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Abstract001

Despite large language models (LLMs) have002
achieved impressive achievements across nu-003
merous tasks, supervised fine-tuning (SFT) re-004
mains essential for adapting these models to005
specialized domains. However, SFT for do-006
main specialization can be resource-intensive007
and sometimes leads to a deterioration in per-008
formance over general capabilities due to catas-009
trophic forgetting (CF). To address these issues,010
we propose a self-adaptive gradient-aware data011
selection approach (GrADS) for supervised012
fine-tuning of LLMs, which identifies effec-013
tive subsets of training data by analyzing gradi-014
ents obtained from a preliminary training phase.015
Specifically, we design self-guided criteria that016
leverage the magnitude and statistical distri-017
bution of gradients to prioritize examples that018
contribute the most to the model’s learning pro-019
cess. This approach enables the acquisition of020
representative samples that enhance LLMs un-021
derstanding of domain-specific tasks. Through022
extensive experimentation with various LLMs023
across diverse domains such as medicine, law,024
and finance, GrADS has demonstrated signif-025
icant efficiency and cost-effectiveness. Re-026
markably, utilizing merely 5% of the selected027
GrADS data, LLMs already surpass the perfor-028
mance of those fine-tuned on the entire dataset,029
and increasing to 50% of the data results in sig-030
nificant improvements! With catastrophic for-031
getting substantially mitigated simultaneously.032
We will release our code for GrADS later.033

1 Introduction034

Although LLMs have achieved remarkable perfor-035

mances in multiple tasks such as open-domain036

question-answering (Achiam et al., 2023; Yang037

et al., 2024a), logical inference (Nam et al.,038

2024), and long-context understanding (Chen et al.,039

2023c), supervised fine-tuning remains indispens-040

able for domain-specific scenarios (Chen et al.,041

2023b; Yue et al., 2023; Xiong et al., 2023; Yang042
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Figure 1: Pilot study: From left to right on the x-axis,
we sort the CMedQA training data by gradients from
largest to smallest, and select 10% by rank at each time,
conducting 10 subsets, and predict their responses with
untuned LLMs.

