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ABSTRACT

Large vision and language models learned directly through image-text associations
often lack detailed visual substantiation, whereas image segmentation tasks are
treated separately from recognition, supervisedly learned without interconnections.
Our key observation is that, while an image can be recognized in multiple ways,
each has a consistent part-and-whole visual organization. Segmentation thus should
be treated not as an end task to be mastered through supervised learning, but as an
internal process that evolves with and supports the ultimate goal of recognition.
We propose to integrate a hierarchical segmenter into the recognition process, train
and adapt the entire model solely on image-level recognition objectives. We learn
hierarchical segmentation for free alongside recognition, automatically uncovering
part-to-whole relationships that not only underpin but also enhance recognition.
Enhancing the Vision Transformer (ViT) with adaptive segment tokens and graph
pooling, our model surpasses ViT in unsupervised part-whole discovery, semantic
segmentation, image classification, and efficiency. Notably, our model (trained on
unlabeled 1M ImageNet images) outperforms SAM (trained on 11M images and 1
billion masks) by absolute 8% in mIoU on PartImageNet object segmentation.

1 INTRODUCTION

Learning visual recognition through the association of images with textual descriptions, as demon-
strated by CLIP (Radford et al., 2021) and GPT-4 (Achiam et al., 2023), has achieved significant
success. However, direct supervision that links images to semantics often fails to provide what-is-
where visual substantiation. For instance, a model might be trained to categorize the image in Fig. 1
as ink, girl, or woman without understanding how these categories differ in this image. Similarly,
visual segmentation can be trained using masks at multiple granularities (Kirillov et al., 2023), but
such models may not grasp how segments are related to each other and to overall image recognition!

ink

girl

woman

recognition segmentation  Figure 1: Our insight is that image segmentation and
recognition form a visual parsing continuum, and
their consistency is more essential than individual
text labels for recognition. We may recognize this
image as ink, girl, or woman. While the foreground
(colored areas) may vary, it always has a consistent hier-
archical segmentation: three individual blobs when no
person is recognized, or parts (face, hair) of the person
recognized as girl or woman. Instead of treating segmen-
tation and recognition as separate tasks, we model them
concurrently by including segmentation in the loop for
recognition. With recognition objectives solely at the
image level, not only can hierarchical segmentation be
learned for free, but better and substantiated recognition
also arises from such internal part-to-whole consistency.

*Equal contribution. Code available at https://github.com/twke18/CAST.
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Figure 2: While prior work uses patches as visual units and treats segmentation and recognition
as separate, supervised tasks with distinct models and data, our work uses superpixels as visual
units and integrates hierarchical segmentation into the recognition process, learning it internally
from a single recognition objective. Classifiers like ViT (Dosovitskiy et al., 2020) learn recognition
from image-level labels. Semantic Segmenters such as Segmenter (Strudel et al., 2021) learn object
segments from pixel-level class labels but lack part-whole granularity. Boundary Segmenters like
SAM (Kirillov et al., 2023) learns regions of multiple granualities from boundary labels without
hierarchical organization. In contrast, our Segmenter for Recognition (CAST) integrates a fine-
to-coarse segment hierarchy directly into the recognition process. By graph-pooling over segment
tokens, it effectively solves all three tasks concurrently within a visual parsing continuum.

Our first insight is that segmentation and recognition form a continuum of visual parsing, substanti-
ating concepts not primarily through textual labels, but through visual organization. For the image
in Fig. 1: 1) Recognition of ink is concurrent with organizing black pixels as three individual blobs
which form ink group; 2) Recognition of girl is concurrent with organizing profile face and black hair
which form girl’s head; 3) Recognition of woman is concurrent with organizing three-quarter face
and black hair which form woman’s head. Recognition of the whole is validated by its segmentation
into parts. There is always a part segmentation hierarchy consistent with the whole recognition, and
each varies in conjunction with the other. We cannot simultaneously recognize the image as girl and
the nose of the woman. In other words, the actual semantics of recognition may not be crucial, but
the concurrency and consistency between segmentation and recognition are.

In human vision, composition of distinctive parts could facilitate scene understanding (Biederman,
1987), whereas coarse recognition could help explain connected parts (Maurer et al., 2002). Informa-
tion flows both ways between parts and wholes, clarifying each other in a final consistent percept
(Tanaka & Farah, 1993; Tanaka & Simonyi, 2016; Tanaka et al., 2019).

