min-
imize the loss function on a target dataset D like ImageNet-
1K(Russakovsky et al., 2015). The predicted parameters
wpred demonstrate superior initialization performance com-
pared to conventional random initialization methods, leading
to reduced training time and computational costs.

Despite the advantages demonstrated by GHN, as illustrated
in Fig.1(a), several significant limitations persist in their
practical applications. First, although the latest GHN method
LoGAH (Zhou et al., 2024) has demonstrated significant
progress in handling deep neural architectures, its effective-
ness diminishes when initializing larger models like ViT-
base (Dosovitskiy, 2020). And most GHN methods still have
considerable room for improvement in initialization accuracy
across various datasets, such as ImageNet-1K(Russakovsky
et al., 2015) and CIFAR-100 (Krizhevsky et al., 2009).
Second, GHN requires independent training for each specific
task, meaning that when facing different downstream applica-
tions, a new GHN model has to be retrained accordingly. This
requirement not only substantially increases computational
overhead but also imposes additional storage burdens.

1

https://github.com/mathieuxu/Task-Aware-Learngene
https://github.com/mathieuxu/Task-Aware-Learngene

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

(a) GHN (b) Learngene

learngene

High storage consumption
High computational overhead

Ancestry
modelTask 1

GHN 1

tiny

small

base Task 2

GHN 2

tiny

small

base Task k

GHN k

tiny

small

base

…

condense

Task k
…

expand

(c) Task-Aware Learngene
Ancestry

model

Task 1

tiny

small

base

learngene

TAL model

decoder

Task 2

tiny

small

base Task k

tiny

small

base

…

Task 1

Task 2

guide

initialize

Figure 1: (a) GHN exhibits limitations in initializing large-scale models and requires high storage and computational resources
for each individual task. (b) The Learngene framework condenses critical components (learngene) from a large ancestry model
and expands them to initialize models of various sizes. (c) The Task-Aware Learngene (TAL) pipeline: first pretraining the
TAL model using an ancestry model, then tuning it in a multi-task setting to generate task-specific initialization for models of
different scales.

One recently proposed framework called Learngene (Wang
et al., 2022), offers inspiring insights into addressing
the limitations of GHN mentioned above. As shown in
Fig.1(b), Learngene adopts a unique paradigm where it first
condenses a well-trained model, termed ancestry model,
into a small critical part known as learngene. Subsequently,
this learngene can be expanded to initialize multiple models
of varying sizes for different downstream tasks (Wang
et al., 2022; Xia et al., 2024a; Shi et al., 2024; Feng et al.,
2024b;a; Xie et al., 2024). While both Learngene and GHN
aim to provide effective model initialization, Learngene
distinguishes itself through its ability to inherit and utilize
knowledge from the ancestry model and consider the
commonalities across downstream tasks, enabling better
adaptation to different application scenarios.

In this paper, we connect these two lines of work, proposing
a novel approach called Task-Aware Learngene (TAL) that
encodes shareable information to predict initial parameters
for models across flexible scales. As shown in Fig.1(c), our
approach involves two stages. First, we train the TAL model
on a large dataset under the guidance of an ancestry model
to transfer knowledge. Then, we tune the trained TAL model
on multi-task datasets to effectively filter and convey the
task-specific knowledge from the ancestry model. Finally,
the trained TAL model can predicting model parameters
for various tasks, even unseen ones and supports model cus-
tomization at different scales. We systematically investigate
the effectiveness of TAL. Extensive experiments show the
superiority of TAL. For example, ViT-small model initialized
by TAL achieving 22.44% higher accuracy on ImageNet-1K
without any training compared to LoGAH (Zhou et al., 2024).
Moreover models initialized with TAL also outperform those
initialized using LoGAH by an average of 24.39% in terms

of accuracy across Decathlon datasets (Rebuffi et al., 2017).

The main contributions of this work are as follows:

(1) We design Task-Aware Learngene (TAL), an end-to-end
mechanism that effectively represents and transfers shareable
knowledge across tasks in parameter prediction. TAL not
only provides well-initialized parameters for larger models
but also enables parameter prediction based on both model
architectures and task-specific characteristics.

(2) Extensive experiments demonstrate the superiority of
TAL across various scenarios. Compared to training from
scratch and previous GHN methods, models initialized
with TAL achieve superior performance while substantially
reducing both computational costs and storage requirements.

2. Related Work
2.1. Learngene

The Learngene method (Wang et al., 2022), inspired by
biological gene inheritance, focuses on extracting compact
components, known as learngene, from well pretrained mod-
els (ancestry models) to initialize models. Existing methods
like Vanilla-LG (Wang et al., 2022), TLEG (Xia et al., 2024a),
Learngene Pool (Shi et al., 2024) and SWS (Xia et al., 2024b)
employ different strategies to select and expand learngene.
Vanilla-LG extracts key layers as learngene and splices them
with randomly initialized layers. TLEG uses linear expansion
of learngene layers, while Learngene Pool refines large mod-
els into multiple small models, using their layers as learngene
instances to construct new models. In Task-Aware Learngene
(TAL), learngene becomes the encoder part of the TAL
model rather than a sub block of the ancestry model. Model
generation becomes an encoding-decoding process, with

2

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

ancestry model and multi-task knowledge injected through
learngene. TAL can process both model and task information,
initializing flexible-scale models for different tasks.

2.2. Graph HyperNetwork

Graph HyperNetwork (GHN) (Zhang et al., 2018; Knyazev
et al., 2021) employs a hypernetwork for direct param-
eter prediction. This approach has attracted significant
research interest due to its superior performance and
remarkable adaptability. GHN-2 (Knyazev et al., 2021)
and GHN-3 (Knyazev et al., 2023) further improved the
parameter prediction capabilities of GHN by improving the
learning process of the model computation graph. The latest
LoGAH method (Zhou et al., 2024) introduces low-rank
approximation (LoRA) technology, allowing GHN to predict
the parameters of larger models using smaller hypernetworks.
This progress has greatly improved the efficiency and ability
of GHN in handling large-scale model parameter prediction
tasks. Our task-aware learngene (TAL) incorporates modules
to process task information, enabling a single TAL model
to customize models of varying scales for different tasks.