et al., 2023). However, incorporating domain- 043

specific knowledge and concepts into the LLM 044

parameters could be rather costly. For the sake 045

of efficiency promotion, some studies have shown 046

that not all fine-tuning data are useful (Zhou et al., 047

2024), and removing some of the low-quality data 048

instead can enhance model performance (Chen 049

et al., 2023a; Li et al., 2023; Cao et al., 2023). 050

Besides, after domain-oriented fine-tuning, 051

LLMs typically experience a decline in general 052

capabilities, a phenomenon named Catastrophic 053

Forgetting (CF) (Kaushik et al., 2021; Cossu et al., 054

2022). To address this issue, some practices use a 055

mixture of domain-specific and general data (Luo 056

et al., 2024), and others propose additional regular- 057

ization or adaptation techniques (Ke, 2024; Diao 058

et al., 2023). However, these approaches either 059

increase the computational cost or compromise do- 060

main expertise to preserve more general capabili- 061

ties (Lin et al., 2023). 062

To promote training efficiency and mitigate CF, 063

we focus on leveraging LLMs to select high-quality 064

subsets of data for training. Analogous to a well- 065

educated student who can discern the most suitable 066

college courses through trial classes, we posit that a 067

sufficiently pre-trained LLM is capable of identify- 068

1



ing data that is more beneficial for its learning dur-069

ing the fine-tuning phase. Inspired by past works070

estimating the influence of training instances with071

gradient information (Pruthi et al., 2020; Han et al.,072

2023; Xia et al., 2024), we design a gradient-aware073

approach to select such data.074

Therefore, we conduct a pilot study that illus-075

trates the performance of vanilla LLMs in predict-076

ing outputs for slices of training data, each selected077

from different gradient intervals (Figure 1). The078

results show that the LLMs have higher accuracy079

when predicting data characterized by smaller gra-080

dients (right side) as opposed to larger gradients081

(left side), which confirms the potential of gradients082

in training data selection.083

To effectively identify crucial data from can-084

didate training sets, we propose an adaptive085

Gradient-Aware Data Selection method, namely086

GrADS. First, the entire candidate data would be087

trained for one epoch with the LLMs to extract088

gradients for each training instance. Then, a self-089

adaptive criterion based on the gradient distribution090

is used to select a subset from the full data of ex-091

pected volume. This method eschews reliance on092

expensive, more advanced LLMs like GPT-4 for093

inference (Chen et al., 2023a; Du et al., 2023; Liu094

et al., 2023) and the need for manual intervention095

in creating high-quality seed data (Pan et al., 2024;096

Ge et al., 2024), thereby offering a cost-effective097

and pragmatic solution.098

To carefully examine the effectiveness of099

GrADS, we conducted comprehensive experiments100

on various LLMs including Qwen (Bai et al.,101

2023), ChatGLM (Zeng et al., 2023), and Llama102

(AI@Meta, 2024) scaled from 1.8B, around 7B,103

to 14B, within typical knowledge-intensive and104

high-demand application domains like medicine105

(Zhang et al., 2023), law (Cui et al., 2024), and106

finance (Zhang and Yang, 2023). GrADS exhibits107

superior advantages in terms of efficiency, cost-108

effectiveness, and performance. In summary, our109

contributions are three folds:110

• We introduce a novel self-adaptive Gradient-111

Aware Data Selection method (GrADS),112

which operates independently of manual inter-113

vention.114

• Extensive experiments across different LLMs,115

model scales, and domains validate the effi-116

cacy of GrADS in facilitating target task per-117

formance.118

• GrADS substantially mitigates the catas- 119

trophic forgetting problem, achieving an out- 120

standing balance between domain specializa- 121

tion and general capabilities. 122

2 Related Work 123

2.1 Data Selection 124

The recent research by Zhou et al.(Zhou et al., 125

2024) indicates that most of the knowledge in 126

LLMs is acquired during the pre-training phase, 127

and a limited amount of instruction data is often 128

sufficient to activate the models’ capacity to follow 129

instructions. Similarly, through interactions with 130

SoTA LLMs such as GPT-4, Chen et al. (Chen 131

et al., 2023a) introduced ALPAGASUS, while Li 132

et al. (Li et al., 2023) proposed the Instruction- 133

Following Difficulty (IFD) metric to select samples 134

with desired characteristics to enhance LLM in- 135

struction tuning. Liu et al. (Liu et al., 2023) and 136

Du et al. (Du et al., 2023) further delineated a series 137

of criteria including quality, complexity, diversity, 138

coverage, and necessity to select data. Addition- 139

ally, some researchers constructed expert-aligned 140

datasets (Ge et al., 2024) or curated high-quality 141

seed data (Pan et al., 2024). By facilitating interac- 142

tion between the LLM and these datasets alongside 143

the original data, they aim to obtain feedback on 144

the quality of the data and improve the models’ 145

performance. 146

However, the majority of the previous works ne- 147

cessitate human intervention or the involvement 148

of SoTA LLMs such as GPT-4 for data filtering, 149

which require substantial API quota budgets or 150

significant human labor investments. In contrast, 151

our data selection method addresses efficiency and 152

cost-effectiveness, which is easy to implement and 153

substantially reduces labor and API expenditures. 154

2.2 Catastrophic Forgetting 155

Domain-specific fine-tuned LLMs (Ouyang et al., 156

2022; Chung et al., 2024) have demonstrated sub- 157

stantial potential for knowledge-based question- 158

answering (QA), auxiliary consulting, and per- 159

sonalized solution recommendation in various 160

fields, such as medicine(Zhang et al., 2023), fi- 161

nance(Zhang and Yang, 2023) and law (Cui et al., 162

2024). However, as expertise within the domain 163

advances, CF emerges along with a sharp decline 164

in the general capabilities that the LLM had previ- 165

ously mastered during pre-training (Kaushik et al., 166

2021; Cossu et al., 2022; Luo et al., 2024). 167
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To address this issue, from a data-driven per-168

