
Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

META-LEARNING FOR PLANNING: AUTOMATIC SYN-
THESIS OF SAMPLE-BASED PLANNERS

Lucas Saldyt & Heni Ben Amor
Department of Computing, Informatics, and Decision Systems Engineering
Arizona State University
Tempe, AZ 85202, USA
{lsaldyt,hbenamor}@asu.edu

ABSTRACT

In this paper, we discuss the challenge of generating domain-specific path plan-
ners in a data-driven fashion. Via the multi-objective optimization of Python code,
we synthesize new sampling-based path planners that allow robots to adapt to new
tasks and environments involving sequential decision-making. In addition to the
ability to adapt to new environments, our approach also enables robots to bal-
ance their computational needs with improvements in task performance. We show
that new computer programs can be generated which represent diverse variants of
RRT* optimized to StarCraft maps.

1 INTRODUCTION

Learning and planning are two critical elements of intelligent and adaptive behavior. However,
computational approaches for learning and planning are addressed by two largely separate research
communities. Despite this challenge, various works have highlighted the strong relationship be-
tween these two fields. In particular, techniques that require sequential decision-making, e.g., re-
inforcement learning (RL), often blur any preconceived boundaries. Sutton & Barto (2018), argue
that “all state-space planning methods involve computing value functions, either explicitly or im-
plicitly”, similar to the methodology followed in RL. Sampling-based planners, such as Rapidly-
Exploring Random Tree (RRT) (LaValle & Kuffner Jr, 2001), in particular, bear a strong resem-
blance to stochastic learning techniques leading to interesting hybrids (Chiang et al., 2019; Shiarlis
et al., 2017; Scholz & Stilman, 2010). Given these relationships, it is reasonable to wonder “Can
we extend meta-learning to address planning domains, i.e., sequential decision-making?”, or “After
repeatedly getting lost in a new city, can a robot learn to generate better plans?”

In this paper, we address this question by focusing on the automatic generation of sampling-based
planning algorithms. Given a set of environments or maps, our objective is to synthesize specialized
path-planners that exploit any domain characteristics to their advantage. More specifically, we are
interested in planners that minimize the involved computational costs, i.e., the number of evaluated
nodes, while also improving the task performance, i.e., reduction in path length. Previous expert-
created solutions for path planning include the works in (Hart et al., 1968; LaValle & Kuffner Jr,
2001; Karaman & Frazzoli, 2011; Gammell et al., 2014; Tahir et al., 2018; Bast et al., 2016; Lai
et al., 2019; LaValle, 2006). In contrast to such hand-crafted methods, we propose an algorithmic
search process, in the vein of meta-learning, for the discovery of novel planning algorithms. Our
objective is to be able to a.) synthesize a large, diverse set of planners which b.) can be refined to
adapt to the (multi-objective) needs of the current application domain.

We search for path planners by representing them explicitly in Python code, similar in spirit to
genetic programming (GP) techniques (Banzhaf et al., 1998; Poli et al., 2008; Van Rossum et al.,
2007). However, in conventional GP, a tree-based domain-specific program representation is used.
Instead, we opt for general-purpose Python code to allow for the evolution of human-understandable
and interfaceable source code. In contrast to traditional function approximation, program synthesis
guarantees Turing-completeness but comes at the cost of large, discontinuous search spaces (Peng
et al., 2021; Forstenlechner et al., 2017; Whigham et al., 1995; Gulwani et al., 2017; Chen et al.,
2017; Lake et al., 2015).

1

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

2 METHODS

Figure 1: Iterative mutation of RRT*
templates with selection for validity
only. Shown at 128x128 scale for ease
of interpretation.