3. Background
A Graph HyperNetwork (GHN) is a neural network HD
parameterized by θ and trained on a dataset D. The input
of GHN HD(θ) is a computational graph fG of a neural
network f and the output of GHN is the parameters of the
model wpred=HD(fG;θ).

In (Knyazev et al., 2021), GHN HD is trained by SGD
over M training architectures {fG

a }Ma=1 and N training data
samples {xj ,yj}Nj=1 on the following optimization problem:

argmin
θ

1

NM

N∑
j=1

M∑
a=1

L(fa(xj ;HD(fG
a ;θ)),yj), (1)

when training GHN HD(θ), a meta-batch of m training
architectures is sampled as input for GHN. Meanwhile, a
mini-batch of n training datas x is sampled and fed into the
parameter-predictedm architectures to getm×n predictions
ŷ. The cross-entropy loss L is computed between ŷ and
ground truth labels y of x for classification tasks. Afterward,
the loss is back-propagated to update the parameters θ of
HD by gradient descent.

The input computational graph fG = (V,E) is a directed
acyclic graph (DAG), where the nodes V correspond to op-
erations (convolution, pooling, self-attention, etc.) (Knyazev
et al., 2021), while the edges E correspond to the forward
pass flow of inputs through the network f . GHN takes
d-dimensional node features H(1) ∈ R|V |×d as input
obtained using an embedding layer for each i-th node:

h
(1)
i =Embed(h(0)

i), whereh(0)
i is a one-hot vector denoting

an operation.

4. Task-Aware Learngene
Fig.2 (a-c) illustrates the overall pipeline of Task-Aware
Learngene (TAL). First, we train the TAL model on a large
dataset under the guidance of an ancestry model to transfer
knowledge. Then, we tune the trained TAL model on multi-
task datasets to effectively filter and convey the task-specific
knowledge from the ancestry model to downstream models
cross different tasks. Finally, the trained TAL model can
predicting model parameters for various tasks, even unseen
ones and supports model customization at different scales.

TAL model structure and components. In the TAL, we
adopt encoder-decoder structure for model parameters predic-
tion (Knyazev et al., 2023; Zhou et al., 2024). We refer to the
encoder part of the TAL model as learngene because it first in-
herits knowledge from the ancestry model and then transfers
task-specific knowledge based on different tasks. Specifi-
cally, learngene receives both model configuration through
model computational graph and task information from ances-
try model. Based on task information, learngene can filter out
task-specific knowledge which previously inherited from the
ancestry model and inject it into model computational graphs,
thereby producing task-specific computational graphs.

The architecture of learngene is shown in Fig.2(d). Inspired
by (Perez et al., 2018; Oreshkin et al., 2018), we introduce
a task hypernet h that processes task information to
dynamically generate parameters for the task-specific layer,
which is implemented as a simple MLP. Then task-specific
layer acts on the model computational graph, transferring
task information to it.

In this process, task information is passed in the form of a
task embedding {Iτ}Tτ=1 for each task, which is generated
by the ancestry model through the average feature extraction
of the task images (Vu et al., 2020).

The task hypernet h generates task bias parameters γτ , and
βτ of the task-specific layer.

(γτ ,βτ) :=h(Iτ)=
(
W γ ,W β

)
Iτ , (2)

where W γ ∈Rh×t and W β∈Rh×t.

The task-specific layers apply these bias parameters to the
model’s computation graph using the following formula:

fG
τ =γτ×fG+βτ (3)

The task-specific model computational graph generated by
learngene is then passed to the decoder (Zhou et al., 2024),
which decodes the graph to generate the model parameters.

3

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

learngene

TAL model

decoder
model

model
model

Ancestry model

model
model

model

Large Dataset

model
model

model

Task 1

Task 2

Task k

learngene

TAL model

decoder

learngene

TAL model

Decoder

Descendant
model

Soft label

Task embedding

(a) Train on large dataset

(b) Multi-task tuning

(c) Customize your model

Loss

Loss

Scenario 1 Scenario 2 ··· Scenario n

…

Model config

Task info

—

Model config

Task info

—

Model config

Task info

—

Descendant
model

Descendant
model

…

……

Feedforward

Layer Norm

+

MLP

Multi-Head
Attention

Layer Norm

+

Task HyperNet

Task
embedding

γ, β

Computational graph

Task-specific
Computational graph

(d) TAL’s encoder (learngene)

Ancestry
model

Task
Dataset

Figure 2: (a) Training TAL model on a large dataset under the guidance of a large-scale foundation model (ancestry model).
(b) Tuning TAL model to multiple tasks. (c) Customizing task-specific models with flexible scale based on new task scenarios.
(d) The learngene is based on a transformer architecture and consists of a stack of transformer blocks.

Train TAL model on a large dataset. In order to inherit
the knowledge of the ancestry model, we first train the
TAL model on a large dataset under the guidance of the
ancestry model. We adopt the method from (Shu et al.,
2021), converting features extracted by the ancestry model
from the images into a probability distribution map. For the
training models of the TAL, we also apply the same method
to obtain their feature probability distributions and compute
the KL divergence between those of the ancestry model.
This function is denoted as:

Laux=KL(softmax(EtrainM)||softmax(Eanc)), (4)

where Etrain and Eanc refer to the encoders’ output of the
training model and ancestry model respectively. The matrix
M ∈ Rd×d′

, which transforms the output dimension d of
Etrain to match the output dimensiond′ ofEanc, like the param-
eters of other parts of the training model, the transformation
matrix’s parameters are predicted directly by TAL model.

Considering loss between training model’s predicted label
and ground truth label:

Lcls=CE(yc,ftrain(x)), (5)

where ftrain(x) represents the training model’s predicted
label of input image data x and yc denotes the ground truth
label belonging to category c. Then, while one model is
used as training data for TAL model, the total training loss
is computed as follows:

L=αLaux+(1−α)Lcls, (6)

Through this process, the TAL model can inherit and utilize
the vast amount of domain knowledge already learned in the

ancestry model, enabling models initialized by TAL model
to handle complex tasks.

