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Abstract

Structure-agnostic causal inference studies how well one can estimate a treatment
effect given black-box machine learning estimates of nuisance functions (like the
impact of confounders on treatment and outcomes). Here, we find that the answer
depends in a surprising way on the distribution of the treatment noise. Focusing
on the partially linear model of Robinson [1988], we first show that the widely
adopted double machine learning (DML) estimator is minimax rate-optimal for
Gaussian treatment noise, resolving an open problem of Mackey et al. [2018].
Meanwhile, for independent non-Gaussian treatment noise, we show that DML
is always suboptimal by constructing new practical procedures with higher-order
robustness to nuisance errors. These ACE procedures use structure-agnostic cu-
mulant estimators to achieve r-th order insensitivity to nuisance errors whenever
the (r + 1)-st treatment cumulant is non-zero. We complement these core re-
sults with novel minimax guarantees for binary treatments in the partially linear
model. Finally, using synthetic demand estimation experiments, we demonstrate
the practical benefits of our higher-order robust estimators.

1 Introduction

Modern machine learning (ML) offers a rich toolbox of flexible methods for modeling complex,
high-dimensional functions — ranging from regularized linear regression [Belloni et al., 2014, Zou
and Hastie, 2005] and random forests [Breiman, 2001, Biau et al., 2008, Syrgkanis and Zampetakis,
2020] to neural networks [Schmidt-Hieber, 2020, Farrell et al., 2021] and hybrid combinations of
these techniques [DZeroski and Zenko, 2004, Chernozhukov et al., 2022]. For statisticians and
econometricians, it is natural to ask whether ML can improve both the accuracy and the robust-
ness of estimating a target parameter of interest. Recently, Balakrishnan et al. [2023] introduced
the paradigm of structure-agnostic estimation (SAE). SAE enables parameter inference by directly
plugging in black-box ML-based estimates of the so-called nuisance functions — the other regres-
sion components that impact our observations while not being of primary inferential interest. This
framework characterizes the best possible target estimation accuracy in terms of the error of these
nuisance estimates. By contrast, the classical semiparametric approach derives optimal error rates
under explicit structural assumptions on the nuisance — such as smoothness or sparsity — which
must be exploited by the estimator and can render it fragile when those assumptions fail [Stone,
1982, Chen and White, 1999, Belloni et al., 2011].

In the field of causal inference, a typical goal is to estimate the impact of a treatment on an observed
outcome in the presence of confounders X that impact both treatment 7" and outcome Y in largely
unknown ways. When all confounders are observed, many causal estimands admit expressions in
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terms of regression functions that are themselves estimable from data. Consequently, causal param-
eter estimation falls squarely within the regime where ML-based nuisance estimates may provide
benefits.

Recently, double/debiased machine learning (DML) [Chernozhukov et al., 2018, 2022] was pro-
posed as an efficient way to estimate causal parameters from black-box nuisance estimates. Specif-
ically, given n independent and identically distributed (i.i.d.) observations and nuisance estimates
with mean squared error ¢, these methods achieve O(e? + n~'/2) error rates, improving over the
O(e + n=1/ 2) rate achieved by naively plugging in the nuisance estimates. In particular, the esti-
mates are y/n-consistent even when the nuisance estimates converge as slowly as n~ /4. Moreover,
this rate is structure-agnostic, and recent works [Balakrishnan et al., 2023, Jin and Syrgkanis, 2024]
proved that for several important causal parameters, this rate is in fact minimax rate-optimal in
the SAE framework. In other words, one cannot achieve smaller estimation estimation rates without
strong prior knowledge on the underlying structure of the nuisance. These optimality results provide
a strong justification for the popularity of doubly robust learning methods in practice.

A curious exception to this rule can be found in the work of Mackey et al. [2018]. There, the authors
study the popular partially linear model of Robinson [1988]:

Y=00-T+fo(X)+¢ E[£]X,T]=0 almostsurely,

1
T=go(X)+n, and Eln|X]=0 almostsurely. M
Here, the observation Z = (X,T,Y) comprises covariates X € X, a scalar treatment 7' € R,
and a scalar outcome Y € R. The primary objective is the estimation of the parameter 6, which
represents the average causal effect of 7" on Y. Within this framework, the DML estimator for 6 is
derived from the Neyman-orthogonal moment condition and typically takes the form:

fonr = [ 300 (T — 9(X))2] ™[220, (Yi — d(Xa) (T3 — (X0))] 2

where ¢ and § are machine learning estimators for the nuisance functions go(X) = E[T" | X] and
qo(X) = E[Y | X], respectively [Chernozhukov et al., 2018]. Common practice involves sample
splitting, where one portion of the data is used to train g and ¢ and another (independent) portion is
used to compute Oy, via (2). However, Mackey et al. [2018] showed that for the model (1), one can
design structure-agnostic estimators that are more efficient than DML if the treatment noise 7 is non-
Gaussian and independent of X.? Bonhomme et al. [2024] consider parameter estimation problems
in a conditional likelihood setting and show that arbitrarily higher-order orthogonal estimators can
be constructed if the conditional likelihood function is known up to the nuisance parameters. These
works highlight a gap in our understanding of how noise impacts optimal SAE rates, and this is the
main question that we will address in this paper.

Given access to black-box nuisance estimates, we make the following contributions:

* On the one hand, we prove in Section 3.2 the existence of Gaussian treatment barrier: for
Gaussian treatment, no estimators can achieve a better rate than DML, even when the variance
of the treatment is completely known. This implies that leveraging distributional information
of the treatment noise as in Mackey et al. [2018] cannot yield a better estimate and that their
restrictions to the non-Gaussian setting is not an algorithmic issue.

* On the other hand, for non-Gaussian treatment, we propose a general procedure to construct
higher-order orthogonal moment functions and provide structure-agnostic guarantees in Sec-
tion 4. Then, for treatment noise independent of X, we derive in Section 5 a new agnostic
cumulant-based estimator (ACE) that achieves r-th order insensitivity to nuisance estimate er-
ror € and O(e" + n~'/?) error rates for treatment effect estimation whenever the (r + 1)-st
cumulant of 7 is non-zero. To the best of our knowledge, this is the first structure-agnostic
estimator that achieves arbitrarily high-order robustness.

* We complement these findings with additional contributions relevant to this setting. Specifi-
cally, we show in Section 3.1 that DML is minimax optimal for (1) with binary treatment, a
case not covered in existing lower bounds that do not assume a partially linear outcome model.

3The structure-agnostic rates are not explicitly stated in Mackey et al. [2018] but can be straightforwardly
derived from their analysis.



We also derive new lower and upper bounds for structure-agnostic moment and cumulant esti-
mation in a standard non-parametric model in Section 5.1 that might be of independent interest.
Finally, in Section 6, we conduct a synthetic demand estimation experiment, highlighting the
benefits of the ACE estimator compared with existing approaches.

Notation We introduce the shorthand [m] £ {1,...,m} for each m € N. For a function g and
distribution P on a domain Z, we let ||, = 9]l .p) = ([ |9(2)[°dP(2))"/* with s > 1

represent the L*(P) norm. For a vector € € R!, we define ||¢| . £ maxi<;<; |€;|. For two vectors
o = (a17"' 7al)56: (ﬁla"' 7Bl) ERZ,WCWritCOéSBifOQ‘ Sﬁial SZSZ

2 Structure-agnostic estimation and minimax error

To evaluate and compare method quality in this work, we adopt the minimax structure-agnostic
framework of Balakrishnan et al. [2023]. Notably, structure-agnostic analyses make no explicit
assumptions about nuisance smoothness, sparsity, or structure and instead simply assume access to
black-box nuisance estimates with certain unobserved error levels.

We first define the class of all data generating distributions P on our data domain Z and assign to
each a target parameter 6, ( P) and a vector-valued nuisance function 4 : Z ~— R’

Definition 2.1 (Data generating distributions, target parameters, and nuisance functions). Through-
out, we let P be the set of candidate data generating distributions on the finite dimensional-domain

Z, let'H C (RZ)Z be the set of relevant vector-valued nuisance functions, and let ® be a determin-
istic mapping from P to H. Then, for any P € P, we say that 0o(P) € R is the target parameter
and h = ®(P) € H is the nuisance function corresponding to the distribution P.

We will sometimes abuse notation and choose H to be a subset of H C (RZ)X where X is the
domain of the covariate component X of Z. Departing from prior work [Balakrishnan et al., 2023,
Jin and Syrgkanis, 2024], we leave the exact choice of nuisance mapping ® unspecified in Defini-
tion 2.1. This allows us to study how the choice of nuisance functions affects the estimation error of
the target parameter of interest.

Next, we introduce the ground-truth uncertainty sets associated with any nuisance estimate h and
any target error level e. For any vector-valued function h* : X — RY, distribution P € P, and
e € R, we define Bp ;(h*,€) := {h; € L*(P) : |h; — hf||ps < €, Vi € [(]}.

Definition 2.2 (Uncertainty sets). For any nuisance estimate h € H, error level vector € € R, and
power s > 1, we define the uncertainty set ’Ps’g(iz; ®) as the set of all P € Py satisfying

|hi = hillps < €, for h=®(P) andeach i€ {1,2,--- (}, 3)
or; equivalently, ®(P) € Bp,(h, ¢).

For convenience, we will omit the dependency of P; . (;L, ®) on P, which will always be clear from

context. We will sometimes write Ps .(h) when the choice of & is obvious. Finally, for a given
estimator 6 of a target parameter 6, (P), we define the worst-case error over an uncertainty set.

Definition 2.3 (Minimax estimation error). For any set of distributions P over Z, we define
the worst-case (1 — ~y)-quantile error of an estimator 6 : Z%" — R as mn,l_y(é;P) =
SUP pep Op1_~(|6—00(P)|), where Qp1 (|60 —00(P)|) is a (1—~)-quantile of |§(Z1, ..., Zy) —
00(P)| when Z; %5 P. We further define the minimax estimation error of P as M1~ (P) =

infj zon, g Ry (0;P).

3 Structure-agnostic lower bounds

In this section, we establish structure-agnostic lower bounds for treatment effect estimation in the
partially linear model (1).



3.1 Optimality of DML for binary treatment

We begin by establishing the minimax rate-optimality of DML when the treatment 7" is binary.
Previous works [Balakrishnan et al., 2023, Jin and Syrgkanis, 2024] have established structure-
agnostic lower bounds of a similar form. However, Balakrishnan et al. [2023] consider the estimation
of the expected conditional covariance defined as E[Cov(T,Y | X)], while Jin and Syrgkanis [2024]
consider the estimation of the average treatment effect with a different set of nuisance functions.
Furthermore, neither work constrains the form of E[Y" | T, X], while we assume a partially linear
structure for the outcome model. Our result implies that even with this additional assumption, it is
still impossible to improve over DML. For convenience, we introduce the following definitions as
the “default” choice for the class of data generating distributions and nuisance functions:

Definition 3.1 (Set of feasible distributions). We define P* as the set of all distributions of (X, T,Y)
generated by (1). Moreover, we define the following subsets of P* as follows:

* for any constants Co,Ct,Cy € [0,+00], we use P.(Co,Ct,CY) to denote all distribu-
tions P € P* that satisfy 0| < Co,E[|T|"]Y/" < Ct, and B[|Y|"]*/" < Cy.

s for any constants Cy, Cq, Cq, Ve,V € (0, +00], we use P*(Co, Cg, Cq; V¢, 1y ) to denote
the set of all distributions in P € P* that satisfy

1. 60| < Co, |g90(X)| < Cg, lqo(X)| < Cq a.s. for (9o, q0)(X) = (E[T" | X}, E[Y" | X])

2. & | X andn | X are ¢ and 1)y -sub-Gaussian a.s..

* for any constants Co,Ct,Cy € [0,+00], we use Py(Co, Ct,CY) to denote all distribu-
tions P € P* that satisfy |6p| < Co, |T| < Ct, and |Y| < Cy.

Finally, we define ®* as a mapping from P € P* to the “default” nuisance functions ho = (go, qo)-

We are interested in the minimax structure-agnostic estimation error induced by P = 735&(157 D)
for some s > 1, in the sense of Definition 2.3, with P being chosen as a set of distributions that
satisfies certain mild regularity conditions, such as the ones introduced in Definition 3.1. In other
words, given black-box nuisance estimates of hq with L*(P) error rates, we would like to derive the
optimal worst-case estimation error for the treatment effect 6.

Our main result in this section is a lower bound for estimating 6y when T is a Bernoulli random
variable. Our lower bound, Theorem 3.1, is established under the additional assumption that X has
a uniform distribution on X’ = [0, I]K ; as a consequence, the minimax error rate of DML cannot be
improved even when the marginal distribution of X is known.

Theorem 3.1 (Structure-agnostic lower bound for binary treatment). Fixany Cg > 0, ¢4, 6 € (0, %)
and K € Ny, and let
P ={P € Py(Co,1,1): T € {0,1},Varp(T | X) > 6 and X ~ Unif([0,1]%)}. (@)

If |lell., < 6/2, then for any estimates h = (g, §) with ¢q < §(X) < 1—c, and §(X)(1 - §(X)) >
A5, a.s., we have

M1~y (73276(?1, @*)) > ¢, {A‘ld_l(cqef + €e160) 4+ 07212 (5)
forany v € (1/2,1), where c is a universal constant that only depends on 7.

When |le]| . < /2, this matches the upper bound achieved by DML up to constant factors, stated
in Theorem C.1 for completeness. The proof of Theorem 3.1 can be found in Appendix B.

3.2 The Gaussian treatment barrier

In the previous section, we established the rate-optimality of DML for binary treatment. Is it possible
to improve over DML if we make different distributional assumptions? In the literature, it is not
uncommon to model the treatment assignment rule using a Gaussian distribution, i.e., n | X ~
N(0,0(X)?) for some function o(-) [Imai and Van Dyk, 2004, Zhao et al., 2020]. However, in
Mackey et al. [2018] it is shown that Gaussianality of the noise variable 7 is in fact a barrier for one
to construct second-order orthogonal moments, thereby preventing them from deriving better error



rates than DML by leveraging distributional information of 7. However, it is unclear whether this is
an issue specific to their approach or if there indeed exists a fundamental, non-algorithmic barrier
for Gaussian treatment.

In this section, we resolve this open question and show that the latter is true: if the treatment noise
is Gaussian, then DML is already minimax rate-optimal even when 7 is independent of X and one
has exact knowledge of its distribution. Our lower bound, stated next, is proved in Appendix D.

Theorem 3.2 (The Gaussian treatment barrier). Let o,Cg,Cy, Cq > 0 be known constants and
P ={P € Py(Co,00,Cq) : | X ~ N(0,0?) and |go(X)| < Cg a.s.}. If €165 = o(log™'/?n),
then for any estimates h = (g, §) satisfying |§| < Cqg,|q| < Cq and any 1 < s < +o0, we have

SD’tn,l—'y (,Ps,g(il, @*)) > Cy (0'726162 (m)g + gfln*1/2) (6)

logn
forany v € (1/2,1), where c, > 0 is a constant that only depends on .

The assumption that |§] < Cs, 1G] < Cy is natural, since for any Py € Py, the ground-truth nuisance
functions ¢go(X) = E[T | X] and go(X) = E[Y | X] must satisfy |go| < Cg and |go| < Cq as.
according to our assumption. Moreover, the lower bound does not depend on the value of s, meaning
that no improvement is possible even if the nuisance estimates have small L°°-error.

Under the same assumptions, one can show that DML attains the minimax error rate up to the

3 - .
factor (%) and matches the minimax error rate whenever ¢; = O(n~¢) for some positive
constant c. For completeness, we include the details in Theorem C.2. Notably, compared with the
lower bound in Theorem 3.1, the term ©(€7) disappears here since the variance o2 is assumed to be
known. Theorem 3.2 establishes the existence of a method-agnostic Gaussian treatment barrier as

suggested (but not proved) in Mackey et al. [2018].

The proof of Theorem 3.2 in Appendix D is based on a constrained risk inequality for testing com-
posite hypothesis developed in Cai and Low [201 1] combined with novel constructions of the fuzzy
hypotheses using moment matching techniques. For Gaussian treatment, we show that such hy-
potheses can be constructed in a way such that their induced target parameters 6 are well-separated
by leveraging a recursive property of Hermite polynomials.

4 Structure-agnostic upper bounds

Section 3 established the rate optimality of DML for binary and Gaussian treatments but left open
the possibility of improvement for other treatment distributions. To exploit this opportunity, we will
first introduce a new procedure that yields fast estimation rates whenever 1 | X is non-Gaussian
and the cumulants of 7 | X are estimated accurately and next, in Section 5, show that cumulant
estimation is easy when 7 is independent of X.

Our new procedure is based on the method of moments. Specifically, we will identify a moment
function m satisfying Ep[m(Z,0, h(X)) | X] = 0,a.s. for all P in some specified distribution
set P, where § = ®(P) is the ground-truth parameter of interest and h(-) is some vector-valued
nuisance functions that we need to estimate from data. Moreover, we require that § = ®(P) is the
unique solution to the moment equation. We proceed by plug in estimates of the nuisance h derived
from a sample Dy, and select § satisfying the empirical moment equation 3 sep (2,0, h(X)) =
0 on a separate sample D. This procedure is widely adopted in the development of DML-type
methods [Chernozhukov et al., 2018], and leads to efficient estimates as long as the moment function
m is Neyman-orthogonal, meaning that it is insensitive, under expectation, to nuisance estimation
errors. The precise definition will be presented in Theorem 4.1. The novelty of our construction
lies in a specific recursive procedure that generates moment functions with arbitrarily high levels of
insensitivity to nuisance estimation errors.

Consider the model (1) and let J; (w, x) be any function of w € R and « € X satisfying
Ji(w,z) = XM ag (2)pa (w) and E[Jy(n,X) | X] =0 a.s. %

where each E[a;1(X)?] < oo and each p;; is continuous. Without loss of generality, we assume
that p11(w) = 1 (as one can otherwise introduce a dummy summand into the expression (7) with



ai1(z) = 0). Let {Jr(w, z)}2, be a series of functions defined by
= [ Jro1 (W, x)dw’, Jp(w,z) = I (w,z) — E[L.(n, X) | X = ], (8)

The following lemma, proved in Appendix E.4, derives the general form of J,. for each k € Z .
Lemma 4.1 (Explicit formula for J,.). If M, = M; +r — 1, then

_ ai—10—1(x) fl<i< M,
ZCLH pm for a”.(ﬂf) - {E[Ir( X) | X = CE] le = 1’

plr( ) - ]- and pzr fO Pi—1,r— 1( )dwl7 2 S 1 S Mr' (9)
In particular, for all r > 2 we have ps,.(w) = w.

We would ideally use the moment function
me (2,6, h(X)) = [Y — q(X) = 0(T — g(X))] Jo(T — g(X), X) (10)

to estimate 6. However, by Lemma 4.1, .J,. depends on the unknown data generating distribution via
the functions a;.(-). Fortunately, our next theorem, proved in Appendix E.3, shows that an estimated
moment function (11) based on an estimate of .J, yields improved treatment effect estimation rates
whenever 6 is identifiable and J,. is estimated sufficiently well.

Theorem 4.1 (Structure-agnostic error from estimated moments). Consider the datasets

(D1, Dg) = ({ZZ}:;/?, {Zi}i_, jo41) with each Z; C Z. Define the estimated moment function

i (Z,0,h(X);D1) = [V — ¢(X) — 0(T — g(X))] Jo(T — g(X), X; D1), (11)

where h = (g, q) and J, (w,x;Dl) £ Zi\irl Gir(x; D1) pir-(w) for @i+ X X 22 s R and pir(*)

recursively defined via (9). Fix any Co, Cg, Cq; e, 0y > 0,7 € (0,1), s > r+ 1, and A € RZ,
and let P C P*(Cy, Cg, Cq; Vi, Yy ) contain all distributions P satisfying, with probability 1 —~ /2

Lid. . o ;
over Dy "X P, the following four conditions simultaneously:

|Ez~p[Vore(Z,00,ho(X); Dy | D1)]| > ia (identifiability) (12)

sup  Varzp (. (Z,00,h(X);D1) | D1) < Vi (finite variance) (13)
heBp s (ho,A)

max sup  ||JPNT — g(X), X;D1) | Di|,. (py < Ar (finite derivatives) (14)

Be{r,r+1} heBp o (ho,A)

sup sup ’E[jﬁj)(mX;Dl) | X =2,D]| < €Y) (near orthogonality)  (15)

zeX 0<5<r

where J(])(w, r) & d‘fjj Jr(w,x). Let h = (§,§) be a possibly random function independent of D

and 0 be the solution of% Z?:n/2+1 My (Zi7 0, fz; ’D1) = 0. Then there exists a constant C.y, > 0
that only depends on =y, such that for all e < A,

R 1=y (03 Pae(h, @%)) < Croigt [\/ 2 + 37725 1 max{el+D), e} (M + €ea)

(16)
+(r+1 (( (Ve + Cothn)V's + Co) €} T +T61€2)A]

In particular, if €/) = O(max{e;, ez} 77), then the treatment effect error rate (16) has 7-th order
dependencies on the nuisance errors ¢;,7 = 1,2 in place of the slower second-order dependencies
of DML (see, e.g., Theorems C.1 and C.2). One caveat of applying this bound is that diq, Vi,,, and
A* all depend on the order of orthogonality  and need to be computed in a case-by-case manner. In
Section 5.2, we will construct an explicit moment estimator that satisfies €/) = O(max{e;, €5} ~7)
and make the dependency on r explicit.

