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ABSTRACT

Understanding the decision-making processes of large language models (LLMs) is
critical for ensuring transparency and trustworthiness. While Integrated Gradients
(IG) is a popular method for model explainability, it faces limitations when
applied to autoregressive models due to issues like exploding gradients and the
neglect of the attention mechanisms. In this paper, we propose an enhanced
explainability framework that augments IG with emphasis factors and attention
mechanisms. By incorporating attention, we capture contextual dependencies
between words, and the introduction of emphasis factors mitigates gradient issues
encountered during attribution calculations. Our method provides more precise
and interpretable explanations for autoregressive LLMs, effectively highlighting
word-level contributions in text generation tasks. Experimental results demonstrate
that our approach outperforms standard IG and baseline models in explaining
word-level attributions, advancing the interpretability of LLMs.

1 INTRODUCTION

As large language models (LLMs) become increasingly prominent in natural language processing
tasks (Kenton & Toutanova (2019); Jha et al. (2020)), understanding their decision-making processes
is critical for ensuring transparency and trustworthiness Lipton (2018). Autoregressive models, in
particular, generate text by predicting one word at a time based on the preceding context, making
it essential to interpret how individual words influence subsequent predictions. Traditional model
explainability techniques, such as Integrated Gradients (IG), have been widely used to quantify the
contribution of input features to model outputsShrikumar et al. (2017); Lundberg (2017); Murdoch
et al. (2018). However, when applied to autoregressive models, IG faces inherent challenges due to
their sequential nature, often leading to inaccurate or incomplete explanations Enguehard (2023).
Further related works has been discussed in Appendix A.1. In autoregressive text generation,
capturing the contextual dependencies between words is crucial for reliable interpretability Vaswani
(2017). Moreover, common challenges, such as exploding gradients during the gradient calculation
for long texts using the IG method, further complicate the task of identifying meaningful token-level
contributions. To address these challenges, we propose an enhanced explainability framework
integrating attention mechanisms and emphasis factors with IG. Attention allows us to account for the
relationships between words in the context window while scaling factors mitigate the gradient-related
issues that can obscure proper explanations. We make the following key contributions in this paper:

1. We identify the limitations of the exploding gradient problem when applying the Integrated
Gradients (IG) method for attribution analysis for long texts using generative LLMs.

2. We propose a novel solution to address the exploding gradient problem encountered during
attribution calculations in the Integrated Gradients method.

3. We integrate the Attention mechanism into the attribution calculation, as it plays a critical
role in predicting the next token in large language models (LLMs).

4. We conduct a comprehensive comparative study, evaluating our proposed method against
several baseline models across multiple datasets and architectures.
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Figure 1: (a) shows the IG values, the masked self-attention values and the EF values of the tokens
with respect to the “surprise” token for the text “The movie took me by surprise.” produced by the
GPT2-small model. Our method combines these to create the values of AIEG method. (b) shows the
self-attention values with respect to the token “surprise”.(c) shows the accumulation of gradient of
the output word with respect to a particular input word from the beginning of the text, over time in
the Integrated Gradient method as the length of the generated text gets long.

2 LIMITATIONS OF GRADIENTS AS ATTRIBUTIONS FOR GENERATIVE MODELS

Axiom: Sensitivity: The gradient-based method does not satisfy the sensitivity axiom. Let’s
demonstrate this with a straightforward example using a simple RNN. These are the general equations
for the hidden state and output for an RNN, as given below.

Hidden State Update: ht = σ(Whx · xt + Whh · ht−1 + bh) (1)
Output Calculation: yt = ϕ(Why · ht + by) (2)

The hidden state at time step t is denoted by ht. The activation function, denoted by σ and ϕ, is
typically a non-linear function such as tanh or ReLU. which introduces non-linearity and affects
gradient flow during backpropagation. The trainable weight matrix for the input xt is represented
by Whx. Here, xt denotes the input at time step t. The trainable weight matrix for the previous
hidden state ht−1 is given by Whh, and ht−1 is the hidden state from the previous time step. bh

and by represent the bias terms. Now we will try to create a simple RNN from equations (1) and
(2). We take Whx = −1,Whh = 0,Why = 1,bh = 1,by = 1, ht−1 = 0, and ϕ = σ = ReLU. So
the equation becomes: ht = ReLU(1− xt) and yt = ReLU(1 + ht). The value of yt is 2 and 1 for
values of xt = 0 and 2 respectively. The value of x · ∂yt

∂x is 0 for both the values of xt, indicating that
sensitivity is not preserved.