spective, some researchers trained both domain169

data and general data to reduce the forgetting of170

general knowledge (Chen et al., 2020), while oth-171

ers proposed self-distillation (Yang et al., 2024b),172

which guides the generation of task data through173

the model itself to minimize the disparity between174

the information distribution of the generated data175

and that of the initial model. On the other hand,176

from the model’s perspective, some established177

end-to-end alignment of modules through shared178

attention mechanisms (Zhao et al., 2024), while179

others modified the adapter architecture by reduc-180

ing the interference caused by fine-tuning tasks181

in different orthogonal low-rank subspaces (Wang182

et al., 2023) or by self-regulating the adapter’s at-183

tention to different parts of the context (Liu et al.,184

2024).185

3 Backgrounds186

The Embedding layer and the language model187

head (LM Head) layer of LLMs play critical roles188

in capturing the semantics of input tokens and gen-189

erating meaningful predictions, respectively. The190

Embedding layer maps each discrete token into191

a high-dimensional vector space, where the vec-192

tors capture the semantic and syntactic properties193

of the words they represent. On the other hand,194

the LM Head layer converts the final hidden states195

produced by the model into a probability distribu-196

tion over the vocabulary and directly influences the197

model’s accuracy in predicting the next token.198

During back-propagation, the gradients com-199

puted for the Embedding layer indicate how the200

word vectors need to be updated to optimize the201

discriminative and context-aware token represen-202

tations, which enhance the model’s overall perfor-203

mance. Therefore, instances with larger gradients204

for the Embedding layer could imply the existence205

of unfamiliar information the model attempts to206

learn, while those with smaller gradients are rather207

stable and already well-presented.208

In contrast, the gradients computed for the LM209

Head provide insights into how the model should210

adjust its parameters to minimize the prediction211

error in the decoding process, thereby improving212

its predictive capabilities. High-magnitude gradi-213

ents show uncertainty and lack of confidence in the214

model’s prediction, which reveals potential high215

complexity and perplexity of the data, whereas low-216

gradient tokens are well-understood and straight217

forward to the model. 218

With the insight that gradients help discover char- 219

acteristics of each training instance, we raise a de- 220

duction that in a given training dataset D, the ac- 221

tual "effective" data points D′ should depend on 222

feature importance (F ), information values 223

(I), and complexity (C): 224

D′ ∝ f(F, I, C) (1) 225

4 GrADS: Gradient-Aware Data Selection 226

In this section, we introduce GrADS, which can 227

adaptively select beneficial subsets of the data 228

through gradient distribution, integrating both the 229

Embedding layer gradients and LM Head gradients. 230

The method consists of two major steps: gradi- 231

ent extraction from LLM learning, and data selec- 232

tion with a self-adaptive criterion. Specifically, in 233

the first step, we obtain the integrated gradients 234

of each training instance by conducting a single- 235

epoch SFT. Subsequently, we select desired subsets 236

of data based on an adaptive criterion derived from 237

the gradient distribution. Our model architecture is 238

illustrated in Figure 2. 239

4.1 Gradient Extraction from LLM Learning 240

Given the entire training data D, we denote 241

the input tokens of each data point x = 242

{x1, x2, . . . , xT } ∈ RT , where T is the length of 243

the input sequence. In the Transformer embedding 244

layer, tokens are mapped to the corresponding em- 245

bedding vectors e: 246

e = Embed(x) (2) 247

where e = {e1, e2, . . . , eT } ∈ RT∗d is the com- 248

bined vector for input tokens, d denoting the di- 249

mension. 250

Then the embedded vectors e are passed through 251

multiple Transformer layers, and produce the final 252

hidden states h ∈ RT∗d for all training instances. 253

h = Transformer(e) (3) 254

The LM Head layer takes the final hidden states 255

h and generates the probability distribution over 256

the vocabulary for predicting the next token: 257

o = softmax(LMHead(h)) (4) 258

where o ∈ RT∗V is the probability distribution 259

over the vocabulary for the next token, and V is the 260

size of the vocabulary. 261
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Figure 2: The illustration of the GrADS method.

Given a standard cross entropy loss function L(·)262

that measures the difference between the model’s263

predictions and the ground truth, the gradients of264

the loss for the embeddings can be obtained in the265

forward pass by:266

gEmb = ∇eL =

(
∂h

∂e

)⊤
∇hL (5)267

where ∇hL is the gradient of the loss for the hidden268

state h and ∂h
∂e represents the Jacobian matrix (Wil-269

amowski et al., 2008) of the hidden state for the270

embedding. The gradients ∇hL can be obtained271

through backpropagation through the model.272

Similarly, we can compute the gradients for the273

LM Head layer during the back-propagation step:274

gLM = ∇oL =
∂L
∂o

(6)275

After extracting the gradients for the input to-276

kens in the Embedding and LM Head layers, we ex-277

clude special tokens like [CLS], [SEP ], [PAD],278

[UNK], etc. Since the gradients of the Embed-279

ding layer reflect the LLMs’ understanding of the280

input sequence whereas the gradients of the LM281

Head layer reflect the LLMs’ certainty of the out-282

put tokens, we take all input tokens for the Embed-283

ding layer and only the output token for the LM284

Head layer into account. Meanwhile, to rule out285

the impact of input sequence length, we average286

the token-wise gradients for each training instance.287

Thus, the combined instance-level gradients for288

two layers are denoted as Gi
Emb and Gi

LM, where289

i = {1,2, . . . ,K} and K being the size of the data290

D.291

Thereafter, we integrate these gradients by 292

adding GEmb and GLM linearly to derive a GrADS 293

gradient vector GGrADS, which ultimately serves 294

as the metric for selecting training instances 295

GGrADS = GEmb +GLM (7) 296

4.2 Self-Adaptive Criterion for Data Selection 297

To select the subset of training instances that best 298

represents domain knowledge, we introduce the 299

probability density function (PDF) to depict the 300

distribution feature of GGrADS. The PDF uses a 301

non-parametric method, such as kernel density es- 302

timation (KDE) to represent the density of GGrADS 303

at different values. A higher density signifies that 304

there are more instances whose GGrADS fall close, 305

indicating instances more likely to share common 306

domain characteristics. Just as one can quickly 307

gain an understanding of a domain by reading its 308

classical papers, prioritizing the fine-tuning process 309

on these typical training instances can also enable 310

LLMs to learn domain knowledge more efficiently 311

and effectively. 312

Therefore, we compute the PDF function of 313

GGrADS gradients: 314

FGrADS = PDF (GGrADS) (8) 315

where FGrADS ∈ RK implies the domain represen- 316

tativeness of the instance. Finally, an effectively 317

refined subset of the full data D can be obtained 318

by calculating the Top N% of instances with the 319

highest PDF values: 320

D
′
= quantile (FGrADS, N/100) (9) 321
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GrADS operates in a self-adaptive manner, as322