The identifiability assumption (12) is crucial and is why the construction of Theorem 4.1 does not
work for Gaussian treatments. Indeed, as we show in Proposition 1.2, if the treatment is Gaussian
and (15) holds with €l — 0, then dig — 0, so that Theorem 4.1 cannot yield /n-consistency.



A natural choice for J; (w, ) satisfying (7) is J1 (w, ) = w, which corresponds to selecting a1 =
0,p11 = 1,a21 = 1, and po1(w) = w. In this case, Lemma 4.1 implies that each J,.(w, z) is the
following 7-th order polynomial of w:

r+1
Jr(w, gj) = Zair(l‘)wzil, where Cl,‘l(x) = m Z (—l)lﬂ H K‘B‘(x) (17)
=1 wellj 415 Bern

Here, I1,,, denotes the set of all partitions of [m] * and #;(z) is the i-th cumulant of | X = .

In particular, if y;(z) denotes the i-th moment of 7 | X = z, then Jo(w,z) = 3(w? — pa(x))
and J3(w,z) = #(w® — 3pa(z)w — ps(z)). In Section 5, we will show how to estimate these

cumulant-based J,. effectively whenever 7 is non-Gaussian and independent of X .

5 Agnostic cumulant-based estimation (ACE)

In this section, we apply the general guarantee in Theorem 4.1 to derive structure-agnostic estimators
with better rates than DML when 7 is non-Gaussian and independent of X.

5.1 Structure-agnostic cumulant estimation

The moment function induced by the Ji(w, ) defined in (17) requires estimating the cumulants &;
of the noise variable 7 in the treatment regression model 7' = ¢o(X) + 7. In this subsection, we
propose efficient structure-agnostic cumulant estimators assuming that 7 is independent of X. We
will also see in Remark 5.2 that our approach has potential benefits even when this assumption fails.

Our main result, stated below, indicates that an r-th order error rate can be attained for estimating
the r-th cumulant of 7.

Theorem 5.1 (Efficient cumulant estimator for noise with finite moments). Let Ct > 0 be a
constant, v > 2 be a positive integer, and P be the set of all distributions of (X,T) gener-
ated from T = go(X) + 1, such that E[|T|" | X|*/" < Ct holds a.s.. The target param-
eter 0o(P) : P +— R is the r-th order cumulant of n = T — go(X) under P. Let ® map
P € P to the nuisance function gyo. Let g : X +— R be a nuisance estimate that satisfies
19(X)| < Cg and &y = {(X;,T;)}—; — R be the r-th order cumulant of the empirical resid-
ual distribution P, = 13" 67._5x,) where 8, is the Dirac measure at z. Then for any

v e (0,1) and s > r, 6 = &, satisfies Ry 1~ (9;73875@,@)) < C,n~ Y2 4 (2re)" where
Cy . = 10r1/24=1/2(207) (r — 1)\

Our next theorem derives a refined bound for sub-Gaussian treatment noise.

Theorem 5.2 (Efficient cumulant estimator for sub-Gaussian noise). Let Cg, 1y > 0 be a constant
and P be the set of all distributions of (X, T') generated from T = go(X ) + n, such that |go(X)| <
Cy, a.s. and 1 is mean-zero, independent of X and 1 -sub-Gaussian. The target parameter 6, (P) :
P +— R is the r-th order cumulant of n = T — go(X) under P. Let ® map P € P 1o the
nuisance function g. Let § : X — R be a nuisance estimate that satisfies |§(X)| < Cg and
Rr : {(Xi, T3) 2, — R be the r-th order cumulant of the empirical residual distribution P, =

L 07,—4(x,) where &, is the Dirac measure at z. Then for any v € (0,1) and s >, 0 = &,

satisfies Ry, 1 (é;PM(Q, <I>)) < Cw«n_l/2+(2re)" where C., , = 3[12r(C’g+¢n)]Tll/27_1/2.

Remark 5.1 (Comparing the bounds in Theorem 5.1 and Theorem 5.2). Under the assumptions in
Theorem 5.2, Ct in Theorem 5.1 would be O(Cg + \/Ty), so that Theorem 5.1 implies a bound
which scales as (cr)®"/?>n=1/2 4 (2r¢)", while the bound in Theorem 5.2 scales as (¢'r)"n~1/? +
(2re)", which is strictly tighter.

Remark 5.2 (Relaxing the independent noise assumption). While Theorem 5.2 assumes that the
noise variable 1 is independent of X, the estimator k, can also be of value when this assumption
does not hold. In Appendix F.3, we consider r = 3 and derive guarantees for this estimator when n
is “nearly” independent of X.

*For example, 113 = {{{1,2,3}}, {{1,2}, {3}}, {{1.3},{2}}, {{2,3}, {1}}, {1}, {2}, {3}}}.
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The fast rates in Theorems 5.1 and 5.2 hold specifically for estimating the cumulants. When the
target estimand is instead a moment of 7, our structure-agnostic lower bound in Theorem F.1 requires
Q(n='? + €) minimax error for r = 3 and Q(n~1/2 4 %) minimax error for 7 # 3. Notably,
this cubic-quadratic bottleneck implies that, unlike the cumulant-based approach espoused here, the
moment-based approach of Mackey et al. [2018] cannot attain arbitrarily high-order error rates.

The proofs of Theorems 5.1 and 5.2 can be found in Appendix F.2. To the best of our knowledge,
these results are novel and may be of independent interest. Next, we will apply these result to
construct more efficient structure-agnostic estimators of treatment effects.

5.2 Fast rates with independent treatment noise

In this subsection, we introduce agnostic cumulant-based estimation (ACE), a novel treatment effect
estimator that leverages the efficient cumulant estimators of Section 5.1.

Throughout, we let &; be the empirical cumulant estimate defined in Theorem 5.2 and define

Jr(w) =Y agw' ™ with g, = 1 Gy = Oy S )T Aipyyvi = 2. (18)

=1 €l p1-4 Ber

J,-(+) can be viewed as an estimate of the cumulant-based function .J,.(-) (17) when X is independent
of 7. The key observation is that this .J,.(-) satisfies (15) with €) = O(¢}), which follows from the
key lemma stated below.

Lemma 5.1 (Key lemma; higher-order insensitivity condition). For all k € |[r]
2k .
E [T - 90(X))| = 2 Len,_, Mper (k151 = fi31)

Notably, each term in the RHS in Lemma 5.1 is a product of cumulant estimation errors. Recall
in Theorem 5.2 we show that the estimation error of &, is O(e]) when ||§ — g||p, < €1, so that
[ser (518 — &18]) = O (1 e, €P!) = O(€] 7). We additionally bound the coefficient hidden
in the O(+) in Lemma G.5. In view of this favorable property, we propose our estimation algorithm,
ACE, in Algorithm 1.

Algorithm 1: Agnostic Cumulant-based Estimation (ACE)
Input : Nuisance estimates § and §; observations D = {Z; = (X;,T;,Y;)}"_; order r.
QOutput: An estimate 6 of the treatment effect 0 defined in (1).
Split the data into two sets: D; = {(X;, T}, Yz)}fﬁ, Dy ={(X;,T;,Y;) }*
fork<—1t0r+ld0

L mi 2SI - (X))
Define the cumulant—based function .J,. (n) asin (18);
Define the moment function 77,.(Z, 6, h(X)) = [Y — ¢(X) — 0 (T — g(X))] J.(T — g(X));
return 6 < solution of 2377 LM (2,0 (X)) =0

i= rL/2+1’

i=n/2+

The next two theorems, proved in Appendix G.3 and Appendix G.2 respectively, show that ACE can
achieve higher-order error rates for treatment effect estimation when 7 is non-Gaussian.

Theorem 5.3 (ACE estimation error). Let r € Z, and 64, Co, C1,Cy > 0 be constants and P be
the set of all distributions in Pa,42(Ce, Ct, CY) with 1 independent of X and |k+1| > 0iq,r. Then,
forany v € (1/2,1), there exists C, > 0 such that for all €1, €3 > 0, if

by b
r<m1n{a17W(2a2b2)} "

where by = log(yn/100), by = 50min{l,Cg}8a, max{er,ea, (yn)" 20y} 7Y, a; =
2log(Crey t/2), and ay = Ct, then then the r-th order ACE estimator 0 satisfies

Rty (05 Py (hy %)) < CLrld7 55" [6162 + Coel ™ + 64C% (r2Cr + Cy) (yn)*l/z] . Q0)



Remark 5.3 (Power of non-Gaussianity). When n is Gaussian, its cumulant k.1 = 0 for all r,
violating the assumption that |K,41| > 0iar in Theorem 5.3. Conversely, for non-Gaussian n,
this condition is always satisfied for some r by Levy’s Inversion Formula [Durrett, 2019, Theorem
3.3.11], allowing us to obtain higher-order error rates.

Notably, the constant Ct in (19) may itself grow with r. For example, if n = T — go(X) is sub-
Gaussian, we can have Ct = O(y/r). The theorem below makes this dependence explicit and
delivers an even sharper bound in the sub-Gaussian regime.
Theorem 5.4 (ACE estimation error: sub-Gaussian noise). Let di4, Co, Cg, Cq, ¥n, Ve > 0andr €
Z be constants and P be the set of all distributions in P*(Cy, Cg, Cq; r, Yy ) with 1) independent
of X and |k, 41| > bia,r. Then, for any v € (1/2,1), there exists C-, > 0 such that Ve, es > 0, if
b 1 b b

r < mm{i — log P logfam)} 21
where by = log(yn/9), by = 200 min{1, Cg }di4 ,» max {61, €, (yn) Y2 (e + Cez/zn)}fl, a; =
210g(6(Cy + ¢n)er ), and ag = 4(Cq + 1y then the r-th order ACE estimator 0 satisfies

mn,lf'y (é7 ,P'r,e(ih (I)*))

. . . (22)
< C’Yr!1676ig,1r [67162 + Coer ™ +64(Cq + )" (r*(Cg + ¥n) + Ve + Cothy) (’7”)_1/2} :

Remark 5.4 (Scale of the leading coefficient under uniform noise). As shown in (22), the estimation
error of r-th order ACE estimator depends not only on r, €1, €5, n, but also on K,1. This is intuitive
as kpy1 is a measure of non-Gaussianity. An estimate of k.41 can also be used to estimate the
variance of 0; see Section 6 for more details. To understand the role of 6iq , in the bound, consider
the case when 1 follows a uniform distribution on [—1,1]. Then for any m € Z,., we have Koy, ~

4, /% (%)Qm [Binet, 1839]. Plugging into (22), we have
Rt (0 Pac(B) < dr(dme) 5L [ehes+Coel M18(Cy+ (Cot1)Cr)(ACT) (vn) /2] 23)
Hence the leading coefficient is only exponential in r, rather than super-exponential.

When r = 1, ACE is identical to DML. When r» = 2, 3 it recovers the “second-order” orthogonal
estimators proposed by Mackey et al. [2018]. Interestingly, for » = 3, the rate given by Theorem 5.4
is faster than that of Mackey et al. [2018, Thm. 10], as the latter did not establish third-order or-
thogonality. When r > 4, to the best of our knowledge, ACE is novel, and we derive the explicit
expressions for r = 3,4 in Appendix G.4.

As a concrete instantiation of Theorem 5.4, consider the setting of high-dimensional linear nuisance,

9o(z) = (ag,z) and go(z) = (Bo, z) for ag, By € RP, s1 £ |laolly, and s2 = [|Bolly, (24)

where (p, s1, $2) all potentially grow with n, and the nuisance functions are estimated using Lasso
regression [Hastie et al., 2015, Chap. 11]. In this setting, DML is known to provide order n~'/2
estimation error for fy whenever the maximum sparsity level max(s1, so) = o(n'/2/logp) [Cher-
nozhukov et al., 2018, Rem. 4.3]. Remarkably, as we prove in Appendix G.5, r-th order ACE
provides the same guarantee when max(sy, s2) = o(n"/("+1) /log p).

6 Numerical experiments

To evaluate the empirical effectiveness of our proposed estimators, we simulate a demand estima-
tion scenario using purchase and pricing data. In this setting, ¥ represents observed demand, the
treatment 7" corresponds to an observed product price, go(X ) denotes a baseline product price deter-
mined by covariates X that influence pricing policy, and the treatment noise 7 represents a random
discount offered to customers for demand assessment. Notably, 7 is typically discrete (and thus
distinctly non-Gaussian) and independent of X .

We replicate the experimental framework of Mackey et al. [2018, Section 5], where X ~ N (0,1),
e ~ U([-3,3]), and 7 follows a discrete distribution on {0.5,0, —1.5, —3.5} with probabilities
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Figure 1: Comparison of first through fifth-order ACE estimation (Algorithm 1) in the synthetic
demand estimation setting of Section 6. Fourth-order ACE is omitted due to substantially larger er-
ror. All quality measures and shaded 95% confidence bands are estimated using 20000 independent
replicates of the experiment.

{0.65,0.2,0.1,0.05}, respectively. Each nuisance function is specified as a sparse linear function in
p = 100 dimensions with s = 40 non-zero coefficients.

We examine the r-th order ACE estimator introduced in Section 4 across different values of 7.
For r = 1,2, this framework precisely recovers the first-order [Chernozhukov et al., 2018] and
second-order [Mackey et al., 2018] orthogonal estimators. First-stage nuisance function estimates
are obtained using Lasso regression [Tibshirani, 1996], following Corollary G.3. Complete Python
code for replicating all experiments is available at https://github.com/JikaiJin/ACE.

In view of the high-probability bounds in Theorem 5.4, we empirically assess ACE performance
for orders » < 5 across varying sample sizes. A comparison of the total RMSE is provided in
Figure la, demonstrating that the fifth-order ACE estimator achieves optimal performance. We
further decompose RMSE into bias and variance components. Figure 1b compares bias across
different orders, with fifth-order ACE exhibiting the smallest bias. Moreover, Figure 1c shows
that the first-order ACE estimator achieves the lowest standard deviation, followed by the fifth-
order estimator. Figures 1d and le present the distribution of estimated values using first- and
fifth-order ACE estimators. Both distributions are approximately Gaussian, with the first-order esti-
mator exhibiting substantially larger bias. Based on Theorem 4.1, the variance of 6 is bounded by
63  (Vin/n)Y/2, where 8iq provides a lower bound for #,.1 in the context of Theorem 5.4. This

enables us to construct a direct plug-in variance estimate Eyar as Evar = K. 1\/% for Vi =
L 1V = @(X0)? + 0%(T; — §(X,))?] J(Th — §(X:))?. Lastly, following Corollary E.1, we

construct the approximate 95% confidence interval [19 — 1.9653342, 9+ 1.9653342] for 8y. Figure 1f
demonstrates that approximately 95% of independent experiments yield confidence intervals that
contain the true parameter value, confirming the validity of our constructed intervals.

7 Conclusion and future directions

In this paper, we provide new insights into how distributional properties could change the statistical
limit of structure-agnostic estimation. Focusing on a partial linear outcome model, we show that
the Gaussianity of the treatment variable creates a fundamental barrier for improving over DML,
while improvements upon DML is possible for non-Gaussian treatment. Moving forward, it would
be of interest to exploit distributional properties to design estimators more efficient than DML for
heterogeneous treatment effects.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: At the end of Section 1 we directly point to our main results.
Guidelines: See the main contributions listed at the end of Section 1.

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitation is the assumed independence of noise, and this is dis-
cussed in Remark 5.2.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We explicitly point to the proof after stating each theorem.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Details are provided in Appendix H.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The open-source code is provided in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These are discussed in Section 6 and Appendix H.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars and histogram under multiple runs are provided in Section 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are of small-scale and can be run on a laptop in a reasonable
amount of time.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ht tps://neurips.cc/public/EthicsGuidel ines?

Answer: [Yes]
Justification: We have checked the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|
Justification: This paper is mainly theoretical and does not have direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/
2025 /1.LM) for what should or should not be described.
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A Preliminaries

A.1 Semiparametric bounds

Our proofs of lower bounds are based on on the method of fuzzy hypothesis. A key lemma is stated
below:

Lemma A.1. (Tsybakov [2008], Theorem 2.15) Let Z be an observation with supp(Z) = Z, P €
P, Pr C P and 7 be a probability distribution on P1, which induce the distribution QQ1(A) =
J Q¥ (A)dm(Q), YA C P. Suppose that there exists a functional T : P +— R which satisfies

T(P)<e, 7{Q:T(Q)>c+2s})=1 (25)
for some s > 0. If H? (P®", Q1) < £ < 2, then:

inf supPHT—T(P)‘ 25] > 1‘@

2R PeP 2

We will use the following lemma to bound the Hellinger distance as required in Lemma A.1

Lemma A.2. (Robins et al. [2009, Theorem 2.1], see also Jin and Syrgkanis [2024, Theorem 4]) let
Z = UjL, Z; be a measurable partition of the sample space. Given a vector A\ = (A, oy Am) in
some product measurable space A = Ay X -+ x Ay, let P and Q) be probability measures on Z
such that the following statements hold:

* P(Z;) =Qx(Z;) =pjforevery A € A, and
* the probability measures P and Q) restricted to Z; depend \; only.

Let p and q) be the densities of the measures P and Q) that are jointly measurable in the
parameter A\ and the observation x, and 7 be a probability measure on A. Define b =
2
mmax; supy [ %du. Suppose that p = [ gxdw()\) and that nmax{1,b} max;p; < A
J
for all j for some positive constant A, then there exists a constant C that depends only on A such
that, for any product probability measure 1 = T ® - -+ ® Ty,

H (P®”, / Q%ndw(A)) < maxp; - On?b?.
J

A.2 Useful properties of sub-Gaussian distributions

In this subsection, we recall a few useful properties of sub-Gaussian distributions. Recall that for a
variable Z, its sub-Gaussian norm is defined as

| Z||y, = inf {¢ > 0: Eexp(Z?/c?) < 2}. (26)

Proposition A.1 (Moment bounds for sub-Gaussian variables, see e.g. , Vershynin [2018] Proposi-
tion 2.5.2). Suppose that Z is a sub-Gaussian random variable with Orlicz norm 0 = || Z||y,. Then
for every integer k > 1

(E\Z|k)1/k < CoVk, equivalently — E|Z|F < (CoVk)*,
where C' > 0 is an absolute constant; one may take C = 2.

The following bound of cumulants is due to Saulis and Statulevicius [2012], Lemma 1.5.

Proposition A.2 (Cumulant bounds for sub-Gaussian variables). Let Z be a centred sub-Gaussian
random variable with Orlicz norm o = ||Z|y,, i.e. E[e'?] < exp(c?t?/2) for all t € R. Denote
by k.(Z) its r-th cumulant, r € N. Then

lke(Z)] < (r—1)1(40?)"%, r>2

In particular; the sequence {|k.(Z)|"/"},>2 grows at most like 20+/r, which is sharp up to the
constant 2 (no smaller absolute constant works for all sub-Gaussians).
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B Proof and discussion of Theorem 3.1: Structure-agnostic lower bound for
binary treatment

In this section, we present the proof of Theorem 3.1.

We define the following data generating distribution:

A; ~ Uniform({-1,+1}), ¢=1,2,--- M
X ~ Uniform(X)
T | X =z ~ Bernoulli(§(x)) 27)

Y | T =t,X =z ~ Bernoulli(f(z) + 6t),

where 6 = 1c, and f(z) = qA(x)A— 0g(z). Since ¢; < §(z) < 1 —c;and 0 < §(z) < 1by
assumption, it is easy to see that f(x) + 0t € [0,1],t € {0,1}. Hence (27) defines a valid data
generating distribution. We denote the joint distribution of (X, 7T,Y) as P.

Since v € (3, 1), there always exists some ¢ € (0, 2) such that Iovell=¢/4) ”C(;M =7. Letm > %T”; be

a positive integer and B;,i = 1,2,--- ,2m be a partition of the covariate space X = [0, 1]¥ such
that each set has a Lebesgue measure of ﬁ We also define

A; ~ Uniform({-1,+1}), ¢=1,2,--- M
X ~ Px = Uniform(X)

T | X =z ~ Bernoulli(gy(z)) (28)
Y |T =t X =z~ Bernoulli(f,(z) + 0't),
where
0 =(1-&)"'(0+aé)

() = g(x) + &/ a(x) (1 — g(x) A\, 2) 29)

o (2) = 4(z) — &2/ g(x)(1 — g(2)) A\, 2)

(@) = gr(z) — 0'gx ()
and

M/2
A()\,l‘) = Z Aj (]]. {l’ S B2j_1} -1 {.T S ng}) .

j=1

Let Py be the joint distribution of (X, T,Y") induced by (28), 1 be the uniform measure over X’ X
T x Yandp) = %. From (28) we can derive the expressions of py(x,t,y) as follows:

pA(@,t,y) = ga(@)' (1= ga(@))' ™" (fa(@) +6')" (1 = fa(z) —0'1) " (30)
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Specifically, we have

= [9(2)q(z) — &1629(z) (1 — §(2)) + 0 (9(z) (1 — §(z)) — 4(z) (1 — §(z)))]
+ (E1G(x) — é29(x) + &1 — 2619(x)) Vg(x)(1 — g(x)) AN, x)
= §(x)d(z) + 0g(z) (1 — §(x)) (la)

+ (614(x) — &g(z) + & — 26 9(x)) V9(2)(1 = §(x)) A(X, z)
1)+ (G14(2) — &g(x) + & — 261 9(2)) Vg(2) (1 = 9(x)) AN, ) (31b)

=p(x,1,0) + (&1 — 4(x)) + &25(x) — & + 2619(x)) Vg(z)(1 - Q(x))A(A,w)(Bl :

=p(2,0,1) — (&14(x) + &(1 — g(x)) + & — 2619(z)) Vg(z)(1 — g(x))A(/\’x)(Sld)

(31e)
Crucially, all the p) — p’s are linear functions of A(\, x).