Tuning TAL model under multi-task setting. We then
tune the TAL model on multiple tasks, leveraging task
information to enable learngene to generate task-specific
computation graphs, thereby decoding the model parameters
tailored to each task. We formulate the loss function for this
part of the TAL model’s training. Given the data from a set
of tasks {Dτ}Tτ=1, here T is the total number of tasks and
Dτ = {(xτ

i ,y
τ
i)}

Nτ
i=1 shows the training data for τ -th task

with Nτ samples.

Assuming there is a TAL model HD(θ) parameterized by
θ that computes the output the parameters of the model
wpred =HD(fG;θ) for input computational graph fG of a
neural network. In multi-task setting, TAL model is trained
by SGD over M training models {fG

a }Ma=1 and T training
tasks {Dτ}Tτ=1 on the following optimization problem:

argmin
θ

1

TM

T∑
τ=1

M∑
a=1

∑
(xj

τ ,y
j
τ)∈Dτ

wτL(fa(xj
τ ;HD(fG

a ;θ)),yjτ),

(7)
where L is typically the cross-entropy loss and wτ shows
the sampling weight for τ -th task.

Multi-task training allows the models predicted by TAL to
inherit task-specific knowledge filtered by learngene from the
ancestry model, as well as the shared knowledge across tasks.

Customize models across different tasks. After training
on a large dataset and tuning on multiple tasks, the TAL
model can provide task-specific, variable-sized models for
both seen and unseen tasks. By simply passing the required
model configuration and task information to the TAL model,

4

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Table 1: Performance of models on ImageNet-1K initialized
with GHN-3, LoGAH, TAL and TAL+, after 75 epochs of
training for all initialization methods.

MODEL TRAINING STATE GHN-3 LOGAH TAL TAL+

12-TINY
UNTRAINED 34.45 22.79 26.20 31.31

TRAINED 48.93 62.53 63.03 60.04

12–SMALL
UNTRAINED 31.03 16.78 23.28 39.22

TRAINED 53.47 65.41 66.61 65.63

12-BASE UNTRAINED 0.10 0.10 0.10 38.72

one can instantly obtain well-initialized model parameters
tailored to the task at hand.

Model architecture datasets. In GHN-1/2 (Knyazev
et al., 2021) and GHN-3 (Knyazev et al., 2023), training
architectures are sampled from DeepNets-1M, a dataset of
1 million architectures (Knyazev et al., 2021). In LoGAH
works, they constructed task-specific architecture datasets:
ViTs-1K for vision tasks and GPTs-1K for language
tasks (Zhou et al., 2024), each containing 1K different
computational graphs. For our TAL method, we adopt these
datasets from LoGAH, and additionally design an enhanced
vision model library denoted as ViTs+-1K dataset for
vision tasks. Unlike the original ViTs-1K which has a 10M
parameter constraint, our ViTs+-1K incorporates wider and
deeper model architectures. We also increase the proportion
of larger models in the dataset. This design strategy leads to
significant improvements in TAL’s performance. The model
trained with this enhanced library is denoted as TAL+.

5. Experiments
In this section, we evaluate our proposed TAL method by
predicting parameters for models of various scales across
different tasks, comparing it with previous methods includ-
ing GHN-3, LoGAH, and random initialization. First, we
assess TAL’s capability in predicting ViT model parameters
on both seen and unseen visual tasks during training. Then,
we examine TAL’s effectiveness in predicting parameters
for GPT-2 models on natural language tasks. Furthermore,
we conduct comprehensive ablation studies to investigate the
impact of various factors on TAL’s performance. Finally, we
visualize the intermediate learngene outputs to demonstrate
TAL’s effectiveness in handling multiple tasks.

5.1. Experimental Setup

Datasets. Our experiments comprehensively evaluate our
proposed methods (TAL and TAL+) against existing ap-
proaches (GHN-3 and LoGAH) on both vision and language
tasks. Each experiment requires two types of datasets:
model architecture datasets for parameter prediction and
task-specific datasets for downstream evaluation.

For vision experiments, we employ two model architecture

datasets: the ViTs-1K dataset (Zhou et al., 2024) for TAL,
GHN-3, and LoGAH methods, and the ViTs+-1K dataset
for our enhanced TAL+ method. Both datasets contain 1000
different ViT-style computational graphs as the architecture
source. The vision tasks are evaluated on the Visual Domain
Decathlon Challenge (Rebuffi et al., 2017), which comprises
10 diverse datasets: (1) ImageNet-1K (IN-1K)(Russakovsky
et al., 2015), (2) CIFAR-100 (C100)(Krizhevsky et al., 2009),
(3) Aircraft (Airc.)(Maji et al., 2013), (4) Daimler pedestrian
classification (DPed)(Munder & Gavrila, 2006), (5) De-
scribable textures (DTD)(Cimpoi et al., 2014), (6) German
traffic signs (GSTR)(Stallkamp et al., 2012), (7) Omniglot
(OGlt)(Lake et al., 2015), (8) SVHN(Netzer et al., 2011), (9)
UCF101 Dynamic Images (UCF)(Soomro et al., 2012), and
(10) Flowers102 (Flwr)(Nilsback & Zisserman, 2008).For
detailed dataset descriptions, please refer to Appendix .1.

For language experiments, all methods utilize GPTS-
1K (Zhou et al., 2024) as the model architecture dataset.
The language tasks are evaluated on four widely-used
NLP benchmarks: Microsoft Research Paraphrase Corpus
(MRPC) (Dolan & Brockett, 2005), Corpus of Linguistic
Acceptability (CoLA) (Warstadt, 2019), Recognizing
Textual Entailment (RTE) (Wang, 2018), and Internet Movie
Database reviews (IMDB) (Maas et al., 2011).