3 APPROACH USING INTEGRATED GRADIENTS

In the paper Sundararajan et al. (2017), the authors demonstrate the application of Integrated Gradients
to neural machine translation models utilizing LSTM architectures. They compute the contribution
of each input token to the probability of every output token, which is represented in the form
of wordpieces. This process effectively aligns the output sentence with the input sentence. For
the baseline, the authors set the embeddings of all tokens to zero, except for the start and end
markers. Suppose for a neural network F , the goal is to compute attributions IG(x) that quantify the
contribution of each input word to the network’s output. Consider an input x ∈ Rn and a baseline
input x′ ∈ Rn (typically a zero vector). Integrated Gradients compute the attributions of the input
relative to this baseline.
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(a)

(b)

Figure 2: (a) shows the gradient values of the previously generated tokens with respect to the ”actors”
token calculated by the Integrated Gradient method. As the distance between the tokens increases,
the gradient value increases and may explode if the text under consideration is very long. (b) shows
the gradient values of the previously generated tokens with respect to the ”actors” token calculated by
our proposed method AIEG. The method has scaled down the gradient values by about 10%. The EF
factor helps to capture only the gradients where the model makes decisions.

The attribution of the i-th word is given by:

IGi(x) = (xi − x′
i)

∫ 1

α=0

∂F (x′ + α(x− x′))

∂xi
dα (3)

This formula represents the integrated gradient along the straight line between the baseline x′ and the
input x.
Although the method has demonstrated effectiveness in neural machine translation, it fails to address
certain limitations specific to generation tasks, which we will explore in the following sections.

3.1 LIMITATIONS IN INTEGRATED GRADIENT METHOD

While the method outlined in this paper has proven effective in numerous applications, it encounters
specific challenges when applied to long text generation with auto-regressive models such as GPTs.
Firstly, the method struggles with problems similar to exploding and vanishing gradient issues
that arise when computing the gradients of the output relative to input tokens, as shown in figure
1(c). Secondly, it neglects the impact of attention—a critical component in large language models
(LLMs)—in the attribution calculations of input tokens concerning the output tokens. Thirdly,
this method assigns equal importance to all gradients, even in regions where the model’s decision
remains unchanged, leading to the accumulation of low-quality gradients. The issue of exploding and
vanishing gradients is presented below as a theorem.

Theorem: Consider an auto-regressive neural network represented by the function F : Rn → e⃗,
where e⃗ is the embedding word vector of dimension n. Given an input sequence x1,x2, . . . ,xT

where xt ∈ Rn is the input vector at time step t, the hidden state of F is updated iteratively at each
time step. Denote the hidden state at time step t as ht ∈ Rm, where m is the dimension of the hidden
layer. We propose that when long sequences of text are considered (T >> 1), the calculation of
Integrated Gradients may result in undefined or numerically unstable values during the calculation
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of ∂yt

∂xt′
, where yt is the output generated at time t and xt′ is the input word that was generated at

time t′.

Proof: Consider the scenario where we aim to calculate the attributions of the input words for the
output word generated at time t. In autoregressive models—such the output at time t− 1 serves as
input for generating the output at time t. Given Equations (1) and (2), the gradient of the output
at time step t, denoted as yt, with respect to an input word xt′ at time step t′, derived from an
interpolated input, is expressed as follows. For t′ = t (the same time step):

The gradient of the output yt with respect to the input xt is:

∂yt
∂xt

=
∂yt
∂ht

· ∂ht

∂xt
(4)

Where:
∂yt
∂ht

= Wy · σ′(Wyht + by) (5)

∂ht

∂xt
= Wx · σ′(Whht−1 + Wxxt + bh) (6)

For t′ < t (previous time steps):

The gradient of the output yt with respect to an earlier input xt′ (where t′ < t) requires us to account
for the effect of xt′ on all subsequent hidden states up to ht:

∂yt
∂xt′

=
∂yt
∂ht

· ∂ht

∂ht−1
· ∂ht−1

∂ht−2
· · · ∂ht′+1

∂ht′
· ∂ht′

∂xt′
(7)

Where:
∂ht

∂ht−1
= Wh · σ′(Whht−1 + Wxxt + bh) (8)

and σ′ is the derivative of the activation function.

Based on equations 7 and 8, it is clear that the gradients of each hidden layer are successively
multiplied by the gradients of the previous layers, leading to an accumulation of gradients during the
computation. Following this, the Integrated Gradients (IG) values are determined using equation 3.
This process, particularly for long sequences, can result in gradient explosion due to the cumulative
summation, as depicted in figure 2, which may introduce instability in the gradient calculations. □

4 OUR PROPOSED METHOD

4.1 MOTIVATION

We aim to identify the positive contributions of individual input tokens towards the generation of the
output token. In this work, we address the limitations of Integrated Gradients (IG) discussed in the
previous section. Our approach aims to mitigate the risk of gradient explosion by scaling down the
value of dF

dx and focusing only on high-quality gradients, i.e., those where the logits exhibit rapid
changes (Walker et al. (2024)). By selectively considering these gradients, we effectively reduce
the likelihood of gradient explosion in dF

dx . Also, given the critical role that attention mechanisms
play in Large Language Models (LLMs) for next-token generation, it is essential to incorporate
attention weights when calculating attributions. The attention mechanism, introduced by Vaswani
(2017), allows models to focus on relevant parts of an input sequence, emphasizing key information
when processing long sequences, shown in figure 1(b), and improving performance in tasks like
translation, summarization, and question-answering. Consequently, attention is crucial for LLMs’
decision-making in the next token generation and should be considered alongside integrated gradients
in attribution calculations. Additionally, large language models like GPTs (Radford et al., 2019) use
a technique known as masked self-attention, which plays a pivotal role in sequence generation tasks.