Lemma B.1 (L?-norm bounds). Let &, = A~Y/2612¢,, &y = A=V/2571/2¢,, then if €1, €2 < g, it
holds that

0<gxan <1, ”g)\ - gHLz(pX) <e and ||q>\ - q”LQ(Px) < ea. (32)
As a result, Py € Py (h).

Proof : By definition, we have
lgx = 9llp2(py) = E1EP, [9(X)(1 = §(X))] = €.

Similarly [[gx — §ll2(p,) = €2. Hence it directly follows that Py € P (h). By our assumption,
§(z)(1 — g(x)) > A716, so that A=1g(z) > § > &7 and

gr(x) > g(z) — &v/g(2)(1 = §(x)) > Va(x)(Va(x) — &) > 0.

By a similar argument, one can show that gy (z) < 1 and also g, (z) € (0, 1), concluding the proof.
(]

To apply Lemma A.1, we now use Lemma A.2 to bounding the Hellinger distance between pen
and [ P2™dm(\). We recall the following lemma:

Lemma B.2 (Joint density lower bound). If €1, €2 < g, we have py(z,t,y) > %52,V(x,t,y) €
X xT x ).

Proof : Note that f(x) = g(z) — %é(x) € [%, 1- g] and

(@) — @) < ez +0er <

17
so we have that f\(z) € [2,1— ¢]. Similarly, one can show that f\(z) + 6" € [$,1—2]. By
Lemma B.1, gx(z) € [g, 1-— g] , so the conclusion directly follows from (30). O

Lemma B.3 (Hellinger distance bound). For any ( > 0, as long as M >, it holds that

H (P®”, / P)(?ndﬂ()\)) <.
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Proof : Let Z = X x T x Y, where T = Y = {—1,4+1}. We apply Lemma A.2 with A; =
{=1,41}, Z; = (Baj_1UBg;) x{—1,+1} x{~1,41}, P = P,Q» = P, and 7 being the uniform
distribution on {—1, +1}". Firstly, since \; ~ Uniform({—1,+1}), we have E-[A(X, z)] = 0 for
any fixed z € X, so that (31) implies that E; Py = P.

By our choice of B;, we have P(Z;) = P\(Z;) = L for all j, so we have that p; = L. Notice that

(p)\(x7t7y) *]3(33,@ y))2

b<mmaxu(Z;) -sup sup

J A (z,t,y)EZ A($>tay)
t t
—sup sy PA@LY) P, )’ ’
A (z,ty)EZ p($,t,y)

where we recall that 1(Z;) = % since y is the uniform distribution on Z. Whent = y = 1, we

have
(e, ty) = ty) g —g@)
plz,ty)  9(@)(@(e) +6(1 - g(x)) ~
where the last step holds since §(x) +26(1 — §(x)) > 0 by our choice of § and () > 0. Similarly,
we can deduce the same bound for (¢,) € {(0,1),(1,0),(1,1)}. Hence we have that b < §~'.

We can choose A = 6! and nmax{1,b} max; p; < 6—lnm~! < A is satisfied. Therefore, by
Lemma A.2 we can deduce that

H (P®”7/P§@”dwu)) <Cm™'n?® < CO2m~'n? < ¢,

where the last step holds since m > & O

924 :

Now we are ready to apply Lemma A.l. We choose Z = (X,T,Y),P = PP, =
{Py: A € {—1,41}}, 7 be the uniform distribution on Py, and T that maps each observation dis-
tribution P generated by (1) to the corresponding 6. Then we have that

T(P) =0, 7({Q:T(Q) =b+2s}) =

where s = 1(0/& + €1&) = (4A5) "' (cqe? + €1€2). Moreover, our choice of m and Lemma B.3
together implies that H? (P®", [ Q®"dr(Q)) < (. Therefore, Lemma A.1 implies that for any
estimator T, it holds that

. 1-\/C(1—¢/4
supPHT—T(P)‘zs} > CA=¢/4) _
PcP 2
Equivalently, we have
- 1
m_, (Pz,e(h)) > AT e + a1e). (33)

—1/2

We now proceed to prove the n component of the lower bound. Define

q(w) = (z) + ev/g(2)(1 = g(z)), 6 =0+ G4
and let P be the distribution generated by
#~Px, T|X=uz~Bernoulli(j(z)), Y |X =uz,T =t~ Bernoulli(§(z) — j(z) + 0t)
and p(x, t,y) be the density. Then we have that
Bz, 1,1) = §() (d(=) + 6(1 - §(x)))
g(@)[4(x) +0(1 - §(= )) +evg(@)(1 = g(@) +e(1 - g(@))]
=z, 1,1) + €g(@) V1 = §(2) (V(2) + V1= §(w)),

so that

(P2, 1,1) = e, 1,1)° _ 5 §)(1 — ()
Pz, 1,1) T G(a)+ 00— g(x)



‘We also have that

so that

p(x,1,0) — p(z,1,0))? g(z)(1 =g

(p(x, ’A) p(x, ) )) S 62 g(l‘)( _ g(l‘)) S 40;162g($)(1 —g($)),
p(z,1,1) 1—q(x) — 001 — g(x))

where we use = %cq and 1 — §(z) > ¢q in the last step. Similarly, one can show that

(ﬁ(xv 07 0) B ﬁ(xv 07 0))2 (ﬁ(x, 0> 1) B ﬁ(fﬂ, 07 1))2

p(z,0,0) ’ p(x,0,1)

Combining all the inequalities above, we have

X*(P, P) < 10c;*E[§(X)(1 — §(X))] = 10c,  23.

<de,teég(x)(1 - g(a)).

By choosing ¢ = O.l(c}]/25’1/2n’1/2, it holds that
H(Pg’",[:’@”) < nH(P, P) < nXQ‘(P,P) <,
so Lemma A.1 directly implies that
Therefore, Lemma A.1 implies that for any estimator 7', it holds that
. 1—+4/¢(1-¢/4

sup P HT - T(P)’ > 6/2} > cd-¢/4

pPep 2
Equivalently, we have

My (Paclh)) = ¢/2 = 0.05¢el/ >/~ 1/2, (35)

Combining (33) and (35), we obtain the desired result.

B.1 Some remarks on the constants

Notice that the assumptions that we make for deriving the upper and lower bounds are not exactly
the same. Here we discuss some important aspects of their differences.

Remark B.1 (Assumptions on the uniform overlap). Compared with Theorem C.1, we make the
additional assumption that §(z)(1 — g(x)) > A~Y5, which we will refer to as uniform overlap.
Equivalently, this assumption states that there exists some 61 = ©(A™16) such that §; < g(z) <
1 — 61. This assumption is also made in previous work [Jin and Syrgkanis, 2024], albeit for a
different causal estimand. If 4, is treated as a universal constant, then we can choose A = 61 Yand
the expected overlap assumption is satisfied. In this case, our lower bound has tight dependency on
both €;,1 = 1,2 and §. However, the error rate of DML does not match the lower bound in ¢ if § is
not uniformly extreme. The minimax optimal rate is unknown in this regime.

Remark B.2 (Assumptions on §(+)). Compared with Theorem C.1, another additional assumption
that we make is that ¢, < G(z) <1-— ¢q in Theorem 3.1. This assumption is also needed in the
previous lower bound established in Balakrishnan et al. [2023] for B[Cov (Y, T | X)]. Interestingly,
this assumption is not needed for upper bound. The c,€3 term in our lower bound (5) corresponds to
the Co€? term in our upper bound, where we recall that Cy is an upper bound on the ground-truth
Oo. In fact, the overlap assumption on {(x) also implicitly imposes a constraint on the magnitude of
the ground-truth parameter 8y; more discussions can be found in Appendix B.2.

B.2 Discussion of the constant c,

For any pair of functions (g, ¢) that take values in [0, 1], we define their cross ratio to be

\Il(g,q)max{minmin{(](x) W},minmin{lq(m a(@) }}

zeX 9(z)" 1 —g(z) | "wex g(x) "1—g(=)

First, note that Theorem 3.1 can be slightly strengthened as follows:
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Theorem B.1 (Strengthened binary lower bound). Let ¢g, 6 € (0, i) and P be the set of all possible
P’s generated by (1), such that the variables T',Y are binary and that the marginal distribution
of P on X is Px. Let ® be a mapping that maps a distribution P € ‘P to the nuisance functions
ho = (9o0,90) € H = range(®). Then for any v € (1/2,1), there exists a constant ¢, > 0 such

that for any €; < 6/2,i = 1,2 and any estimates h = (g, §) with Ep, [§(X)(1 — §(X))] = 26 and
G(x)(1 —g(x)) > A6,z € X, we have

M 1—~ (nge(ﬁ)) > c.yAfldfl(cae% + €1€2), (36)
where v is a universal constant that only depends on y, and
co=sup {U(g.q) | g = gll2(py) < €1/2 g = dllz2(py) < €2/2} -

Proof : Without loss of generality, we assume that

‘I’(Q»Q)Zminmin{l_q(x) q(x) }

reX

For any h = (g,q) € 772,6/2(/3), note that

Paesa(h) € Pz,e(il),
so that
9nn,l—'y (PQ,e(h)) > 9;)’tn,l—'y (PQ,E/Q(h)) .
Now it suffices to show that
9:nn,l—v (P2,6/2(h)) 2 C’YA_l(S_l(\Il(g7 Q)G% + 6162)- (37)

Notice that this lower bound can be derived with exactly the same argument as we employed in the
previous section, since the only place that we use the assumption ¢, < §(z) < 1 — ¢, is that

d(x) = 209(x), 4(x) +20(1 - g(x)) € [0,1].

Now we replace g, ¢ with g, g respectively, and choosing 6= cp/2 ensures that the above relation-
ship holds. Therefore we obtain the desired lower bound. (]

The upper bound side can also be strengthened by replacing Cy with
Cp=sup{¥(g,9) | lg = dll2px) < €15 g = dllL2(py) < €2} -
The main insight is that the nuisance estimates already tells us that |8] < Cj.

Theorem B.2 (Strengthened binary upper bound). Let § > 0 and P be the set of all distributions
P of (X,T,Y) generated from (1) that satisfies Ep[(T — go(X))?] > 6 and T,Y are binary. Let
® be a mapping that maps each P € P to (go,qo) € H = range(H). Then there exists a constant

ng = no(9) such that when n > nyg, for any estimates h = (g,q) and any v € (0,1), the DML
estimator Ypmy derived from the moment function

m(Z, 00, h(X)) = [Y = q(X) = 0o(T — g(X)(T' = g(X)), h=(g.q) (38)

satisfies
R 1— (UpmL; Pae(h)) < A [07HChed + ere2) + (071 (Cher + €2) + 6_1/2)71_1/2}
forany vy € (0,1), where A, is a constant that only depends on .

Proof : We prove the theorem by applying Theorem C.1. First, since 7" and Y are binary, we can

take C' = 1. It remains to show that for any P € P (h), the corresponding 6 is bounded by Cj.
Indeed, let go(z) = Ep[T | X = ] and qo(z) = Ep[T | X = z], then ||go — g||12(px) < €1 and
llgo — qllL2(py) < €2. Moreover, note that

q0(x) — 0go(x), qo(x) + 6(1 — go(x)) € [0,1], Vz € X,

so we have that
0o < ¥ (g0, q0) < Cy,

concluding the proof. 0
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C Proofs of upper bounds for DML

In this section, we present the formal statements and proofs of Theorem C.1 and Theorem C.2. Both
results are already known in the literature, and we present here the explicit structure-agnostic rates
for completeness.

Theorem C.1 (Structure-agnostic rate of DML). Let §,Cpo,Ct,Cy > 0, Py = {Py €
P (Co, C1,Cy) : Ep,[(T — go(X))?] > 4}, and ® = ®*. Then for any estimates h = (g, q)
and any v € (0,1) such that |§(X)| < Ct a.s., the DML estimator Ypwmy, derived from the moment
function (38) satisfies

R, 1 (DpmL; Pa,e(h)) < 407 H(Coe2 + egeq) + C [67H(Cr + Cy)eg + Cyd /2| n=1/2
Sforanyy € (0,1)and § > 156’%/ *n=1/2, where C, is a constant that only depends on 7.

The proof of this result follows the standard arguments in the DML literature and can be found in
Appendix C.1. Existing theoretical guarantees largely focus on establishing sufficient conditions for
achieving O(n~'/?) rate and establishing confidence intervals [Chernozhukov et al., 2018, 2022],
while here we make the dependency of the error on ¢;,7 = 1,2 and ¢ explicit, which would be
of interest when the rate is slower than n~ /2. The existence a constant § > 0 that satisfies the
assumption in Theorem C.1 is commonly referred to as the overlap assumption and is widely adopted
in the DML literature. The estimation error still be large if J is small compared to €4, ;. When the
assumption on 4 is violated, i.e., § = (’)(n_l/ 2), the second term in the upper bound becomes Qeq),
so that DML is not better than the naive estimator = > | (§(1, X;) — §(0, X;)).

On the other hand, since ¢ is known, the following upper bound can be easily established for a
modified version of DML, using the moment function

m(Z, 00, ho(X)) = (Y — qo(X))(T — go(X)) — o20. (39)

Theorem C.2 (Structure-agnostic upper bound with known treatment noise). Let @, H, h be defined

as in Theorem 3.2, and s1, s3 > 0 satisfy 31_1 + 52_1 < 1, then the estimator OpyL derived from the
moment function (39) satisfies

fﬁlffy(ﬁDML; ’Psyé(il)) S C’Y 0'_26162 + (090_261 + U_l)n_1/2
forany vy € (0, 1), where C is a constant that only depends on ~y.

Theorem C.2 can be derived in a similar way as Theorem C.I; the proof can be found in Ap-
pendix C.2. Since it considers a simplified setting where the treatment variance is known in X, the
€2 term in Theorem C.1 induced by estimating the treatment variance vanishes in the current upper
bound.

When the nuisance error of qg is small, i.e., e < Cp, the upper bound matches the lower bound
derived in Theorem 3.2 up to logarithmic factors. Moreover, if the estimation error €, of gg is
polynomial in n, then they differ by only a constant factor, implying that DML is minimax optimal.

C.1 Proof of Theorem C.1: Structure-agnostic rate of DML

Given data {(X;,T;,Y;)}?_,, the DML estimator is defined by

=1

n -1 n
Opmr = (nl Z(Tv - Q(Xi))2> (nl Z(Y’ —q(X)N(T; — g(Xw))> .

Letn; = T; — go(Xs), € = Yi — qo(X;) — Oomi, Ay = g — gand A, = G — g, then

fomr = <n1 Z(Ag(Xi) - 771-)2> (”1 Z(Aq(Xi) — €& — 00mi)(Ag(Xi) — 771‘)) .

=1

> e

For any y € (0, 1), by assumption there exists some constant /N, such that for any n > N, we have

8% >100Cy tn~t (40)
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Since {A,(X;)n;}i, are i.i.d random variables with E[Ay(X;)n;] = E[AG(X:)E[n; | X5]] = 0
and

E[Ag(Xi)*n7] = E[Ag(X:)*Eln] | Xi]] < 4CTE[Ay(X;)] < 4CTeg
we have

n
P {’n_l/Q Z Ag(Xi)m| < QACTeg] >1-— A2
i=1
by Chebyshev’s inequality, where A = 0.1y~ /2. Similarly, we also have

n n
P[|n1/2 ZAq(Xi)m| < 2ACT€4 > l—AQ,P[’nl/Q ZAQ(Xi)ei| < 2A4CTe, | > 1-A72

i=1 i=1
From

Ele;n}] < ACYE[y*]
we deduce that .
P[[n‘l/Q > eni| < 2AC’Y}E[772}1/2} >1-A"2
i=1

Since E[|A4(X)A(X)]] < €4¢4 by Cauchy-Schwarz inequality, Chebyshev’s inequality again im-
plies that

P [!nl S AL (X)A(X)] < gy + An”QE[AAX)?Aq(X)?Wﬂ >1-A472
i=1
with a similar reasoning, we have
P[|n_1 S AX)P <€+ An_l/QE[Ag(X)4]1/2] >1-A"2
i=1

Lastly, since E[nZ] > § by assumption, we also have that

- 1 E[(n? — E[5?])?
P{\n‘l > —Efp]] < 21E[772]} > 1—4n—1W > 1-8CTn 1672 > 1-0.047,
=1

so that
" 1
Pln* 2> —En?]| > 1—0.04y.
[n ; n; > SEW’]| > v
Let £ be the event that all the above high-probability bounds hold, then
PE] >1-5A4"2—-0.0dy > 1 —1.

Under £, we have

n Y (Ag(X0) —m)? > SE[n’] - 24Cren? > SE[p),
=1

DN =

since E[?] > & by assumption and (40) implies that § > 4ACn~'/2. Moreover,

! Zlmqom — & — 00D (X)) (Ag(X,) — 1)

< [folef + egeq + An~H P (E[AG(X)2Aq(X)*]12 + [00|E[A (X)1]V/? + 2CvE[n*]?).

It is easy to see that E[A,(X)?A,(X)?] < 4C5¢2 and E[A,(X)?] < 4CFe2. As aresult, we can
deduce that

|Oome — 6o
= <n_1 D (Ay(X)) — 77i)2> (n_l D (Ag(Xi) — e — 002 (X)) (Ay (Xi) — ﬂi))
-1 i=1

<4571 (Coe + egeq) + 8A[0THCT + Cy)eg + Cyd /2 |n =12,

concluding the proof.
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C.2 Proof of Theorem C.2: Structure-agnostic upper bound with known treatment noise

Since the variance of 7 | X is assumed to be o2 where o is a known constant, we have

fomL = o2 <n1 D (Ag(Xi) — € — 0omi) (A g (X;) — m—)) :
i=1

so that

éDML - 00
=0? <n_1 D (Ag(X0) — ) (Ag(Xs) — mi) — O Ag(X)mi + o <n_1 > - 02>> :
=1 i=1

Note that the high-probability bounds for each term in the above expression can be obtained with
similar arguments as in the previous subsection, with C' = ©(c) and § = o2. Hence it is straight-
forward to deduce that

|éDML — b < AO'_QEQEq + AC(CQO'_QEg + U_l)n_l/z.

D Proof of Theorem 3.2: The Gaussian treatment barrier

Our proof is based on a constrained risk inequality for testing composite hypothesis developed in
Cai and Low [2011].

Lemma D.1. [Cai and Low, 2011, Corollary 1] Let X be an observation with distribution P € P
and P;,i = 0, 1 be two subsets of P satisfying P1 U Py = P, and 1; be some distribution supported
on P. Define

mi= [T@ar), o = [ (@)= mi)u(ap) (1)

to be the mean and variance of a functional T : P — R, F; be the distribution of X with prior p;
and f; be its density with respect to some common dominating measure . Then for any estimator

T(X) we have that

: (1 — o — vol)*
sup Ep (T(X) - T(P))*] = 1127

51\ 1/2
as long as |my —mg| —vol > 0, where I = (]Efo {(ﬁg; - 1) }) is the x2-distance between
FO and Fl.

To apply this inequality, we construct the null and alternative hypotheses as mixtures of data dis-
tributions with matching moments. While moment matching techniques are widely adopted in es-
tablishing minimax lower bounds, the structural nature of our causal model (1) brings additional
challenges to our construction. Unlike most existing works where only moments of a single vari-
able need to be matched, herq we need to match moments that contain two variables: we seek for
distributions vg, v, over Ps (h) with corresponding mixtures Py, P; respectively, such that both

Ep, [(Y —Ep[Y | X])(T —Ep [T | X])*] =Ep, [(Y —Ep,[Y | X))(T —Ep [T | X])*]
and
Ep, [(T —Ep[T'| X)*] = Ep, (T —Ep, [T'| X])"]

hold for k = 1,2,--- , k. This would imply that x*(Py||Py) is small, which further implies that
X2 (PE"|PE™) is also small, where PE™ := [ P®"dy;,i = 1,2 and P® is the n-fold product
distribution.

To apply Lemma D.1, we need to show that there exists a sufficient gap between mg and m;, which
correspond to the expected value of 6 under vy and v; respectively. Our key insight is that, for
Gaussian treatment, there is no need to match E (Y — E[Y | X|)(T — E[T' | X])] since this term
always vanishes. This fact is due to a recursive property of the Hermite polynomial Hy(z) =
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(—1)*pR) (2) /() (where o(-) is the Gaussian density); we will elaborate on this connection in
Lemma D.6. As a result, we can construct mixtures of distributions that are close in terms of y2-
distance (Corollary D.1) but their average values of the E[(Y — E[Y | X])(T — E[T | X])] term

are well-separated. Given the structure-agnostic oracle, this separation can be as large as Q(eg¢,),
and it further induces a separation between mg and m; at the same scale, yielding the desired lower
bound.

In the following, we present the full proof of this theorem.

The following lemma turns out to be a useful tool for moment matching in establishing our lower
bounds.

Lemma D.2 (L, -distance to univariate polynomial bases). Let Py be a linear space of polynomials
on [—1,1] in the form of 3~ | a;\“ where u; € {0,1,--- ,k}\ {1}, and 6, be the Loy-distance of
a(X) = X to By.. Then b, > 515

Proof : Let b(\) € Py, be a polynomial that satisfies ||a — b||r., = 0. Define r = a — b, then r
satisfies ||r|| ... = dr and 7/(0) = 1.