Baselines. We compare TAL with GHN-3 (Knyazev et al.,
2023) and the latest LoGAH method (Zhou et al., 2024),
which improves the design of the decoder and significantly
enhances the initialized models’ performance. To ensure fair
comparison, we reproduce all experiments using the official
source code of these methods under identical experimental
settings and environment.

Sampling tasks. During multi-task training, we sample tasks
using conventional temperature-based sampling (Raffel et al.,
2020) with a temperature of T =2 for all methods. Tasks are
sampled proportionally to p1/Tτ , where pτ = Nτ∑T

i=1Ni
and Nτ

represents the number of training samples for the τ -th task.
Note that this sampling probability p1/Tτ directly corresponds
to the sampling weight wτ introduced in Formula 7.

Training Details. For both TAL and TAL+, we first pretrain
the hypernets on ImageNet-1K for 75 epochs, followed by
100 epochs of multi-task training on the Decathlon Challenge
datasets. For TAL+, we leverage the logits from the ancestry
model as soft labels to guide the training process. All mod-
els are trained using automatic mixed precision in PyTorch,
with a cosine annealing learning rate schedule starting at
lr=3e−4, weight decay λ=1e−2 and predicted parameter
regularization γ=3e−5 (Knyazev et al., 2023). We use a pre-
trained ViT-Base (Dosovitskiy, 2020) as the ancestry model.

5

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Table 2: Performance of untrained models on Decathlon tasks initialized with GHN-3, LoGAH, TAL and TAL+. Note that for
ViT-base, only TAL+ initialization results are shown, as it is the only method capable of predicting parameters for base-scale
models.

MODEL METHOD AIRC. C100 DPED DTD GSTR OGLE SVHN UCF FLWR

3-TINY

GHN-3 3.12 34.06 85.41 6.38 87,77 0.06 10.00 2.25 7.06
LOGAH 2.58 29.16 78.83 8.30 92.12 0.26 17.32 3.94 6.96

TAL 6.69 39.53 79.83 22.55 94.86 28.37 83.31 28.33 33.82
TAL+ 2.04 50.80 88.88 29.26 98.87 0.11 87.37 35.76 50.00

6-TINY

GHN-3 3.24 35.19 87.72 6.86 89.12 0.06 10.00 3.43 10.88
LOGAH 3.21 46.33 81.19 9.20 96.82 0.31 20.82 5.02 8.33

TAL 17.43 48.95 85.87 28.30 99.25 48.98 89.85 38.63 45.69
TAL+ 1.98 51.01 88.06 28.62 98.89 0.18 87.27 35.71 49.71

12-TINY

GHN-3 3.15 31.12 85.63 6.86 85.02 0.06 10.00 3.07 9.90
LOGAH 3.15 33.80 79.86 9.41 96.52 0.18 20.56 5.53 9.12

TAL 16.71 44.72 84.76 28.03 99.15 28.11 88.87 39.81 45.00
TAL+ 2.07 50.99 88.21 29.41 98.94 0.14 87.30 35.81 49.80

3-SMALL

GHN-3 2.91 35.75 86.77 6.70 87.68 0.06 10.00 2.61 10.39
LOGAH 3.15 44.95 80.66 9.36 96.35 0.28 19.91 5.33 8.73

TAL 17.16 47.25 83.78 27.23 98.93 47.75 87.83 38.32 44.31
TAL+ 1.95 56.05 94.20 33.14 99.57 0.03 91.24 47.23 55.78

6-SMALL

GHN-3 3.12 35.30 86.80 7.34 90.05 0.06 10.00 2.36 12.75
LOGAH 3.18 45.93 80.60 9.95 96.97 0.26 21.04 5.38 8.63

TAL 17.85 49.88 83.91 28.67 99.30 50.29 89.82 40.83 46.47
TAL+ 1.98 56.08 94.42 32.98 99.62 0.09 91.31 48.16 56.57

12-SMALL

GHN-3 2.64 5.55 84.30 7.23 84.39 0.06 10.00 1.74 9.51
LOGAH 2.64 35.77 80.39 8.24 96.81 0.18 20.66 4.30 6.57

TAL 17.16 45.63 82.16 27.87 99.18 39.66 88.55 40.98 45.10
TAL+ 1.86 56.04 94.66 33.14 99.58 0.14 91.30 48.21 56.57

3-BASE TAL+ 2.22 55.99 94.10 32.93 99.41 0.09 90.99 4.39 56.08
6-BASE TAL+ 1.80 56.02 94.00 33.03 99.41 0.11 91.05 47.18 56.08

12-BASE TAL+ 2.31 56.06 94.39 32.93 99.41 0.11 90.97 47.59 55.69

5.2. Main results

TAL/ TAL+ achieves better performance on ImageNet-
1K. We evaluate the performance of the TAL/TAL+ on the
ImageNet-1K. As shown in Tab.1, the untrained model, struc-
tured as ViT-Small and initialized using TAL+, outperforms
it initialized with LoGAH by 22.44% on ImageNet-1K. Fur-
thermore, after 75 epochs training, the model initialized with
TAL achieves 1.20% higher accuracy compared to LoGAH
initialization. Notably, among all initialization methods,
only TAL+ is capable of predicting parameters for ViT-Base
scale models, achieving an initialization accuracy of 38.72%.
These results show that TAL can effectively inherit and
utilize the knowledge already learned in the ancestry model.

Models initialized with TAL/ TAL+ demonstrate strong
performance without any training on Decathlon tasks.
We compare TAL/ TAL+ with GHN-3 and LoGAH methods
on Decathlon tasks using ViT models of varying archi-
tectures and depths. The experiments are conducted with
ViT-Tiny and ViT-Small at three different depths: 3, 6, and
12 layers, as well as ViT-Base models. Notably, for ViT-Base

architectures, only TAL+ results are presented since it is the
only method capable of parameter prediction for base-scale
models. As shown in Tab.2, untrained models initialized
with TAL/ TAL+ outperform the GHN-3 and LoGAH across
all Decathlon tasks.