Developing novel path planners typically requires a care-
ful balancing act between the optimality of the found
paths and the number of nodes considered. Since these
objectives are often at odds with each other, we employ
multi-objective optimization to identify solution candi-
dates. In particular, we use the non-dominated sorting
genetic algorithm (NSGA2), henceforth referred to as
Pareto evolution (Deb et al., 2002; Srinivas & Deb, 1994).
The multi-objective search process repeatedly generates a
population of Python programs that are evaluated on a set
of (task-specific) maps. These programs are evaluated on
three primary factors: the number of nodes they consider,
the length of the paths they find, and their code length
(which is only considered halfway through optimization).
To represent these multiple objectives, Pareto evolution
uses vectorized fitnesses and a dominance operator: one
program dominates another if and only if every objective
metric oi is superior. If two fitness vectors are not strictly
better than one another, then these vectors are said to be
Pareto equivalent. In each generation, dominance-based
tournament selection creates the initial offspring. These offspring are mutated and concatenated to
the parent population1. Then, this larger population is sorted into Pareto fronts, i.e. Pareto equivalent
programs, and the initial programs are selected for the next generation.

All generated path planners follow a generic template that consists of the three functions build,
sample, and run. The run function provides the entry point for executing a given program, while
the build and sample functions address the sub-tasks of generating a graph and sampling new
nodes. This template-based approach is inspired by Real et al. (2020) and aims at providing
an interpretable structure for learned programs. Insertion of new code elements and modifica-
tions of existing code occurs within either of the three structural functions. All generated code
is parsed using Python’s generic parser but is then converted to a custom, mutable tree repre-
sentation. We also allow for the addition of “dead” code to templates, to increase the evolvable
code surface. This idea takes inspiration from biology, where large sections of the DNA string
are non-coding. Our mutable syntax tree model uses three primary components: discrete uni-
form distributions, composites, and lists. For example, constants, variables, operators, and func-
tion names are all modeled as discrete uniform distributions. A potential composite type is an
assignment statement, which is represented as a target (name) and an expression. In turn, the ex-
pression is also a composite that is defined recursively. Lastly, a list is a function or if-statement
body, i.e. a list of statements, where a statement could be an assignment or return expression.
Fig. 2 depicts a subset of our grammar and the full grammar is reproduced in the Appendix.

constant = .. | -1 | 0 | 1 | 2 | ..
atom = name | constant
binopexpr = [atom binop expr]
compexpr = [atom compops atoms]
expr = atom | binopexpr | ...
assign = target expr

Figure 2: Subset of Python Grammar

The build, sample, and run functions allow for large por-
tions of Python code to be modified in a generic and
reusable fashion. Our grammar also provides the impor-
tant ability to mask individual functions, lines of code,
and entire grammar components. For instance, it is pos-
sible to disable the init function and hold the starting data
structures constant. Unlike genetic programming sys-
tems (Banzhaf et al., 1998), we do not define type or arity
constraints on our grammar, but rather apply strict rejec-
tion sampling. The optimization process begins with a
working (or slightly broken) path planner represented in pure Python and, through evolutionary
search, repeatedly changes this initial seed to improve performance on multiple objectives. As a
benchmark environment, we use city graphs from major international cities and obstacle maps from
the commercial game StarCraft. Importantly, randomness from sampling is controlled for by seeding
the number generator. All experiments use the same seed: 2021.

1Potentially, crossover can occur here. While crossover is extremely important in genetic programming, we
do not study it in this paper

2

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

94e7b (Milan best) a1be6 (Milan worst) 49980 (Validate) Initial (Validate)

49980 (Enigma best) 6e799 (Turbo best) c5b4f (Entanglement best) 70458 (No Obstacles best)

Figure 3: A diverse population, comparing unique planners and map-specialized behavior (Table 1).

3 RESULTS AND DISCUSSION

First, we explore the density of our search space. In summary, the probability of a functional muta-
tion is 93.9%, and the probability of a superior mutation is only 0.84%2. For reference, in the RRT*
template, there are roughly 74 valid mutation locations, 52 in the build function and 22 in the sample
function. Figure 1 shows frequencies of different program outcomes after repeated mutations to 128
program templates over 128 iterations. At each iteration, non-functional planners are removed via
rejection sampling. The repeated application of mutations and rejection sampling leads to a larger
fraction of functional or superior path-planner source code. Also, certain types of errors are more
likely than others. For this RRT* template, unbound local variables are common because the code
has many local variables. Also, the rejection process filters synthesized planners which attempt to
cheat the optimization process by generating pathological trees or dishonestly altering path length.