Axiom: Attention: Consider two words, xt1 and xt2, within a sequence of words in a sentence, with
attention values At1,t and At2,t, respectively, corresponding to the generated output word at time t.
If At1,t > At2,t, then it implies that the word xt1 has a greater impact and contribution towards the
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(a) (b)

(c) (d)

Figure 3: The above diagrams illustrate the Output Vs Alpha and EF Vs Alpha graphs of two different
texts. (a) and (c) illustrates how the output changes with varying values of α. Here the output is the
L1 normalisation of the embedding vector of the targeted output. It is evident that around α = 0.8,
the model makes its prediction, and beyond this point, the model maintains its decision. (b) and (d)
shows the variation of the emphasis factor (EF) with respect to the values of α. Our method focuses
on high-quality gradients, where the model makes decisions (rapid change of output), while in regions
of low-quality gradients, the EF becomes 0, reducing the entire term in our proposed method to 0.

generation of the output word at time t. This higher attention value reflects that xt1 is considered
more relevant and influential in the context of the output prediction compared to xt2. □

Previous attribution methods have largely overlooked the significance of attention mechanisms in their
computations. In contrast, we propose using the aforementioned axiom to calculate the attribution
of each input word towards the output. Let for an auto-regressive model with L decoder layers and
H multi-headed masked self-attention mechanisms, Attentiont′,t,h,l denote the attention value of an
input word xt′ generated at time t′ with respect to the output word xt generated at time t (where
t′ < t), for the lth layer and hth attention head. The overall attention of that input word towards the
output word NetAttentiont′,t can then be computed as:

NetAttentiont′,t =
1

L

L∑
l=0

(
1

H

H∑
h=0

Attentiont′,t,h,l

)
(9)

where,

Attentiont′,t,h,l =

(
softmax

(
Qt′,h,lK

T
t,h,l√

dk

))
Vt′,h,l (10)

Qt′,h,l is the query vector of token xt′ , Kt,h,l is the key vector of token xt, Vt′,h,l is the value vector
of the xt′ token for the lth layer and the hth attention head and dk is the dimensionality of the
key/query vectors.

Building upon the above theorem and axiom, we introduce our proposed attribution method, Attended
Integrated and Emphasized Gradients (AIEG), along with the Emphasis Factor (EF). Consider an
auto-regressive model generating a token xt. Our goal is to compute the attribution of a previously
generated token xt′ , where 0 < t′ < t. In this context, x′

t serves as the baseline for the input xt, and
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x′
t′ acts as the baseline for the token xt′ . Thus, to compute the attribution of the output token with

respect to the input token xt′ :

AIEGt′(xt) = NetAttentiont′,t×PosNorm
(
(xt′ − x′

t′)×
∫ 1

α=0

∂F (x′
t + α(xt − x′

t))

∂xt′
×EF dα

)
(11)

where,

EF =
|F (x′

t + α(xt − x′
t))− F (x′

t + (α− ϵ)(xt − x′
t))|

|F (x′
t + α(xt − x′

t)) |+ |F (x′
t + (α− ϵ)(xt − x′

t)) |
, (12)

PosNorm(a) =
a∑t−1

T=1 AIEGT (xt)
, (13)

where, a > 0, ∀T AIEGT (xt) > 0, ϵ is the minimum difference between two values of α, (α−ϵ) ≥ 0
and 0 < ϵ < 1. Also ||F (x′

t + α(xt − x′
t)) |+ |F (x′

t + (α− ϵ)(xt − x′
t))| | > 0, so that the EF

remains defined for all values of xt, x
′
t and α.

The PosNorm function normalizes the attribution of a token generated at time t′ for the output token
at time t (t′ < t) across all positive attributions of tokens generated from T = 1 to T = t− 1. We
focus solely on positive attributions as we are interested in identifying words that positively contribute
to the output. In our approach, attention and gradients are weighted equally, as both contribute equally
to the generation of the next token. If the gradient value is high but the attention value of the input
token with respect to the output token is low, the overall attribution decreases, and the reverse is also
true. This has been depicted in figure 1 (a) with the text ”The movie took me by surprise.” and the
output word with respect to which the gradients are calculated is ”surprise”. The algorithm for the
method has been discussed in Appendix A.3. Next, we will present two theorems, along with their
proofs, and three axioms to further explore the properties of the above equations.