In computer vision, prior works (Fig. 2 top) treat segmentation and recognition tasks separately,
each having its own dedicated model and annotated training data. 1) Recognition models are trained
using image-level labels that distinguish between categories (Deng et al., 2009) or instances (Wu
et al., 2018). Each image is encoded into a global feature vector (He et al., 2016; Dosovitskiy et al.,
2020), which typically emphasizes the most discriminative parts for recognition (Selvaraju et al.,
2017). 2) Segmentation models are trained using pixel-level labels (Long et al., 2015; Kirillov et al.,
2023), employing skip connections (Lin et al., 2017; Cheng et al., 2021) to propagate information
across various spatial resolutions and coverage areas. 3) Due to their distinct architectural designs,
recognition models cannot be directly used for segmentation tasks. Instead, architectural modifications
and fine-tuning with segmentation labels are often required (Ahn & Kwak, 2018).

Our second insight is that, with segmentation and recognition on a visual parsing continuum,
segmentation should be treated not as an end task to be mastered through external supervised learning,
but an internal process that evolves with and supports the ultimate goal of recognition.

We propose to integrate hierarchical segmentation into the recognition process (Fig. 2 bottom),
to naturally ensure that our recognition model achieves the desired consistency and concurrency
between segmentation and recognition. Specifically, our model processes the input image through a
fine-to-coarse segmentation that correlates with part-to-whole relationships, culminating in a global
feature vector that encapsulates the entire image. This segmentation, internal to the recognition
process and not an end goal in itself, ultimately enhances recognition with visual spatial parsing.
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Figure 3: Our model performs segmentation and
recognition simultaneously during test-time adapta-
tion: Initial predictions in a feedforward hierarchy
capture vision at a glance, whereas enhancements
in a reverse hierarchy captures vision with scrutiny.
It processes an image of adog, human, and carin a
feed-forward hierarchy, initially recognizing thedog
with 54%activation based on only thebackof thedog.
After backpropagating to increasedogactivation, the
model undergoes test-time adaptation in a reverse hi-
erarchy. This adjustment allows the next feed-forward
process to uncover thewhole dogand boostdogacti-
vation to97%! Our segmentation and recognition thus
mutually in�uence and enhance each other.

Consequently, our model can be directly optimize for recognition using the �nal global feature vector,
while developing hierarchical segmentationfor freethat spatially grounds recognition in the image.

Our concept can be encapsulated by the phrase:Segmentation Of Recognition, By Recognition,
and For Recognition. “Of” refers to looping segmentation in the process of recognition. “By”
indicates that the learning process of internal segmentation is driven by image-level recognition
objectives, without any segment-level supervision. “For” re�ects that the outcomes of our model
automatically uncover part-to-whole relationships that not only ground but also enhance recognition.

We implement our concept by innovating Vision Transformer (ViT) (Dosovitskiy et al., 2020)
on two aspects.1) We use arbitrarily-shaped superpixels instead of square patches on a regular
grid as the visual units for ViT tokens.2) We use graph-pooling to group these segment tokens
successively towards recognition, forming a �ne-to-coarse segmentation hierarchy that re�ects part-
to-whole relationships. The entire model is learned solely from image recognition objectives, either
unsupervised (Wu et al., 2018; He et al., 2020) or supervised (Touvron et al., 2021). Our model
is abbreviated as CAST, signifying that itConcurrently learns segmentation and recognition using
AdaptiveSegmentTokens. Unlike the traditional text-inspired Vision Transformer, which utilizes
regular patches asvisual words, our vision-inspired CAST employs superpixels that adhere to visual
contours asvisual words. In this sense, our CAST embodies a truevisiontransformer model.

By looping hierarchical segmentation into recognition, CAST delivers four major results.1) CAST
derives a hierarchical segmentation by grouping segment tokens from �ne to coarse. SAM (Kirillov
et al., 2023), trained with 11 million images and 1 billion masks for multi-scale segmentations,
fails to grasp part-to-whole relationships and produce hierarchical segmentation.2) CAST learns
segmentationfor freedirectly from an image recognition objective. During training, our model adapts
internal segmentation to optimize the �nal image recognition. During testing, it processes images in a
feed-forward hierarchy, making initial predictions that capturevision at a glance(Ahissar et al., 2009).
For uncertain recognition, our model can continue test-time adaptation (TTA) (Sun et al., 2020)
to solidify recognition. With targeted feedback backpropagating in a reverse hierarchy, it re�nes
internal part-to-whole segmentation alongside improvements in �nal recognition, capturingvision
with scrutiny(Fig. 3 and Appx. C).3) CAST simultaneously performs segmentation and recognition,
matching or surpassing previous methods like HSG (Ke et al., 2022) for hierarchical segmentation and
Swin Transformer (Liu et al., 2021) for classi�cation. While these methods require specially designed
architectures for each task, CAST ef�ciently manages both using a single uni�ed model.4) CAST
represents a natural evolution in vision transformer design, utilizing superpixels instead of square
patches as visual units. This approach allows our model to achieve more accurate segmentation
compared to patch-based ViT. It excels across multiple tasks, including both unsupervised and
supervised semantic segmentation as well as attention-based �gure-ground segmentation.

