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ABSTRACT

Automated Machine Learning (AutoML) stands as a promising solution for au-
tomating machine learning (ML) training pipelines to reduce manual costs. How-
ever, most current AutoML frameworks are confined to unimodal scenarios and
exhibit limitations when extended to challenging and complex multimodal set-
tings. Recent advances show that large language models (LLMs) have exceptional
abilities in reasoning, interaction, and code generation, which shows promise in
automating the ML pipelines. Innovatively, we propose AutoM3L, an Automated
Multimodal Machine Learning framework, where LLMs act as controllers to auto-
mate training pipeline assembling. Specifically, AutoM3L offers automation and
interactivity by first comprehending data modalities and then automatically se-
lecting appropriate models to construct training pipelines in alignment with user
requirements. Furthermore, it streamlines user engagement and removes the need
for intensive manual feature engineering and hyperparameter optimization. At
each stage, users can customize the pipelines through directives, which are the ca-
pabilities lacking in previous rule-based AutoML approaches. We conduct quanti-
tative evaluations on four multimodal datasets spanning classification, regression,
and retrieval, which yields that AutoM3L can achieve competitive or even better
performance than traditional rule-based AutoML methods. We show the user-
friendliness and usability of AutoM3L in the user study. Code is available at:
https://anonymous.4open.science/r/anonymization_code

1 INTRODUCTION

Multimodal data holds paramount significance in machine learning tasks, offering the capability to
harness richer contextual insights. Yet, the inherent diversity of such modalities introduces com-
plexities, particularly in selecting ideal model architectures and ensuring seamless synchronization
of features across these modalities, resulting in a reliance on intensive manual involvement. Aspiring
to diminish manual hand-holding in the ML pipeline, Automated Machine Learning (AutoML) has
emerged (Hutter et al., 2019; Gijsbers et al., 2019; Vakhrushev et al., 2021; Weerts et al., 2020; Wang
et al., 2021; Elshawi et al., 2019). However, a gaping void persists as the lion’s share of AutoML
solutions remains tailored predominantly for uni-modal data. AutoGluon1 made the first attempt at
multimodal AutoML but is beset with shortcomings. Firstly, it falls short of fully automated feature
engineering, essential for adeptly managing multimodal data. Moreover, it imposes a pronounced
learning curve to get familiar with its configurations and settings. This complexity contradicts the
user-friendly automation ethos that AutoML initially epitomizes. Besides, its adaptability, con-
strained by preset settings like search space, model selection, and hyper-parameters, leaves much
to be desired manually. Furthermore, expanding AutoGluon’s capabilities by integrating new tech-
niques or models often necessitates intricate manual code modifications, thus hampering its agility
and potential for growth.

The scientific realm has been abuzz with the meteoric rise of large language models (LLMs), par-
ticularly due to their transformative potential in task automation (Brown et al., 2020; Chowdhery
et al., 2022; Touvron et al., 2023; Wei et al., 2022). Evolving beyond their foundational guise as
text generators, LLMs have metamorphosed into autonomous powerhouses, adept at self-initiated
planning and execution (Shen et al., 2023; Wang et al., 2023; Wu et al., 2023; Hong et al., 2023;

1https://github.com/autogluon/autogluon

1

https://anonymous.4open.science/r/anonymization_code
https://github.com/autogluon/autogluon


Under review as a conference paper at ICLR 2024

Yao et al., 2022). Such an evolution presents a tantalizing prospect, namely the opportunity to sig-
nificantly bolster the performance and adaptability of multimodal AutoML systems. Capitalizing on
this potential, we introduce AutoM3L, an innovative LLM framework for Automated Multimodal
Machine Learning. Distinct from platforms like AutoGluon, which are tethered to fixed, predeter-
mined pipelines, AutoM3L stands out with its dynamic user interactivity. Specifically, it seamlessly
weaves ML pipelines, tailoring them to user directives, achieving unparalleled scalability and adapt-
ability from data pre-processing to model selection and optimization.