Theorem1: Consider a function F (x) : R → R and the Emphasis Factor EF function, mentioned
in equation 12, which is continuous over the entire range of F (x). We argue that F (x) × EF ≤
F (x), ∀F (x) ∈ R, keeping the sign of F (x) intact.

Proof: The Emphasis Factor (EF) can be expressed in a simple form as EF = |m−n|
|m|+|n| .

When m ̸= n: ∀m and n, where m ̸= n, the following holds:0 < EF ≤ 1. This is true because
|m− n| = |m+ (−n)| ≤ |m|+ | − n| = |m|+ |n| by the triangle inequality.
When m = n: we have: EF = 0

Thus, in both cases, the product F (x)× EF satisfies the following condition: F (x)× EF ≤ F (x).
This demonstrates that the Emphasis Factor ensures the product is always less than or equal to the
original function F (x) and hence checks the exploding gradient that arises while calculating the
gradients. Also, since EF is always greater than equal to zero, it keeps the sign of the product the
same as F (x). Hence the contribution of the words remains same, that is, a positively contributing
word does not change to negative because of EF.□

Theorem2: Consider a function F (x) : R → R and the Emphasis Factor EF function, We assert
that the Emphasis Factor prioritizes gradients in regions where the model is making decisions, while
disregarding gradients in areas where the output has already been predicted.

Proof: Consider an input token with an attention value greater than 0 with respect to the output token.
When F (x′

t + α(xt − x′
t)) ̸= F (x′

t + (α− ϵ)(xt − x′
t)), the model is still in the decision-making

phase, resulting in EF > 0, and thus ∂F (x′
t+α(xt−x′

t))
∂x′

t
×EF dα > 0. Conversely, when F (x′

t+α(xt−
x′
t)) = F (x′

t + (α − ϵ)(xt − x′
t)), the model has already made a decision, implying EF = 0, and

∂F (x′
t+α(xt−x′

t))
∂x′

t
× EF dα = 0 for a specific value of α. Hence, the Emphasis Factor (EF) selectively

captures only high-quality gradients, filtering out low-quality ones. Figure 3 and Appendix A.7
shows this theorem through graphs for different examples.□
Due to the properties outlined in Theorems 1 and 2, the use of the EF effectively mitigates the gradient
explosion issue commonly observed in standard Integrated Gradients.
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GPT2-small GPT-nano LLaMA
Method LO↓ Comp↑ Suff↓ LO↓ Comp↑ Suff↓ LO↓ Comp↑ Suff↓
Grad*Inp -0.245 0.173 0.322 -0.290 0.165 0.368 -0.360 0.148 0.445
IG -0.527 0.338 0.260 -0.780 0.362 0.236 -1.180 0.310 0.415
IGCG -0.480 0.278 0.174 -0.435 0.229 0.280 -1.040 0.295 0.418
DeepLIFT -0.195 0.054 0.488 -0.299 0.079 0.433 -0.174 0.064 0.469
GradShap -0.377 0.217 0.309 -0.522 0.167 0.346 -0.685 0.224 0.434
Attn.-Only -0.137 0.121 0.294 -0.144 0.133 0.308 -0.177 0.187 0.445
AIEG -0.535 0.348 0.140 -0.860 0.368 0.258 -1.510 0.395 0.355

Table 1: Comparison of our proposed method with various feature attribution methods across three
language models fine-tuned and tested on the SST-2 dataset. For ↑ metrics, higher values indicate
better performance, while for ↓ metrics, lower values are preferred.

GPT2-small GPT-nano LLaMA
Method LO↓ Comp↑ Suff↓ LO↓ Comp↑ Suff↓ LO↓ Comp↑ Suff↓
Grad*Inp -0.252 0.170 0.319 -0.115 0.163 0.370 -0.233 0.145 0.442
IG -0.530 0.334 0.165 -0.792 0.358 0.254 -1.185 0.305 0.413
IGCG -0.482 0.276 0.179 -0.429 0.227 0.284 -1.048 0.291 0.412
DeepLIFT -0.196 0.073 0.487 -0.198 0.080 0.432 -0.175 0.065 0.470
GradShap -0.478 0.216 0.310 -0.521 0.168 0.347 -0.684 0.225 0.365
Attn.-Only -0.138 0.111 0.295 -0.143 0.134 0.309 -0.176 0.186 0.446
AIEG -0.542 0.345 0.137 -0.865 0.365 0.240 -1.515 0.393 0.351

Table 2: Comparison of our proposed method with various feature attribution methods across three
language models fine-tuned and tested on the IMDB dataset. For ↑ metrics, higher values indicate
better performance, while for ↓ metrics, lower values are preferred.