Since deg(r) < k, the Lagrange interpolation formula implies that
2k
(T —x,
r(z) = Zr(a:i)—l_[]#z( )
=1 [Lsi(@i = 2;)
for any x; € [—1,1],1 <4 < 2k. Taking the derivative of both sides, we obtain

2k
) = (2 Ez;éz‘ Hj;éi,l(x — )

In particular, we choose

A Py
e If— k
k+1<i<2k,
then it holds that
H#i)l z; _ (k1?2 ik2k—1 _ ﬁ (k1?2
H#i(xi—xj) k=2 (k— )l (k+14)! 1 (k—d)l(k+3) —
As a result, we have
2k
TS )y i UETECRN PPVErS
=1 12 1@ — ;)
Hence 6, > ﬁ as desired. O

Lemma D.3 (L, -distance to bivariate polynomial bases). Let By, 1 be a linear space of polynomials
n [—1,1]2 of the form Y ;" | a; A" p” where (u;,v;) € {0,1,--- ,k} x {0,1} \ {(1,1)}, and 65,1
be the Lo -distance from a1 (X, p) = Ap to Py, 1. Then 01 > %&g.

Proof : Assume the contrary holds, i.e. d;; < %5k, then there exists some by (A, p) € Py, 1 such that
|61 — a1, < %&c. By definition, there exists polynomials r; € 3, and s; such that by (\, p) =

pr1(A) + s1(A). In particular, setting p = 1 and p = —1 implies that [|r; + s1 — Az, < 30k
and [|r; — s1 — AL, < 30k. The triangle inequality implies that ||r; — A[[... < &k, whichis a
contradiction to the definition of d;. Thus the conclusion follows. O

Lemma D.4 (Separation of measures under matching properties). There exists two probability mea-
sures vy and vy on [—1,1)? such that

/a()\,p)uo(d)\dp) = /a()\,p)l/l(d)\dp), Va € Pi1 (42)
and

1
/ Apvo(dAadp) — / Apvi(dAdp) 2 s (43)
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Proof : The proof is similar to that of [Cai and Low, 2011, Lemma 1]. Let C([—1, 1]) be the space
of continuous functions on [—1, 1]? equipped with the L., norm and F be linear space spanned by
ai1(A, p) = Ap and Py 1. Define a linear functional T' that maps any f = ca; + g € F (where
c € Rand g € *By) to cdi,1, where 0y is defined in the previous lemma. Let g1 € ) be
the best Lo,-approximation of a; in Py, then ||ja1 — g1l = k1 and T'(a1 — g1) = Ok,1, SO
[IT']] > 1. On the other hand, for any f = ca; + g € F, we have || f|lcc > |c|Jk,1 since otherwise
the L., distance between a; and —c ™' g would be smaller than 01,1, which is a contradiction. Thus
IT(f)] = |e|ldk,1 < || fllL... which implies that || T'|| < 1.

Therefore, we must have ||T'|| = 1. By Hahn-Banach theorem, 7' can be extended to a lin-
ear functional on C([—1,1]?) with unit norm, which we still denote by 7. The Riesz represen-
ter theorem then implies that there exists a signed measure y with unit total variation such that
T(f) = [ fdu,Yf € C([-1,1]?). In particular, we have

/a(/\, p)dp =0,Ya € Py; and /)\pdu = 0k.1.

Finally, by the Hahn decomposition theorem, there exists (positive) measures v, 7 such that y =
o — v1. Then it is easy to see that such 1y and v satisfiy the desired properties, concluding the
proof. g

In the following, we provide the full proof of Theorem 3.2. For any A > 0 and ¢ € (0, 1), we define
a two-piece Bernoulli distribution, denoted by By(gq; A), as a distribution with PDF

A7y z € [0, 4]
ple)={A N (1-q z€[-A0)
0 otherwise.

It is easy to see that such a distribution has mean (¢ — 3) A.

To begin with, note that we can assume that |§(X)| < Ct — €1/2 and |§(X)| < Cq — €2/2 without
loss of generality. Indeed, since |§(X)| < Ct and |§(X)| < Cj, there exists b = (3(-),q(-))
satisfying [|§ — gl L~ < €1/2,[|g — gl < €2/2and [g(X)| < Cr — €1/2,[G(X)| < Cq — €2/2.
Then, P, /2(h) € Ps (), and any lower bound for P, /o(h) also applies to P; ((h), implying
the desired lower bound up to constants. In the following, we will replace h with h work with the

uncertainty set Pg /2 (h).

Now, let A = Cy,Q = Cq — €2/2 and G = Ct — €1 /2. Let k,, > 0 be some even integer that will
be specified later, and 1, v, be the corresponding distributions in Lemma D.4. For any A, p € R,
we define the following data generating process:

X ~ Px = Uniform(X)
TNN(g)\(X),O’Q)

v ~ JB2@dd).q= ﬁ (244 05 ,T + fr (X))  if |0x,T+ fr, (X)) < A “4)
N (Or,T + fr,p(X), 1) otherwise
where
gr(z) = g(z) + E10A
ap(7) = q(x) — E2p
Ox,p = €160 1 Ap
Ian(@) = ap(x) — Ox,p9x ()

By choosing & = o~ 'e; /4 and & = e3/4, we can ensure that for any hy = (g, ¢») it holds that
h)\ € Ps,e/?(h)vvs € [L"’OO}Q
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We use P, , to denote the joint distribution of (X, T,Y") in (44), and p , be its density. Then we
have that

1 t—gx(w .
29 (T2 A ot e I )] < Aandy € 0.24]
1 t—gx(w .
ooty e (L) a0t ) Bt fp(o)] < Amndy € (24,0
P\ 1Y) =
0 if [0xpt + fap(x)] < Aand |yl > A
t— T .
G LR R ) i 0,50+ Fr(0)] > A
45

The following lemma derives an equivalent expression for E[Y | X = 2, T = t] = 0, ,t + fx ,(2):

Lemma D.5 (Expression for conditional mean outcome). For any x,t we have
Ot + Frp(@) = 4(z) + o @ @Ap(t — §(2)) — E2p — 0 2EENp.

Note that the last event in (45) happens with small probability. Indeed, we can define a good event
A-—Q—é

ooy =< T|< ———=—-G—-1,. 46

L {' = €16 max{1l,0}? } (46)

An important property of the above definition is that the bound goes to infinity since we assumed
that e; = o(1) and €5 = 0o(1), so that it would happen with high probability.
The following result summarizes the good properties enjoyed by &, &,:
Proposition D.1 (Properties of good events). We have

(1). lime, ¢, o inf)y| o<1 Paple,e] = 1

(2). Ift € &, &,, then for any \, p € [—1,1] and any x, we have |0 ,t + f ,(x)] < A.

Proof : By definition, P [, z] = Pron(g,(2).02) [|T] < m“‘{ﬂfﬁ -G - 1}. Since
lga(z)] < G+ o(1), (1) directly follows. To prove (2), it suffices to note that
03,7 + Frp ()] = [§(X) + 0 E18Mp(T — (X)) — Eap — o222
< @émax{lL,o}* (IT|+ G+ &)+ Q +é

where the first equation is due to Lemma D.5. ]

Let Hy, be the k-th order Hermite polynomial and Py and P; be the mixture of Py , with priors
vp and v respectively, and Py and p; be their densities. Our next step would be to bound the x2-
divergence between Py and P;. To do this, we need to analyze the densities p;(z,t,y),i = 0, 1 for
two cases (z,t,y) € &, ¢, and (z,t,y) ¢ & &, separately. Our next two lemmas handle the first
case.

Lemma D.6 (Taylor expansions of perturbed densities). Suppose thatt € &, ¢,, then we have

1 +oo ~k:)\k
TP Y g (A6 + 0= Ve () gy <04
t =
p)np(ma 7y) 1 +o00 g’fAk
m%ﬂ(z) Tiok (24 —q(z) — (k= 1)éap) Hi(2) ify € [-A,0)
k=0
where z = 7t_“z(x).

Proof : We only prove the statement for y € [—A,0); the other case y € [0, A] can be handled
similarly. Since
t—gx(x —1)’f€’f/\"~‘
o(F28) - S e SR
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and
24 — O ot — fap(z) = 24— G(z) —Ep [1 — o 'EN(t — §(2)) + 02N
by Lemma D.5, we can deduce that

Prp(a,t,y) = 4A2<p (ZHk
190~k K
1 ETA
EVELARD Sy
k=0

) [24 — §(z) — &p (1 — o' A(t — §(2)) + 07 2E1N?)]

(24 — 4(2)) Hi(2) — &ap (Hi(2) — kzHy_1(2) + (k — Dk Hy_(2)

+00 ~f\ k

1 ETA

T 4A? v (2) klok
k=0

(24 = 4(z) — (k — 1)é2p) Hy(2),

where in the final step holds since Hy(z) = 2Hp_1(2) — (k — 1) Hi_2(2). The conclusion follows.
]

Lemma D.7 (Bounding y2-distance under good event). We have

~2

_ _ kn—1
(po(x,t, y) - pl(xvta y))2 e€] "
14t 2 &, pdxdtdy < 2 .
e {t € &\ e} dadidy < 2000 { -7

Proof : Let (z,t,y) satisfies t € &, ¢, and y € [—A, 0), then Lemma D.6 implies that

1
Pola, 1) ~ i, 9) = Tay() [QAq Zﬂk o el

1 ~k
—622Hk ) /[ ])\kpd(yo—yl)]
~1,1

1
= <P(Z){ (24 —G(= Hp(z / Ned(vo — 1) (47)
442 k kZJrl (-1.1]
o0
- k—1)ek
— & Z Hk(z)%/ /\kpd(VO—Vl):|
k=k,+1 : [(-1,1]
1 = 1
= m@(z) Z WHk(Z)Ck($)7
k=k,+1 ’
where z = t_i(w) and

ex(2) = K1 (24 — 4(a))et /

MNed(vg —v1) — €2€’f/ Nopd(vg — v1). (48)
[7171]

[7171]

On the other hand, since = +— e~" is convex, by Jensen’s inequality we have

po(z, t,y) = /px,p(x,t,y)dVo(&p)

ﬁ/go(z — &) dvy(A, p)

1 1 -
> 14 &P <2 / (z —&aN)? dl/o()\,p))
1 1 1 1
> 4 RS NPT A
=24 % p< 2° 261) = 5475
for sufficiently large n, since €1, é; = o(1). Hence,

_ _ 2 I ’
(Po(@,t,y) = Pr(@,1,y)) SQI{W(Z% S (k_ll)!ﬂk(ack(x)) :

po(I,t,gJ) k=, +1

Y

(49)
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Fixing z, y and integrating both sides of (47) with respect to ¢, we can deduce that

/(ﬁO(I7tay)ﬁl(z7t’y))2ﬂ_{t65€ é }dt

ﬁo(l',t,y)
+oo ?
<o / W( ) (k_ll)!Hk<z>ck<z>> Loz +(z) € &0} - 0
k=kn,+1
g = 1 2

~ i (x 2 ci(x)cj(z
—s | > M JECLEIEEDS (_<1)),(J(_>1), [ e

k=kn+1 J>i>kn 41

o Ji:.o ke (x) <0 f ci(x)

- @k:km (k—1)! = A3 —2)

k=kn+1 (
(50)
where the last step follows from the orthogonality of Hermite polynomials:

/@(Z)H,z(z) =k! and /go(z)Hi(z)Hj(z)dz =0,Vi # j.
Moreover, (48) implies that
len ()| < 6Ak1ER + 2¢ke, < 8AEY.

Plugging into (50), we can deduce that

_ _ oo ~ kn—1
(Po(,,y) _pl(x’t7y))21 {t €&, =) dt <6404 +Z Lok < qggeat [
Po(x,t,y) el R T kn — 1 '

For ¢ € [0, A], the above inequality can be established in a similar fashion. As a result, we have

_ _ 2 ~9 kn—1 ~9 kn—1
ty) — pr(x, b
/ Po(@:t,y) =T b 9)) 4 44y < 100041 (0 / dzdy < 2000 1 ,
po(m,t,y) kn_ 1 kn_ 1

as desired. O

Our next lemma, on the other hand, develops bounds for densities outside &, ¢,. It essentially shows
that this part makes a negligible contribution to the overall x2-divergence.

Lemma D.8 (Bounding \2-distance under bad event). For anyt ¢ &z, z,, we have

(130(37’ t y) — D (.13, t y))Q
730(557 t, y)

1 . 2
< 16exp (—1202(25 - g(x)) ) .
Proof : Forany t ¢ &, ¢, and any « € X, define

AL), = {(\p) € [FL A2 [ |a,pt + frpl@)] < A}
and

ALY, = L1\ AL

= ERATE
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For any (X, p), (A, p) € [=1,1]2 such that (), p), (A, ) € AL}, we have

x,t,y°
- logp)\ap(‘r? t7 y) (513)
1 2 1 R L R ) o )
=55 (t= (@) + 5 [y — (@) — o aéNipi(t — §(@)) + Eap + 0T EENp] T (51b)
1 2 1 R P X . 12
> 552 (t=9n@) + 7 {y_Q(x) —o @&t — §(x) + Epi+ o 26?62/\?01}
1, . B 1 . . 9
_ 5(~€1 + 62)2 _ @6%63 (t - g(aj)) (S1c)
1 R 2 1 R I R o 12
= &T(t - Q(CE)) + 1 [y — () — ot & @ Nipi(t — §(2) + Epi + o 25%62)\?&}
Lo I 5. w2 4é
“pl@ @) - o @G0 - 6@) -~ g (51d)
1 1 X 9
Z —glogps (@ ty) + 55 (= 5@), 5le)

where (51b) follows from (45), (51c) and (51d) follow from the inequality u?® > p(u + v)? —
IT”IJUQ,Vp € (0,1), and (51e) holds because é1,€é3 = o(1) and |t — §(z)| = (1) by (46). With a
similar reasoning, we can also deduce from (51b) that

1 .
_ 1ng>\,/)(xatay) > @(t - g(x))Qa V(Aa p) S.L. ()‘7p) € A(wl,z,y (52)

Define
y= [ mtadno) e o),
(np)enl))

x,t,y

where we drop the dependency on (z, ¢, y) for convenience. Then from (51) we can deduce that

1 2
I, < max  py,(2,ty)* <exp (— t—g(x) ) min  py ,(z,t,y)
YT ey, el ) aead, "

z,t,y x,t,y
1 . 2
< exp (—1202(15 - g(x)) > L p.
Thus, combining the above inequality (52) we have
(I —111)? _ 1 . 2
A 2(Io+ Iglty) <dexp (=55 (t—9(@)" ). (53)

On the other hand, from (45) it is easy to see that for any (A, p) € Ag?z’y we have
1

3
4A<)0(Z) = pk(mvtvy) = 4A<p(2)
where z = %, s0 £10,0 < Io,1 < 3Iop and

({o,0 — I(),1)2

1
<4l < 4A  exp (—
I ’

402

(t— g(w)f) : (54)

where the last inequality is due to the bound Iy o < A~!exp (—i (t - g(m))2), which directly

402
follows from its definition (45) and the argument used in (51e).
Combining (53) and (54), we can deduce that

(Po(x,t,y) — iz, t,y))? (Ioo — o1 + 110 —1I11)?

Po(x,t,y) Ioo+ 110
_ 2 _ 2
<2 <(Io,0 Inq) n (Iio—1T11) >
Ipo Iio

1 2
<16 ———(t—g
< eXp< 5oz (1= () ) :
as desired. O

Combining the results of Lemma D.7 and Lemma D.8, we obtain the following:
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Corollary D.1 (Bounding the whole x2-distance between the null and alternative distributions). Let
Py and Py be the mixture distributions as defined before. Then we have that

~2

kn—1
— — e€ " A2

In particular, if €1é; = o (logfl/2 n) and k,, > —llgggf then x*(Po||P1) = o ((nk3)~') and
& (PEMIPE™) = o0 (7).

Proof : By definition we have

(Pol|Pr)
/ (Po(x, t,y) — p1(,t,y))* 2 +/ (Po(z,t,y) pl(?t y)) 3
£ e po(@,t,y) . Po(z,t,y
o000 ()T g / exp (= (t - §(x))? ) dadtd
e . P T2\ Y 4
ed2 \F 1 1 9 A
<2 1 1 ———(t—9 1<t —g(x)| > dxdt
< 2000 (kin — 1) + 6/exp( 1202( §(x)) ) {| g(z)| > 2€1€2} T
—2000< i )kn_l—l-lﬁ\/éa/exp (—l(s—ﬁ(x))2> ]].{S— §(z)| > }dxdt
k,—1 2 2\[06162
~92 k‘nfl 2
€5 IR A
< 200 96A —_—— .
(kn - 1) A eas eXp( 24%53)
If €16 =0 (1og1/ 2 n) and k,, is the smallest integer satisfying k,, > — ll(fgg , it is easy to see that

both terms in (55) are o ((nk3) "), so x*(Fy||P1) = o ((nk3)~1). It follows that

dzy - --dz,dt; - - -dt,dy; - - - dy,

n — n _ 2
X2 (P PET) = / (ILizs Po (i, i, yi) — [1ig Pa (@i, tis i)
’ ' H?:l ﬁo(x’wtzayl)
n _ 2
— / (Hizlpl(xivtiayi))
[Tizy Po(s, ti, yi)

= H/pl iy “yl) dxldtld;lh -1

Po xutzayz)
< (1+o((nkd)” )) —1=o0(k;?),

which concludes the proof. ]

dxq---dz,dty - - -dt,dy; - - -dy, — 1

Finally, we can apply Lemma D.1 to deduce our lower bound. We define the following functional
T for any observation distribution P®” of {(z4,t:,v:) 1, generated from a model in (44), T'(P)

equals the corresponding parameter Value 0y, P Let vg, 11 be the distributions that satisfy the prop-
erty in Lemma D.4 corresponding to the k,, 1n Corollary D.1; we can also view v and v; as dis-
tributions on the P®;“s Note that 0y , = 0~ 1g1éy Ap by (44) we know from Lemma D.4 that the
mean difference between v and v is

my — mg = /T (Pf;’) d(vg —v1)(\, p) = U—lélég/)\pd(yo —v1)(\ p) >

1.
Z Jokd €.

On the other hand, we c}learly have vy < 20 '€ &, and Corollary D.1 implies that I =
X2 (P(?"HP?") =0 (kg‘g). So for sufficiently large n, we have my — mg — vol > 80%6162.

By Lemma D.1, the minimax mean-square error for any estimator T is at least

. 1 -3 1 -3
QkPas) =0 (22) aa|=0(-(—22) s 2.
log €1 logen g
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In other words, we have

- logn \ *
My 1y (Poc() 2_07(10561> o210, (56)

It remains to prove the n~'/2 component of the lower bound. Our proof relies on the following

lemma that derives the y2-divergence between two Gaussian mixtures.

Lemma D.9 (2-distance for a specific Gaussian model). Let P;,i = 0,1 be the distribution of
(X,T,Y) generated from

X ~Px, T|X~N(gi(X),0%), YIX,T~N(qX)+ (T -gi(X));1), (57
such that /2010, — 0y| < 1. Then
XQ(PMPO)

2
— [1—202(6, — 60)7] 2 /eXp ( [91 (%) — qo(x) + (61 — 200)(g1(x) — go())] ) dr— 1.

1-— 20’2(91 - 90)2

Proof : It is easy to see that the density of P; can be written as
1 1 2
(1= 0:2)? = 500 o)~ (~ 5060 )

1
pi(z,t,y) = %px(:v) exp(—5-3

thus

- QIngl(‘ra tvy) + 10gp0(1'7t, y)

= —log (%) + %yz - [2(611(37) +(t— gl(x))91) - (%(96) +(t— 90(55))90)]y

+ g 20— 91 (@)) ~ (¢ gol@))]

557
L [200() + (- @) ~ (o) + (¢ g0())60)]
= —log (pgifj)) + % [y — (2(a1(2) + (t — g1 (2)6) + (q0(w) + (£ — go())00))]”
+ ﬁ [2(t — g1())> — (t — go())?] — [(a2(@) + (t — 91(2))01) — (a0() + (t — go(2))00)]
= —log (p;?) + % [y — (2(a1 (@) + (t = 91(2))61) + (q0(2) + (¢ — go(2))Bo))]

=a(y,t,x)

[a1(2) — qo(x) + (61 — 260) (91 () — go())]”
1— 202(91 — 00)2

:=b(t,x) =d(x)

+ [2; — (0, — 90)2] (t — c(z))? -

where c(x) is some irrelevant function of z. By taking integration, we can deduce that

2
t
X2(P1,P0) = /pil(x’ y) dzdidy — 1
po(ﬂf,t,y)

= % px (z) exp(—aly,t,x) — b(t, x) + d(z))dedtdy — 1
= % px () eXp(d(CL‘))d:L‘/exp(—b(t,x))dt/exp(—a(y,t7m))dy

= [1—20%(61 — 60)?] 12 /exp (d(z))dx — 1

as desired. O

The next corollary highlights the special case of Lemma D.9 that we will use in our proof:
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Corollary D.2 (Bounding the y2-distance). In the setting of Lemma D.9, if go = g1,qo = q1 and
O'|01 — 00‘ < 0.1, then XQ(P17P0) < 20’2(61 — 90)2.

Proof : By Lemma D.9, we have \?(Py, Py) < [1 —20%(0; — 00)2] —12_ 1,and o]6y — 69| < 0.1
implies that

[1-202(6, — 00)%] "% <14 20%(61 — 60)>,
concluding the proof. (]
We now define A ~
=0, 0= 51/20_171_1/2/2
and let P and P be distributions of (X,T,Y) generated from (57) with (g,¢,6) = (g, 4, A) and
(g, G, 0) respectively. Then Corollary D.2 implies that x?(P, P) < ¢n~!/2 and thus

H(P®", PP <nH(P, P) < my*(P, P) < £/2.