2 RELATED WORKS

Concurrent segmentation and recognitionwas explored before the advent of deep learning. Previ-
ously, models simultaneously performed recognition by grouping compatible patches and segmenta-
tion by grouping visually similar pixels through detected pixel-patch relations. This approach resulted
in object-speci�c (Yu et al., 2002; Yu & Shi, 2003b) and �gure-ground segmentation (Maire, 2010;
Maire et al., 2011). However, these methods relied on manually crafted features and pre-trained
object part detectors. In contrast, our model is entirely data-driven and trained from scratch.
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Vision transformers have undergone signi�cant advancements (Han et al., 2022) since the intro-
duction of ViT (Dosovitskiy et al., 2020). Two primary strategies exist for enhancing ef�ciency:
One reduces the number of tokens through spatial pooling, leveraging principles from hierarchical
convolution (Liu et al., 2021; Heo et al., 2021; Dong et al., 2022; Ma et al., 2023), and the other
assesses token signi�cance to selectively prune tokens (Goyal et al., 2020; Rao et al., 2021; Marin
et al., 2021; Zeng et al., 2022; Bolya et al., 2023). Our approach diverges from these methods in
two fundamental ways:1) Our token pooling is designed to support a segmentation-recognition
continuum within a visual parsing hierarchy; ef�ciency emerges only as a bene�cial byproduct.2)
Unlike any other ViT model, our model produces a consistent hierarchical segmentation.

Hierarchical image segmentationaims to group pixels consistently across multiple granularities.
A representative approach is agglomerative clustering (Sharon et al., 2006; Arbelaez et al., 2010),
which starts by extracting pixel features, initializing clusters, and then merging them based on feature
similarity. Recent works often adopt a supervised approach that uses top-down decomposition to
detect coarse semantic instances and break them down into �ner semantic parts (de Geus et al., 2021;
Wei et al., 2024; Li et al., 2022b;a). To circumvent part annotations, self-supervised learning is used
to enhance part segmentation for novel categories through cross-image pixel correspondence (Sun
et al., 2023) or feature clustering (Pan et al., 2023). Another line of approaches predicts part- and
object-level segmentations separately (Li et al., 2023; Wang et al., 2024; Qi et al., 2024), which
often leads to misaligned segmentation across granularities. In contrast, our work modernizes the
agglomerative approach by integrating1) representation learning,2) hierarchical segmentation, and
3) image recognition within a transformer architecture.

Additional related works on superpixels and clustering methods can be found in Appx. D.

3 OUR HIERARCHICAL SEGMENTER AND RECOGNIZER ONA CONTINUUM

Our goal is to integrate hierarchical segmentation and recognition into a continuous visual parsing
framework, where the segmenter is internal to and supports the recognition process (Fig. 2). During
training, the segmenter is developed with the recognizer, both guided solely by the image-level
recognition objective. During testing, optimizing the recognizer by maximizing its winning activations
results in backpropagation that re�nes the segmenter (Fig. 3). In our concurrent segmentation and
recognition framework called CAST, segmentation not only substantiates recognition but is also
directed by it, ensuring that both processes mutually enhance each other.

We begin by utilizing the widely adopted ViT for recognition tasks and identify two major challenges
in adapting it for hierarchical segmentation (Fig. 4):1) The use of �xed-shape patches leads to
poor characterization of complex visual contours (Bolya et al., 2022);2) The absence of explicit
segmentation makes it dif�cult to enforce consistent pixel grouping across granularities.

Figure 4:Our model implements our concept of concurrency and consistency in visual parsing
by innovating ViT with adaptive segment tokens and progressive graph pooling.It starts with
superpixels instead of square patches, and applies graph pooling to merge �ne segmentsSl � 1 into
coarse segmentsSl . Both segment transition probabilityPl and segment featureZ l are learned to
optimize an image-level recognition objective, which could be self-supervised instance discrimination
or supervised image classi�cation. Without any external supervision, we uncover object wholes (dog)
along with small details (ears) and thin structures (legs), validating the effectiveness of our concept.
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Our solution is1) to replace �xed-shape patches with adaptive segments that adhere to visual contours,
and2) to employ graph pooling over segments to progressively construct a parsing hierarchy. In
Fig. 4, our model utilizes segments as visual units and alternates between transformer encoder blocks
that extract segment features and graph pooling modules that merge �ner segments into coarser ones.
We describe adaptive segments and graph pooling below, and list our algorithm in Appx. E.1.