Axiom: Sensitivity: Consider an autoregressive neural network function F , which is continuous and
differentiable with respect to α, ensuring that ∂F

∂α is well-defined. Our attribution method at α along
a given path is defined as: ∂F

∂x × EF. The term (x− x′) is omitted here, as it is a post-processing
factor. For an input token closely related to the output token NetAttention > 0.
When EF = 0, which implies the change in output is 0 and therefore, the attribution is naturally zero.
Conversely, when EF ̸= 0, at least one feature will have ∂F

∂x ̸= 0, resulting in a nonzero attribution.
Therefore, by definition, our proposed attribution method AIEG satisfies the Sensitivity axiom.□

Axiom: Implementation Invariance: Consider an autoregressive neural network F , where g is the
input at time t′, h represents the hidden layer, and f is the output generated at time t (with t > t′). In
AIEG, the computation of ∂f

∂g is performed through the chain rule, such that ∂f
∂g = ∂f

∂h · ∂h
∂g . Given

that the input word g contributes positively to the output token (NetAttention > 0), our proposed
method adheres to the principle of Implementation Invariance. □

Axiom: Linearity: Assume we combine two autoregressive deep networks, represented by the
functions f1 and f2, to form a third network that models the function a× f1 + b× f2, i.e., a linear
combination of the two networks. The attributions computed by the AIEG method for a× f1 + b× f2
result in a weighted sum of the attributions for f1 and f2, with weights a and b, respectively. Therefore,
our method satisfies the principle of linearity. □

5 EXPERIMENT AND EVALUATION

5.1 EXPERIMENT DESIGN

We evaluate our proposed method against the following baseline models: Grad*Inp (Shrikumar et al.
(2016)), Integrated Gradients (IG) (Sundararajan et al. (2017)), Integrated Gradients with Clipped
Gradients (IGCG) as described in Appendix A.2, DeepLift (Shrikumar et al. (2017)), GradientShap
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(a) These are the attributions calculated by AIEG
method where the word of interest is “galaxy”.

(b) These are the attributions calculated by IG method
where the word of interest is “galaxy”.

(c) These are the attributions calculated by AIEG
method where the word of interest is “cities”.

(d) These are the attributions calculated by IG method
where the word of interest is “cities”.

(e) These are the attributions calculated by AIEG
method where the word of interest is “married”.

(f) These are the attributions calculated by IG method
where the word of interest is “married”.

(g) These are the attributions calculated by AIEG
method where the word of interest is “window”.

(h) These are the attributions calculated by IG method
where the word of interest is “window”.

Figure 4: Here, we compare the outputs generated by the AIEG and IG methods. In both cases, words
are color-coded, with greener words indicating higher attribution toward the target word. It is evident
that the AIEG method highlights words that carry more meaningful contributions, whereas the IG
method produces less interpretable attributions.The IG attributions lack clarity. The above texts are
generated by prompting GPT2-small and then their attributions are calculated using the two methods.

(Lundberg (2017)) and Attention-Only method (here we consider on the self-attention values of
the input tokens with respect to the token of interest). For benchmarking, we employ the Stanford
Sentiment Treebank (SST2)(Socher et al. (2013)) and IMDB (Maas et al. (2011)) datasets, comparing
performance across the GPT2-small, GPT-nano, and Llama (Touvron et al. (2023)) models using the
following metrics:

• Log-odds (LO) score: Shrikumar et al. (2017), measures the average change in negative
logarithmic probabilities for the predicted class when the top k% of features are masked
using zero padding. Lower scores indicate better performance.

• Comprehensiveness (Comp) score: DeYoung et al. (2020), quantifies the average change
in predicted class probability resulting from the removal of the top k% of features. A higher
score indicates better performance.

• The Sufficiency (Suff) score: DeYoung et al. (2020), measures the average change in
predicted class probability when only the top k% of features are retained. This score
evaluates how well the top k% attributions alone account for the model’s prediction.

In our study, we consider ŷ as the predicted output token at time step t for a given input. To assess
model performance, we will remove the top k% (in our case, the value of k is 20%) of the words

8
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(a) Log-Odds (b) Comprehensiveness (c) Sufficiency

Figure 5: Impact of varying the top-k% on the log-odds, comprehensiveness, and sufficiency metrics
for the GPT2-small model fine-tuned on the IMDb (Maas et al. (2011)) dataset.

predicted by the respective models. This approach will provide insight into the models’ confidence and
facilitate a comparative performance analysis. For the Integrated Gradients with Clipped Gradients
(IGCG) method, we applied a threshold of 1, 000, 000 to clip extreme gradient values during the
attribution calculation. Detailed explanations of the metrics has been discussed in Appendix A.4.

SST2 contains 11,855 individual sentences extracted from movie reviews, while the IMDB dataset
consists of 50,000 movie reviews. We randomly selected 5000 reviews from each dataset and
fine-tuned the models as masked language models. A smaller number of examples was chosen
for fine-tuning, as our objective is to understand the model’s behaviour rather than to generate
high-quality, task-related outputs. Similarly for testing, we randomly selected around 2100 movie
reviews from each dataset and used a portion of the review to construct a paragraph of 50, 200, and
400 tokens, with each category having an equal amount of movie reviews (700). Since the model
outputs tokens, we convert them back to words before presenting the final output. For words that are
split during tokenization, the tokens are reassembled, and their individual attributions are summed to
compute the attribution of the entire word. From the generated text, we manually selected a token
of interest to calculate its positive attribution based on the preceding tokens. The attributions were
computed and compared across different models. Table 1 presents the attribution comparisons for
the SST2 dataset, while Table 2 compares the results for the IMDB dataset.