Models initialized with TAL/TAL+ outperform those
initialized by the LoGAH method during the training
process. We select 12-layer ViT-tiny (12-Tiny) and a
12-layer ViT-small (12-Small) as test models for further
evaluation. Our TAL/TAL+ initialization consistently outper-
forms other initialization methods across all tasks. Notably,
on DTD, UCF, and Flower datasets, models initialized with
our method achieve approximately 15-25% higher accuracy
after training compared to other initialization approaches.

The TAL method significantly reduces computational
costs. We calculate the total training time for each method
across the previous ten experimental datasets. As shown
in Tab.4, under identical experimental conditions, the
TAL method demonstrates notable efficiency advantages,
reducing training time by 22% compared to the LoGAH

6

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Table 3: Performance of trained models on Decathlon tasks initialized with RandInit, GHN-3, LoGAH, TAL and TAL+. For
models initialized with RandInit, accuracy is reported after 200 epochs of training for each task, while for models initialized
with other methods, trained for 100 epochs.

MODEL METHOD AIRC. C100 DPED DTD GSTR OGLE SVHN UCF FLWR

12-TINY

RANDINIT 7.80 58.64 98.74 23.09 99.58 24.12 86.38 24.03 35.10
GHN-3 4.80 55.88 98.20 20.11 97.53 9.77 83.08 24.80 32.45
LOGAH 5.61 58.93 97.47 20.32 99.23 29.22 86.13 35.81 35.78

TAL 19.17 59.80 98.88 29.73 99.60 57.50 90.31 46.47 48.33
TAL+ 7.23 58.90 99.46 33.09 99.78 24.01 90.94 49.28 58.04

12-SMALL

RANDINIT 8.01 60.17 98.44 25.05 98.89 15.70 85.57 23.31 35.00
GHN-3 5.22 57.35 98.32 15.21 97.36 20.98 80.21 22.34 34.51
LOGAH 7.20 59.98 97.45 20.21 98.95 24.55 85.10 33.86 34.51

TAL 18.69 60.49 98.89 31.01 99.77 57.01 92.02 47.75 49.71
TAL+ 8.61 60.77 99.51 34.36 99.79 23.04 91.72 52.77 59.02

Table 4: Training time comparison of different methods,
all experiments run on an NVIDIA RTX 4090 with time
measured in hours (h).

METHOD GHN-3 LOGAH TAL TAL+

TIME(HOURS) 58.81 46.55 36.19 70.53

Table 5: Performance of models on unseen tasks initialized
with RandInit, LoGAH and TAL, after 5 and 100 epochs of
training for each task.

DATASET MODEL EPOCHS RANDINIT LOGAH TAL

F-MNIST
3-TINY

5 82.71 87.56 88.86
100 89.41 91.08 90.99

6-SMALL
5 83.66 87.78 89.78

100 88.98 90.68 91.56

FER2013
3-TINY

5 29.20 42.57 47.06
100 59.91 60.60 61.41

6-SMALL
5 30.00 32.57 49.99

100 62.55 61.94 65.09

HAM10000
3-TINY

5 83.09 87.56 86.59
100 97.46 97.71 97.71

6-SMALL
5 82.13 89.61 91.18

100 97.70 97.83 97.95

method. Although TAL+ requires a longer training time
(70.53 hours), this increased computational cost is well
justified by its substantially expanded capability. TAL+ can
predict parameters for models more than 4 times larger than
previous methods, while also achieving significantly better
initialization performance across most tasks.

TAL presents superior parameter prediction ability
across unseen tasks. We evaluate TAL against LoGAH
trained on ImageNet-1K and random initialization (RandInit)
on a broader set of unseen datasets. Specifically, we use three
datasets from distinct fields: Fashion MNIST (Xiao et al.,
2017), a dataset of fashion item images; FER2013 (Goodfel-
low et al., 2013), a facial expression recognition dataset; and
HAM10000m (Tschandl et al., 2018), a medical dataset for

Table 6: Performance of untrained GPT2 models on NLP
tasks initialized with LoGAH and TAL.

MODEL METHOD MRPC COLA RTE IMDB

3-GPT2 LOGAH 55.88/ 68.75 0.70 47.65 52.06
TAL 62.99/ 76.70 2.89 46.21 63.21

6-GPT2 LOGAH 59.07/ 72.12 1.23 46.21 53.58
TAL 61.52/ 73.70 3.32 47.29 62.76

9-GPT2 LOGAH 60.78/ 74.19 1.23 48.01 57.76
TAL 58.09/ 68.97 1.75 48.78 62.09

12-GPT2 LOGAH 56.13/ 68.98 0.10 48.01 58.07
TAL 52.70/ 60.53 3.05 49.82 61.49

AVG ACC
LOGAH 57.96/ 71.01 0.82 47.47 55.37

TAL 58.83/ 69.98 2.75 48.02 62.39

the classification of skin lesions. We select 3-layer ViT-tiny
(3-Tiny) and a 6-layer ViT-small (6-Small) as test models
for further evaluation. Tab.5 shows that models initialized
with TAL converge faster and achieve higher test accuracy
on unseen downstream tasks.

TAL shows promising results on NLP tasks. We further
evaluate TAL’s effectiveness on NLP tasks by conducting
experiments on MRPC, COLA, RTE and IMDB datasets
using GPT2-small models with 3, 6, 9, and 12 layers. For
training setup, we individually train a separate LoGAH
model for each task with 250 epochs, while in TAL method,
we leverage pretrained GPT-2 model (Radford et al., 2019)
to provide task information and train a single shared TAL
model across all four tasks with only 100 epochs. Compared
to LoGAH, TAL not only reduces the training time by more
than 50% but also demonstrates competitive or superior
performance across test tasks. Tab.6 shows TAL’s notable
improvement on COLA and IMDB tasks, with accuracy
gains of 1.93% and 7.02% respectively on average.

5.3. Analysis and Ablation

In the main experiments, high-quality model initialization is
shown to significantly accelerate convergence and improve

7

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Table 7: Performance of untrained models initialized with single-task tuning (TAL-st) and multi-task tuning (TAL) on
Decathlon tasks.