The major contributions are four-fold, summarized as follows. (1) We introduce a novel LLM
framework, namely AutoM3Lwhich aims to automate the ML pipeline development for multimodal
data. It enables users to derive accurate models for each modality from a large pool of models
along with a self-generated executable script for cross-modality feature fusion using minimal natural
language instructions. (2) We further spearhead the automation of feature engineering. Concretely,
we leverage an LLM to filter out attributes that might hamper model performance and concurrently
impute missing data. (3) Finally, we automate hyperparameter optimization with LLM via self-
suggestions combined with the integration of external API calls. This can decisively negate the need
for labor-intensive manual explorations. (4) We embark on comprehensive evaluations, comparing
with conventional rule-based multimodal AutoML on a myriad of multimodal datasets. Moreover,
user studies further underscored the distinct advantages of AutoM3L in terms of its user-friendliness
and a significantly diminished learning curve.

2 RELATED WORKS

AutoML. AutoML has emerged as a transformative paradigm to streamline the design, training,
and optimization of ML models by minimizing the need for extensive human intervention. Cur-
rent AutoML solutions predominantly fall into three categories: (i) training pipeline automation,
(ii) automated feature engineering, (iii) hyperparameter optimization. Within the sphere of auto-
mated feature engineering, certain methodologies have carved a niche for themselves. For instance,
DSM (Kanter & Veeramachaneni, 2015) and OneBM (Lam et al., 2017) have revolutionized fea-
ture discovery by seamlessly integrating with databases, curating an exhaustive set of features. In
a complementary vein, AutoLearn (Kaul et al., 2017) adopts a regression-centric strategy, enhanc-
ing individual records by predicting and appending additional feature values. Concurrently, training
pipeline and hyperparameter optimization automation have also seen significant advancements. For
example, H2O AutoML (LeDell & Poirier, 2020) is particularly noteworthy for its proficiency in
rapidly navigating an expansive pipeline search space, leveraging its dual-stacked ensemble mod-
els. However, a recurring challenge across these AutoML solutions is their predominant focus on
uni-modal data, which limits their applicability to more complex multimodal data. Recognizing this
gap, we introduce a novel LLM framework tailored specifically for multimodal AutoML scenarios.

Large Language Models. The domain of Natural Language Processing has undergone a paradigm
shift with the introduction of LLMs (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al.,
2023; Wei et al., 2022; Chung et al., 2022). With their staggering parameter counts reaching into
the hundreds of billions, LLMs have showcased unparalleled versatility across diverse tasks. A
testament to their evolving capabilities is Toolformer (Schick et al., 2023), which equips LLMs to
interact with external utilities via API calls, thereby expanding their functional horizons. AutoGPT
further exemplifies this evolution, segmenting broad objectives into tangible sub-goals, subsequently
executed through prevalent tool APIs, such as search engines or code executors. Yet, as we embrace
the potential of LLMs to manage AI tasks via API interactions, it’s crucial to navigate the inherent
intricacies. Model APIs, in particular, often require bespoke implementations, frequently involving
pre-training phases which highlights the pivotal role of AutoML in refining and optimizing these
intricate workflows. Our proposed AutoML framework aspires to bridge this gap, enabling fluid
user-AI engagements through lucid dialogues and proficient code generation.

3 METHODS

We elaborate on the details of the five functional components in Automated Multi-Modal Machine
Learning (AutoM3L): (1) modality inference, (2) automated feature engineering, (3) model selec-
tion, (4) pipeline assembly, and (5) hyperparameter optimization, as illustrated in Fig. 1.
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Figure 1: The overall framework of AutoM3L. It consists of five stages: 1⃝ Infer the modality of
each attribute in structured table data. 2⃝ Automate feature engineering for feature filtering and data
imputation. 3⃝ Select optimal models for each modality. 4⃝ Generates executable scripts for model
fusion and data processing to assemble the training pipeline. 5⃝ Search optimal hyperparameters.

Organization of Multimodal Dataset. The multifaceted nature of multimodal data allows it to be
represented in various formats, among which the JavaScript Object Notation (JSON) stands out as a
prevalent choice. In this work, however, we prioritize structured tables for their distinct advantages.
Not only do they offer a clear representation, capturing the interplay between different modalities,
but they also adeptly aggregate information from varied formats into a unified structure. Contained
within these tables is a diverse range of data modalities including images, text, and tabular data. For
a comprehensive understanding of structured tabular, we direct readers to Appendix B.