Therefore, Lemma A.1 implies that for any estimator T, it holds that

7= 1(P)| > 21172 » L= VEL=EMD

sup P
Pep

Equivalently, we have
My (Pac()) = €207 In 124, (58)
Combining (56) and (58), we obtain the desired result.

E General upper bounds under Neyman Orthogonality

E.1 Estimation error of general moment estimators

In this section, we establish upper bounds for general orthogonal estimators beyond DML.

To state our first result, we require several assumptions, as stated below. These assumptions largely
follows [Mackey et al., 2018]. We first define the Neyman orthogonality property of moment func-
tions.

Definition E.1 (Orthogonality of moment function). A moment function m(Z, 0o, ho(X)) : R¥ x
R x RY s R? is said to be (Sy, Sy )-orthogonal for some sets S; C Sy C ZZZO, if for any o € S,
we have Ep [D*m(Z, 0y, ho(X)) | X] = 0 a.s., and for any o/ € S, we have D*m(Z,0y,7) = 0
a.s., where D*m(Z,0p,7) := V5IVS2 - V3rm(Z, 0o,7),Vy € R

This property is the key to constructing efficient structure-agnostic estimators.

Assumption E.1 (Main assumptions). Let S1 C Sy be non-empty sets and k € Z., then the
following conditions hold:

(1). The moment m is (Sg, S1)-orthogonal.

(2). Ep[m(Z,00,ho(X))] # 0 forall 0 # 6.

(3). |Ep[Vem(Z, 00, ho(X))]| > 6ia and Varp (m(Z, 60, ho(X))) < V.
(4). D*m exists and is continuous for all ||a||; < k + 1.

The specific choices of Sy, S7 and &k will be explicitly stated in all our results. In Assumption E.1,
(1) requires orthogonality of the moment function, (2) guarantees that 6, is the unique solution to
the moment equation, (3) guarantees identifiability of 6, and lastly, (4) requires sufficient regularity
of the moment function. Finally, we assume the following regularity conditions:

Assumption  E.2 (Additional  regularity assumptions).  Define Bhy r =
{h € H : max| o, <kt1 E Hle |hi(X) — ho,i(X)|2ai} < r}. Then there exists r > 0
such that
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(1). E [supg_g, 1<, IVomo(Z, 0, ho(X)) ] < +o0;

(2). For any compact set A C ©, it holds that supgc 4 pep,, B [IVym(Z,0,h(X))|?] <
400 and E [SUPeeA,heBhO,r |m(Z,6, h(X))\] < 4005

(3). supjeg,, , E [SUPW—GO\ST ||V9,Vm(Z,9,h(X))||2] < +o00;
(4)- Au(Bo ho) = max|a |, <k+15UPhep, , [DM(Z,0,h(X))|[2p < +oc.

Let 7y, , the the set of all indices o € Zf>0 such that |||y < kandZy o0 = Ty ¢\Zk—1,¢. The follow-
ing theorem shows that orthogonal moments as in Definition E.1 directly yields efficient structure-
agnostic estimators of 6.

Theorem E.1 (Structure-agnostic guarantee for general orthogonal estimators). Let S; C Sy C
7%,k € Zy, and p,q € [1,+00] be such that p~' + ¢~ = 1. Let P be a set of distributions of
(X,T,Y) generated from (1), ¢; > 0,i = 1,2,--- £ and s > qmax,ecs Zé:l «;. Further let
be an arbitrary mapping that maps P € P to some function hg : R — R in some vector space F.
Consider the estimate Oomy. obtained by solving the moment equations

% Zn:m (Z 0, iz) —0. (59)
1=1

Suppose that the moment function m : R¥ x R x R s R? satisfies Assumption E.1 with Sy, Sy, k
specified above and additional regularity conditions (stated in Assumption E.2) for all P € P. then
forany v € (0, 1), there exists a constant C-, > 0 such that

L
A . _ [Vim 1 o
mn,l*V(GOMLfPs,E(h)) < CVV(Sidl X ( 7 + )\* § ||04H1' € I)
) Ti=1

a€(Zk,e\S0)U(Zr+1,,0\S1

with probability > 1 — ~, where

Ay = su

max Dm(Z, 60y, ho(X .
Peg))ae(Ik,é\So)U(Ik+1,z,0\Sl)H (Z, 00, ho( ))HLP(P)

Additionally, when the nuisance error rates are sufficiently fast, we have the following asymptotic

normality guarantee for 0:
Corollary E.1 (Asymptotic normality). Suppose that He € = o(n=?) forall o« € (Tpy \

i=1 "1

S0) U (1.0 \ S1), then /u(6 — 0) % N(0,552Viy).
The proof can be found in Appendix E.3.

E.2 Proofs of Theorem E.1 and Corollary E.1

The proof is based on the standard arguments for bouding estimation errors of orthogonal estimators;
see e.g. [Mackey et al., 2018, Section A]. The only major difference is that our bound is structure-
agnostic while their goal is to establish O(nil/ 2) convergence rate under assumptions on nuisance
errors. For conciseness, we will not repeat the arguments that have already been covered in their

paper.
To begin with, their eq.(10) shows that

V(0 — fo)L{det J(h) # 0} = J(h) ' L{det J (h) # 0} ln > m(Zi, 00, (X)),

Vi
where J(h) = N mly(Zi, 0, h(X;)) for some & = M + (1 — \)8,\ € [0,1] and J =
E[m(Z, 00, ho(X))]. They also show that .J (k) 'I[det J(h) # 0] £ J~!. Hence

VA0 = 00) = T = S m(Zi 0. (X)) +or(D).

=:B
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We then consider the decomposition of B following [Mackey et al., 2018, eq.(11)]:

1 n
B = 7n ;m (Zi,00,ho (X3))

=:B;

1< 1 . o
Y Y P e o (X0) (7 (X3) = o (X))

|
=1 (XEI}CJQSO ||a||1

:ZBQ

1 < . a
+—= D*m (Z;, 00, ho (X;)) (h (X;) — ho (Xi)
\/ﬁ;aezkz;\so ledl? ot () () (61)

::Bg

+ % Zn: 3 ﬁmm1 (200,70 (x)) (b (X0) = ho (X))

1=1 a€ly41,¢,0NS1

=:By4

+ % Zn: Z T i 1)!Do‘ml (ZZ-, 0o, h (Xi)) (iL (Xi) — ho (Xi)>a

1=1 a€Zlk41,6,0\51

:2B5

where we recall that 7, , = {a € Z%, : ||a|l1 < k}. First, itis easy to see that with high probability,
it holds that B
By < Var (m(Z, 00, ho(X)))"?.

Second, by our assumption on the error h— ho, we have

Elml < Y B [[Dom (200, h () (h(X) o (X))

|
o€y ¢\So Ha”l

}

>SS LB D% (2,00 ho COIT R [[B () — o (X
€L, c\So ’

aq} 1/q

(62)

14

f 4
<A IR |

Q€Tr\S lodl! 325 =
%,2\So a€Zy \Si=1

where the last step follows from Holder’s inequality:

¢ ‘ o
T 172i(X) = hos(X) < hi(X) = hos(X)| ||
i=1 Px.q i— X ,Si /g
“TT ) = hes)||™ < TP e
i=1 PX;éz H

Similarly, we have

¢
VA o
E[|Bs|] < e
[| 5” = (k+1)' Z Hez
€Ly y1,0,0\51 =1
Finally, the arguments in [Mackey et al., 2018, Section A.2] imply that Bo, By = op(1). Combining
everything above, we conclude the proof of Theorem E. 1.

Under the assumptions in Corollary E.1, it holds that B3, Bs = o(n~'/?). As a result, the same
arguments in [Mackey et al., 2018, Section A.2] would imply the desired asymptotic normality
result in Corollary E.1.
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E.3 Proof of Theorem 4.1: Structure-agnostic error from estimated moments

The proof follows a similar argument as the proof of the previous theorem. Consider any probability
distribution P € P. We define £ as the ”good” event that the dataset D, satisfies the conditions
(12), (13), (14) and (15). By assumption, we known that P[€] > 1 — /2. Our subsequent analysis
consider a fixed choice of D; that fails into £. Note that the moment function 7i,.(+) is partially
linear in ¢, so for any index a = (a1, @2), if ag > 2, then D*7h,. = 0. Now let’s calculate the
derivative for a2 € {0, 1}.

When asy = 0, we have
DY, (Z,0,h; Dy)
— [¥ — q(X) = 67 — g(X))] S (T = g(X), X: Dy) + 61D (T = g(X), X; Dy),
so that under &, we have
[E (D1, (Z,0,h:Dy) | X]| = |0 [ 1 ~D(T — g(X), X; 1) | < Coe !
for all &y < j + 1. When as = 1, we have
D%y (2,6,4,9) = —J{* (T = g(X), X; D),

so that
|E[Damr(2797%g) | X]| = ‘E [Jﬁal)(T—g(X%X;'Dl) | X” < eM

for all a; < j. The above derivations also imply that

D0 950,(Z,0, 1 D) || porz
<Y = q(X) = 0(T = g(X)) |« (IS THT = g(X), X; Dy)|

Ls(P)
+ Co || JINT — g(X), X;Dy)|

< (IIY = a(X)]

Ls(P)
Ls(p) + CollT — g(X)|
+ Co|JIN(T - 9(X), X;Dy)|

L) 5T — g(X), X Dy)|

Ls(P)

Ls(P)

< 4(w£ + CGCﬂ)\/‘gHjﬁr—i_l)(T - g(X)vXa D1)| Ls(P) + ¢9 jﬁr)(T - g(X)7X7D1)’ Ls(P)
< [4(¢e + CoCn)Vs + Col Ay,
(63)
and A
1DV, (2,6, hi D)l sy < [T = g(X), X D) gy < Ary (64)
where we use the assumed property that
max sup er('g)(T—g(X),X;Dl)HLOO(P) <A, < +oo.

Be{r,r+1} heBp o (ho,A)

Let J(D1) = Ezwp[m(Z, 0y, ho(X); D1) | D1]. Similar to the proof of the previous theorem, we
consider the decomposition

n

Z m(Zi, fo, ]Al(Xi); Dl) + Op(n_l/z)
i=n/2+41

A 2
0—0p=J""1=

By Chebyshev’s inequality, with probability > 1 — +/2, we have

’% 3" m(Zi, 00, h(X:): Dy) — E[m(Z, 60, h(X); Dy) | DlH <2y~ Wn /2,
i=n/2+1

which implies that

10— 60| < 0" (E[m(Z,00, h(X); D1) | D1] + 27 Veen /%) + 0p(n™/2).
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Finally, by Taylor’s formula and the orthogonality condition,

i=1ae{(4,0),(G-1,1)}

)

ae{(r+1,0),(r,1)}

o (B m(Z, 00,10 (X): 1) () = ho((X))°]|

B[ m (2,00, A0 D) (H(X) — (X))

IIOéHl'

(where b = hg + t(h — ho), t € [0,1])

- 1 .
S Y e ElIED b ho(30):D1) | X] () ~ b))
i=1ae{(.0),G-1,ny 1"
+ > ”a”  [1Dm(Z, 00, B(X): D) ooy €57 €5

ae{(k+1,0),(k,1)}

"1 1 1
E ()3 (G—1) 4—1 r+1
: jzl(j! €’a (7 —1) < a 62) (k+1)! [( (Ve 4+ Cothn)Vs + Co)ef T + 7”6162} A,

r—1
< Z Il max{eV ), D} (] ™ + eley) +
7=0

e + Cothn)V/s + Co) et +r6162]A

(65)
where the third step uses Holder’s inequality and s > 27 + 2. This yields the desired bound. The
total probability for this bound to hold is (1 — )2 > 1 — 2+, as desired.

ol

E.4 Proof of Lemma 4.1: Explicit formula for J,.

We prove this lemma by induction on r. When r = 1, the conclusion automatically holds by the
assumed expression of J; (w, 2). Now suppose that r > 2, and the conclusion holds for » — 1, then
by definition,

Ir(w,a:):/ Jr—1(
0

and the conclusion follows.

M;y_1 w r—
azr / Pi,r— 1 - aw‘ pz+1 r )

=1 =

—

F Technical details in Section 5.1

In this section, we provide additional results and details that complement Section 5.1.

We first consider the problem of estimating p,- := E[n"], where r > 2 is some positive integer. It
turns out that even under the independence noise assumption, there exists a fundamental bottleneck
for estimating (.., as stated in the following theorem. Interestingly, this statistical limit is different
for » = 3 and all other values of .

Theorem F.1 (Structure-agnostic limit for estimating residual moments). Let Ct > 0 be a constant
and Py be the set of all distributions of (X, T) generated from T = go(X) + n, such that |T| <
Ct,a.s. and ) is some mean-zero noise variable independent of X. Let ® be a mapping that maps
Py € Py to the nuisance function go, and the target parameter is defined by 0(Py) = E[(T —
90(X))"]. Then for any v € (1/2,1) and r € Z., there exists a constant ¢, > 0 such that
My 1—ry (Pm(g)) > ¢y (60“‘ + n_1/2), where o, = 3 if 7 = 3 and o, = 2 otherwise. Moreover,
these rates can be attained by 0 = 0,, where {Qk}::i is recursively defined as 01 = 0, 60, =

— k1 (k> 2), where pj, = LS (T; — g(X5))".

The remaining part of this section is devoted to proving Theorem F.1 and Theorem 5.2.
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F.1 Proof of Theorem F.1: Structure-agnostic limit for estimating residual moments

The proof is based on the method of fuzzy hypothesis, as introduced in Lemma A.1. Let X ~ Px
be uniformly distributed on [0, 1] and 7 be a random variable independent of X, with density

exp(—2%) ifz<0
pn(z) = 4 3 .
exp(—1.5z" +az®) ifz >0,

where @ > 0 is chosen such that E[n] = 0. Let M and A = (A1, Ag,---,Ap) where \;’s
i.i.d. random variables such that A\; = 2 with probability & and = —1 with probability 2. Let

By, Bs, -+, By be a partition of X = [0,1] such that Px(B;) = 7;,Vi € [M]. Define Py to be
the joint distribution of (X, T') generated from

X ~ Px, T:g)\(X)-i-’I],
where g, (z) = §(z) + 2¢,A(N, 2), and P = [ Pydr()). It is easy to see that Py € Qj.

Let p and p), be the density of P and P, respectively, then the above definitions and Taylor’s formula
together imply that

P, 1) = px (€)pn(t — ga(2)) = py(t = §(2) — g AN, 2)/2)

= .
=> WA(A,x)Ze’gpgf)(t — §(x)).
=0 :

For any given X = z, E-[A(\,z)] = 2(2'! + (—1)?) is independent of z, thus E [px(z,t)]
only depends on z,t through ¢t — g(x). As a result, we can define a random variable 7} which is
independent of X and has density p;(t — §(z)) = Ex[p(x,t)]. The data generating process

X ~Px, T=gX)+1n
thus induces a density px (z)p;(t — §(x)) = Ex[pa(z,t)] = p(x, t).

We choose P = P, Q\ = Py and Z; = B; x T in Lemma A.2, the corresponding p; = +. For
anyt € T,z € X and \ € supp(w), we have

Pyt = §(z) — AN 2)/2)? _ pylt —§(x) — €)°
Pyt —g(x)) Tyt —9(x) +6/2)
<exp (—2(t — §(z) — €g)* + L.5(t — §(z) + €4/2)* + alt — §(z) + €4/2]?)
< exp (—(t — §(x))*/2+ 11Jt — g(2)Peq + 9|t — g(2)leg/2 + alt — §(=) + €4 /2) .

L(t—g(=))

since ¢ is assumed to be uniformly bounded, it is easy to see that = — [, I'(t — g(x))dt is uniformly
bounded as well. Therefore, in the setting of Lemma A.2, we have

(pr — p)°
§ p

2
< Mmaxsup/ dx/ (ﬁ(:mt) + W) dt
i X JB R P(l"at)

2
< maxsup/ <A(a:,t) + W) dt
R

b= Mmaxsup/ du
z

J A

TEX )\ p(:v,t)

< masup [ (3(2.0) + Tt - §(2))) dt
zeX N JR

< +00

is bounded by some universal constant, which we denote by B._Let C be the constant in Lemma A.2
that corresponds to A = 1, and choose M > max {n max{1, b}, 05’1n2b2}, then we have that

H (P®",/P§?’"dw(A)> < 4.
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The final step is to verify the separation condition (25). Specifically, we choose P = Qg and define
T(P) to be —u, for any P € P. We abuse notation and use p.,.(P) to denote the value of p,.
corresponds to P € P. Then we have that
3 . .
> r 27N+ (=D 4
pr(P) = /z pi(2)dz = pr(Py) + ; meg / z p%)(z)dz + O(ey)-

Note that for 7 < r we have

/zrp%i)(z)dz = (—1)i(7“i!i)!/zripn(z)dz.

In particular, we consider the case where ¢« = 2. If  # 3 then the above equation is nonzero,
implying that
ur(P) = i (Pr) + O(E2).
Therefore, Lemma A.1 can be applied with s = @(eg), which yields the desired result.
If r = 3, then [ 2" 2p,(z)dz = E[n] = 0, so that
pr(P) = i (Pr) + (),

and the conclusion can be similarly derived.

F.2 Proofs of Theorem 5.1 and Theorem 5.2

In this subsection, we present the proofs of Theorem 5.1 and Theorem 5.2. The proof techniques are
largely similar. We choose to start with the proof of Theorem 5.2, which is more involved.’

Proof of Theorem 5.2 Forany P € P, let i}, = Ep[(T — §(X))"], then it is easy to see that
.| < 25N BT = go(X))M] + E[(90(X) — §(X))*]) < 22 (K24 +Cf).  (66)
By Chebyshev’s inequality, we have
_ 1 ) 1 .
Pllp — i > 0] < w5 Var (T = §(X))*) < 5B [(T - §(X))*]

~ 4%n
1 . o] 2°F(CZF 4+ KR y2F)
= 5 ® [0 00(X) = §0) "] = £ 5=

where the last step uses |g|, |g| < Cg and |||y, < tn. We choose 6, = r/2(yn)~1/222k(C2k 4+

kkp2k)1/2 then it is easy to see that with probability > 1 — 1, [, — ji},| < 6 forall k € [r]. Let
be the event that all these inequalities hold. The following lemma bounds the difference between 6
and its population version (with 4 replaced by fi;), defined as

g1 0 0 0 0 ... 0
mhy @ 1 0o 0 0 ... 0

G, = (—1)r+1| s B Gpy 10 0 ... 0 7
[ [y e e e e (D

Lemma F.1 (Moment—to-cumulant type bounds). Let the sequences {0y }x>1, {0k }r>1, {15 be>1
and {[i} } y>1 satisfy the recursions

01 =pp, O=p} (67)
k—1
k—1
O =y — (j_1>u;_j0j, (68)
j=1
k—1
_ B k—1 3 _
91@:#;@_2(1-_1»%@;'9]* (69)
j=1

3 Although Theorem 5.1 consider a more general class of noise, the rate is strictly looser in the setting of
Theorem 5.2, as discussed in Remark 5.1.
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Assume there exist constants Cg, Py > 0 and l,7y,n € (0,00) such that for every k > 1

k] < 22H(CF 4+ kM), (70)
1/2
i — ] < 2 (m) 222 (O KR )
Then, forall k > 1,
04| < [8(Cy + )] ", (72)
10k — Ok| < 3[12K(Cy + )] “r/2(yn) /2. (73)

Proof : Throughout the argument write
Ap = 22k(0g + ¢n)kkk/27 Dy, = 7’1/2(7”)71/2 Ag.
(70)—(71) imply that |z},| < Ay and |p), — fij,| < Dy. By Triangle inequality, (68) implies that

k—1 E_1
0k] < Ak +> (j, - 1)A,”-|9j|.
j=1

Let 0, = Ay py, then this becomes

k—1
AjA

|pk|<1+Z< ) T Il (74)

j=1
We now prove that
_ . . k/2
S Fe i P S — 75)
] — 1 Ak: J]/2(k — ])(k_J)/Q

Indeed, since
n n 1
2mn (ﬁ> <nl<V2mn (ﬁ) emn, Vn>1,
e e
we can deduce that

<k 1) - <k> _ = V2rk(k/e)* exp(1/(12k)) - k*
o

J—1 J /ey -/ 2m(k = ) ((k —j)/e)e= = 37 (k =)k~
Hence,
k—1\AjAp _ k" G2 (k — j)(k=d)/2 - kk/2
j-1) Ay T (k- Pk = iRk — §)(E=0)/2’
proving (75). Plugging into (74) and rearranging, we obtain
k-1 k-1
F P o] < kM2 (k= ) BRI R | < kMR LY T ).
Jj=1 Jj=1
lpel <31k —1), VE>1. (76)
Define
k .
Sk = > i Plpil, k=1
i=1
Then we have that
Sy < 25,1+ kik/z
(77
Sp+k7H2 < 2(Spa 4 (k—1)"KTD/Z),
Moreover, | /|
H1 €1 1
S, = =M < <2
e (AERTR TR
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so it follows from (77) that S, < 2k, Finally, we have
10k] < Axlpr| < A - 25642 < [8k(Cy + v)]".