5.2 RESULTS

Tables 1 and 2 compare the performance of our proposed algorithm against the other attribution
methods discussed above. Our results consistently outperform the other methods across the datasets
and language models. This suggests that the attention mechanism and the emphasis factor play a
crucial role in determining the attribution of each token towards the output token. In Figures 4,
we aim to identify the positive attribution of the input words toward the output word (the word of
interest) and compare the outputs generated by our proposed method (left examples) with those
from Integrated Gradients (right examples). The greener a word appears, the greater its positive
contribution to the word of interest. In Figures 4 (a) and (b), the word of interest is ”galaxy.” It
is clear that the words with the highest attributions in (a) are ”land,” ”lived,” ”warrior,” ”aliens,”
and ”wars,” which are coherent. In contrast, (b), generated by the IG method, highlights ”In” along
with the other words. Similarly, from the other examples, it is evident that our proposed method
outperforms IG. More visual examples has been shown in Appendix A.6, where we have compared
the attributions computed by all the above-mentioned methods. We tested our method with text
summarising and compared it with the IG method in Appendix A.5. In almost all the cases AIEG
gives more reasonable attributions than IG method.

Ablation Studies on the values of k in Evaluation Metrics: Figure 5 illustrates the impact of
varying the top-k% on the log-odds, comprehensiveness, and sufficiency metrics for the GPT2-small
model fine-tuned on the IMDb dataset. We compare our AIEG method against the Integrated
Gradients (IG). Our results show that both variants outperform IG across all values of k. Notably, the
performance gap between AIEG and IG is minimal at lower k values but progressively widens as k

9
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increases, as depicted in figure 5 (a). In figure 5 (b) and figure 5 (c) the gap between the values
remains almost the same but AIEG outperforms IG for all values of k.

6 CONCLUSION

In this paper, we demonstrated the limitations of the Integrated Gradients (IG) method in computing
input token attributions toward the output token. Specifically, we highlighted the issue of exploding
gradients when calculating the gradients of input tokens with respect to the output. To address this, we
introduced the Attended Integrated and Emphasized Gradients (AIEG) method, which mitigates the
exploding gradient problem by focusing on high-quality gradients. Our proposed method consistently
outperforms other approaches in attribution calculation across multiple datasets and models.

REFERENCES

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher,
and Byron C. Wallace. ERASER: A benchmark to evaluate rationalized NLP models. In Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 4443–4458, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.408. URL https:
//aclanthology.org/2020.acl-main.408.

Joseph Enguehard. Sequential integrated gradients: a simple but effective method for explaining
language models. arXiv preprint arXiv:2305.15853, 2023.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and Jordan Boyd-Graber.
Pathologies of neural models make interpretations difficult. arXiv preprint arXiv:1804.07781,
2018.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680,
2022.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138, 2019.

Anupama Jha, Joseph K. Aicher, Matthew R. Gazzara, Deependra Singh, and Yoseph Barash.
Enhanced integrated gradients: improving interpretability of deep learning models using splicing
codes as a case study. Genome biology, 21:1–22, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2. Minneapolis, Minnesota, 2019.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Analyzing feed-forward blocks
in transformers through the lens of attention map. arXiv preprint arXiv:2302.00456, 2023.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
The devil is in the neurons: Interpreting and mitigating social biases in language models. In The
Twelfth International Conference on Learning Representations, 2024.

10

https://aclanthology.org/2020.acl-main.408
https://aclanthology.org/2020.acl-main.408


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning, pp.
15817–15831. PMLR, 2022.

W James Murdoch, Peter J Liu, and Bin Yu. Beyond word importance: Contextual decomposition to
extract interactions from lstms. arXiv preprint arXiv:1801.05453, 2018.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Hao Peng, Xiaozhi Wang, Shengding Hu, Hailong Jin, Lei Hou, Juanzi Li, Zhiyuan Liu, and Qun
Liu. Copen: Probing conceptual knowledge in pre-trained language models. arXiv preprint
arXiv:2211.04079, 2022.

Gandhi Prerak, Pramanik Vishal, and Bhattacharyya Pushpak. Kurosawa: A script writer’s assistant.
In Proceedings of the 20th International Conference on Natural Language Processing (ICON), pp.
540–550, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black
box: Learning important features through propagating activation differences. arXiv preprint
arXiv:1605.01713, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp.
3145–3153. PMlR, 2017.