Modality Inference Module. AutoM3L begins with Modality Inference-LLM (MI-LLM) to
identify the modality associated with each column in the structured table. Simplifying its opera-
tion and avoiding extra training costs, MI-LLM taps into in-context learning. Correspondingly, the
guiding prompt to MI-LLM is tripartite, as showcased in Fig. 2(a): (1) An ensemble of curated ex-
amples is used for in-context learning. This ensemble assists MI-LLM in generating desired format
responses and firmly establishing correlations between column names and their modalities. (2) A
subset of the input structured table is included, containing randomly sampled data items paired with
their respective column names. The semantic richness of this subset serves as a guiding light, steer-
ing the MI-LLM towards accurate modality identification. (3) User-specified directives do more
than just instruct; they enrich the process with deeper context. Capitalizing on the LLM’s excep-
tional interactivity, these directives refine the modality inference further. For example, a directive
like “this dataset delves into the diverse factors influencing animal adoption rates” grants MI-LLM
a contextual perspective, facilitating a more astute interpretation of column descriptors.

Automated Feature Engineering Module. Feature engineering shines as a crucial preprocess-
ing phase, dedicated to tackling common data challenges, such as missing values. While many
conventional AutoML solutions heavily depend on rule-based feature engineering, our AutoM3L
framework embraces the unmatched capabilities of LLMs to elevate this process. Specifically, we
introduce the Automatic Feature Engineering-LLM (AFE-LLM), as depicted in Fig. 2(b). This
module employs two distinct prompts, resulting in two core components: AFE-LLMfilter and AFE-
LLMimputed. The former, AFE-LLMfilter, is adept at sifting through the data to eliminate irrelevant or
superfluous attributes. On the other hand, AFE-LLMimputed is dedicated to data imputation, ensuring
the completeness and reliability of vital data. Importantly, these components work in tandem, where
after AFE-LLMfilter refines the features, AFE-LLMimputed steps in to address any data gaps in the
streamlined dataset. To enhance feature filtering, AFE-LLMfilter’s prompt integrates: (1) An ensem-
ble of examples for in-context learning. More specifically, by strategically introducing attributes
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Figure 2: (a) Modality Inference with MI-LLM. It displays MI-LLM’s capability to discern the
modality of each column in a dataset. Attributes are highlighted with red annotations to signify the
inferred modality. (b) Data Refinement with AFE-LLM. It emphasizes AFE-LLM’s dual role in
both feature filtering and data imputation. In the left part, attributes marked in red denote those that
are filtered out, while on the right, red annotations identify attributes that have been subjected to
imputation.

from various datasets and interlacing them with intentionally irrelevant ones, the AFE-LLMfilter is
oriented towards distinguishing and removing non-essential attributes. (2) Column names in the
structured table, brimming with semantic information about each feature component, augment the
LLM’s ability to distinguish between pivotal and disposable attributes. (3) Modality inference results
derived from MI-LLM, guiding the LLM to shed attributes of limited informational significance.
For instance, when juxtaposing a continuous attribute like age with a binarized attribute indicating
if someone is over 50, the latter, being somewhat redundant, can be identified for removal. (4)
When available, user-defined directives or task descriptions can be embedded which aims to forge a
connection between pertinent column names and the overarching task. Regarding data imputation,
AFE-LLMimputed exploits its profound inferential prowess to seamlessly detect and fill data voids.
The prompt for this facet encompasses: (1) Data points characterized by value omissions, enabling
AFE-LLMimputed to fill these gaps by discerning patterns and inter-attribute relationships. (2) A se-
lected subset of data instances that involve deliberately obfuscating attributes and juxtaposing them
in Q&A pairs, laying down an inferential groundwork. (3) Where available, user-defined directives
or task blueprints are incorporated, offering a richer context, and further refining the imputation
process.