it selects the most probable training instances re-323

gardless of the gradient distribution, whether it is324

left-skewed, right-skewed, normal, bimodal, or oth-325

erwise. The selected subset D
′

always has the high-326

est FGrADS, thereby best capturing the critical char-327

acteristics of the domain. Also, D
′

carries crucial,328

informative, and reasonably challenging instances329

that guide the model to learn and acquire domain330

expertise. Nonetheless, as Figure 2 illustrates, train-331

ing instances with low GGrADS and low FGrADS are332

typically less representative, often characterized as333

trivial, well-learned, or simple, and thus fail to334

"surprise" the model with already-known knowl-335

edge. In contrast, instances with high GGrADS and336

low FGrADS are often noisy, confusing, or overly337

difficult, and they might introduce misleading in-338

formation that contradicts the model’s established339

common sense. GrADS excludes these suboptimal340

instances by automatically adapting to the distribu-341

tion of domains.342

5 Experiments343

In this section, we present the experiment results344

to verify the effectiveness of GrADS. Apart from345

the main results, we also try to validate the gener-346

alizability of GrADS by addressing the following347

research questions (RQs):(1) Generalizability: Can348

the GrADS approach be scaled up to larger LLMs349

and applied across different models? (2) Robust-350

ness: Do GrADS consistently perform well with351

smaller subsets selected?352

5.1 Datasets353

Our study incorporates three domains-specific354

datasets from three typical domains: CMedQA355

(Zhang et al., 2018b) for medicine, LawQA (Huang356

et al., 2023b) for law, and FinQA 1 for finance.357

The CMedQA dataset is provided by qualified ex-358

perts, the LawQA dataset is generated by advanced359

LLMs, and the FinQA dataset is sourced from the360

open web and undergone post-cleaning. These361

datasets encompass the primary methodologies for362

fine-tuning data collection currently used, mak-363

ing experimental conclusions derived from those364

datasets representative, and can be reasonably ex-365

pected to generalize to a wider range of data.366

Specifically, CMedQA includes 20k instances367

for training and 0.5k instances for testing. For368

LawQA, we use the law article-based QA pairs369

1https://aistudio.baidu.com/datasetdetail/34744

from the Lawyer-LLama project (Huang et al., 370

2023a) and split 1.6k and 0.4k data for training 371

and testing, respectively. Since FinQA’s QA pairs 372

are sourced from webpages, we retained only those 373

designated as "best answers" in the original dataset. 374

Additionally, we removed all duplicate questions 375

and answers, resulting in a training set of 40k and 376

a testing set of 2k. 377

5.2 Evaluation Metrics 378

We follow Pan et al. (Pan et al., 2024) to include 379

BLEU (Papineni et al., 2002), along with ROUGE- 380

L (Lin, 2004) and METEOR (Banerjee and Lavie, 381

2005) to evaluate the response quality. In addition, 382

we employed GPT-4o to score on a 1-5 scale of 383

the response quality. We also provide the consis- 384

tency test between GPT-4o evaluation and human 385

judgement in Appendix A. 386

Furthermore, we delve into the CF problem 387

in general capabilities following supervised fine- 388

tuning on domain-specific instances. To this end, 389

we follow the work of Liu et al. (Liu et al., 2024) 390

and collect C-Eval (Huang et al., 2023c) for com- 391

mon sense understanding, GSM8K (Yu et al., 2023) 392

for mathematics, ALPACA (Peng et al., 2023) for 393

instruction following and SafetyPrompts (Sun et al., 394

2023) for instruction attack and typical safety sce- 395

narios awareness. 396

For C-Eval, we write a rule-based method to 397

extract the options predicted by LLMs, and re- 398

port the accuracy and whether the LLMs follow 399

the instruction of "Single-choice questions". For 400

GSK8k, we apply its publicly released Chinese ver- 401

sion which is translated by GPT3.5-Turbo 2. We 402

follow the previous work 3 to extract the numerical 403

results predicted by LLMs and report the accuracy, 404

BLEU, and ROUGE-L. For ALPACA, we report 405

BLEU and ROUGE-L. For SafetyPrompts (Typical 406

Safety and Instruction Attack subdata), we write 407

a few-shot prompt to instruct GPT-4o to conduct 408

a 2 choice task on whether the LLMs’ responses 409

are safe or not. The responses are considered as 410

correct if GPT-4o labels them as "safe". 411

5.3 Foundation Models 412

To validate GrADS’ efficiency across different 413

model scales and model architectures, we selected 414

Qwen1.5-7B-Chat (Bai et al., 2023), ChatGLM3- 415

6B-Chat (Zeng et al., 2023) and Llama3-8B- 416

Instruct (AI@Meta, 2024) as our base LLMs. We 417

2https://huggingface.co/datasets/meta-math/GSM8K_zh
3https://github.com/QwenLM/Qwen
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Base Model Method CMedQA LawQA FinQA
BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR

Qwen1.5-7B

base 2.627 12.180 10.860 9.066 20.050 21.392 3.188 11.194 14.669
all 3.813 17.327 12.276 16.090 27.603 27.472 10.120 24.067 18.757

rdn 3.548 16.776 11.954 15.856 27.288 26.810 9.686 22.621 17.276
bm25 4.133 18.152 13.260 16.667 27.538 28.264 10.419 23.837 20.645
dsir 3.650 17.636 12.314 15.987 27.362 27.644 9.876 23.463 19.142
rds 3.826 17.980 12.744 16.203 27.862 28.017 10.133 24.135 20.075
ppl 4.871 18.285 14.689 18.013 27.776 30.660 11.419 23.304 23.325
less 5.126 18.214 14.896 19.473 29.314 33.727 12.884 25.135 23.976
grads 5.372 18.496 15.396 20.270 28.026 35.985 13.364 24.822 24.872

ChatGLM3-6B

base 2.568 11.274 15.634 7.966 19.733 19.011 3.174 11.437 14.926
all 4.297 17.432 16.722 16.673 28.016 28.519 11.454 22.918 24.898

rdn 4.512 16.674 16.482 16.453 27.576 27.864 11.216 22.450 24.233
bm25 4.824 17.015 17.163 16.929 27.798 28.316 11.636 23.412 25.170
dsir 4.330 16.488 15.856 16.215 26.943 27.534 11.328 22.390 24.421
rds 4.607 17.216 16.754 17.036 27.689 28.525 11.596 23.538 24.427
ppl 5.031 17.503 17.637 18.865 28.411 33.068 11.957 24.214 26.682
less 5.283 18.425 18.529 19.002 28.214 33.337 12.216 23.790 26.394
grads 5.488 17.813 18.375 20.288 28.067 34.932 13.165 24.281 28.567

Llama3-8B

base 0.026 0.249 0.291 0.259 1.905 2.164 0.178 1.293 1.225
all 3.332 16.415 11.061 15.272 24.301 27.033 9.116 21.190 16.913

rdn 3.265 15.884 10.798 15.552 24.688 26.476 9.337 22.654 16.870
bm25 3.474 16.763 12.018 15.859 24.803 28.165 10.225 22.387 18.244
dsir 3.206 15.817 11.001 14.643 24.112 25.386 9.640 22.818 17.266
rds 3.399 16.352 12.679 15.704 24.638 27.766 10.413 22.694 18.375
ppl 4.183 17.809 13.632 16.390 25.122 30.378 11.863 22.817 22.469
less 4.213 17.130 13.845 16.737 25.015 31.408 11.480 22.526 23.425
grads 4.472 17.365 14.089 18.751 26.613 34.620 12.288 23.678 23.437

Table 1: Main Results. base denotes no further training implemented, all denotes full dataset, and otherwise we
select 50% of the data for training.

Base Model Method CMedQA LawQA FinQA

Qwen1.5-7B all 2.712 3.318 2.679
grads 3.159 4.202 3.295

ChatGLM3-6B all 2.587 3.254 2.826
grads 3.215 4.034 3.336

Llama3-8B all 2.553 3.110 2.547
grads 2.887 3.823 2.914

Table 2: Results by GPT-4o’s evaluation, scores range
from 1-5.

also selected Qwen1.5-1.8B-Chat and Qwen1.5-418

14B-Chat for the RQ1 investigation. Besides, while419

GrADS permits any proportion of data selection420

from the original training sets, we uniformly select421

50% in the main experiments for simplicity, the ex-422

ploration of varying proportions will be conducted423

in RQ2.424

To have a thorough understanding of GrADS per-425

formance regarding different training methods, we426

implement full-parameter fine-tuning in our main427

results and investigate LoRA training in Appendix428

F.429

5.4 Baselines 430

Despite the existence of numerous data selection 431

methods, we automatically excluded those requir- 432

ing manual intervention (Pan et al., 2024; Ge et al., 433

2024) or extensive use of advanced LLMs (like 434

GPT-4) (Chen et al., 2023a; Liu et al., 2023). Con- 435

sequently, we mainly follow the settings of Less 436

(Xia et al., 2024) and select Random Selection, 437

BM25 (Robertson et al., 2009), DSIR (Xie et al., 438

2023), RDS (Zhang et al., 2018a; Hanawa et al., 439

2020), LESS (Xia et al., 2024) as baselines. The 440

implementation of RDS also follows the setting in 441

Xia et al. (2024). Apart from the above methods, 442

to validate the effectiveness of gradient in GrADS, 443

we also replace gradient with perplexity score for 444

each training instance, denoted as PPL. We have 445

some further illustration regarding those baselines 446

in Appendix G. 447

5.5 Main Results 448

5.5.1 Domain Performance 449

Results in Table 1 and Table 2 show that (1) 450

GrADS obtained the best or second-best per- 451
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Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc. Instruct Acc. BLEU ROUGE BLEU ROUGE Acc. Acc.