MODEL METHOD AIRC. C100 DPED DTD GSTR OGLE SVHN UCF FLWR

12-TINY
TAL-ST 1.95 5.99 90.00 6.65 82.08 0.03 27.22 13.78 10.20

TAL 19.8 54.89 98.61 30.21 99.57 63.57 90.38 48.1 47.84

12-SMALL
TAL-ST 2.79 8.66 89.56 8.67 99.29 0.09 21.84 21.84 7.84

TAL 17.16 45.63 82.16 27.87 99.18 39.66 88.55 40.98 45.10

Table 8: Performance of untrained models on Decathlon
datasets initialized with TAL without using task informa-
tion(T.I.) in learngene or ancestry model(ans-net) on De-
cathlon datasets.

METHOD ANC-NET T.I. AVG ACC

TAL(W/O T.I.) ✓ ✕ 40.71
TAL(W/O ANS-NET) ✕ ✓ 46.80

TAL ✓ ✓ 53.37

final test accuracy. Therefore, in our analysis, we evaluate the
performance of untrained models initialized with different
methods on each dataset.

The effect of multi-task training. We investigate the impact
of multi-task training by comparing TAL with TAL-st, where
TAL-st sequentially fine-tunes the TAL model (pretrained
on ImageNet) on each downstream task individually. We
evaluate using two models: a 12-layer ViT-tiny (12-Tiny)
and a 12-layer ViT-small (12-Small). As shown in Tab. 7,
models initialized with TAL significantly outperform TAL-st
across almost all Decathlon tasks.

The effect of ancestry model and task information. As
shown in Tab.8, we conduct ablation studies by removing
task information (T.I.) in learngene for TAL(w/o T.I.) and
removing the guidance of ancestry model for TAL(w/o ans-
net). Models initialized by TAL outperform TAL(w/o T.I.)
and TAL(w/o ans-net) by 12.66% and 6.57% in test accuracy
across Decathlon tasks, respectively. More comprehensive
evaluation results are provided in Appendix .2

Visualization of task-specific model computational
graphs. To verify the effectiveness of learngene in
dynamically encoding the model computational graph
under different task conditions, we visualize the output of
learngene. We use 3-12 layers of ViT-small, a total of 10
test models and apply learngene to output their task-specific
computational graphs on Decathlon Challenge datasets.
We use the PCA (Abdi & Williams, 2010) method to map
the high-dimensional features of the model computational
graph to 2D space and visualize them. The result is shown in
Fig.3. As the task information changes, the model’s learned
computational graph exhibits a significant clustering effect,
the learned computational graphs of the model for different

Figure 3: The computational graphs of all models generated
by learngene on the Decathlon datasets. Each point repre-
sents a model computational graph. Different colors denote
different tasks and the size of the point corresponds to the
model’s scale, with larger points indicating larger models.

tasks clearly cluster together in two-dimensional space.
This indicates that learngene can effectively integrate task
information while incorporating task information into the
model computational graph.

6. Conclusion
In this paper, we propose a novel method called Task-Aware
Learngene(TAL) that predicts model parameters conditioned
on desired model scales and task-specific characteristics.
Experimental results on various datasets demonstrated
the effectiveness of TAL’s ability to predict parameters.
Untrained models initialized using TAL achieved significant
improvements across various datasets compared to the previ-
ous GHN initialization methods. Remarkably, the accuracy
of these untrained models even surpassed the performance
of models trained using other initialization methods.

Acknowledgements
This research was supported by the Jiangsu Science
Foundation (BK20243012, BG2024036), the National
Science Foundation of China (62125602, U24A20324,
92464301, 62406066), the Fundamental Research Funds

8

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

for the Central Universities (2242025K30024), Jiangsu
Province Science Foundation for Youths (BK20241297),
Taihu Lake Innovation Fund for the School of Future
Technology of Southeast University, and the Big Data
Computing Center of Southeast University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abdi, H. and Williams, L. J. Principal component analysis.

Wiley interdisciplinary reviews: computational statistics,
2(4):433–459, 2010.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing textures in the wild. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Dolan, B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Third international
workshop on paraphrasing (IWP2005), 2005.

Dosovitskiy, A. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Feng, F., Xie, Y., Wang, J., and Geng, X. Wave: Weight
template for adaptive initialization of variable-sized
models. arXiv preprint arXiv:2406.17503, 2024a.

Feng, F., Xie, Y., Yang, X., Wang, J., and Geng, X.
Redefining¡ creative¿ in dictionary: Towards an enhanced
semantic understanding of creative generation. arXiv
preprint arXiv:2410.24160, 2024b.

Fu, J., Jiang, Y., Chen, J., Fan, J., Geng, X., and Yang, X.
Speculative ensemble: Fast large language model ensem-
ble via speculation. arXiv preprint arXiv:2502.01662,
2025.

Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A.,
Mirza, M., Hamner, B., Cukierski, W., Tang, Y., Thaler, D.,
Lee, D.-H., et al. Challenges in representation learning:
A report on three machine learning contests. In Neural
information processing: 20th international conference,
ICONIP 2013, daegu, korea, november 3-7, 2013.
Proceedings, Part III 20, pp. 117–124. Springer, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Knyazev, B., Drozdzal, M., Taylor, G. W., and Romero Sori-
ano, A. Parameter prediction for unseen deep architectures.
Advances in Neural Information Processing Systems, 34:
29433–29448, 2021.

Knyazev, B., Hwang, D., and Lacoste-Julien, S. Can
we scale transformers to predict parameters of diverse
imagenet models? In International Conference on
Machine Learning, pp. 17243–17259. PMLR, 2023.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning word vectors for sentiment
analysis. In Proceedings of the 49th annual meeting of
the association for computational linguistics: Human
language technologies, pp. 142–150, 2011.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Mehta, S. and Rastegari, M. Mobilevit: light-weight,
general-purpose, and mobile-friendly vision transformer.
arXiv preprint arXiv:2110.02178, 2021.