Model Selection Module. Upon successfully navigating through the modality inference and fea-
ture engineering stages, AutoM3L moves to pinpoint the optimal model architecture for each of
the data modalities. For model organization, the collection of the model candidates is termed a
model zoo, where each model is stored as a model card. The model card captures a spectrum of
details, from the model’s name, type, the data modality it can be applied to, empirical performance
metrics, its hardware requirements, and etc. To streamline the generation of these cards, we utilize
LLM-enhanced tools such as ChatPaper (Yongle Luo, 2023) to obviate the need for tedious manual
processes. Utilizing text encoders, we generate embeddings for these model cards, thereby allowing
users to fluidly enhance the model zoo by appending new cards, as illustrated in Fig. 3(a). After-
ward, to adeptly match each modality with the suitable model, we propose the Model Selection-LLM
(MS-LLM). We interpret this task as a single-choice dilemma, where the context presents a palette
of models for selection. However, given the constraints on context length, parading a complete ar-
ray of model cards isn’t feasible. Therefore, we first filter the model cards based on their applicable
modality type, retaining only those that align with the specified data modality. Thereafter, a subset of
the top 5 models is identified via text-based similarity metrics between the user’s requirements and
the model cards’ descriptions. These top-tier model cards then become part of MS-LLM’s prompt,
which, when combined with user directives and data specifics, steers MS-LLM toward its ultimate
decision, leading to the identification of the best-suited model for the discerned modality, as depicted
in Fig. 3(b). In essence, the MS-LLM prompt fuses: (1) A selected subset of five model cards, offer-
ing a glimpse of potential model candidates. (2) An input context, blending data narratives and user
directives. The data narrative demystifies elements like data type, label type, and evaluation stan-
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Figure 3: Illustration of the model zoo and MS-LLM. (a) Model addition process: This stage show-
cases how new models are incorporated into the model zoo, visualized as a vector database. The
model card’s embedding vector serves as the unique identifier or key, paired with its respective
model configuration as the value. (b) Model retrieval process: This segment represents the model
selection process. Given user directives, the system initiates a query, pinpointing the top 5 models
that align with each input modality. From this refined subset, MS-LLM then determines and selects
the most fitting model.

dards. Meanwhile, user directives can elucidate custom model requirements. For instance, a user
stipulation expressed as “deploy the model on the CPU device” would guide MS-LLM to models
primed for lightweight deployments.

Pipeline Assembly Module. Following the retrieval of uni-modal models, there’s a crucial step of
fusing these models We employ a late fusion strategy to integrate the multimodal data, where this
process can be mathematically expressed as:

featurei = feature adapteri(modeli(xi)),

logitsfuse = fusion head(fusion model(concat(feature1, ...,featuren))),
(1)

where concat denotes concatenation, xi writes for the input data of modality i (i = 1, · · · , n),
feature adaptern functions to adapt the output of modeln to a consistent dimension. Notably,
both the fusion head and fusion model are the target models to be identified. However,
determining the architectures for fusion head and fusion model is not practical to rely on
rule-based methods, since these architectures depend on the number of input modalities. hence we
formulate this process as a code generation task. Instead, we reframe this as a code generation
challenge, wherein the Pipeline Assembly-LLM (PA-LLM) is tasked with generating the necessary
fusion model architecture, integrating features produced by each uni-modal model. Concretely, PA-
LLM leverages the code generation capabilities of LLMs to produce executable code for both model
fusion and data processors, as depicted in Fig. 4(a). This is achieved by supplying the module with
model configuration files within the prompt. Similarly, data processors are synthesized based on the
data preprocessing parameters detailed in the configuration file. PA-LLM allows us to automate the
creation of programs that traditionally demanded manual scripting, simply by providing the requisite
configuration files. A point of emphasis is our prioritization of integrating pre-trained models for
text and visual data, primarily sourced from HuggingFace and Timm. This involves adapting
the code to facilitate model loading. By establishing ties with the broader ML community, we’ve
substantially amplified the versatility and applicability of our model zoo.