To aid in reporting results, we identify unique planners by the MD5 hash of their Python source code,
e.g. 94e7b3. For interpretability, we also report important parameters of RRT* variants. Changes to
these parameters happen in addition to structural changes that add and remove new code segments.
These parameters are: α, r0, and r1. α is the inverse probability of sampling the goal node to move
towards, r0 is the maximum length for a tree segment, and r1 is the rewiring radius. For example,
a planner with α = 0.2, r0 = 50, r1 = 100 biases towards the goal 80% of the time, takes steps of
maximum length 50 pixels, and rewires nodes in a 100 pixel radius. This level of interpretability is
a unique feature of program learning.

Figure 3 visualizes selected planners on various maps. Detailed statistics from many of these plan-
ners are also in Table 1. This Table describes best-in-class planners, i.e. those that consider the
fewest nodes or generate the shortest path on a particular set of problems. This data comes from five
experiments on different obstacle maps 4. Two maps act as controls: an obstacle-free map and a sec-
tion of Milan, Italy. The other three experiments use different StarCraft maps: Enigma, Turbo, and
Entanglement. These experiments explore if planners will specialize to each map or alternatively
perform well across many maps. Each experiment uses a population of 256 RRT* templates, which
are mutated once and then optimized over 1024 iterations using Pareto evolution. While Table 1
uses problem sets with multiple (start, end) pairs, Figure 3 shows the behavior on a single pair.

Table 1 also describes the depth (edit distance) of a particular solution. Depth represents the diffi-
culty of finding each solution. This value is non-linear, in the sense that finding a depth-n planner

2These probabilities are from 10, 000 planner mutations
3This hash is a genotypic hash, but we also use phenotypic hashes internally for caching and comparison
4Full experiment configurations are in the Appendix.

3

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

with random search would potentially require exponentially more samples (bn where b is the num-
ber of possible mutations). Planners in Table 1 find a reduction in nodes between 64% and 89%.
Reductions in path length are between 5% and 36%. Table 2 shows validation comparisons between
interesting planners in Table 1 and planner 49980/c5b4f . We select planner 49980 because it was
evolved identically on multiple maps and appears to be generally effective. Each planner ran on the
validation map shown in Figure 3 5.

We selected two interesting planners from the Milan map: 94e7b and a1be6, shown in the upper
left of Figure 3. Here, planner 94e7b considered the fewest nodes, while a1be6 considered the
most. These planners differ in maximum step size (r0) and goal-bias (α). Planner 94e7b can add
edges up to 50, 000 pixels in length, which allows it to use fewer nodes to cover large open spaces.
Alternatively, planner a1be6 takes steps of only 8 pixels, which allows it to create a fractal-like
pattern with more uniform exploration, but causes it to consider significantly more nodes. Planner
94e7b has a 0% chance of biasing towards the goal, and a1be6 has a 12.5% chance of biasing.
Despite these differences, planner 94e7b returns a 149 pixel long path, while a1be6 returns a 151
pixel long path. In validation, planner 94e7b fails to return a complete path and returns∞ on both
metrics. Planner a1be6 considers many more nodes (+178.48%) due to a small step size of 8 pixels.
However, a1be6 finds a path only +11.13% longer planner 49980’s path.

The best planner on the obstacle-free map shows the largest reduction in the number of nodes consid-
ered (−89%) and path length (−36.23%). This reduction is due to the planner’s (70458) preference
to move towards the goal with a probability of 89%. Also, variant 70458 is shallow, at depth 1, while
the solutions for non-trivial maps are typically between depth 2 and depth 4. This depth is possible
because it only takes a single edit to change α and bias heavily towards the goal. In Table 2, this
planner fails to generalize to the validation map because the map is quite cluttered, and biasing leads
to frequent collisions.