Munder, S. and Gavrila, D. M. An experimental study on
pedestrian classification. IEEE transactions on pattern
analysis and machine intelligence, 28(11):1863–1868,
2006.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 4. Granada, 2011.

Nilsback, M.-E. and Zisserman, A. Automated flower
classification over a large number of classes. In 2008 Sixth
Indian conference on computer vision, graphics & image
processing, pp. 722–729. IEEE, 2008.

Oreshkin, B., Rodrı́guez López, P., and Lacoste, A. Tadam:
Task dependent adaptive metric for improved few-shot
learning. Advances in neural information processing
systems, 31, 2018.

Peng, Y., Zhang, G., Zhang, M., You, Z., Liu, J., Zhu, Q.,
Yang, K., Xu, X., Geng, X., and Yang, X. Lmm-r1: Em-
powering 3b lmms with strong reasoning abilities through
two-stage rule-based rl. arXiv preprint arXiv:2503.07536,
2025.

9

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Learning multiple
visual domains with residual adapters. Advances in neural
information processing systems, 30, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Shi, B., Xia, S., Yang, X., Chen, H., Kou, Z., and Geng,
X. Building variable-sized models via learngene pool.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 14946–14954, 2024.

Shu, C., Liu, Y., Gao, J., Yan, Z., and Shen, C. Channel-
wise knowledge distillation for dense prediction. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5311–5320, 2021.

Soomro, K., Zamir, A. R., and Shah, M. A dataset of 101
human action classes from videos in the wild. Center for
Research in Computer Vision, 2(11):1–7, 2012.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. Man
vs. computer: Benchmarking machine learning algorithms
for traffic sign recognition. Neural networks, 32:323–332,
2012.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Tschandl, P., Rosendahl, C., and Kittler, H. The ham10000
dataset, a large collection of multi-source dermatoscopic
images of common pigmented skin lesions. scientific data.
2018; 5: 180161. Search in, 2, 2018.

Vu, T., Wang, T., Munkhdalai, T., Sordoni, A., Trischler, A.,
Mattarella-Micke, A., Maji, S., and Iyyer, M. Exploring
and predicting transferability across nlp tasks. arXiv
preprint arXiv:2005.00770, 2020.

Wang, A. Glue: A multi-task benchmark and analysis
platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, Q.-F., Geng, X., Lin, S.-X., Xia, S.-Y., Qi, L., and
Xu, N. Learngene: From open-world to your learning
task. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 8557–8565, 2022.

Wang, S., Feng, K., Li, C., Yuan, Y., and Wang, G. Learning
to generate parameters of convnets for unseen image data.
IEEE Transactions on Image Processing, 2024.

Warstadt, A. Neural network acceptability judgments. arXiv
preprint arXiv:1805.12471, 2019.

Xia, S., Zhang, M., Yang, X., Chen, R., Chen, H., and
Geng, X. Transformer as linear expansion of learngene.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 16014–16022, 2024a.

Xia, S.-Y., Zhu, W., Yang, X., and Geng, X. Exploring learn-
gene via stage-wise weight sharing for initializing variable-
sized models. arXiv preprint arXiv:2404.16897, 2024b.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, Y., Feng, F., Wang, J., Geng, X., and Rui, Y. Kind:
Knowledge integration and diversion in diffusion models.
arXiv preprint arXiv:2408.07337, 2024.

Yang, X., Peng, Y., Ma, H., Xu, S., Zhang, C., Han, Y., and
Zhang, H. Lever lm: configuring in-context sequence to
lever large vision language models. Advances in Neural In-
formation Processing Systems, 37:100341–100368, 2024.

Yao, J., Zhang, Z., and Xu, Z.-Q. J. An analysis for reasoning
bias of language models with small initialization. arXiv
preprint arXiv:2502.04375, 2025.

Zhang, C., Ren, M., and Urtasun, R. Graph hypernet-
works for neural architecture search. arXiv preprint
arXiv:1810.05749, 2018.

Zhou, X., Knyazev, B., Jolicoeur-Martineau, A., and Fu, J.
Logah: Predicting 774-million-parameter transformers
using graph hypernetworks with 1/100 parameters. arXiv
preprint arXiv:2405.16287, 2024.

10

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

.1. Appendix 1

The Visual Domain Decathlon Challenge tests the ability of visual recognition algorithms to handle images from different
visual domains. It includes 10 datasets in total:

1. ImageNet-1K (IN-1K) is the largest dataset in the Decathlon Challenge, containing 1,000 categories and 1.2 million
images.

2. CIFAR-100 (C100) contains 60,000 32 × 32 color images for 100 object categories.

3. Aircraft (Airc.) contains 100 images for each of 100 different aircraft model variants, such as the Boeing 737-400 and
the Airbus A310.

4. Daimler Pedestrian Classification (DPed) consists of 50,000 grayscale pedestrian and non-pedestrian images, cropped
and resized to 18 × 36 pixels.

5. Describable Textures (DTD) is a texture database consisting of 5,640 images, organized into 47 categories such as
bubbly, cracked andmarbled.

6. German Traffic Signs (GTSRB) contains cropped images for 43 common traffic sign categories in different image
resolutions.

7. Omniglot (OGlt) consists of 1,623 different handwritten characters from 50 unique alphabets.

8. SVHN is a real-world digit recognition dataset with around 70,000 32 × 32 images.

9. UCF101 Dynamic Images (UCF) is an action recognition dataset of realistic human action videos, collected from
YouTube. It contains 13,320 videos across 101 action categories. In the Decathlon Challenge, the videos are converted
into images using Dynamic Image encoding, which summarizes each video into an image based on a ranking principle.

10. Flowers102 (Flwr) is a fine-grained classification task with 102 flower categories from the UK, each consisting of 40
to 258 images.

The detailed statistics of the datasets can be found at http://www.robots.ox.ac.uk/˜vgg/decathlon/.

.2. Appendix 2

Here we present the detailed results of the analysis and ablation studies for TAL (w/o I.T.) and TAL (w/o ans-ant) methods.
The initialization performance of TAL (w/o I.T.) and TAL (w/o ans-ant) methods on the Decathlon dataset is shown in Tab.9.