We now turn to bound ), — 6. Set A, := 0}, — ). Subtracting (68) from (69) gives

k—1
. k—1\[,_ _
A= (i — 1) = > (j - 1)[(u2j — - y)0; + N?HAJ']-
j=1

Taking absolute values and invoking the bounds already proved yields

k—1

k—1 ~ _

A= 0t X (87 1) (D161 4+ il D) 1)
j=1

k—1
k—1 _ P _
<Dp+) (j B 1) [7‘1/2(7“) V2 A - 22 A5 + (1| + Di—j) |Aj\}
j=1
k—1

k—1
- -1
< Dy + r1/2(’yn)_1/2k‘k/214k Z(k _j)—(k—J)/2 + Z (;ﬁ B 1)(Ak—j + D) ||
J=1

j=1

k—1
k—1
< Dy + 4r' 2 (yn) V2 F2 4) 4+ 2 E < 1)Ak—j|Aj
j

i1 -

k-1
. k—1
< 812 (yn)TV2ER2 Ay 4 2 g ( )Akj|Aj|.

N
(78)
Let Ag = Aydg, then (75) and (78) implies that
k—1
k—1\Ar_;A;
Sl <8 1/2 —1/2kk/2 2 7473 S
S (79)
< 87"1/2(’)/71)71/2]6]6/2 + 2kk/2 Z(k o j)f(kfj)/2jfj/2|5j‘
j=1
Define
k
Tp:=» iP5, k>1.
i=1
Then we have that
k—1
Ty < Thoor + 872 (yn) ™2 42 (k= j)~ 7257072 65
j=1
< 87"1/2(711)_1/2 + 37,1
which further implies
Tp + 4r'/2(yn) /2 < 3(Thy + 4012 (yn) 71/2). (80)
Moreover, )
|1 — 12| L 1/ —1
Ty =] = < 77/./ mn /Qa
R (s R G
so it follows from (80) that T}, < 37T1rY/2(yn)~1/2. Therefore, |A,| = A.|6,| < /T, A, <
r7/23r+1p1/2(yn)~1/2 A, | concluding the proof. O

In view of the previous lemma, we only need to bound the difference between 6; and ;. Note the
following well-known property of cumulants {r; };7:

400 #
logEp, [e"] = Z Ky
=1 ’
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Let7 =T — g(X) and Dx = go(X) — §(X), then ) = n+ Dx and n, Dx are independent by our
assumption. By definition, 6; is the {-th order cumulant of T — §(X). Hence,

400 l

ZG; = log E[e"] = log E[e!"] + log E[e!P¥] = Z(Iﬂ + dl) ik
=1

where d; is the [-th order cumulant of the variable Dx. From Proposition A.2 we can deduce that
d, < (2re)". combining with Lemma F.1, the conclusion follows.

Proof of Theorem 5.1 Forany P € P, let i} = Ep[(T — §(X))"], then it is easy to see that
.| < 2" (E[ITI] + E[lg(X)*]) < 2*Cr. (81)

By Chebyshev’s inequality, we have
/ =/ 1 ~ k ~ 2k 22kc2k
Pl = ol > 0] < z5=Var (T = (X)) < B [(T' = §(X))™] < 5
We choose &), = 71/2(yn)~1/2(2CT)*, then it is easy to see that with probability > 1 — ~, |}, —
fy,] < O forall k € [I]. Let £ be the event that all these inequalities hold. The following lemma
bounds the difference between 6 and its population version (with yj replaced by [}), defined as

g1 0 0 0 0 ... 0

B B 10000 0
b= (- | BB (1 0 0 0]

B [y e e e e (D

Lemma F.2 (Moment—to-cumulant type bounds). Let the sequences {0y }x>1, {0k tr>1, {1th be>1
and { [} } x>1 satisfy the recursions

0 =y, =it} (82)
k-1
k—1
ek:M;_Z(‘_1>M;@—j9ja (83)
=1 N
k-1
_ k—1 _
9kﬂ22<-_1>ﬂ;¢—j9j~ (84)
=1 N
Assume there exist constants Cg, )y, > 0 and l,~v,n € (0, 00) such that for every k > 1
k| < (2CT)", (85)
k= | < 72 (yn) 220", (86)
Then, forall k > 1,
10x] < 2(207)"(k = 1)L, (87)
|0k — Or] < 10KY2(yn)~Y2(2C1)* (k — 1)L (88)

Proof : By Triangle inequality, (68) implies that

k—1
16| < (2C7 ’f+z< ) (2CT)*10;).
Jj=1

Let 0, = (2C7)¥ py, then this becomes
k-1
TERED S (i [ (39)
j=1
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Since .
Iz 1‘ €1

lp1| = 207 = 7

/\
M\H

it is easy to prove by induction that
lpk| < 2(k — 1)1,
so that
0] < 2(2CT)*(k — 1)

We now turn to bound 6, — 6. Set Ay, := 0}, — ). Subtracting (68) from (69) gives
k—1 B
Ay = — M) Z (j _1>[ i j_,ugcfj)gj'*‘/i?cfjAj]
j=1

Let Dy = r'/2(yn)~1/2(2Cr)*. Taking absolute values and invoking the bounds already proved
yields

k—1
k-1 S
Akl < Dp+ > (] 1) (Dk,j|9j\ + (71— + Di—5) |Aj|)

j=1
k-1
3 (j =) [Peos 220096 = 01 i+ D) 1
1o e ©0)
< Dy + 2Dy Z W + Z <] _ 1)(Ak—j + Dy—j)|A]
j=1 j=1
=1
<5Dj + QZ (] B 1>AkJAJ|
j=1
Let Ax = Dy6g, then (75) and (78) implies that
k—1
k—1
|5k|g5+22<j_1)|6j|. o)
j=1
We also have that | /|
HE — Py 1 FL/2 1/2
1] = Ak I < 2122,
EeermE S
so by induction we can deduce that |0;| < 10(k — 1)!, and
|Ag| < 1002 (yn)~V2(207) % (k — 1)1,
concluding the proof. (|

In view of the previous lemma, we only need to bound the difference between g, and k;. Note the
following well-known property of cumulants {r; };2%

log Ep, [e"] Z /-@l

Let =T —g(X)and Dx = go(X) — §(X), then7j = n+ Dx and n, Dx are independent by our
assumption. By definition, 6; is the {-th order cumulant of 7" — §(X). Hence,

+oo

+oo l

_t R
Zelﬁ = log E[e] = log E[¢!"] 4 log E[e!PX] = Z(Rz +di) 7
=1 =1

4
"

where d; is the [-th order cumulant of the variable Dx, and we have that d; <
l'E {|gO(X) — g(X)\l] < I!€!, and the conclusion follows.
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F.3 Relaxing the independent noise assumption

In this subsection, we consider a case where the noise 7 is almost independent of X and show that
our estimator is still better than the plug-in estimator.

Proposition F.1 (Finite—sample accuracy of two cubic—-moment estimators). Let T' = go(X) + 7
with n = €gno + 11 and assume

(i) Efn;] = 0, Var(n,) = o2 for i € {0,1};
(ii) m1 L X (while making no restriction on the joint law of ny and X);
(iii) mo,m have finite third moments;
(iv) an estimator § satisfies 6(X) := go(X) — go(X) with ||6]|s(py) < €
(v) E[IT = go(X)[®] < o0 and set M = E[ T — go(X)[° |1/

Given i.i.d. samples {(X;, T;) Yy, put Z; := T; — §o(X;) and define

1 « »
i n 1= — Zk k:172733 n 1= fi3,n — 3fl2,nfl ns U 1= [i3,n-
ik, n; H )y = iz — Bfiamiln, D = i3,

For any 0 < 6 < 1, with probability at least 1 — 9,

log(6/0)

[thn — E[n°]| < 603€3¢ + 3o0e0e? + 4e +C M3 —=, (92)
bias
log(6/6
|0y, — E[n®]| < 30%¢ + 303ese + 3ogeoe® + €3 +C M? M, 93)
n
bias

where C > 0 is an absolute constant (e.g. C = 10). Consequently, if ¢ — 0 and ¢ — 0 while
n — oo, the plug—in estimator 1, is o(e)-biased and O,(n~'/?)—consistent, whereas the naive
estimator Dy, keeps a leading © (€) bias whenever a3 > 0.

Proof : With Z =T — §o(X) = n — 6 and py, := E[Z*], we have

o —Elp’) = (3 — 3paps — B[0®) + [(fin — p3) — Bpa (i — p1) — 3(fizn — p2)firn],
94
D —E[°] = (13 — E[n°]) + (fiz,n — p3). (95)
The first bracket in each line is the bias, the second the sampling error.
Now write 7 = egno + 171, 0 = 6(X). Expanding moments and using n; 1L X,
w1 = —E[0], po=0i+eo2+E[6?], uz = En®]—307E[5]—3e202E[5] —E[6%] +3eE[nod?].

Holder yields |E[§]| < ¢, E[6?] < €2, |E[63]] < €3, while Cauchy—Schwarz gives |E[gd?]| < oge?
Substituting into (94)—(95) gives the bias terms displayed in (92)—(93).

Define Ay := fi,., — j1x. By Bernstein’s inequality for centred variables with sixth moment M,
Pr(law] > t) < 2exp(—gaptigns ) (k= 1,2.3).

Taking ¢, := M"/(21log(6/5))/n and a union bound over k ensures |Ay| < t; with probability
1 — 6. Using |p1| < M, |uz| < M? and (94),

b log(6/d
| — 13 + 3o ] < |As| + 3M|Ay| + 3M|Ag| + 3| Ag||A| < 1003 #,

An analogous bound holds for |, — p3|. Combining with the bias bounds completes (92)—(93). O
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G Technical details in Section 5.2

In this section, we provide detailed proofs of results in Section 5.2. We let P,, be the set of all
possible partitions of the integer m, i.e., the set of all multisets of positive integers that sum to m
(e.g., for m = 4 the possible partitions are (4), (1,3),(2,2),(1,1,2),(1,1,1,1)), and P,, ; be the
set of partitions with j terms. We define p(m) = |P,,| and p(m, j) = |P,, ;| respectively. Note that
P,,, is different from II,,, defined in Section 5, which is the number of partitions of [m] into distinct
subsets.

Proposition G.1 (Partition number bound). We have p(m) < 2™ forall m > 1.

Proof : Consider placing numbers 1,2, --- ,m in a row and delimiters are placed between some
consecutive numbers. Clearly, the total number of ways to place the delimiters is 2™~ !. For each
partition m = 4, + - - - + 45, there exists at least one way of placing the delimiters, such that their
induced partition of {1,2,---,m} contains subsets of sizes i1, - ,i,,. This creates an injective
mapping from P, to the set of possible delimiters, implying that p(m) < 2m~1, (]

G.1 Proof of Lemma 5.1: Key lemmaj; higher-order insensitivity condition
First by definition, E [jr(k) (T — go (X))} = Y. (i+!]g)!di+l,?““i—k where ;=

i

Yowrett, . L pren KB 18 the (i — k)-th moment of 7). It suffices to show that

2 H(MB—@B)—iC_f) Yo O T ae- > I1 mer 00

well,_, BeEm i=k w€ll,._; Ben ' ell;_, B'en’

To establish this, we note that the corresponding summands on each side are of the form
(=1)95i, -+ Ki Ry -+ R, FiXdq, -+ ip, ji, -+, Jqsuchthat Y- g +>°7 | j, = r—Fk, and let
i=k+Y"_is <j. Let N fayo ) be the number of ways to partition [m] into subsets of sizes

{os}52, where m = 37 | as. Then the coefficient of the term (—1)9k;, - - - K, Ay, - - - &j, on the
. . . (r—k

right-hand side (RHS) is (7 _7) Ny, iy No—i (3o,

the same coefficient, because there exist (:i’f) ways to partition [r — k] into two subsets with sizes

r —1¢ and ¢ — k respectively and inside each subset the number of partitions with desired subset sizes

are N;_ (;,y»_, and N,._; (5,42 respectively.

. However, the left-hand side has precisely

G.2 Proof of Theorem 5.4: ACE estimation error: sub-Gaussian noise

Lemma G.1 (Log inequalities). Let a,b > 0.

b 1 b
(1) Forevery) < x < — — —log — we have ax + logx < b.
a a a

(2) Assume, in addition, that ab > e (so log(ab) > 1). Then for every 0 < x < we

have xlog(azx) < b.

b
alog(ab)

Proof : Proof of Item (1). Define g(x) = azx +logx — b, x > 0. Because ¢'(z) = a + 1/x > 0,
the map g is strictly increasing. Put
ab 1

b
2 Zlog— 0).
-~ o log (>0)

Zo
A b

We show g(xg) < 0. Sety = —; then
a

g(z0) = a(y - %logy) + log<y — %logy) —b=—logy+ log(y - %logy).
Since y — %logy <y, the argument of the second logarithm is smaller than y, hence log (y —

Llogy) < logy and g(zo) < 0. Because g is increasing, z < z implies g(z) < g(zo) < 0, i.e.
ax + logx < b.
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Proof of Item (2). Define h(z) £ xlog(az) — b, © > 0. We have h/(z) = log(az) + 1, so h is
strictly increasing for x > e~!/a. The equation h(x) = 0 has the unique positive root

N b
= —

aW(ab)’

where W is the Lambert-1W function (the solution of z = W (z)e"V'(*)). When ab > e we have
W (ab) > log(ab) (standard lower bound for W on [e, o)), hence

b b
~ aW(ab) ~ alog(ab)’

*

Thus every x < b/(alog(ab)) satisfies z < x* and, by monotonicity of h, h(z) < h(z*) = 0; that
is xlog(ax) <b. O

Lemma G.2 (Condition for bias domination). Let

A ~
Ai = |:‘<Li—l<§i

< 3[12i(Cq + )] T2 (yn) V2 + (2ie),  1<i<nr

variance bias

Let a = 2log (6(Cy + ¥n)e; '), b = log(yn/9) with a,b > 0. If

b 1. b
1< =
a

— —log—, 7)
a a
then for every 1 < i <r
3[12i(Cq + )] 7'/ (yn) 12 < (20e1)’,
i.e. the bias term (2ie1) " dominates the variance term in Lemma G.2.

Proof : Note that

variance 3[6(C, +wn)€1_1]ir1/2(7n)71/2 <1, Vie]r]

bias
is equivalent to

2log (6(Cg + ¥n)e; ')l + logl < log(yn/9).

We can apply Lemma G.1 with a = 21log (6(Cg + 1y )e; ') and b = log(yn/9) to obtain the desired

conclusion. O
Let
r+1
Jr(w) = Zairwifl,
i=1 , 98)
ay, =1,a;, = > 0" ] mpp2<i<r+1

i — 1)) — )
(G—Dlr+1-19)! el et

be the exact version of j,.. We first derive some bounds for the coefficients of J,. and j,,.

Lemma G.3 (Bounding polynomial coefficients). For any i € [r + 1] we have

|air| < (8y) 17 99)

1
G- 1)

51



Proof : By definition, we have

1
e s e P O | O (100)
™ r+1—1 ™
1
SO+ i—an >, I 27IBIP (101)

w€ll,y1-; BET

e S I L (102)

mellyqp1—;
r+1—i N J
1 r+1—1 /2
_ (4T Y > ( . ) [T ao3)
(Z - 1) (T +1-— ) J=1 (i1, ,i;)EPry1—4; SRR s=1
1 .r+1—i
< o 2; p(r+1—i,j) (104)
=
1 .
< o ® (105)

where (100) follows from triangle inequality, (101) follows from the cumulant bound in Proposi-
tion A.2, (103) rearranges the summation term according to the number of subsets in the partition
w € I, 114, (104) follows from

r+1—1 i g z;/2 e
Hz*— (r+1-—1)! H o <(r+1-19),

7'17' ) j

s=1 s=1
and (105) follows from Proposition G.1. O
Lemma G.4 (Bounding the estimation error of polynomial coefficients). For any i € [r + 1] we
have

|air — air| < H(16¢) " ey (106)

(i - )

Proof : By definition, we have
1

> (—1)'”'_1( IT s - 11 ’%BI)‘

‘air - dw‘| = 7 ] Y]
(Z a 1)(T +1- Z)' mwell, 414 Bem Bem
1
<5 5 X (T ee- o
= (i —1)! _ i\
(i —Dlr+1—71)! retit I\ B Ben
1 . N
<o 2o 2o me—fml [T max{{ss | |Fe |}
(i —Dlr+1-—1)!
w€ll, 41— BET B'em\{B}
1 |B| 2|B’ ¢ !
< 2/B 92|B'[+1| g!1B'1/24, | B
T (=D r+1-9)! >, 2 (2Ble) 11 1Bl ¥n
well,41-; BE™ B’en\{B}
r+1—1 . 7
1 ; r+1—1 ;
< eSSy (T e
_1)! Y] n R s
(@ = Dir +1—3)! J=1 (i1, ,i;)€Prp1-4,; 1 4/ 5
r+1—1
( ) (81/1 r+1 Lel Z T+1—Z,])
< 116yt
= (i—1)! n ’
as desired. Here in the last but one step, we use the fact that
r+1—1 i J ‘iS/Q
(2-1,.--,@-)5%2““‘@ MG seri-a
and the last step follows from Proposition G.1. O
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Lemma G.5 (Key lemma; approximate orthogonality). Let

b 1 b
r < —— —log—, (107)
a a a

where a = 2log (6(Cg + )€ '), b £ log(vyn/9) as in Lemma G.2, then under € we have
B [JOU(T - go(X))] < (deer) .

Proof : For any k € [r] we have that

. r 1l
E [T~ g0(X))] = 3 G pypdseronin
i=k :

T

1 1 R
= _km Z (—1)l7l= H“\BI' Z H k|B|

i= C e, Bern ' €ll;_y B'En’

Z H “\BI_KJ\BI

! w€ell,_, BET

| (108)
By Lemma G.2, we have |k; — &;| < 2(2ieq)" for all ¢ € [r]. Then for any 1 < j < r — k, we have

Y. | (s — s | < > (ZMQ’ y )f[? (iser)’

w€ll, g, |7|=j | BE™ (41,435 )EP 11—k 5

Joo.

k k ols

< 2R (r — kel > Il
(41, 115)EPp_pj 5=1 %

< (r—k)!p(r — k, j)(2eer)" ",

Plugging into (108), we have
E [jr(k) (T — gO(X))] < p(l — k)(2e€1)" ™% < (deey)"7F.

O
Lemma G.6 (Identifiability coefficient). E[(T — go(X))J-(T — go(X))] = &kri1.
Proof : By definition, we have
E[(T — go(X))J(T — go(X))]
r—+1 1
= ‘ = [ (- ] =
Z G- D)lr+1—1) Wd;“ BH@ 7 (109)
r+1
_ _1)I=l
Z o) r—i—l—z' > 1 s > 0" ] mimr

' €ll; B'en’ wEll, 415 Bem
Consider any partition 7 € II,. Without loss of generality, assume that 1 € By and |B1| = k, k < i.
There are a total of (;;11) possible choices of By, and the remaining sets form a partition of [; — k.