Sandipan Sikdar, Parantapa Bhattacharya, and Kieran Heese. Integrated directional gradients: Feature
interaction attribution for neural nlp models. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 865–878, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Chase Walker, Sumit Jha, Kenny Chen, and Rickard Ewetz. Integrated decision gradients: Compute
your attributions where the model makes its decision. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 5289–5297, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv
preprint arXiv:2211.00593, 2022.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. arXiv
preprint arXiv:2305.13172, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORKS

Explainability in machine learning, particularly for large language models (LLMs), has become a
crucial area of research as these models grow in complexity. The ”black-box” nature of models
like GPT and LLaMA-2 Touvron et al. (2023) poses significant challenges in understanding how
these models make predictions, leading to a demand for more transparent methods to interpret their
behaviour.

Local explainability techniques such as SHAP Lundberg (2017) and LIME Ribeiro et al. (2016) have
been widely adopted to provide insight into the contributions of individual input features. These
methods rely on perturbations and attribution techniques to assess the influence of tokens on model
outputs. However, they are often computationally intensive and assume feature independence, which
may not hold in real-world datasets Feng et al. (2018). Also, these methods may not be able to capture
the decision of why the model generated the token under consideration. Gradient-based methods such
as Integrated Gradients Sundararajan et al. (2017) accumulate the gradients along the input feature
path, providing a smoother attribution but at the cost of higher computational demand and reduced
faithfulness ( Sikdar et al. (2021); Shrikumar et al. (2017)).

Global explainability focuses on extracting and interpreting broader patterns within models.
Probing-based methods have been essential in identifying the syntactic and semantic representations
encoded within LLMs (Hewitt & Manning (2019); Peng et al. (2022)). Studies by Geva et al.
(2022) and Kobayashi et al. (2023) delve into the internal mechanisms of models, showing that
feed-forward networks and attention heads capture complex linguistic knowledge. Mechanistic
interpretability has also become an essential field, aiming to reverse-engineer neural networks into
comprehensible circuits Wang et al. (2022), allowing for a deeper understanding of tasks like indirect
object identification.

Model editing has recently garnered attention as a way to directly alter specific knowledge within
LLMs without extensive retraining. Techniques such as hypernetwork-based editing Mitchell et al.
(2022) and causal tracing Meng et al. (2022)) allow for targeted interventions in model behavior,
improving its responses to particular inputs. These techniques have shown potential in enabling
models to adapt without disrupting overall performance Yao et al. (2023).

Explainability has also been used to enhance task-specific capabilities. In-context learning (ICL),
for instance, has benefited from studies showing that specific attention heads play a pivotal role in
transferring knowledge from prompt examples to downstream tasks (Hendel et al. (2023); Todd et al.
(2023)). Moreover, explainability methods like inference-time intervention (ITI) have been leveraged
to address issues of hallucination in text generation, where models generate outputs that deviate from
factual content. Li et al. (2024) demonstrated that truthful interventions in attention layers could
significantly enhance the factuality of model outputs, mitigating the impact of hallucinations.

Beyond improving factuality, explainability has also been used to tackle biases within models.
Techniques like integrated gradients (Sundararajan et al. (2017)) and its variations have been applied
to identify neurons responsible for social biases (Liu et al. (2024)), offering a pathway to fairer and
more ethically aligned language models.

Overall, the body of research highlights the importance of developing both local and global
explainability methods to improve trust and transparency in LLMs. These methods not only facilitate
understanding but also open new avenues for enhancing the performance and ethical alignment of
models in diverse NLP applications.

A.2 WHY NOT USE GRADIENT CLIPPING BEYOND A THRESHOLD TO STOP THE GRADIENT
EXPLOSION?

We are suggesting that instead of using an emphasis factor, when the gradient exceeds a predefined
positive threshold, further multiplication is halted. This approach prevents the gradients from
becoming too small or too large, ensuring more stable and meaningful gradient calculations.
Specifically, we define positive and negative thresholds θ+ and θ−, respectively. The gradients
are modified as follows:
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∂ht

∂ht−1

(capped)

=

{
∂ht

∂ht−1
, if ∂ht

∂ht−1
≤ θ+

θ+, if ∂ht

∂ht−1
> θ+

Clipping the gradients has a significant impact on the calculation of attributions. This approach may
hinder the proper accumulation of critical gradients, particularly in areas where the model makes key
decisions. As a result, the method fails to accurately highlight the tokens that contribute the most
to the output. The impact of gradient clipping on the attribution process is further illustrated in the
accompanying figures in Appendix A.6.