3.1 ADAPTIVE SEGMENT TOKENS FROMSUPERPIXELS

Segments consist of arbitrary groups of pixels. For effective hierarchical segmentation, we require
representations for both the pixel groupings of segments, labeledS0; S1; S2; : : :, and the segment
features, labeledZ0; Z1; Z2; : : :, across levels from �ne to coarse.

Our initial segmentation,S0, uses superpixels that match the low-level features within areas and align
with visual contours. We achieve this using SEEDS (Bergh et al., 2012), which breaks the image into
color-consistent, locally connected regions. Discussions on the choice of superpixel methods can be
found in Appx A.2. We then combine these superpixels into larger segments, forming a segmentation
hierarchy with precisely outlined contours, as shown in Fig. 4 top.

Our initial segment feature,Z0, uses both visual and spatial features. We �rst apply convolutional
layers to the input image to generate pixel-level features, labeledX cnn. The visual feature for each
superpixel,X s, is the average of pixel featuresX cnn within that superpixel. Similarly, the positional
encoding for each superpixel,Epos, is the average of pixel positional encodings, which are set at the
same resolution asX cnn, within that superpixel. The initial segment feature,Z0, is the sum of these
two superpixel features appended with the usual class tokenX classfor ViT: Z0 = [ X s + Epos; X class].

Starting from superpixels inS0, we group these �nest segment tokensZ0 into L levels of coarser
segment tokens (Z1; : : : ; ZL ) to progressively capture more global visual contexts. These adaptive
segment tokens enable direct derivation of image segmentation, (S1; : : : ; SL ), from the segment
index of each pixel, eliminating the need for post-processing. Our approach contrasts with previous
methods such as SegSort (Hwang et al., 2019) and HSG (Ke et al., 2022), which maintain separation
between image segmentation and feature extraction across their entire models.

3.2 GRAPH POOLING FORHIERARCHICAL SEGMENTATION

We construct a hierarchical segmentation by applying graph pooling to adaptive segment tokens,
progressively aggregating them from �ne to coarse levels. The aggregation process utilizes a soft
assignment probability,Pl , which maps a �ne segmenta at levell � 1 to a coarser segmentc at level
l . We initialize coarse segmentsZ l , dimensioned by segment and feature channel counts, by sampling
centroids of �ne segment tokensZ l � 1. The closer segmenta is to segmentc in the feature space, as
measured by feature similarity function sim, the larger the probabilityPl of assigninga to c:

Pl = Prob( a ! c) / sim(Z l � 1[a]; Z l [c]): (1)

Representing initial segmentationS0 in a binary partition matrix, dimensioned by pixel and segment
counts, we derive a segmentation hierarchy based on progressive segment membership transitions:

Sl = Sl � 1 � Pl ; l = 1 ; 2; : : : ; L: (2)

While Sl � 1 is binary,Sl is a soft segmentation that can be hardened through a common winner-take-
all strategy. Segment tokensZ l are updated according toSl by averagingZ l � 1 usingPl and adding
them with an MLP head to the previously initialized values: with:= denoting element-wise division,

Z l ( Z l + MLP(P>
l Z l � 1:=P>

l 1): (3)

To demonstrate how our superpixels and hierarchical segmenter enhance recognition, we compare
our CAST to ViT, which uses patches and maintains the same number of tokens throughout the
model. For the sake of comparisons, we also derive a hierarchical segmentation fromthe already
trainedViT tokens by applying K-means clustering in a consistent �ne-to-coarse manner (details
in Appx. E.5). Fig.5 demonstrates that not only the use of superpixels allows our segmentation to
follow visual contours more closely, but enforcing segmentation consistency across granularities also
enables CAST to preserve small details and thin structures in coarse segmentation. Consequently,
while ViT and CAST are trained on identicalunlabeleddata, CAST signi�cantly excels in uncovering
whole objects without any supervision, validating the bene�ts of our superpixels and token pooling.
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image patches ViT: 32,16,8-way segmentation superpixels CAST: 32,16,8-way segmentation