Table 9: Performance of untrained models on Decathlon datasets initialized with TAL without using task information(T.I.) in
learngene or ancestry model(ans-net) on Decathlon datasets.

MODEL METHOD AIRC. C100 DPED DTD GSTR OGLE SVHN UCF FLWR AVG

3-TINY
TAL(W/O) 4.05 17.61 72.65 11.12 65.9 1.76 35.77 2.25 9.61 24.52

TAL(W/O ANS-NET) 3.39 49.92 92.74 20.80 99.39 0.18 90.2 11.37 50.69 46.52

6-TINY
TAL(W/O I.T.) 12.18 40.62 72.89 23.30 99.20 52.57 88.77 2.87 34.22 47.40

TAL(W/O ANS-NET) 3.27 49.86 92.38 20.05 99.35 0.17 90.34 12.09 51.18 46.52

12-TINY
TAL(W/O T.I.) 10.23 36.09 65.83 17.13 96.00 31.28 83.92 3.02 25.10 40.96

TAL(W/O ANS-NET) 2.88 49.45 93.01 21.22 99.31 0.15 90.43 12.19 51.08 46.64

3-SMALL
TAL(W/O T.I.) 12.54 40.65 80.24 20.69 98.99 49.85 85.99 4.35 36.86 47.79

TAL(W/O ANS-NET) 2.88 50.76 92.76 21.97 99.35 0.09 90.51 11.53 52.35 46.91

6-SMALL
TAL(W/O T.I.) 13.68 42.43 77.19 22.61 99.30 52.65 89.28 3.28 37.75 48.69

TAL(W/O ANS-NET) 3.12 50.91 93.10 22.29 99.29 0.14 90.57 12.81 52.25 47.16

12-SMALL
TAL(W/O T.I.) 11.73 37.67 60.17 16.97 55.30 23.35 76.45 2.97 29.22 34.87

TAL(W/O ANS-NET) 2.88 50.86 93.52 21.76 99.34 0.12 90.64 12.19 52.16 47.05

11

http://www.robots.ox.ac.uk/~vgg/decathlon/

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

.3. Appendix 3

We discuss a simplified case of our TAL method and provide a theoretical derivation to complete this missing part.

1. Problem Definition and Optimization Objective

We define the following setup:

• Hypernetwork H : Θ→Rd A multilayer perceptron (MLP) that maps from parameter space Θ to model parameter
space Rd, generating parameters p=H(θ).

• Model M Also an MLP, using parameters p to perform a binary (0,1) classification task and compute the loss L(p).

The optimization objective is to train the hypernetwork H to minimize the cross-entropy loss:

min
θ

L(H(θ))=E(x,y)∼D[−ylog(fM (x;H(θ)))−(1−y)log(1−fM (x;H(θ)))]

2. Convergence Analysis

Theorem 1 (Convergence to Stationary Point): Assume the following conditions hold:

• The loss function L(p) is β-smooth

• Hypernetwork H(θ) is LH -Lipschitz continuous

• The composed function L(H(θ)) has bounded gradients

Then, using gradient descent with learning rate η< 2
LHβ , after T iterations:

min
t=0,1,...,T−1

∥∇θL(H(θt))∥2≤
2(L(H(θ0))−L(H(θ∗)))

Tη

Proof:
By β-smoothness of L and LH -Lipschitz continuity of H , the composite function L(H(θ)) is (LHβ)-smooth. For a
(LHβ)-smooth function, when using gradient descent with learning rate η< 2

LHβ :

L(H(θt))−L(H(θt+1))≥η

(
1−LHβη

2

)
∥∇θL(H(θt))∥2

Summing over t=0,1,...,T−1 and rearranging:

T−1∑
t=0

∥∇θL(H(θt))∥2≤
L(H(θ0))−L(H(θT))

η
(
1− LHβη

2

)
≤ L(H(θ0))−L(H(θ∗))

η
(
1− LHβη

2

)
Since η< 2

LHβ implies 1− LHβη
2 >0, and using the minimum gradient norm:

T · min
t=0,1,...,T−1

∥∇θL(H(θt))|2≤
T−1∑
t=0

∥∇θL(H(θt))∥2

≤ L(H(θ0))−L(H(θ∗))

η
(
1− LHβη

2

)
12

Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

With proper learning rate, 1− LHβη
2 ≥ 1

2 , resulting in:

min
t=0,1,...,T−1

∥∇θL(H(θt))∥2≤
2(L(H(θ0))−L(H(θ∗)))

Tη

This shows that as T→∞, the gradient norm approaches zero, indicating convergence to a stationary point. □

Corollary 1 (Convergence Rate): Under the conditions of Theorem 1, the gradient descent method converges to a stationary
point at a rate of O(1/

√
T).

3. Optimality Analysis

Theorem 2 (Universal Approximation): If the hypernetwork H is a sufficiently wide and deep MLP, then for any δ > 0
and any target parameter p∗∈Rd, there exists a parameter θ such that:

∥H(θ)−p∗∥<δ

Proof:
According to the universal approximation theorem, a sufficiently wide MLP can approximate any continuous function on a
compact domain to arbitrary precision. Treating the mapping from a fixed input to the target parameter vector p∗ as a constant
function, there exists an MLP architecture for H and parameters θ such that ∥H(θ)−p∗∥<δ for any δ>0. □

Corollary 2 (Approximation of Optimal Loss): Under the conditions of Theorem 3, for any ϵ>0, there exists a hypernetwork
H and parameters θ such that:

L(H(θ))−L(p∗)<ϵ

Conclusion

Our analysis of hypernetwork optimization for binary classification with MLPs has established:

• Convergence: Gradient-based optimization of hypernetworks converges to stationary points at a rate of O(1/
√
T) under

standard smoothness assumptions.

• Approximation Capability: Sufficiently expressive hypernetworks can approximate optimal model parameters to
arbitrary precision.

13