Hence we can write _
i — 1
S Moo= (1) X % s

n’'ell; B'en’ 7ell;_, B"exn’

Plugging into (109), the right-hand side

SN S SIGRA 1D VD DRID SN | EF

1= n'ell;_, B"en’ well,p1—; Berm

[/@«H +§< >/fk- Z H K|B| — K|B] } RS

nell, 11, BET
concluding the proof. O
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Lemma G.7 (Linear-in—; moment difference). Let
T=go(X)+n,  Elp=0, nLX,  [nly, = ¢y <oo.
Assume an estimate § satisfies
19— gollspy < €1 <P,  forsome s> 2,
and fix an integer 1 < i < s/2. Then
E|(T — go(X))! — (T — §(X))!| < i(3¢nVi)ier. (110)

Proof : Write §(X) £ go(X) —§(X) sothat T — go(X) = nand T — §(X) = n+6(X). Binomial
expansion gives
i-1 .
) . 7 S
o o = =3 (5) o

§=0
Taking absolute values, expectations, and using independence (n 1L X) together with Holder,

i—1 /. i—1 .
Bloy -+ < () s < 3 (mmr @
=0 iz

Since 7 is sub-Gaussian with ||7|y, = 9y, we have E|n} < (2¢v/7)7 < (2¢0n1/i — 1), so that
i1 . i-1 .
i i 1 : i 1— . 1 —1 _ g
E|(n) = (m+0)|<er (j) g Vi— e <ie S < ; )(2%\/@ TT)iet
j=0 j=0

<ier (2 Vi — 14 €1) 1 < i3y Vi) e
O
Lemma G.8 (Identifiability guarantee). We have

. - . 1
[Ep [(0 = 500) 1 (T = (X)) | = 57
Proof : By assumption (2) in Theorem 5.4 and Lemma G.6, we know that

1
[Ep (T = 90(X))Jr(T = go(X))]| = 8,
By Lemma G.3, we have |a;,| < ﬁ(&/}n)”l*i. Moreover, by Lemma G.7, for i € [r + 1] it
holds that 4 4 _
E (T = go(X))" = (T = §(X))'| <i(8unVi)'er.
Hence, we have

[ (T = g0(X)) (T = g0(X))] = Ep [(T = (X)) Jo(T = §(X))] |

r+1
= | 2_ (@ E[(T = 0(X))'] - aE[(T - g(X))iD‘
r+1
<D lair| - E(T = go(X))' = (T = §(X))'| + lar — aur| - [E[(T = §(X))']| 1D
i=1
r+1
< ; ﬁ [(8¢n)r+l—i - 1(3y \/%)iel + (8wn)r+l—i61 . 22i(Cg + wn)iii/Q] (112)
< [8(¢, I g:l Ly
< [8(Ce +¢n)] @ 2 (i—l)!Z

< 100[8(Cg + ¥n)] e,

where (111) follows from triangle inequality, (112) follows from Lemma G.3, Lemma G.4,
Lemma G.7 and (66). From our assumption (21) and Lemma G.1, we can deduce that this quantity

is smaller than 2%!51(" concluding the proof. O
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Remark G.1. With a similar reasoning, one can also deduce that

Ep (T~ go(X))Jo(T = go(X))] ~ Ep [(T — go(X))Jo(T = 5X))] | < 3[8(Cg + )]

(113)
This inequality will be used later in the proof.
Lemma G.9 (Second-order moment bounds). The following inequalities hold:
E N 2 3 A 2 2 2(r+1)
P [(T = 90T = §(X))?] < 272 [8(Cy + un)] (114)

Ep [(V = a(X)2J(T = §(X))?] < 112(6e + Cotn)*[16(Cy + )] (115)

Proof : Recall that

r+1

S i— 1 r+1—1
o) = S ] £ gy )™ (116)
by Lemma G.3, and
E[(T = §(X))"] < 2°7(Cg + tq) K"/ (117)
by (66), we can deduce that
Ep (T = §(X))2 0T - 3(X))?]
r+1 ) 2
<Ep @}mrﬁww>
i=1
< (82 TVE f 1 (T—Q(X)y i (118)
= %% P £ (i— 1) 8¢
1 o
_ 2(r+1) .t .y o
_ (8un) > g (@ - ey
1<i,5<l+1
< 8?0tV YT 20 (1 + ngﬂ (i + )0/ (119)
SR P P Vi CE] n
1 c N\,
<P Y ) (14 ) s "
1<ig<ir ¥n
o C i+
< T2(8wn)2(r+1) Z 93(i+7) (1 + g) (121)
1<d,5<I+1 n
1 CN 2
_ 7,2(8w1ﬂ|)2(7‘+1) [Z 874 <1 + g> (122)
P (s
< 22 [8(Cy + )] 2T, (123)

where (118) follows from (116), (119) follows from (117), (120) follows from (%)iﬂ < gyl

which is a direct consequence of Jensen’s inequality, (103) follows from 4! > i%/2. This concludes
the proof of (114).
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With a similar reasoning, we can deduce that

Ep | Jo(T - §(X))*]

4r (SR | T_a(x)\ ! 4
< (8¢n)"Ep {(; (1—1)!( 81ZE )) ) ]
<GB Y s (T - 900) /) ]

iljlulv!
0<i,j,u,w<l

1 " C,
<@t P e (145

17 lulv!
0<i jruw<t ) n

it+j+tutv
) (i + j +u+ v) I Tutv)/2

C 1+j+utv
) ii/2jj/2uu/2vv/2

1 o
< (877[}11)4T Z 24(z+j+u+v) <1 + f

217 lulv!
0<ijaws<t Y n
94

i: 16’ (1 + Cg)]
i=0 n

< 2[16(Cy + )]

< (8¢q)*"

Since € is ¥¢ -sub-Gaussian, we have

Ep[(Y — 4(X))*] =Ep[(£ + 00+ q(X) — 4(X))*]
<22 (Ep[¢'] + CoEp[n*] + Ep[(¢(X) — 4(X))*])
< 22[4% (¢ + Cayy) + €3],

so that

Ep [(Y = (X)2J,(T - 3(X))?] <Ep[(v - a(X))]""

Ep [T = §())’]
< 112(e + Cothn) [16(Cy + )] ™"

By definition, we have for any P € P that

DyDyEp[m(Z,0,ho(X))] = (=1)" M Ep [T — go(X))]
DI Ep[m(Z,0,ho(X))] = (—1)"0Ep [jyo(T — ol X))} ,
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Since m(Z, 0, h(X)) with h = (g, q) can be viewed as an (I + 2)-th order polynomial of ¢ and ¢,
we have

‘]Ep [m(Z, 00, h(X))] ‘

- ‘Ep [m(Z, 00, h(X))] = Ep [m(Z, 00, ho(X))] ‘

r+1
Ep {Z ;, (KD DE1m(Z, 80, ho(X)) - (@(X) = 4o(X))(G(X) = go(X))* !
k=1

- Dym(Z, 80, ho(X)) - (5(X) — QO(X”T)} ’

o« 1 - ) A - (124)
DM B [J51 )] - (@(X) — (X)) @(X) — g0 (X))
r+1

+ %E ‘901‘3 [jf”(n)] (9(X) — go(X))"
k=1

r+1
1 _ _ r+l—k r
= Z:ﬂ(k(‘l“l)wrl el es + Co(deer)™ ! kel)
k=1

IN

(de)” (e’{eg + Ceeqﬂ) ,
where in the last but one step we use the fact that |0y < Cg. By (114) and Chebyshev inequality,
we have

n

2% @I - 900) - B (- 2X0)T - 900)] |

i=n/2+1
R (125)
< A(ym) V2B (T (X)) - g0))?]
< 8(yn) V212 [8(Cq + )]
and
2 < . .
2D (ORI - G00) B [(V - 20T - ()]
i=n/2+1
. 1/2 (126)
< 4(m) PR [(V = 4(X))2, (T - §(X))?]
< 50(yn) "2 (b, + Cotbn) [16(Cg + 1)
with probability > 1 — . Our assumption on [, Lemma G.8, and (125) together imply that
2> (= GON)IAT, ~ 9(0X0) ~ Ep (T~ (X T ~ (X)) | <
i=n/2+1 ’
2 < . . R 3 1
‘n i_nz/;H(Ti - Q(Xi))Jr(Ti - Q(Xi)) > ‘EP [(T - gO(X))Jr(T - go(X))] ’ - 47, id = Héid
(127)

It also directly follows from (126) that

n

‘z Y (V= QX)) (T - §(X)

i=n/2+1

< 51(tg + Cothn ) [16(Cy + )]
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By triangle inequality,
Ep [(Y = a(X) (T - 3(X))]

|
< [Bp [(V = o(X))J(T = §(X))] | + Erld(X) = ao(X) 1T = 5()
(

1/2 1/2

Ep[J.(T - §(X))?]
< CG‘EP [(T — g0(X))J(T — gO(X))] ’ + [S(Cg + wn)]TQ + 3[8(Cg + wn)]rel
< ColEp [(T = 90(X))Jo(T = go(X))] | + [8(Cg + )] (3e1 + e2),

where the penultimate inequality follows from Ep [jr(T — §(X))?] < 3[8(Cg + )] €1 which
can be shown in a similar fashion as Lemma G.9, and the final inequality follows from (113). Hence
we can deduce that

=D SRR SO PACEES)

i=n/2+1
< ]EP [(Y — QX)) J(T ~ Q(X))} \ +50(yn) "2 (g, + Cothn) [16(C + )]

< Cokirr + [8(Cg + )] (Ber + €2) + 50(yn) "2 (e + Coty) [16(Cy + ¥y)]”  (128)
< 6Cokrt1, (129)

where (128) follows from Lemma G.6 and (129) uses the constraint on 7 given in (21). Recall that
0 satisfies 2 Z?:n/2+1 m(Z;,0,h(X;)) = 0,s0 (127) and (129) together imply that

6] < 6Co.
As aresult, (125) and (126) yield
[Ep [m(Z,6,h(X))] | < 64(y0) 2 [16(Cy + )] [r(Cy + ) + e + Cothy]
Subtracting this inequality from (124), we obtain
|60 = DR [(¥ = 4(X))(T = ()]
<167 ez + Coel™ + 64(C + )" (r2(C + ) + v + Cottn) (ym) /2.
Therefore, we conclude that

60— 8] < 1116755 [eTes + Coel ™ + 64(Cy + )" (*(Cs + ) + .+ Coty) (yn) /2],

G.3 Proof of Theorem 5.3: ACE estimation error

In this section, we outline how the proof of Theorem 5.4 in the previous section can be slightly
modified to obtain Theorem 5.3.

Lemma G.10 (Condition for bias domination). Suppose

A; 2 |k — & < 100207) (6 — D2 (yn) V2 4+ (2e)', for 1<i<r,
N——

variance bias

a = 2log (Cre;'/2) > 0, and b £ log(yn/100) > 0. If

b
Tgi,
a

(130)
then for every 1 < i <r
10(2CT)H (i — DIt/ 2(yn) =2 < (2i€)?,

i.e. the bias term (2ie1) " dominates the variance term in Lemma G.10.
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Lemma G.11 (Bounding polynomial coefficients). For any i € [r + 1] we have

1 —i
|air| S mC—?+1 . (131)
Proof : The proof is the same as that of Lemma G.3. ]
Lemma G.12 (Bounding the estimation error of polynomial coefficients). For any i € [r + 1] we
have 1
@iy — G| < G 1)|(2CT)’”+1*%1. (132)
Proof : The proof is the same as that of Lemma G.4. O

Lemma G.13 (Key lemma; approximate orthogonality). If r satisfies Lemma G.10, then under &£
(defined in the proof of Theorem 5.1 in Appendix F.2) we have

E |J¥(T = go(X))| < (deey)"7*.

Proof : The proof is the same as that of Lemma G.5. (|
Lemma G.14 (Linear-in—e; moment difference). Let

T=g(X)+n  En=0 nlLX, Il =: v, <oc.
Assume an estimate § satisfies
19— gollLs(py < €1 < Wby,  for some s > 2,
and fix an integer 1 < i < s/2. Then
E|(T — go(X))" — (T = §(X))'| < i(2C7)"er. (133)

Proof : The proof is similar to Lemma G.7; the only difference is that the moment bound of 7
becomes E|n}? < C7. O

Lemma G.15 (Identifiability guarantee). We have
. 5 R 1
[Er [(T = 9(X)J(T — 3(X))]| = 50

Proof : Similar to the proof of Lemma G.8, the left-hand-side can be shown to be < 3(2CT)"¢;.
Combining with the constraint (19) yields the desired conclusion. (|

Lemma G.16 (Second-order moment bounds). The following inequalities hold:

Ep {(T — §(X))2 (T — g(X))Q} < 2r2(207)2(r+D) (134)

Ep [(Y — 4(X))2J (T - g(X))ﬂ < 11202 (2C7)* (135)

Equipped with the above lemmas, we can then follow the arguments in Appendix G.2 to deduce that

160 — 0] < rla7s;" [6562 + Coel ™ 4 64CT (r*Cr + CY)(yn)*l/ﬂ.

G.4 Special cases of the ACE estimator

When r = 3, Theorem 5.4 immediately implies the following result:

Corollary G.1 (Third-order ACE estimator). Let diq > 0 and Co,Cy, Cq, ¥, % > 1 be con-
stants and Py be the set of all distributions in P(Ce,Cq, Cq; g, 1) such that 1 is indepen-
dent of X and |k4| > 0ia. Suppose that 0 is the solution to (59) with m(Z,0,h(X)) =

Y — q(X) — 0 (T — g(X))] [(T — (X)) — 3415(T — g(X)) — (tty — 3ppsy)]- Then for any~y €
(0, 1), there exists a constant C, such that

Ry 1y (03 Ps e () < C05 [eden + Coet + (Cg + Py + v + CoCn)(Cy + 1) (yn) =2
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The choice of the moment function in Corollary G.1 has also been proposed in Mackey et al. [2018],
though their results are restricted to the high-dimensional linear regression setting. However, the
rate that we derive from Corollary G.1 is faster than theirs, and as a consequence, in Corollary G.3
we need a weaker sparsity assumption to achieve O(n~'/2) rate. The main insight for deriving this
improved rate is that the moment function is, in fact, third-order orthogonal. By contrast Mackey
et al. [2018] only shows that it is second-order orthogonal. We will revisit this setting in Section 6,
where we empirically verify the effectiveness of ACE for different choices of r.

For » > 4, to the best of our knowledge, the estimators derived from Theorem 5.4 are new. For
illustration purpose, we derive the guarantee for = 4 in the following:

Corollary G.2 (Fourth-order ACE estimator). Let §ig > 0 and Cg, Cg, Cq,9n, Ve > 1 be constants
and Py be the set of all distributions in P(Cg, Cg, Cq; V¥t V) such that 1 is independent of X and
|k5| > 8ia. Suppose that 0 is the solution to (59) with

m(Z,0, (X)) = [Y = ¢(X) = 0(T — g(X)][(T — g(X))* = 6p5(T — g(X))?
— Ay — 3py o) (T — g(X)) — (uy — 65" — dpy py + 1202 1y — 6p7)].
Then for any v € (0, 1), there exists a constant C.y, such that
mn,lfv(& 7)8,6(?1)) < 07551 [641152 + CGE? + (Cg + thq + g + CoCn)(Cq + ¢n)4(7n)_1/2]~

Remark G.2 (Cumulants versus moments). Generalizing the r = 3 case to v > 4 is highly nontriv-
ial. Indeed, given the construction in Corollary G.1, one might be tempted to consider

m(Z,0,h(X)) = [Y — q(X) = 0 (T — g(X))] [(T = g(X))" = rpy_1(T = g(X)) — (. = rpypiy )]
with h = (g, q). In this case, let A(x) = g(x) — §(x), then we have
E[D(O’l)m(zv 0, h(X)) ‘ X} = —lr + /‘;« - Tﬂlllu;fl
= —E[y'] +E[(n + A(X))" | X] = rE[n + AX) | XJE[(n + A(X))" ™" | X] + Op(n~1/?)
r(r—1)

~ =Rl AX)? + Op(nV2) = Op(& +07112),

which is the same as the r = 3 case up to constants. As a result, this approach does not yield rates
faster than Corollary G.1.

In Corollaries G.1 and G.2, we omit the constants in the upper bounds. As shown in Theorem 5.4,
the constants for r-th order orthogonal estimators can be at most (Cr)” for some constant C, that
grows super-exponentially, and, as demonstrated in Remark 5.4, the growth of this constant is in
some cases offset by the growth of the absolute cumulant |, 1].

G.5 ACE estimation error for high-dimensional sparse linear regression

Corollary G.3 (ACE estimation error for high-dimensional sparse linear regression). In the setting
of Theorem 5.4 with high-dimensional linear nuisance (24), suppose that the nuisance estimators
(g, Q) are respectively constructed via Lasso regression of T and 'Y onto X with an appropriately
chosen regularization parameter. If max(sq, SI/(TH)S;/(TH)) = o(n™/"+t1) /1ogp), then, with
probability > 1 — ~, we have |§ — 6| < C’WC',.éig’lrn_l/zfor constants C., and C,. depending only
on vy and r respectively.

Proof : As derived in Mackey et al. [2018, Sec. I], there exists some constant C; > 0 such that
on an event £ with probability > 1 — /2, the Lasso nuisance estimates simultaneously provide the

bounds
& — aoll2 < Cyy/(s1/n)logp, 18 — Boll2 < Cyy/(s2/n)logp, (136)

where we recall that 8y, ap € RP. Since X ~ N (0, I'), Cauchy-Schwarz and Khintchine’s inequal-
ity [Vershynin, 2018, Corollary 2.6.4] imply that, on this event,

€1 =119 = gollLar+2(py) = (X, & = @0} || o2y
< K\2r +2||& — agll2 < K+/(2r +2)(s1/n)logp and, similarly, (137)

€2 = 14— qollp2r+2(py) < K\/(2r +2)(s2/n) logp,
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for some universal constant X > 0. Our assumption that
maX(Sl7 S;/(T+1)Sé/(r+1)) — O(nT/(T'JFl)/ logp)

further implies that, on the event £, max{e/ " ejes} = o(n~'/2). Applying Theorem 5.4 with
v replaced by /2, we can therefore conclude that the advertised bound holds with probability

(1—7/2*>1—1.

(138)

0

H Additional experiment results and discussion

In view of Theorem 5.4, the error rate of r-th order ACE estimator depends on a bias term that scales
as O(efes + €, 71) and a variance term that scales as O(n~'/2), multiplied by a constant depending
on 7. In practice, this constant is often non-negligible. Hence, to choose an appropriate order r, one
should take into consideration its effect on the final estimation error.

Varying sample size. We first investigate the performance of ACE estimators with » < 6 with
varying sample size. The results are reported in Figure 2. We set 7 = 1 as a baseline and only plot
the results of estimators that are better than » = 1. From Figure 1 one can see that the fifth order
estimator performs the best, followed by the second order one. The fifth order estimator incurs large
errors for small sample sizes (n = 2000) but the error decreases rapidly when n grows larger.

When n > 8000, the decreasing rates of different estimators are roughly the same. This is because
in this regime, variance becomes the dominating term in the total mean-squared error. From a
theoretical perspective, this is because for fixed s, the LASSO estimates induce errors that scale as
n~1/2, so for any r > 1, the bias term becomes n= (/2 « pl/2 In Figure 1d and Figure le
we plot the distributions of the estimates produced by first and fifth order ACE estimators. One can
see that the variances of these two estimators are roughly at the same level, while the first-order
estimator induces significantly larger biases, especially when n is small.
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In Figure 1f, we plot the 95% confidence intervals for each individual estimates. We observe that the
actual percentage of confidence intervals covering the ground-truth parameter is 94.9%, quite close
to what Corollary E.1 predicts.

Correlation between covariate and treatment noise. The theoretical benefits of ACE estimators
with » > 3 crucially relies on the assumption that X and 7 are independent, which might be restric-
tive. However, it might be the case that they are weakly correlated, i.e., only a small part of 7 is
correlated with X. We would like to understand the sensitivity of our estimators’ performance with
respect to such correlation.

Specifically, we assume that the treatment variable is drawn from
T = go(X) + (1 +&X1)n, (139)

where X is the first component of X and 7 is a mean-zero random variable independent of X. We
set p = 100,n = 20000,s = 40 investigate the estimation error of ACE with different r’s as a
function of the correlation coefficient &.

The results are reported in Figure 2, where we compare the top-3 estimators among r = 1,2,--- 6.
The first- and second-order estimators have stable performance across different correlations, while
the performance of the fifth-order one deteriorates rapidly when £ > 0.1. This suggests that it
would be better to use the second-order estimator unless one has strong prior knowledge that X and
7 are weakly correlated. In the context of pricing experiments, the data is drawn from a company’s
historical experimentation records, so that scientists are likely to have knowledge about the high-
level design principles of such experiments.

Varying sparsity. Lastly, we investigate the relative performance of ACE estimators with different
level of sparsity, for fixed p = 1000, n = 10000. Recall that sparsity affects the first-stage nuisance
errors, which in turn affects the bias of our estimates.

The results are reported in Figure 3. From Figure 3a we can see that the performance of first-order
estimator deteriorates rapidly when the support size grows. By contrast, the performances of second-
and fifth-order estimators are quite stable, with the fifth-order one slightly better for smaller s. This
is not surprising, since one can see from Theorem 5.4 that the bias term for the fifth-order estimator
has a larger bias, so it would only be smaller than the second-order counterpart when the nuisance
errors are small enough. As shown in Figures 3b and 3c, when s = 200, the fifth-order estimator
indeed incurs a larger bias.

I More results for orthogonal machine learning

I.1 Construction of orthogonal moment functions

Theorem L1 (Construction of higher-order orthogonal moments). Ler a;;(x) and p;(w) be as
defined in Lemma 4.1, then the following statements hold:

(1). FE[(1+ |n)|pi(n)] | X =] < 400 holds for all 1 < i < M, and v € X, then the
moment function

with nuisance functions hy = g, he = q and h;1o = a;,1 € [M,] is (So, S1)-orthogonal
where Sy contains all o € Zéo that satisfies at least one of the following conditions:

(D) )lallr < 15 (ii).ay + oo < ks (D). as = 1, (a1,a2) € {(0,1),(1,0)}, the remaining
a;’s equal zero;

and S1 = {a € Zéo : max {a27 Zf‘i;g ai} > 2}. Moreover, D“m exists and is con-

tinuous for all ||a|; < k+ 1.

(2). Let Co,Ct,Cy > 0 be constants and P = P} (Co, Ct,Cy). Let 6 be the solution of (59)
with m = m,.. Then under Assumption E.I (2) and (3), for any v € (0,1) there exists a
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constant C-, > 0 that only depends on vy, Cg, C7, Cy, such that

. . Vo
o1 O5P.a() < o8t |y 2 4 a1+ )
K (140)

+ MT+1)\*<(€1 +e)é+ (e% + 6162)64):| .

holds with probability > 1 — -y, where € = max; 4124 €;, s > k + 1 and

Ay = Su max Dm,.(Z,0q, ho(X 2(p -
* peg)zoze(Ir,e\So)U(ITJrl,i,,o\Sl)H ( 0 0( ))HL (P)

Theorem 1.1 is proven in Appendix I.2. It shows that by successive integration of .Jy, we can con-
struct moment functions that are orthogonal with respect to go(X) and ¢o(X') with arbitrarily high
order, while being only first-order orthogonal with respect to the nuisances a;;(X). In (3), the
constants d;g and Vi, depend on the order k; we will write them as diq 1 and Vi, 1, to avoid confusion.

From another perspective, Theorem I.1 can be viewed as a special case of The-
orem 4.1, because the construction of the moment function there ensures that
Ep [Zf\iﬁ aij(X)pij (T — go(X)) | X = x} = 0,7 = 1,2,---,k. 1In Theorem LI, the
a;;(+)’s are viewed as nuisance functions which allows for exact orthogonalily properties. By
contrast, in Theorem 4.1 only ¢(-) and g(-) are treated as nuisance functions and we only ask for
approximate orthogonality. While they look similar at first glance, an important observation is that
this result does not rely on any explicit assumptions on the estimation errors of G;;(-)’s. Indeed,
it might be possible that the left-hand side of (15) is much smaller than the individual estimation
errors of a;;(+)’s, because these individual errors cancel out in the summation. This observation
will prove helpful in Section 5.