Figure 5:CAST uncovers objects with complex contours, due to the use of not only superpixels
but also progressive token pooling.We train ViT and CAST onunlabeledImageNet data using the
MoCo objective (He et al., 2020). For the ImageNet image in Column 1 of each row, Columns 2-9
show respectively its square patches used by ViT, 32,16,8-way segmentationsderivedfrom ViT tokens
via �ne-to-coarseK-means clustering, superpixels used by CAST, and 32,16,8-way segmentations
generatedby CAST. Our color scheme hascoarse-to-�neconsistency: Colors in 8-way segmentations
are matched between ViT and CAST, while colors in 16(32)-way segmentations have the same hues
as 8-way but vary in saturation(value) to re�ect �ner details. Our results more closely follow visual
contours and successfully uncover entire objects with details likeneck, thin legs, andlong ears.

Our model also offers �exibility in segmentation granularityduring inference, unlike GroupViT (Xu
et al., 2022) and HSG (Ke et al., 2022), which rely on a �xed number of learnable queries for
next-level segments that cannot be altered post-training. In our approach, the number of clustering
centroids, which can differ from the training con�guration, determines segmentation granularity.
Speci�cally, we employ the Farthest Point Sampling (FPS) (Qi et al., 2017) to select a subset of token
features as initial centroids. This strategy ensures maximal coverage of the feature space without bias
towards dominant features, leading to more robust segmentation (Appx. F).

Architecture and Training . CAST can be integrated into any existing ViT architecture by replacing
its patch encoder with our segment encoder and by inserting our graph pooling module within the ViT
blocks. We use SEEDS to extract superpixels and apply convolutional layers from (Xiao et al., 2021)
to obtain initial segment features, ensuring a fair comparison with ViT. Following the original ViT
architecture, we name our models CAST-(S/B), corresponding to ViT-(S/B). Segmentation granularity
is set to64; 32; 16; 8 after3; 3; 3; 2 encoder blocks, respectively. The segments are referred to as
level-1; 2; 3; 4 segments, starting with 196 superpixels at level-0. CAST can be trained by supervised
learning as in DeiT (Touvron et al., 2021) and Segmenter (Strudel et al., 2021), or by self-supervised
learning as in MoCo (He et al., 2020) on ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014).

4 EXPERIMENTS ONHIERARCHICAL/FLAT SEGMENTATION & RECOGNITION

Our model has an internal hierarchical segmenter for recognition and can be trained solely using
image recognition objectives. We study its performance and bene�ts in three tasks:1) unsupervised
hierarchical segmentation and part-whole discovery,2) �at semantic segmentation,3) recognition.
Additional ablation, results, experimental details, and visualizations can be found in the Appendix.

4.1 UNSUPERVISEDHIERARCHICAL SEGMENTATION AND PART-WHOLE DISCOVERY

We consider three interesting baselines for CAST: ViT (Dosovitskiy et al., 2020), HSG (Ke et al.,
2022), and SAM (Kirillov et al., 2023).1) CAST, ViT, and HSG can all be trained on the same
unlabeleddata. In contrast, SAM has been pre-trained on large-scale, pixel-wise labeled images
and can be used directly. As a boundary segmenter, SAM only knowswherebutnot whatsegments
are in the image.2) ViT does not produce a hierarchical segmentation. We construct a hierarchy
by applying �ne-to-coarse K-means clustering of its �nal-layer tokens, trained without multiscale
parsing and shown to be effective for detection (Li et al., 2022c) and segmentation (Kirillov et al.,
2023).3) Both HSG and CAST produce a consistent hierarchical segmentation based on superpixels.
However, HSG is designedfor segmentation, whereas CAST is designedfor recognition. As HSG
uses ResNet50, we compare HSG with similarly sized CAST-S.4) SAM outputs segmentations at
multiple granularities, but it does not enforce consistency among them. We report on both SAM-H,
the largest model, and SAM-B, the smallest model which matches ViT-B and CAST-B in size.
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Figure 6:CAST enhances recognition with a hierarchical segmentation that groups parts into
wholes without supervision, whereas both ViT and SAM perform poorly: They lack superpixels
to capture visual details and a hierarchical segmenter to simplify recognition.SAM is pretrained
on 11M images and 1B masks, while ViT and CAST are self-supervised on 1M ImageNet images, all
producing segmentations on PartImageNet without semantics. We name each segment using OVSeg
(Liang et al., 2023) for evaluation. For SAM-H output in Column 1 Row 2, we �rst name segments in
descending size using theobjectvocabulary and then namepartsbased on identi�ed objects. For ViT,
we derive a hierarchical segmentation by applying �ne-to-coarse K-means clustering of its last-layer
tokens. For ViT and CAST, we use the object vocabulary to name 8-way segmentations and the part
vocabulary for 16-way segmentations. Here the�sh has distinctheadand�n continuing onto the
body, and its contrast with the background varies along thebody. SAM struggles to parsethe �sh into
parts, while ViT fails to separate them from the background, misleading recognition. In contrast, our
unsupervisedCAST accurately uncovers the whole�sh with its distinct parts:head, body, and�n .