In the bottom left of Figure 3 are the best-in-class planners on the StarCraft Engima, Turbo, and
Entanglement maps. The planners c5b4f (Entanglement) and 49980 (Enigma) are best-in-class for
nodes considered. Phenotypically, these planners are identical: they have α = 7/8 and r0 = 100,
i.e. a 12.5% chance of biasing and a maximum edge length of 100 pixels. Table 2 also shows
several comparisons between other planners and planner 49980, and Figure 3 shows an example run
of 49980 on the validation map (row 0, column 2). When validated, many specialized planners, such
as those specialized to the Milan map or no-obstacles map, are not competitive with planner 49980.
However, planner 6e799 makes an interesting trade-off: It considers far fewer nodes at the cost of a
significantly longer path, even in validation. These inter-metric trade-offs are at the heart of Pareto
optimization and demonstrate the central goal of this paper.

Table 1: Best-in-class RRT* Statistics vs Unbiased RRT* (D = Depth)

Map −∆% Nodes D Hash r0 α −∆% Path D Hash r0 α
Milan 82.35% 4 94e7b 50, 000 7/4 5.37% 2 cd01e 50 7/8
Enigma 74.87% 3 49980 100 7/8 9.70% 1 1aefd 50 1/8
Turbo 64.29% 3 6e799 50 4/9 12.20% 2 6e799 50 4/9
Entanglement 85.16% 3 c5b4f 100 7/8 21.77% 4 ec420 100 6/8
No Obstacles 89.47% 1 70458 50 1/9 36.23% 1 70458 50 1/9

Baseline 0.0% 0 Initial 50 1.0 0.0% 0 Initial 50 1.0

Table 2: Validation Comparisons (Planner 49980 as baseline,∞ indicates failure)

Planner 94e7b a1be6 70458 6e799 c5b4f 49980 Initial
∆% Nodes ∞ +178.48% +113.86% −73.37% 0% 0% +110.09%
∆% Path ∞ +11.13% +13.25% +61.51% 0% 0% +3.83%

In conclusion, this work provides a proof-of-concept of our approach to generate new and poten-
tially improved variants of path-planners for real-time adaptation. In the context of learning to learn,
we would like to extend this technique to enable online adaptation in tasks that involve sequential
decision-making, e.g., locomotion, manipulation planning, etc. In such tasks, a myopic action gen-
eration strategy may not be sufficient. Instead, we need to learn an algorithm that adapts through a
action optimization over a time horizon, i.e., learning-to-plan.

5The Appendix includes further validations on other maps.

4

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

REFERENCES

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic programming:
an introduction, volume 1. Morgan Kaufmann Publishers San Francisco, 1998.

Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter
Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation networks.
In Algorithm engineering, pp. 19–80. Springer, 2016.

Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex programs from input-
output examples. arXiv preprint arXiv:1706.01284, 2017.

Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra Faust. Rl-rrt: Kin-
odynamic motion planning via learning reachability estimators from rl policies. IEEE Robotics
and Automation Letters, 4(4):4298–4305, 2019.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. A grammar design pat-
tern for arbitrary program synthesis problems in genetic programming. In European Conference
on Genetic Programming, pp. 262–277. Springer, 2017.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997–3004.
IEEE, 2014.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894, 2011.

Tin Lai, Fabio Ramos, and Gilad Francis. Balancing global exploration and local-connectivity ex-
ploitation with rapidly-exploring random disjointed-trees. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 5537–5543. IEEE, 2019.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The international
journal of robotics research, 20(5):378–400, 2001.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.
openstreetmap.org, 2017.

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Hanxiao Liu, Gabriel Bender,
Adam Kraft, Chen Liang, and Quoc V Le. Pyglove: Symbolic programming for automated
machine learning. arXiv preprint arXiv:2101.08809, 2021.

Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field guide to genetic
programming. Lulu. com, 2008.

Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: evolving machine learning algo-
rithms from scratch. In International Conference on Machine Learning, pp. 8007–8019. PMLR,
2020.

5

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

Jonathan Scholz and Mike Stilman. Combining motion planning and optimization for flexible robot
manipulation. In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 80–85.
IEEE, 2010.

Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Rapidly exploring learning trees. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 1541–1548. IEEE, 2017.

Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary computation, 2(3):221–248, 1994.

N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144 – 148, 2012. URL http://web.cs.du.edu/˜sturtevant/
papers/benchmarks.pdf.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Zaid Tahir, Ahmed H Qureshi, Yasar Ayaz, and Raheel Nawaz. Potentially guided bidirectionalized
rrt* for fast optimal path planning in cluttered environments. Robotics and Autonomous Systems,
108:13–27, 2018.

Guido Van Rossum et al. Python programming language. In USENIX annual technical conference,
volume 41, pp. 36, 2007.

Peter A Whigham et al. Grammatically-based genetic programming. In Proceedings of the workshop
on genetic programming: from theory to real-world applications, volume 16, pp. 33–41, 1995.

A APPENDIX

For the classical node-based path planning problems, this paper uses entire city maps from Open-
StreetMap (OpenStreetMap contributors, 2017). This dataset includes 1.3 terabytes of graphs for
the entire planet, and uses both walking and driving maps. For sampling based problems, we use the
benchmarks defined in (Sturtevant, 2012)

A.1 EXPERIMENT PARAMETERS AND SCRIPTS

Table 3 describes experiments, and 4 describes important scripts for replicating results.

Table 3: Experiment Setups

Experiment Template Optimizer Pop. Size Iterations Maps
0 A* Geodesic Pareto Ev. 1024 1024 Seattle Washington Drive
1 A* Inverse Pareto Ev. 1024 1024 Seattle Washington Drive
2 Depth First Pareto Ev. 1024 1024 Seattle Washington Drive
3 Breadth First Pareto Ev. 1024 1024 Seattle Washington Drive
4 RRT* Pareto Ev. 1024 1024 StarCraft Across The Cape
5 RRT* Reg.Ev. 256 2048 StarCraft Across The Cape
6 RRT* Pareto Ev. 256 2048 StarCraft Across The Cape
7 RRT* Pareto Ev. 256 2048 Baldurs Gate Two Ar0205Sr
8 RRT* Pareto Ev. 256 2048 Maze Maze512-32-9
9 RRT* Pareto Ev. 256 2048 StarCraft Turbo
10 RRT* Pareto Ev. 256 2048 StarCraft Enigma
11 RRT* Pareto Ev. 256 2048 StarCraft Entanglement
12 RRT* Pareto Ev. 256 2048 Blank
13 RRT* Pareto Ev. 256 2048 Streets Milan 2 512

6

http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

Table 4: Scripts

ID Name Purpose
0 density of program space.py Quantify Probability of Superior Mutation
1 mutation selection heatmap.py Create Fig 1

A.2 GRAMMAR REPRESENTATION

name = x | y | .. # any available variable
stored_name = x | y | ..
funcname = sin | cos | ..
local = a | b | .. # locals only
constant = -10 .. | -1 | 0 | 1 | .. 10 # fixed range, customizable
stored = stored_name | stored_local # Python store/load context aware
atom = name | constant # Simple abstract types
binopexpr = [atom binop expr]
unaryopexpr = [unaryop expr]
compexpr = [atom compops atoms]
compexpr = [boolop 2-atoms]
expr = atom | binopexpr | unaryopexpr | boolexpr | compexpr
assign = [targets expr]
return = [expr]
stmt = assign | return | logic_stmt | call
subscript = [expr index]
index = [expr]
if = [expr body body]
body = [stmt]
exprs = [expr]
compops = [compop]
names = [name]
atoms = [atom]
targets = [stored]
call = [funcname args kwargs]
binop = Add | Sub | Mult | Div | Mod | Pow # bit operations disabled
unaryop = UAdd | USub | Not | Invert
boolop = And | Or
compop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
logic_stmt = Pass # break and continue disabled: decreased sparsity

Example planner code (experiment 10, planner 49980).