Automated Hyperparameter Optimization Module. Hyperparameters such as learning rate,
batch size, hidden layer size within a neural network, loss weight and etc are commonly man-
ually adjusted in conventional ML pipelines, which is thus labor intensive and time-consuming.
While external tools like ray.tune have been invaluable, allowing practitioners to define hyper-
parameters and their search intervals for optimization, there remains a compelling case for greater
automation. To bridge this gap, we propose the HyperParameter Optimization-LLM (HPO-LLM),
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Figure 4: (a) The PA-LLM is responsible for generating executable code, ensuring seamless model
training and data processing. (b) On the other hand, the HPO-LLM deduces optimal hyperparame-
ters and defines appropriate search intervals for hyperparameter optimization.

building upon the foundational capabilities of ray.tune. The essence of HPO-LLM is its ability
to ascertain optimal hyperparameters and their search intervals by meticulously analyzing a pro-
vided training configuration file, as visualized in Fig. 4(b). Harnessing the deep knowledge base of
LLMs concerning ML training, we employ the HPO-LLM to generate comprehensive descriptions
for each hyperparameter found within the configuration file. These descriptions, paired with the
original configuration file, form the foundation of the prompt context for HPO-LLM. The module
then embarks on identifying the hyperparameters primed for optimization, basing its proposals on
preset values cataloged within the hyperparameter list. Delving into the specifics, the input prompt
fed to HPO-LLM is multi-faceted: (1) It incorporates the training configuration file, brimming with
the hyperparameter set, aiding HPO-LLM in cherry-picking hyperparameters ripe for optimization.
(2) LLM-generated text descriptions for each hyperparameter, furnishing HPO-LLM with a nuanced
understanding of each hyperparameter’s implications. (3) Optional user directives, offering a per-
sonalized touch. Users can weave in additional instructions, guiding HPO-LLM’s decision-making.
This could encompass emphasizing certain hyperparameters based on unique requirements. By in-
tertwining the capabilities of ray.tune with our HPO-LLM, we’ve pioneered an approach that
takes hyperparameter optimization to new heights, marrying automation with enhanced acumen.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the efficacy of the AutoM3L system, we conducted experiments on four
multimodal datasets, all sourced from the Kaggle competition platform. These datasets encompass
a range of tasks, namely classification, regression, and retrieval. For classification, we use two
datasets, each characterized by distinct modalities: (1) PetFinder.my-Adoption Prediction (PAP):
This dataset aims to predict pet adoptability, leveraging image, text, and tabular modalities. (2)
Google Maps Restaurant Reviews (GMRR): It is curated to discern the nature of restaurant re-
views on Google Maps, making use of image, text, and tabular modalities. Turning our attention
to regression, we utilized the PetFinder.my-Pawpularity Contest dataset (PPC). This dataset’s pri-
mary objective is to forecast the popularity of shelter pets, drawing insights from text and tabular
modalities. For the retrieval-based tasks, we employed the Shopee-Price Match Guarantee dataset
(SPMG), which aims to determine if two products are identical, hinging on data from image and
text modalities. Our performance metrics include accuracy for classification tasks, the coefficient of
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Table 1: Evaluation for modality inference.
AutoM3L can effectively determine the data
modality, even on data that AutoGluon mis-
classifies.

Method AutoGluon AutoM3L
PAP↑ 0.4121 0.4080
PPC↓ 1.0129 1.0129
GMRR↑ 0.3727 0.4091
SPMG↑ 0.9851 0.9851

Table 2: Evaluation for feature engineering.
AutoM3L filters out noisy features and per-
forms data imputation, effectively mitigating
the adverse effects of noisy data.

Method AutoGluon AutoM3L
PAP↑ 0.4022 0.4071
PPC↓ 1.0131 1.0130
GMRR↑ 0.3773 0.3893
SPMG↑ 0.9837 0.9851

determination (R2) for regression tasks, and the area under the ROC curve (AUC) for retrieval tasks.
See Appendix B for more details.

Baseline. Given the scarcity of specialized multimodal AutoML frameworks, our experimen-
tal evaluations were exclusively performed using the AutoGluon framework. Setting up training
pipelines in AutoGluon necessitated detailed manual configurations. This involved specifying which
models to train and conducting a thorough pre-exploration to determine the parameters suitable for
hyperparameter optimization and their respective search ranges. It’s crucial to highlight that the au-
tomation and intelligence levels of AutoGluon remain challenging to quantify, and in this research,
we innovatively measure them through the user study from the human perspective.