Recall that in Theorem 3.2 we show that higher-order orthogonality is impossible for the Gaussian
treatment, even with known variance. In this case, since the distribution of n = T — go(X) | X is
known, the functions a;;’s are known as well. However, in the Gaussian case, any moment function
constructed from (8) when k£ > 2 would violate the identifiability assumption (Assumption E.1 (3)).
We prove this in Proposition 1.2.

1.2 Proof of Theorem I.1

In this subsection, we provide a straightforward instantiation of Theorem E.1 using the moment
functions constructed in Lemma 4.1. For simplicity, we restrict ourselfs to the case where the treat-
ment and outcome are both bounded.

Proof of (1). The statement follows directly from induction. By assumption, the conclusion holds
for £ = 0. Now assume that it holds for some & — 1 > 0, then

w MT w
I.(w,z) = / Jr—1(w', z)dw’ = Zair(x)/ pir(w")dw’,
0 = 0
so we can choose M, = M,_1 + 1, a;r(x) = a;—1,r-1(x), pir(w) = fow pi—1,r—1(w)dw’,2 <
i <M, —1and a1 ,(z) = —E[L(T — go(X),X) | X = z], p1,-(w) = w, proving the result for r.

Proof of (2). First note that
Y — qo(X) — 0o(T — go(X)) =€,

so that
E[m(Z, 00, ho(X))] = E [J(T' — go(X), X)E[e | X, T]} = 0.

For any o € ZY 2 with ||a||; = 1, we consider three cases,

* ay = 1, then (8) implies that
E[Dm(Z, 60, ho(X))] = —=E[Jo(T — go(X), X)] = 0.
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e a9 = 1, then

E[D*m(Z, 00, ho(X))]
= E[J (T — go(X), X)] = E[(Y — qo(X) — 0o(T — go(X)))Jr—1(T — go(X), X)] = 0.

* a;4o = 1 for some ¢ > 1, then
E[D*m(Z, 00, ho(X))] = E[(Y — qo(X) — 00(T — g0(X))) pir (T — go(X))] = 0.

Next, we consider a’s of form (aq, a9, 0, -+ ,0) where ai; + aa < 7. Since m is affine in ¢, when
ag > 2 we have Dm(Z, 0y, ho(X)) = 0, so we only need to consider the case when oy € {0, 1}.
Similar to the arguments above,

e Ifa; =1,a9 <7 —1then

E[D*m(Z, 00, ho(X))] = (=1)**'E [J,—a, (T — go(X), X)] = 0.
e If a; = 0,9 < rthen

E [D*m(Z, 00, ho(X))] = (—1)*? 200K [Jr+1-a, (T — go(X), X)]
—E[(Y = qo(X) = 00(T — go(X)))Jr—as (T — go(X), X)] = 0.

Furthermore,
e Ifa; = 1,04 =1, pgy(w) = w and the remaining a;’s are all zero, then
E[D*m(Z, 00, ho(X))] = —E[T — go(X)] = 0.
e If oy = 1,04 = 1, ps(w) = w and the remaining «v;’s are all zero, then
E[D*m(Z, 00, ho(X))] = 260E[T" — go(X)] = 0.

This proves the orthogonality properties related to .Sy. Since m(Z, 6, ) is affine in y;,7 > 2 (which
corresponds to the nuisance functions g and a;,., 7 € [M,.]), we have D*m = 0 as long as Zi>2 a; >

2 & a € Sy. Hence m is (Sp, S1)-orthogonal as desired.

Finally, the continuity of D“m is obvious since m is a quadratic function in terms of the nuisance
functions.

Proof of (3). By Theorem E. 1,

~ R B Vm
%n,l—’y(HOML;P&E(h)) S C,Y(;idl X (\/7+ )\*

As shown in part (2), Z, ¢\ Sp only contains o with ay € {0, 1}, a1 +a2 > 1, min{as, as}+as > 3
and ) ,~ 5 ; = 1. Thus

2 ||a||1 1;[ ;

a€(Zr,0\So)
On the other hand, Z, 11,0 \ S1 contains & with ap < 1 and Zi>3 a1 < 1, so that

>

a€Zry1,0,0\51

L

||aul it > (141

a€(Zr,e\So)U(Zry1,e,0\51) =1

Q‘,_.

(6{_262 + e{_l) E4 (€1 + ere0)es < (€1 + €2)é+ (€3 + €169)es.

) [(eqle +€"€es) + (€] + € Ler)é]

Ha||1

HE:\

Combining the above two inequalities, the conclusion follows.
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I.3 Example: heteroscedastic nonparametric regression

In general, a;;(-) may be hard to estimate since it is a linear combination of conditional moment
functions. Generally speaking, there is no guarantee that estimating these conditional moment func-
tions is easier than estimating the nuisance functions.

In this section, we revisit the nonparametric regression problem with heteroscedastic noise, where
fast rates for estimating a;’s are indeed achievable. Specifically, suppose that the treatment variable
is sampled from the regression model

T = go(X) +n,
where the noise variable 7 = V5 (X)'/2n* and n* satisfies [n*| < C,+ as., Elp* | X] = 0 and
E[;** | X] = 1. For this problem, the following result is known from Wang et al. [2008].
Proposition L1. [Wang et al., 2008, Theorems 1,2 and Remark 3] Assuming that X = [0, 1] and

90(+), Vo(+) are v and B-th order smooth respectively, then given i.id. data {(X;,T;)}_, from
some distribution such that the marginal density of X exists and is bounded away from 0, there

exists an estimator V (-) that achieves the optimal mean-square error rate |V (X) — Vo(X)
Op (Tli min{2a,ﬁ/(25+1)})-

lp2 =

In particular, when 8 > «, one can in fact estimate Vj(-) with higher accuracy than estimating go(-).
In this subsection, we additionally assume that the distribution of n* is known and let p*(z) =
E[n*" | X = z] be its 7-th moment. Thus we can estimate 1, (z) = E[n" | z = 2] = Vo(x)"/? ()
with V (z)"/2p%(x). We conjecture that by using a similar approach as Wang et al. [2008] one can
directly construct higher-order moment estimates for unknown 7n*, so the assumption that n* is
known can be removed.

To state our main result for this setting, we assume that gy and V{) are o and S3-th order smooth
respectively:

Assumption L1. g € A®(M,) and V € AP(My) for some constants My, My > 0 and o, 3 > 0.

Let g be an optimal estimate of gy under the L°-norm, that achieve the rate ¢; =
(@] ((1og n/n)a/(mﬂ)) [Stone, 1982]. Also let V be the estimate of Vj in Wang et al. [2008]

that achieves the L2-rate
€ = O (n— min{4a,2,8/(2[3+1)}) )

Consider the moment function m,. defined in (10). Its nuisance functions a;;(z),i = 0,1,---  k
are functions of the conditional moments of 7 | X. Then we can derive their estimates a;;(z) by
directly plugging in the variance estimates: ji,(z) = V(z)"/2u%(z). The next theorem provides
theoretical guarantee for the resulting estimate derived from this approach:

Theorem L2 (Error rate for heteroscedastic nonparametric regression). Let X = [0,1], Ct > 1 be
a real number and P be the set of all distributions in P* that satisfy Assumption I.1 and |T| < C'r.
Let §,V be defined above and G be some estimator of qq such that ¢ —qollL2(py < €2. Also assume
that |fi,-(x)| < (2CT)7C. Then the following statements hold:

(1). Consider the nuisance functions and their estimates specified in the previous paragraph.
Then for all i € [r + 1], we have
rpl—irT +1—1

. €y S AT€V7

”air - &irHLZ(p) < (860\}/2011*) f

where A, = 7’(860\}/26}1*)”1.

(2). Let 9OML be the solution to (59) with the moment function m = m,. defined in (10). Then
in the setting of Theorem 1.1, for any v € (0,1), there exists a constant C., > 0 such that

) 7 Vm s r r
Rni1—(0; Pse(h)) < CZ,(SIE’IT [\/ T + 7”)\*(61+1 +efea + Ar(er + 62)6\,) . (142)

8This is without loss of generality, since otherwise we can replace i, with
min{(2C7)", max{—(2Ct)", [ir}}. By assumption we know that |u,| < (2CT)", so this would only
reduce the estimation error.
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Theorem 1.2 is proven in Appendix [.4.1. Note that Theorem [.2 makes structural assumptions on
go, Vo but not on gg. As a result, the assumption is stronger than the fully structure-agnostic setting,
while being weaker than the Holder-smoothness setting. Even in this interpolated regime, to the best
of our knowledge, there is no existing results that achieve faster rates than DML.

It is worth noticing that the rate ¢, can be faster than €; to arbitrary order. Thus, there exists an
optimal k that balances the dependency on n and the magnitude of the constants A, dig.r, Vin,r; Ax-
For r = 2,3, assuming that these constants are uniformly bounded and that ¢ also belongs to a
Holder class, we can derive the following result:

Corollary L.1. In the setting of Theorem 1.2, if we additionally assume that ¢ € AY(M,) and
G — qollz2(px) < €2 = O(n=2/ ¥+ then the following holds:

(1). Let v = 2, then Ry, 1~ (fomp; Psc(h)) = Op(n~/2) as long as min{a,v} > 1 and
min{a,v}8 > 1.

(2). Letr =3, then Ry, 1~ (Bomp; Ps.c(h)) = Op(n~'/?) as long as min{a, v} > % and
min{a,v}8 > 1.

Corollary I.1 implies that O p(n’l/ 2) rate can be achieved under weaker smoothness requirements
if one uses third-order orthogonal estimators. Its proof can be found in Appendix I.5.

I.4 Technical details in Appendix 1.3

1.4.1 Proof of Theorem 1.2

Proof of part (1). By definition, we have

air(r) = ! S 0T A ), (143)

i — 1)) — )
(i—Dlr+1-19)! el e

while &;’s are cumulant estimates obtained by directly plugging in V(~):

i—1 .
. . 1—1\. . . . - . .
Ri = fli — ) (j B 1)Mz'jf€ja o =0, i = E, [V(X)2pr(X)] (i > 2).
P

By the mean value theorem, there exists some V(-) between V and Vj such that V7/2(z) —

VI (x) = 1V~ (&) (V (z) — Vi(x)). Hence

A i/2 j”'— Y,
V772 = Vi gy = 57727 @ @) = Vo)) 2oy

V-V,

J 7/
< 5”‘/]/2 1”Loo(P)' HL?(P)

G R
§§Cg/2 1HV_V0HL2(P)7

where we recall that C, is the assumed uniform upper bound on |V (X)| and |V (z)|. We can then
bound the estimation error of fi,.(-) as follows:

1722 (X) = e (X 220y < [[(V(X)2 = Vo (X)) 2 (X[ o)

<rCyP7ICT e,
Via a similar reasoning as in Lemma F.1, we can deduce by induction that

(X)) < (2CL2Ch ), [I#5(X) — k(X)) z2py < (25 + 1)C7 + 1) ey < (4iCL2Cy ),
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which then implies an upper bound on the error of a;(-):

lair — Girll L2 (P)

o2 0 (T

- 11 '%|B|(X)>

Tl 14 Ber Ben L2(P)
1
S T A K1 B|(X) AB (X
(r+1-—d)tt weﬂz; Bl;[ﬂ Bl;[w L2(P)
1 .
S o D e = Al e [T max{|mp (@] [fp )]}
© rell,y1_; Bew z€ B’eﬂ\{B}
1
S P T S Y @Blee,)’t T 20Bicy?cy.)”
" m€ellygp1-; BEW B’erm\{B}

r+1—1

<;2(201/20 r+1— ’L Z 4] Z T+17'L ﬁzls
_(T-i-l—i)!i! v 11, 1 8:18

(G2, 415 )EP 145

r+1—1

< 2 (o020, )0 S et gl 1 - )
j=1

< (8603/2@]*)”1*"&6\”

i!
where we follow the arguments employed in Lemma G.4.

Proof of part (2). This is a direct consequence of Theorem I.1 and part (1).

L5 Proof of Corollary I.1

Let p = min{a,7} > 1, then we have ||§ — gol|py.00, 1§ — d0llPy,c0 = Op(n~ 1), so that
€1, = Op(n~ 1) = op(n1/6).

Also Proposition 1.1 implies that

max{ey,é} = O (n— min{2a,/3/(25+1)}) .

It remains to show that

1
max{er, g} - max{en, & = O(n?) = L min {2a, 77> 2
Since 2a > 1, it remains to check that
1
P B e Bp> 1

>7
2%+1 2311 2 4

which holds by assumption. This proves (1).

To prove (2), we use a similar argument except that the upper bound becomes

10— 6| = Op (] + €les + max{er, e2}(ef + €).

4
Since p > Y3=1 > 1, we have max{e;, e2}* = O(n~%¥7) = O(n~'/2). Moreover, the assump-
tion guarantees that

P . { B } p { B } 1
2 > 2 > —
21 T 5 *2p+1+mm o1l =2
since ‘/‘;’4 is the positive root of the equation 5=~ +1 + 2p = 5. This concludes the proof.
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1.6 Comparison with Mackey et al. [2018]

In Mackey et al. [2018] the authors consider polynomial-based moment functions. These construc-
tions can be derived from our Theorem 1.1 by choosing J; (w, ) = w* — () where k is some
positive integer and ju; () = E[n* | X = x]. For r = 2, 3, we obtain the following special cases:

Example I.1. By choosing r = 2, we recover the moment function

m(Z7 9; Q(X)vg(X)7 {:ul( )}k+1)

= [Y — q(X) = 0(T — g(O)] [(T = g(X)*** — pesr (X) = (b + 1)(T — 9(X)) (X)) ]
(144)
proposed by Mackey et al. [2018]. Thus, Theorem I.1 implies that this moment function satisfies all
conditions in Assumption E.1 with the orthogonality set S = {||a||1 < 2}\{(1,0,0,1),(0,1,0,1)}.

Example L.2. By choosing r = 3, we obtain

m(Z,0,4(X), g(X), u2(X), {1 (X) 1)
= [V = g(X) = (T — ()] % [(T = g(X)** = pg2(X) — (k +2)(T — g(X))arsa (X)
— (k4 1)(k+2)((T = g(X))? = pa (X)) p(X) /2] (145)

with nuisance functions h(X) = (¢(X),9(X), p2(X), pr(X), prer1(X), pres2(X)) € RE is or-
thogonal with respect to S = {(a,,0,0,0,0) | a + b = 3} U{a||lallh <2} \{(a,b,c,d,0,¢) €
Z8yla+b=c+d+e=1}

I.7 More discussion on Assumption E.1

The following result states that if the distribution of | X = x does not depend on z and its
density has certain good properties, then Assumption E.1 would not be violated with .J5, unless 7 is
Gaussian.

Proposition 1.2 (Identifiability v.s. orthogonality). The moment function m in Theorem 1.1 (2)
satisfies Assumption E.1 if and only if

E[(T = go(X))J(T = go(X), X)] # 0.
Moreover, the following statements hold:

(1). If n | X = x is Gaussian for all v € X, then E[(T — go(X))J-(T — go(X), X)] =
0,vr > 2.

(2). If n | X = x is non-Gaussian with twice continuously differentiable density p(-) that
does not depend on x, then there exists Jy(w,x) in the form of (7), such that E[(T —
90(X))J5(T' = go(X), X)| # 0 and E[(1 + |n[)|piz(n)[] < +00,V1 < i < M.

(3). Suppose that y L X and n is non-Gaussian, and let {J, } 1 be the sequence generated
Sfrom Jy(w, x) = w (assuming that all of them are well- deﬁned ). Then there exists r > 2
such that E[(T — go(X))J-(T — go(X), X)] # 0.

The first part of Proposition 1.2 can be directly derived from the Stein’s Lemma, while the sec-
ond part is derived from a characterization of the solutions property of the Gauss-Airy’s equation
xy —ay’ — by” = 0. [Durugo, 2014, Ansari, 2016] Generalizing this result to k > 3 requires char-
acterizing the solution properties of higher-order Gauss-Airy’s equation, which we leave for future
work.

Proof : (1) is straightforward from Stein’s lemma. To prove (2), orthogonality implies that

0 =E[Dgm(Z, 0, ho(X)) | X] = =E[J3(T — go(X), X) | X], (146)
and

0 =E[Dggm(Z, 0o, ho(X)) | X] = E[J5(T — go(X), X) | X], (147a)

0 = E[Dyggm(Z. 00, ho(X)) | X] = ~E[J5(T — go(X). X) | X], (147b)
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where we slightly abuse notation and use J4, J/ to represent the partial derivatives with respect to
the first argument.

Note that m is partially linear in 6, we have
m(Z,0,ho(X)) =0 -Vom(Z,00,ho(X)) + (Y — qo(X))J3(T" — go(X), X),
s0 (2) and (3) are both equivalent to
E[Vom(Z,00,ho(X))] #0 & E[T = go(X))J3(T — go(X), X)] # 0. (148)

We argue that there must exist some J3(w, 2) that is polynomial in w, such that the equations (146),
(147) and (148) hold simultaneously. Since by assumption, the density p(n) of n =T — go(X) | X
does not depend on X, (147a) is equivalent to

0= [t aptuidn = [ Bwopae e [ -o

and similarly, (147b) is equivalent to
/Jg(w,x)p”(u))dw =0.

Lemma I.1 at the end of this subsection implies that in L?(R), wp(w) ¢ span(p’(w), p” (w)), so by
Lemma 1.2, there must exists some function J3(w) € C3(R) such that

/jg(w)p'(w)dw = /jg(w)p”(w)dw =0 and /jg(w)wp(w)dw > 0. (149)

Moreover, we can assume WLOG that [ J5(w)p(w)dw = 0, since replacing .J3 with J» — co, Ve €
R does not affect the properties in (149). We define Jo(w) = J}(w) and J; (w) = JY (w). In the
following, we show that .J; (w, z) = .J;(w) satisfies all the desired properties. First, since J3 is a
polynomial, so is J1. Second, by (147b) we have

E[J(T = go(X), X) | X| =E [J{(T - go(X), X) | X] = 0.

Finally, recall that p(-) is the probability density function of n = T — go(X), so

B[(1 - go(X) AT - o) = [ Fatw)wp(w)dw >0,

concluding the proof of (2).

Finally, under the conditions of (3), Lemma G.6 implies that E[(T — go(X))J.(T — go(X), X)] =
%m,.ﬂ, where k; is the i-th order cumulant of . We know from Levy’s Inversion Formula [Durrett,
2019, Theorem 3.3.11] that non-Gaussian distributions must have at least one non-zero cumulant,
so the conclusion immediately follows. |

Lemma 1.1 (Solution of second-order Airy equation). Let p(-) be the probability density function
of a random variable 1 that is second-order continuous differentiable, and that

zp(x) + 2ap’(z) + bp’(z) =0 (150)
for some a,b € R, then we must have b = 0,a > 0 and thus 1 must be Gaussian.

Proof : Since p(-) is a density function, the Riemann-Lebesgue lemma implies that its Fourier
transform p(£) = [, e ***p(x)de must vanish at infinity. On the other hand, applying Fourier
transform to both sides of (150) yields

i#(6) + 20i6p(€) —BEP(E) =0 = p(g) = Cem TN,

Thus we must have a > 0. If b # 0, [Ansari, 2016, 4.2] then implies that there exists constants
¢1,¢2 € R such that p(x) has the same sign as the Airy function Ai(ciz + ¢3). However, it is
well-known that Ai(x) can take both positive and negative values, which is a contradiction. ]
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Lemma 1.2 (Separability of inner products). Suppose that f;(w),

= 0,1, 2 are continuous func-
tions such that fo ¢ span(f1, f2). Then there exists a function J(w) € C3(R)

such that
/\J(w)fi(w)\dw < oo, i=0,1,2

and

/J(w)fl(w)dw =0,i=1,2 and /J(w)fo(w)dw > 0.

Proof : Suppose that such J(w) does not exist. For any finite interval [a, b] and a sequence of C3
functions S = {g;,7 =1,2,--- ,n} supported on [a,b] (we denote the set of such functions by

C3([a, b])), we define the vector uf = ([ gr(w)fi(w)dw):j) ,i =0,1,2. Then for any A € RI®I,

by choosing J(w) = Y. | A;gi(w), our assumption implies that
Muf=XTui =0 = Auf =0

Let v5 be the orthogonal projection of u3 onto span(uy,u5) and A = u3 — v, then A\Tuf =

ATus =0and ATug = [|A]|%, so that A = 0 and uj € span(uy,us).

We consider the following two cases:

1. For any finite S, rank (span(uf,u3)) < 1, then uf is parallel to u{ for all S. Since uy #
0, it is easy to show that ug = au; for some o € R. As aresult, we have [ J(w)(fo(w) —
afi(w))dw = 0 for any J(-) € C3([a,b]), so we must have fo — afy = 0 on [a, b].

2. There exists some finite S such that rankspan (uy , u5 ) = 2, then there exists unique o, 3 €

R such that uj = au; + Bus. By considering any set S; = SU {s},s ¢ S, one can show
that u3' = aui® + Bus® as well, so u§ = au? + Bu$ for any finite set S. As a result,
we have [ J(w)(fo(w) — afi(w) — Bf2(w))dw = 0 for any J(-) € C3([a, b]), so we must

have fo — afi — Bf2 = 0on [a,b)].
Now we have shown that for any interval [a, b], there exists «, 5 € R such that fo — af; — Bf2 =0

on [a, b]. Tt is easy to derive from this fact that fo — afy — Bfa = 0on R, ie., fo € span{fi, f2),
which is a contradiction. Hence the conclusion follows. O
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