image HSG: 32, 16, 8 segments CAST: 32, 16, 8 segments Ground-truth: 14, 4, 1 labels

Figure 7:Unsupervised hierarchical segmentation aligns more closely with semantics in CAST
than in HSG. We compare 32, 16, 8-way segmentation against �ne, coarse, and whole person parsing
respectively. To visualize a consistent hierarchy in color, we �rst match the 8-way segmentation to
the 1-label ground truth in hue, then vary saturation for 16-way and value for 32-way. Overall, CAST
is better than HSG on DensePose at separating human bodies from their backgrounds at all levels.

Fig. 5 has shown that CAST outperforms ViT at uncovering objects with complex contours and �ne
details. We now compare unsupervised CAST to SAM and ViT on PartImageNet for deformable and
rigid object parsing (Fig. 6), and to HSG on DensePose for human body parsing (Fig. 7).

PartImageNet (He et al., 2022) is a subset of ImageNet additionally annotated with 11 objects
(e.g.,Biped) and 40 parts (e.g.,Biped Head) (details in Appx. B.1). We benchmark SAM (as is),
ViT and CAST (trained self-supervisedly on ImageNet) on PartImageNet. Since they all produce
segmentations without class labels, for the sake of evaluation, we name each segment using an
open-vocabulary segment classi�er, OVSeg (Liang et al., 2023). For SAM, we use the default setting
to produce a series of binary masks that may overlap. Since larger segments are more likely whole
objects and smaller segments parts, we name segments in one pass using the PartImageNetobject
vocabulary. We name each mask starting with the largest, adjusting the smaller ones to remove any
overlap with it. In a second pass, we name each identi�ed segment using the PartImageNetpart
vocabulary. For ViT and CAST, we �rst name objects in a coarse (8-way) segmentation and then
name parts within each object in a �ne (16-way) segmentation. See Appx E.3 for more details.

Fig. 6 shows that unsupervised CAST groups visual details into larger wholes that separate objects
from the background, enabling accurate segment naming. Neither SAM nor ViT maintains segmenta-
tion consistency across granularities during training, resulting in coarse and �ne segmentations that
are error-prone andcompeterather thansimplifyfor recognition at the end.
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Table 1:Unsupervised CAST surpasses SAM and
ViT in accuracy and ef�ciency for segmenting
object parts and wholes on PartImageNet.We
measure region mIoU and boundary F-score, at �rst
object and then part levels. SAM, pretrained on large-
scale high-resolution images with pixel-wise labels,
excels at delineating boundaries: At the object(part)
level, SAM is 10(5)% over CAST, CAST is 11(1)%
over ViT. However, on region accuracy, CAST out-
performs SAM (ViT) by 8(4)% for objects and 1(1)%
for parts, with only 4(72)% of their GFLOPS.

model GFLOPS region mIoU boundary F-score

SAM-B 677 18.03 10.15 20.71 7.25
SAM-H 3166 21.97 12.07 32.66 11.82

ViT-B 18 25.34 11.74 10.92 4.64
CAST-B 13 29.66 13.20 22.32 6.52

Table 2: CAST surpasses HSG in unsuper-
vised hierarchical semantic segmentation on
DensePose, despite its focus on recognition
instead of segmentation.Training CAST-S
and HSG onunlabeledCOCO data, we evalu-
ate 32,16,8-way segmentations on ground-truth
14,4,1-label human body parsing respectively
on DensePose. We measure precision (P), recall
(R), and F-score (F) on between segmentation
and ground-truth human body. CAST consis-
tently excels, especially in whole body recall.