A.3 PROPOSED ALGORITHM

1. Encode input text to token IDs: x = tokenizer(text)
2. Set baseline: x0 = 0 (if not provided)
3. Initialize total gradients: Gtotal = 0

4. For each α ∈ [0, 1] with steps N :

xi(α) = x0 + α(x− x0)

y(α) = model(xi(α))

∇xi(α) =
∂y(α)

∂xi(α)

∆G(α) = ∇xi(α) ·
∣∣y(α)− y(α− 1

N )
∣∣

|y(α)|+ |y(α− 1
N )|

Gtotal+ = ∆G(α)

Gavg =
Gtotal

N
5. Compute IG scores: IG(x) = (x− x0) ·Gavg

6. Normalize IG scores: IGnorm(x) =
IG(x)∑
IG(x)

7. Extract attention and Average: A = average attention from each layer l and head h

8. Compute contribution: C(x) = IGnorm(x) ·A
9. Return token contributions: C(x) for each token

A.4 EVALUATION METRICS

• Log-odds (LO) score: Shrikumar et al. (2017), measures the average change in negative
logarithmic probabilities for the predicted class when the top k% of features are masked
using zero padding. To calculate this, the top k% of words are identified based on attribution
scores from an explanation algorithm and are then replaced with zero padding. Specifically,
for a dataset with N sentences, the LO score is defined as:

log-odds(k) =
1

N

N∑
i=1

log

(
p(ŷ | x(k)

i )

p(ŷ | xi)

)
where ŷ is the predicted class, xi is the i-th sentence, and x

(k)
i is the modified sentence with

the top k% words replaced by zero padding. Lower scores indicate better performance.
• Comprehensiveness (Comp) score: DeYoung et al. (2020), quantifies the average change

in predicted class probability resulting from the removal of the top k% of features. This
score, similar to the Log-odds, assesses the impact of the most influential words on the
model’s prediction. It is defined as:

Comp(k) =
1

N

N∑
i=1

[
p(ŷ | x(k)

i )− p(ŷ | xi)
]
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where x
(k)
i represents the modified sentence with the top k% of words removed. Higher

scores indicate better performance.
• The Sufficiency (Suff) score: DeYoung et al. (2020), measures the average change in

predicted class probability when only the top k% of features are retained. This score
evaluates how well the top k% attributions alone account for the model’s prediction. It is
calculated similarly to the Comprehensiveness score, but here x

(k)
i refers to the sentence

containing only the top k% of words. Lower scores indicate better performance.

A.5 APPLICATIONS IN OTHER TASKS

We evaluated our model for text summarization. For this purpose, we employed the XSum dataset
(Narayan et al. (2018)). The GPT-2 (small) model was used for summarization, with the string
”TL;DR” appended to the end of the input to guide the summarization process. Following the
generation of the summarized text, we computed attributions for each word and aggregated their
contributions. For example, given the summarized text ”The scientists discovered a new animal,”
we determined the contribution of each word, starting from ”The” to ”animal,” and accumulated
their respective contributions. Since it is an autoregressive model, the words generated in the
summarised text depend on the previous words as well, and therefore, even the summarised text has
its contributions in generating the next word. This process is illustrated in Figures 6 to 14 below.

We then compared the output of the Integrated Gradients (IG) method with that of the AIEG method.
Our results indicate that the attributions produced by AIEG are more reasonable and consistent
compared to those from IG.
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Figure 6: Image 1
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Figure 7: Image 2
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Figure 8: Image 3
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Figure 9: Image 4
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Figure 10: Image 5
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Figure 11: Image 6
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Figure 12: Image 7
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Figure 13: Image 8
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Figure 14: Image 9
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A.6 VISUAL COMPARISONS AMONG THE METHODS

In this section, we present additional visual examples comparing the attribution calculations for
each method. We employed the GPT-2 (small) model, finetuned with the IMDb dataset Prerak et al.
(2023) using 500 data points, and generated text based on small prompts. The generated sequences
varied in length, randomly set to 50, 100, or 200 tokens. We then calculated the attributions for
specific words of interest, as illustrated in Figures 15 to 29. The colour intensity of green reflects the
magnitude of each word’s contribution—darker green indicates a higher contribution. Across almost
all examples, the AIEG method produced more interpretable and reasonable attributions compared to
the IG method.

Figure 15: Image 1
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Figure 16: Image 2
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Figure 17: Image 3
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Figure 18: Image 4
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Figure 19: Image 5
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Figure 20: Image 6
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Figure 21: Image 7
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Figure 22: Image 8
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Figure 23: Image 9
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Figure 24: Image 10
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Figure 25: Image 11
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Figure 26: Image 12
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Figure 27: Image 13
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Figure 28: Image 14
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Figure 29: Image 15
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A.7 GRAPHICAL VISUALISATION OF THE EF AND AIEG VALUES

In this section, Figures 30 to 34 present graphical representations of various metrics: IG values vs.
Tokens, EF (Exponential Factor) vs. Alpha, Output vs. Alpha, (Output x EF) vs. Tokens, and AIEG
values vs. Tokens for short sentences. These visualizations provide valuable insights into the behavior
of our proposed method and highlight the key differences compared to the standard IG approach.

Figure 30: Images 1

Figure 31: Images 2
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Figure 32: Images 3

Figure 33: Images 4

Figure 34: Images 5
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