Member fingerprint: 499806b2df0d88cce364a2e39f0bc660
Metrics: 48.78125 166.07939950634213, 0.13947296887636185, 485.625, None
def build_rrt_star(parent):

n_nodes = 10 * 10 * 10 * 10
n_nodes = n_nodes * 1
K = n_nodes * 1
rewire_rad = 100
rewire_rad = rewire_rad * 1
rewire_rad = rewire_rad * 1
rad = 50
rad = rad * 1
rad = rewire_rad * 1
cost = {space.start: 0}
tree = {space.start: set()}
parents = {space.start: None}
for k in range(K):

7

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

searching = True
while searching:

x, y = sample(parent)
bx, by = brute_force_nearest_neighbor(parent,

tree.keys(),
(x, y))

x, y = towards(parent, bx, by, x, y, rad)
searching = space.intersects(((bx, by), (x, y))

)
if (x, y) not in tree:

parents[x, y] = bx, by
tree[bx, by].add((x, y))
tree[x, y] = set()
cost[x, y] = cost[bx, by] + distance(parent, bx, by, x, y)
parent.considered.append((x, y))

else:
pass

neighborhood = list(brute_force_neighbors(parent, tree.keys(),
(x, y), rewire_rad))

for nx, ny in neighborhood:
dist = distance(parent, x, y, nx, ny)
if (cost[nx, ny] + dist < cost[nx, ny] and

not space.intersects(((nx, ny), (x, y)))):
tree[x, y].add((nx, ny))
cost[nx, ny] = cost[x, y] + dist
p = parents[nx, ny]
tree[p].remove((nx, ny))
p[nx, ny] = x, y

if (distance(parent, x, y, *space.end) < rad and
not space.intersects(((x, y), space.end))):
tree[x, y].add(space.end)
tree[space.end] = set()
parents[space.end] = x, y
return tree, parents, True

return tree, parents, False

def sample(parent):
alpha = 7
alpha = alpha / 8
x_max, y_max = space.shape
r = random()
if r < alpha:

sampling = 4
while sampling:

x = randint(0, x_max - 1)
y = randint(0, y_max - 1)
sampling = space.check(x, y)

else:
r = -1
x, y = space.end

return x, y

This is the sampling function learned on the no-obstacles map (experiment 12). Notice that it biases
towards the goal very heavily.

Member fingerprint: 70458588df13321e46189afefefb7908
Metrics: 1.84375 88.45203463004563, 0.0002014562487602234, 480.0, None

def sample(parent):

8

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

alpha = 1.0
alpha = alpha / 9
x_max, y_max = space.shape
r = random()
if r < alpha:

sampling = True
pass
while sampling:

x = randint(0, x_max - 1)
y = randint(0, y_max - 1)
sampling = space.check(x, y)

else:
pass
x, y = space.end

return x, y

This is the sampling function learned on the Milan map (experiment 13). Notice that is does no
biasing towards the goal.

Member fingerprint: 94e7beac9994dd651987aec432d4420c
Metrics: 6.34375 149.27493716087838, 0.005812779068946838, 481.75, None

def sample(parent):
alpha = 7
alpha = alpha / 4
x_max, y_max = space.shape
r = random()
if r < alpha:

sampling = True
while sampling:

x = randint(0, x_max - 1)
y = randint(0, y_max - 1)
sampling = space.check(x, y)

else:
r = -1
parent = -1
x, y = space.end

return x, y

For comparison, defaults are:

def sample(parent):
alpha = 1.0
alpha = alpha / 1
x_max, y_max = space.shape
r = random()
if r < alpha: # Biased for potentially returning end node

sampling = True
while sampling:

x = randint(0, x_max - 1)
y = randint(0, y_max - 1)
sampling = space.check(x, y)

else:
x, y = space.end

return x, y

A.3 ADDITIONAL FIGURES

9

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

60

80

100

120

140

160

180

200

220

Considered Nodes

Initial

195, 165

∞

76f81

144, 170

∞

88b8b

80, 151

12cbd

73, 156

∞

1aefd

81, 149

∞

∞

∞

0d875

72, 161

02d50

120, 182

∞

7247b

130, 153

a9220

227, 180

ee302

60, 154

∞

∞

9fe25

131, 168

7d312

227, 181

a4330

131, 168

49980

49, 166

∞

bff58

129, 164

∞09132

227, 175

∞

∞

f1f2a

115, 175

ac444

151, 175

∞

02d50

121, 185

∞

∞

∞

∞

426bf

234, 183

ccbe0

83, 179

∞

ef869

84, 170

∞

∞

76afd

123, 160

∞

LegendName

Nodes,

Path Len.