P R F 14 labels 4 labels 1 label

HSG 20.7 18.6 19.624.1 30.6 26.920.5 36.1 26.2

CAST 21.1 24.1 22.524.8 33.2 28.426.3 44.9 33.2

gain 0.4 5.5 2.9 0.7 2.6 1.5 5.8 8.8 7.0

Table 1 shows that ourunsupervisedlytrained CAST outperforms not only ViT by 4% (in mIoU), but
also SAM by 8% on object segmentation, which issupervisedlytrained on SA-1B and243� larger in
GLFOPS! While SAM can produce a high-quality segmentation, it does not organize these segments
and simplify them for recognition, especially as PartImageNet only annotates a single prominent
object in an image. Thehumansegment in Fig. 6, with boundaries shaped as the occluding�sh, is
mistaken by OVSeg as Category�sh instead ofbiped. Such interference from border-ownerships
has long been acknowledged in human perception research, exempli�ed byBregman's scrambled B
illusion (Bregman, 1981). In addition, CAST is also signi�cantly more ef�cient. SAM requires1) an
additional mask decoder to predict pixel-segment assignments in a high-dimensional feature space,
and2) multiple inferences guided by various point prompts. CAST produces a hierarchy of segments
starting from color features in a single inference pass, with only 4% of SAM-H's GFLOPS!

DensePose(Alp Güler et al., 2018) has complex multi-person scenes, each individual annotated with
14 body parts. We group these labels into 4 categories: (head, torso, upper limb, andlower limb.
We train HSG and CAST-S self-supervisedly on COCO (Lin et al., 2014) and compare their 32, 16,
8-way segmentations on DensePose against �ne (14 labels), coarse (4 labels), and whole person (1
label) parsing respectively (Fig 7). Table 2 shows that CAST surpasses HSG in both precision and
recall at every level. While HSG optimizes feature distinction across segments at all levels, CAST
concentrates this optimization at the �nal image level only. Therefore, approaching hierarchical
segmentation not as a standalone goal but as integral to recognition in fact enhances segmentation!

4.2 SEMANTIC SEGMENTATION

Now we can learn image segmentation without pixel-wise labeling, but with only an image-level
recognition objective. We compare CAST with ViT on utilizing such a segmenter for downstream
semantic segmentation tasks (Table 3).1) We �rst train both models onunlabeledCOCO data, and
then evaluate their segmentationbeforeandafter �ne-tuning on PASCAL VOC (Everingham et al.,
2010).2) We �rst train both models onlabeledImageNet data, then �ne-tune with Segmenter (Strudel
et al., 2021) and test on ADE20K (Zhou et al., 2019) and PASCAL Context (Mottaghi et al., 2014).

Table 3:CAST outperforms ViT with superpixels and token pooling on �at semantic segmenta-
tion by unsupervised or supervised learning. We report both region mIoU and boundary F-score
to benchmark CAST-S and ViT-S:a) on PASCAL-VOC after training onunlabeledCOCO, andb)
on ADE20K and PASCAL-Context following training onlabeledImageNet with subsequent tuning.
We explore ViT variants with superpixels replacing traditional patches and graph pooling for token
reduction. CAST consistently outperforms, validating the ef�cacy of both modi�cations.

a) self-supervisedon COCO

test on PASCAL-VOC before tuning after tuning

ViT-S 30.9 16.1 65.8 40.7
ViT-S but with superpixels 32.2 21.2 66.5 46.7
ViT-S but with token pooling 34.5 19.8 67.2 41.9
CAST-S 38.4 27.0 67.6 48.1

b) supervisedon ImageNet, tuned for

ADE20K P-Context

ViT-S 41.7 33.9 48.3 42.0
- - - - -
- - - - -

CAST-S 43.1 36.5 49.1 44.1
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ADE20K ViT-S CAST-S Ground-truth P-Context ViT-S CAST-S Ground-truth

Figure 8:CAST pretrained for recognition generalizes better than ViT to semantic segmen-
tation. Both ViT-S and CAST-S are pre-trained on labeled ImageNet and �ne-tuned for semantic
segmentation on ADE20K or PASCAL-Context. Unlike ViT, CAST can not only recognize and
segmentlarge wholes(house, �oors), but also closely adhere to visual contours of small ones (dog).

We follow SegSort (Hwang et al., 2019) on segment retrieval for unsupervised evaluation, and
�ne-tune the model alongside a pixel-wise softmax classi�er for supervised evaluation.

Table 3 shows that CAST consistently outperforms ViT, and both our components, superpixels and
token pooling, contribute to performance gains, most notably increasing8%in region mIoU and11%
in boundary F-score before �ne-tuning. Fig. 8 shows that CAST retains these bene�ts even after
supervised training and �ne tuning, recognizing both wholes and details more accurately.

4.3 RECOGNITION AND REFINEMENT OFSEGMENTATION THROUGHFEEDBACK

We now study CAST's performance on recognition and its feedback connection to segmentation.