CMedQA

base 65.189 87.427 55.497 14.967 29.207 15.097 27.529 43.807 51.365

all 11.285 22.674 1.895 2.286 12.809 1.815 12.252 13.594 22.007
rdn 14.628 35.107 2.880 3.006 13.410 2.443 13.305 14.446 28.503
grads 21.345 33.293 4.700 5.572 18.082 3.340 15.626 24.560 33.656

LawQA
all 24.201 8.067 15.466 9.985 20.917 8.987 20.055 23.571 39.961
rdn 30.305 11.846 26.384 10.772 22.049 9.486 19.889 29.378 44.938
grads 31.206 12.762 26.547 10.913 22.368 9.506 20.145 32.596 48.452

FinQA
all 10.756 21.802 0.758 0.855 8.266 0.895 8.864 6.480 10.921
rdn 15.77 28.488 0.758 0.795 7.665 1.073 9.563 9.688 15.141
grads 25.250 47.359 1.373 2.416 10.838 1.873 10.974 19.139 25.889

Table 3: Catastrophic forgetting results of Qwen1.5-7B. We select 50% of data for rdn and grads.

Method Qwen1.5-1.8B Gradients Qwen1.5-14B Gradients
BLEU ROUGE METEOR BLEU ROUGE METEOR

base 3.308 11.443 14.954 3.308 11.443 14.954
all 12.518 25.451 20.183 12.518 25.451 20.183

rdn 10.674 23.758 18.337 10.674 23.758 18.337
ppl 11.913 24.272 22.136 12.370 24.854 21.348
less 13.549 24.877 24.863 13.838 24.895 24.572
grads 14.169 25.844 25.739 14.371 25.925 26.673

Table 4: The left side selects data via Qwen1.5-1.8B
gradients and fine-tuned on Qwen1.5-14B. The right
side is selected via Qwen1.5-14B and fine-tuned on
Qwen1.5-14B. The base, all, and rdn are all based on
Qwen1.5-14B, so they share the same results. We select
50% of the data for rdn, ppl, less, and grads.

formance over almost all domains in the experi-452

ments. Notably, with only 50% of the data, GrADS453

has achieved remarkable improvements on BLEU454

and METEOR metrics, registering an average gain455

of 28.08% and 25.57% respectively, compared to456

LLMs fine-tuned on the entire dataset. Considering457

that the question-answering tasks require domain458

expertise, the higher BLEU, and METEOR indi-459

cate that the LLMs advance in both accuracy and460

richness of professional expression. Apart from461

that, the improvement on ROUGE-L also indicates462

that the LLMs have considerable enhancements463

in terms of long-sequence content coherence and464

comprehensive information coverage.465

Besides, we found that (2) GrADS is not sen-466

sitive to model initialization and model archi-467

tecture, demonstrating very strong robustness.468

Although Llama3 was mainly pre-trained on En-469

glish datasets and perform poorly when it comes470

to Chinese set (as the base experiment of Llama3471

indicates), GrADS also substantially improve its472

performance as what it did for those well-pretrained473

Chinese background LLMs (Qwen and ChatGLM).474

Meanwhile, (3) GrADS has attention on the475

domain characteristics when selecting data, 476

namely self-adaptive. When we sort all training 477

instances by gradient magnitude in ascending or- 478

der, the average percentiles of selected data for 479

CMedQA, LawQA, and FinQA are 35.8%, 27.4%, 480

and 28.9%, respectively. In more specialized do- 481

mains such as medicine where all base LLMs per- 482

form poorly, GrADS inclines to select instances 483

with larger gradients (the harder ones). 484

5.5.2 Catastrophic Forgetting 485

To keep the paper reasonably concise, we only 486

present the results of Qwen1.5-7B-Chat regarding 487

the catastrophic forgetting problem on the general 488

capabilities evaluation datasets in the main text, Ta- 489

ble 3. For the results of other models, please refer 490

to Appendix F. Compared to LLMs fine-tuned on 491

the entire dataset, GrADS brings substantial mit- 492

igation on CF, i.e. 82.2%, 79.5%, 41.8%, 104.8%, 493

70.4% improvements for C-Eval, GSM8K, AL- 494

PACA Instruct, Typical Safety, and Instruct Attack. 495

From the domain perspective, we observe im- 496

provements of 79.3%, 28.8%, and 112.5% on Med- 497

ical, Legal, and Financial, respectively. Neverthe- 498

less, in medical (20k) and financial domains (40k) 499

with larger training volumes, the gain of GrADS in 500

alleviating CF problems is extremely significant. 501

5.6 Indepth Analysis 502

5.6.1 RQ1: GrADS Generalizability 503

The scaling law indicates that Larger models are 504

significantly more sample-efficient (Kaplan et al., 505

2020; Zhang et al., 2024), so it is crucial to in- 506

vestigate whether GrADS is still valid in larger 507

LLMs. Therefore, we selected Qwen1.5-14B and 508

FinQA as our illustrative case. Meanwhile, to vali- 509

date the transferability of GrADS, we initially train 510

on Qwen1.5-1.8B for one epoch to acquire gradi- 511
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Figure 3: Experiments of fine-tuning Qwen1.5-7B, ChatGLM3-6B, Llama3-8B with subsets of different sizes
selected from FinQA. Baselines ’base’ and ’all’ represent performances of the base models without SFT and the
models fine-tuned on the entire data.