Figure 4: Tree representing phenotypically distinct RRT* mutations on the StarCraft Engima map.
Labeled (fingerprint, nodes, path length) and colored by considered nodes

50

100

150

200

Considered Nodes

Initial

34, 149

∞

ade81

27, 157

∞

cd01e

16, 141

94e7b

9, 159

e0d07

16, 180
∞

58c71

8, 161

∞

ca0bc

44, 169

a1be6

238, 151

∞

94e7b

6, 156

∞

1bccc

7, 162

9a5f5

49, 156

5da10

36, 152

a5f7e

9, 169

94e7b

6, 149

8b066

14, 148

127ab

18, 148

∞

∞

∞

LegendName

Nodes,

Path Len.

Figure 5: Tree representing phenotypically distinct RRT* mutations on the Milan map. Labeled
(fingerprint, nodes, path length) and colored by considered nodes

10

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

2

4

6

8

10

12

14

16

18

Considered Nodes

Initial

19, 138

∞

70458

2, 88

9d7e1

2, 89

∞

∞

∞

∞

∞

67a69

6, 126

ee05a

7, 106

32ca3

3, 95

d7379

2, 93

d78c4

3, 95

∞

42ec7

3, 95

∞

87913

2, 89

Legend

Name

Nodes,

Path Len.

Figure 6: Tree representing phenotypically distinct RRT* mutations from optimization over the no-
obstacles map (Used as a control). Labeled (fingerprint, nodes, path length). Colored by considered
nodes.

0 200 400 600 800 1000

50

100

150

200

152

154

156

158

160

162

164

166
Considered Nodes Path Length

Iteration

C
on

si
de

re
d

N
od

es

P
at

h
L

en
g

th
Population Averages

Figure 7: Average population metrics. While both metrics cannot be optimized completely, opti-
mization only ever makes trade-offs. In this case, it makes a large trade-off between Path Length
and Considered Nodes

11

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

atoms name constant local binop body compop compops
0

0.05

0.1

0.15

0.2

Mutation Operator Distribution

Mutable Python Grammar Elements

P
ro

ba
bi

li
ty

Figure 8: Probability Distribution Considered by the Mutation Operator

0 200 400 600 800 1000
0

100

200

300

400

500

50

100

150

200

Considered Nodes

Iteration

P
la

nn
er

Considered Nodes

Figure 9: Population dynamics of optimized RRT* on the StarCraft Engima map. Planner 49980
eventually takes over the population.

12

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

Figure 10: A comparison of the best/worst evolved planners on the Milan city map. Top planner
(94e7b) has r0 = 50000 and α = 7/4. Bottom planner (aeb16) has r0 = 8, α = 7/8.

94e7b (Milan best) a1be6 (Milan worst) 49980 (Convergent) Initial (Validate)

49980 (Enigma best) 6e799 (Turbo best) c5b4f (Entanglement best) 70458 (No Obstacles best)

Figure 11: Validation

13

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

94e7b (Milan best) a1be6 (Milan worst) 49980 (Convergent) Initial (Validate)

49980 (Enigma best) 6e799 (Turbo best) c5b4f (Entanglement best) 70458 (No Obstacles best)

Figure 12: No Obstacles map validation

94e7b (Milan best) a1be6 (Milan worst) 49980 (Convergent) Initial (Validate)

49980 (Enigma best) 6e799 (Turbo best) c5b4f (Entanglement best) 70458 (No Obstacles best)

Figure 13: Milan map validation

14

	Introduction
	Methods
	Results and Discussion
	Appendix
	Experiment Parameters and Scripts
	Grammar Representation
	Additional Figures