Classi�cation. We compare CAST-S to ViT-S and Swin-T from Swin Transformer (Liu et al., 2021),
both designed solely for recognition and with similar GFLOPS. All three models are self-supervised
on IN-1K and tested on IN-1K and IN-100 using linear probing. Table 4 shows that, with hierarchical
token pooling, CAST outperforms ViT and Swin with 30% fewer GFLOPS. Notably, only CAST can
directly output a hierarchical segmentation, with a stronger object-centric attention (Appx. A.5).

Model GFLOPS IN-100 IN-1K

ViT-S 4.7 78.1 67.9
Swin-T 4.5 78.3 63.0

CAST-S 3.4 79.9 68.1

Table 4: CAST outperforms ViT and Swin on Ima-
geNet classi�cation with higher ef�ciency. We report
the top-1 linear probing accuracy of ViT, Swin, and CAST,
self-supervised on IN-1K and tested on IN-100/1K. CAST
achieves higher accuracies using about 30% fewer GFLOPS.

Test-time adaptation. CAST not only learns an internal segmenter in a feed-forward hierarchy
towards recognition, but can also revise the segmenter in a feedback reverse hierarchy, concurrently
enhancing both segmentation and recognition (Fig. 3). Fig. 9 shows that ambiguous recognition can
be solidi�ed by maximizing the winning activation, modifying segmentation and in turn enhancing
both segmentation and recognition concurrently. See more details in Appx. C.

Figure 9: CAST can be adapted during test time to solidify
ambiguous recognition and re�ne segmentation.For the binary
dogclassi�cation task on PartImageNet shown in Fig. 3, We assess
region mIoU on PartImageNet for CAST's 8-way segmentation
against the ground-truthdog maskbeforeandafter adaptation
(Fig. 3). When the mIoU is initially lower than threshold 0.8
(vertical line), it has a large and positive gain mostly (red dots
above the diagonal line). The average gain (black line) islarge
(zero) with poor initial segmentation when adaptation ismost(not)
needed. Our concurrent segmentation and recognition enhances
each other in this adaptation process.

Summary. We propose to include segmentation as partof recognition, to learn itby image recognition
objectives, and to infer it concurrently with andfor recognition. We develop our model, CAST, by
utilizing superpixels and token pooling. It uncoveres parts and wholes, surpassing SAM, HSG, and
ViT in both accuracy and ef�ciency on various segmentation and recognition tasks.
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A A BLATION STUDIES AND ANALYSES

A.1 ABLATION STUDY ON DESIGN CHOICES

Table 5 presents ablation studies on design choices in our framework.(a) We explore various token
pooling methods, with our GraphPool module excelling. Notably, FINCH (Sarfraz et al., 2019) lags
in performance, showcasing the challenge of adaptive pooling.(b) We examine different centroid
initialization methods, with Farthest Point Sampling (FPS) signi�cantly outperforming others. FPS
not only samples informative tokens but also enhances discriminative token selection, preserving
�ne-grained visual information.(c) We investigate optimal segment granularities, �xed for both
training and inference, to achieve a balance between model ef�ciency and task performance.(d) We
showcase that our model can adapt to varying segment granularities during inference.

Table 5: We compare the design choices for (a) token pooling, (b) cluster centroid initialization, (c)
token granularities applied to both training and testing, and (d) token granularities of a trained model
varied during testing. We report the linear probing accuracy of MoCo-trained CAST-S on IN-100.y
indicates that the methods have been re-implemented.

(a) Pooling Acc.

Graph Pooling 79.9
Random Sampling 55.8
K-Means 73.9
K-Medoids 72.3
FINCHy (Sarfraz et al., 2019) 63.3
Token Poolingy (Marin et al., 2021) 75.8
CTMy (Zeng et al., 2022) 72.2
ToMey (Bolya et al., 2023) 78.1

(b) Centroids initialization Acc.

Farthest Point Sampling 79.9
Random Sampling 71.2
PoWER-BERT (Goyal et al., 2020) 71.6

(c) Token granularity (Train= Test) GFLOPS Acc.

196; 32; 16; 8 3.0 78.8
196; 64; 32; 16 3.4 79.9
196; 128; 64; 32 4.3 79.9
324; 64; 32; 16 4.6 79.8
324; 128; 64; 32 5.4 80.4

(d) Token granularity (Train6= Test) GFLOPS Acc.

Train: 196; 64; 32; 16 3.4 79.9

Test:196; 32; 16; 8 3.0 79.2
Test:196; 128; 64; 32 4.3 79.5
Test:324; 64; 32; 16 4.6 78.8
Test:324; 128; 64; 32 5.4 79.3
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