IRB Approval for User Study. The user study conducted in this research has received full ap-
proval from the Institutional Review Board (IRB). All methodologies, protocols, and procedures
pertaining to human participants were carefully reviewed to ensure they align with ethical standards.

4.2 QUANTITATIVE EVALUATION

We first carried out quantitative evaluations, drawing direct comparisons with AutoGluon with focus
on the modality inference, automated feature engineering, and the automated hyperparameter opti-
mization modules. For modality inference evaluation, apart from the modality inference component,
all other aspects of the frameworks are kept consistent. For feature engineering and hyperparame-
ter optimization, we aligned the modality inference from AutoGluon with the results of AutoM3L
to analyze their respective impacts on performance. Afterwards, we evaluate the pipeline assem-
bly module in terms of intelligence and usability through user study in the next section, due to its
inherent difficulty in quantitative assessment.

Evaluation for Modality Inference. Table 1 depicts the comparative performance analysis be-
tween AutoGluon’s modality inference module and our LLM-based modality inference approach
across various multimodal datasets. Within AutoGluon, modality inference operates based on a set
of manually defined rules. For instance, an attribute might be classified as a categorical modality
if the count of its unique elements is below a certain threshold. When we observe the results, it’s
evident that AutoM3L offers accuracy on par with AutoGluon for most datasets. This similarity
in performance can be primarily attributed to the congruence in their modality inference outcomes.
However, a notable divergence is observed with the GMRR dataset, where AutoM3L obtains 0.4091
accuracy, significantly outperforming AutoGluon’s 0.3727. Upon closer inspection, we identified
that AutoGluon misclassified the ’image path’ attribute as categorical, thereby neglecting to acti-
vate the visual model. Such an oversight underscores the robustness of our LLM-based modality
inference approach, which adeptly deduces modality specifics from both column names and their
associated data.

Evaluation for Feature Engineering. Table 2 illustrates the comparisons utilizing AutoGluon’s
data preprocessing module and our LLM-based automated feature engineering module on multi-
modal datasets. Given the completeness of these datasets, we randomly masked portions of the data
and manually introduced noisy features from unrelated datasets to assess the effectiveness of au-
tomated feature engineering. Note that, AutoGluon lacks a dedicated feature engineering module
for multimodal data, making this experiment a direct assessment of our automated feature engineer-
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Table 3: Evaluation on the hyperparameter optimization. AutoM3L’s self-recommended search
space rivals, and in some cases surpasses, manually tuned search spaces.

Method PAP↑ PPC↓ GMRR↑ SPMG↑
AutoGluon w/o HPO 0.4121 1.0129 0.4091 0.9851
AutoGluon w/ HPO 0.4455 1.0128 0.4272 0.9894
AutoM3L 0.4435 1.0118 0.4499 0.9903

ing. We observed that automated feature engineering, which implements feature filtering and data
imputation, effectively mitigates the impact of noisy data. Across all test datasets, automated fea-
ture engineering showed improvements, with a notable 1.2% performance increase observed in the
GMRR dataset.

Evaluation for Hyperparameter Optimization. We also conduct experiments to assess the ca-
pabilities of tje automated hyperparameter optimization module within AutoM3L. Contrasting with
AutoGluon, where users typically grapple with manually defining the hyperparameter search space,
AutoM3L streamlines this process. From Table 3, it’s evident that the integration of hyperparam-
eter optimization during the training phase contributes positively to model performance. Impres-
sively, AutoM3L matches AutoGluon’s accuracy across all datasets. However, the standout advan-
tage of AutoM3L lies in its automation; while AutoGluon demands a manual, often tedious setup,
AutoM3L markedly reduces human intervention, offering a more seamless, automated experience.

4.3 USER STUDY

Hypothesis Formulation and Testing. To assess AutoM3L’s effectiveness, we conducted a user
study focused on whether the LLM controller can enhance the degree of automation within the
multimodal AutoML framework. We formulated null hypotheses:

• H1: AutoM3L does not reduce time required for learning and using the framework.
• H2: AutoM3L does not improve user action accuracy.
• H3: AutoM3L does not enhance overall framework usability.
• H4: AutoM3L does not decrease user workload.

We performed single-sided t-tests to evaluate statistical significance. Specifically, we compared
AutoM3L and AutoGluon on the following variables: task execution time, the number of attempts,
system usability, and perceived workload. See Appendix C.3 for details about the variables.

User Study Design. As depicted in Fig. 5, our user study’s workflow unfolds in structured phases.
Note that the user study has been reviewed by IRB and granted full approval. The study begins with
the orientation phase where voluntary participants are acquainted with the objectives, underlying
motivations, and procedural details of the user study. This phase is followed by a user background
survey, which gleans insights into participants’ professional roles, their prior exposure to technolo-
gies such as LLM and AutoML, and other pertinent details. The core segment of the study involves
hands-on tasks that participants undertake in two distinct conditions: perform multimodal task Au-
toML with AutoGluon and with AutoM3L. These tasks center around exploring the automation
capabilities of the AutoML frameworks, as well as gauging the user-friendliness of their features

Figure 5: The workflow of the user study to measure the user-friendliness of the AutoM3L.
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Figure 6: Boxplots displaying the distribution of the four variables collected in the user study.

such as hyperparameter optimization. Participants, guided by clear instructions, are tasked with
constructing multimodal training pipelines employing certain models and defining specific hyperpa-
rameter optimization domains. To ensure a balanced perspective, participants are randomly split into
two groups: the first interacts with AutoGluon, while the second delves into AutoM3L. Upon task
completion, the groups swap platforms. For a holistic understanding of user interactions, we metic-
ulously track both the time taken by each participant for task execution and the number of attempts
before the successful execution. The study culminates with a feedback session, where participants
articulate their impressions regarding the usability and perceived workload of both AutoGluon and
AutoM3L via questionnaire. Their feedback and responses to the questionnaire, captured using
Google Forms, form a crucial dataset for the subsequent hypothesis testing and analysis.

Results and Analysis of Hypothesis Testing. Our study cohort consisted of 20 diverse partici-
pants: 6 software developers, 10 AI researchers, and 4 students, which ensured a rich blend of per-
spectives of the involved users. The data we gathered spanned four variables, visualized in Fig. 6.
To validate our hypotheses, we performed paired two-sample t-tests (essentially one-sample, one-
sided t-tests on differences) for the aforementioned variables across two experimental conditions:
AutoGluon and AutoM3L. These tests were conducted at a significance level of 5%. The outcomes
in Table 4 empower us to reject all the null hypotheses, underscoring the superior efficacy and
user-friendliness of AutoM3L. The success of AutoM3L can be largely attributed to the interac-
tive capabilities endowed by LLMs, which significantly reduce the learning curve and usage costs.
Please refer to Appendix C.3 for detailed analysis.

Table 4: Hypothesis testing results from paired two-sample one-sided t-tests.

Hypothesis T Test Statistic P-value Reject Hypothesis
H1 12.321 8.2× 10−11 Yes
H2 10.655 9.3× 10−10 Yes
H3 -5.780 1.0× 10−5 Yes
H4 3.949 4.3× 10−4 Yes

5 CONCLUSION

In this work, we introduce AutoM3L, a novel LLM-powered Automated Multimodal Machine
Learning framework. AutoM3L explores automated pipeline construction, automated feature en-
gineering, and automated hyperparameter optimization. This enables the realization of an end-to-
end multimodal AutoML framework. Leveraging the exceptional capabilities of LLMs, AutoM3L
provides adaptable and accessible solutions for multimodal data tasks. It offers automation, inter-
activity, and user customization. Through extensive experiments and user studies, we demonstrate
AutoM3L’s generality, effectiveness, and user-friendliness. This highlights its potential to transform
multimodal AutoML. AutoM3L marks a significant advance, offering enhanced multimodal ma-
chine learning across domains. One future direction is to encompass a diverse range of data modal-
ities, spanning video, audio, and point clouds, among others. While we have currently addressed
data imputation for tabular and textual formats, another future endeavors will integrate sophisticated
image generation techniques to manage missing data in visual datasets. Such advancements will
further solidify our standing in multimodal data analysis.
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