ents for each instance and subsequently employ512

GrADS and other gradient-based baseline methods513

for data selection. Thereafter, the selected subdata514

is fine-tuned on Qwen1.5-14B. We present more ex-515

periments regarding the transferability of GrADS516

across various LLMs in Appendix C.517

The results presented in Table 4 demonstrate518

that GrADS not only remains effective for larger519

LLMs such as Qwen1.5-14B but also can be ap-520

plied across different LLMs. Both findings high-521

light the strong generalizability of the GrADS522

method, offering exciting insights for researchers523

in the field of LLMs.524

For instance, when confronted with voluminous525

training data, researchers can first leverage smaller526

LLMs, applying the GrADS strategy, before refin-527

ing with relatively more efficacious larger LLMs.528

This strategy optimizes resource utilization, en-529

abling the attainment of superior model perfor-530

mance while mitigating computational expenses531

– a pivotal consideration in large-scale machine-532

learning endeavors.533

5.6.2 RQ2: GrADS Robustness534

This section extends the main results by selecting535

1k, 2k, 3k, 5k, and 10k training instances from536

FinQA with GrADS alongside other baseline ap-537

proaches. These new experiments extend our prior538

analysis that was based on a 20k (50%) selection,539

offering a broader perspective on GrADS’ perfor-540

mance across varying data volumes. The experi-541

ment results are provided in Figure 3.542

The results in Figure 3 indicate that the advan-543

tage of GrADS becomes even more evident in544

identifying subsets of smaller proportions. In 545

most cases, with merely 2.5%-5% (1k-2k) train- 546

ing instances, the GrADS has obtained compara- 547

ble performance with those on full dataset. This 548

finding holds immense implications for practical 549

applications, showcasing a staggering efficiency- 550

cost benefit ratio that could significantly transform 551

the landscape of data utilization in language model 552

tuning. 553

6 Conclusion 554

In this paper, to improve the fine-tuning efficiency 555

and mitigate catastrophic forgetting simultaneously, 556

we develop an adaptive gradient-aware data selec- 557

tion method, GrADS. Inspired by the insight that 558

not all training data are helpful, GrADS integrates 559

gradients extracted from the Embedding layer and 560

LM Head layer and introduces self-guided criteria 561

embracing statistic distributions to recognize the 562

model’s most desired data. Experimental results 563

carried out on various LLMs and domain-specific 564

datasets provide empirical evidence of the effi- 565

cacy, efficiency, and cost-effectiveness of GrADS. 566

Apart from extraordinary performance on domain- 567

specific specialities, GrADS substantially mitigates 568

catastrophic forgetting to preserve the general ca- 569

pabilities that the base LLMs mastered. Moreover, 570

extensive analyses reveal that GrADS is also valid 571

in the learning process of LoRA training, and can 572

be scaled up to larger LLMs, delineating its great 573

versatility and potential for generalizability. 574
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Limitations575

In this paper, we introduce the GrADS method,576

which aims to enhance the efficiency of domain-577

specific fine-tuning. While extensive experiments578

validate the effectiveness of GrADS, our implemen-579

tation was constrained by computational resource580

limitations, preventing us from applying GrADS581

to larger-scale language models (LLMs) with pa-582

rameter sizes of 30B or 72B. Nevertheless, our583

focus primarily lies in resource-constrained sce-584

narios; thus, experiments conducted with models585

ranging from 1.8B to 14B parameters are deemed586

sufficiently informative for our study. Investiga-587

tions of GrADS on larger LLMs can be considered588

for future research endeavors.589
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A Consistency between GPT-4o and 875

Human Evaluation 876

To ensure the validity of GPT-4o’s assessments, we 877

conduct supplementary manual evaluations. For 878

the GPT-4o’s response quality scores in the main re- 879

sults, we sampled 200 question-answer pairs rated 880

by GPT-4o and enlisted the expertise of three pro- 881

fessional data annotators to independently score the 882

response quality on a scale of 1 to 5, in alignment 883

with GPT-4o’s scoring criteria. Subsequently, we 884

calculated the average score for the three individu- 885

als and applied rounding to the nearest integer. We 886

find that there are 147 samples for which the scores 887

given by GPT-4o completely align with those of the 888

annotators, and the scores from both sides yields 889

a Pearson product-moment correlation coefficient 890

of 0.79. This indicates a substantial agreement 891

between the GPT-4o and human evaluations of re- 892

sponse quality. 893

Meanwhile, for the safety judgement of catas- 894

trophic forgetting experiments in main results, we 895

also sample 200 instances for each category, i.e., 896
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Base Model Method CMedQA LawQA FinQA
BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR

Qwen1.5-1.8B

base 1.547 8.228 11.169 9.860 19.178 24.505 1.888 7.911 12.061
all 3.339 16.318 11.792 15.606 26.124 25.950 9.358 21.014 17.127

rdn 3.515 16.005 11.233 14.973 25.587 24.653 8.491 20.726 16.440
ppl 4.147 17.074 13.996 16.735 26.024 30.613 11.186 21.673 20.360
less 4.392 16.950 14.011 17.067 25.962 31.116 11.031 21.144 20.468
grads 4.852 18.218 14.439 18.754 26.339 33.688 11.875 22.106 21.732

Qwen1.5-7B

base 2.627 12.180 10.860 9.066 20.050 21.392 3.188 11.194 14.669
all 3.813 17.327 12.276 16.090 27.603 27.472 10.120 24.067 18.757

rdn 3.548 16.776 11.954 15.856 27.288 26.810 9.686 22.621 17.276
ppl 4.832 18.215 15.012 18.874 27.229 35.680 11.302 22.276 22.295
less 4.711 18.976 13.690 17.822 27.144 29.539 10.157 22.531 21.464
grads 5.012 18.664 14.787 19.914 29.018 34.457 12.782 24.064 23.980

Qwen1.5-14B

base 2.934 12.338 11.458 9.968 20.356 25.472 3.308 11.443 14.954
all 4.034 17.577 12.760 16.688 27.763 28.381 12.518 25.451 20.183

rdn 3.738 17.224 12.278 16.169 27.234 27.758 10.674 23.758 18.337
ppl 5.038 18.215 15.339 19.359 28.080 35.954 11.913 24.272 22.136
less 5.214 19.565 14.874 18.920 28.352 32.826 13.549 24.877 24.863
grads 5.766 19.018 15.862 20.314 30.523 35.877 14.169 25.844 25.739

ChatGLM3-6B

base 2.568 11.274 15.634 7.966 19.733 19.011 3.174 11.437 14.926
all 4.297 17.432 16.722 16.673 28.016 28.519 11.454 22.918 24.898

rdn 4.512 16.674 16.482 16.453 27.576 27.864 11.216 22.450 24.233
ppl 5.035 17.765 17.930 18.886 27.569 31.783 12.295 22.719 26.327
less 4.888 18.026 17.651 17.379 27.468 29.136 11.843 23.170 25.089
grads 5.656 18.375 19.016 19.918 27.779 34.154 13.328 24.434 27.977

Llama3-8B

base 0.026 0.249 0.291 0.259 1.905 2.164 0.178 1.293 1.225
all 3.332 16.415 11.061 15.272 24.301 27.033 9.116 21.190 16.913

rdn 3.265 15.884 10.798 15.552 24.688 26.476 9.337 22.654 16.870
ppl 4.365 17.328 14.426 18.225 25.964 32.387 11.454 21.998 22.759
less 4.186 17.684 13.631 17.271 26.754 31.850 11.048 21.753 22.833
grads 4.774 18.125 14.116 18.941 26.376 33.385 12.028 23.366 23.300

Table 5: Experiment results of implementing GrADS with Qwen1.5-1.8B, and leverage the selected data for SFT
on Qwen1.5-1.8B itself and other larger LLMs. We select 50% of data for training with rdn, ppl, less and grads.

Typical Safety and Instruction Attack, respectively.897

With the same approach, we measure the consis-898

tency between GPT-4o’s judgments and the three899

annotators evaluations. We obtain a correlation co-900

efficient score of 0.879 for Typical Safety and a901

correlation coefficient score of 0.815 for Instruc-902

tion Attack.903

B GrADS Transferability on Different904

LLMs905

In this section, we adhere to the setting in RQ1906

which initially train on Qwen1.5-1.8B for one907

epoch to acquire gradients and employ Qwen1.5-908

1.8B itself or other LLMs for fine-tuning. Our909

findings in Table 5 reveal that data selected using910

Qwen1.5-1.8B in conjunction with GrADS not only911

prove effective for larger LLMs of the same archi-912

tecture (Qwen-1.5-7B and Qwen1.5-14B), but also913

yield substantial improvements for larger LLMs of914

different architectures, including ChatGLM3-6B 915

and Llama3-8B. This experimentation further val- 916

idates the transferability of the GrADS method- 917

ology. 918

C Ablation Study 919

In this section, we conducted an ablation study us- 920

ing Qwen1.5-7B as a case example across three 921

domains. Specifically, we examined the impacts of 922

incorporating only the gradients from the Embed 923

Layer or only from the LM Head Layer, namely w/o 924

lmhead and w/o embed. Additionally, we also in- 925

vestigate how LLMs perform when they are trained 926

on data selected from the half with the smallest 927

gradients (tail), the largest half (top), and the mid- 928

dle half (mid). Meanwhile, as in GrADS we add 929

the gradients from the LM Head Layer and Em- 930

bed Layer directly, and we also explore substitute 931

integration methods. In Table6, weight refers to 932
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Method Ablation CMedQA LawQA FinQA
BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR

GrADS

base 2.627 12.180 10.860 9.066 20.050 21.392 3.188 11.194 14.669
all 3.813 17.327 12.276 16.090 27.603 27.472 10.120 24.067 18.757
rdn 3.548 16.776 11.954 15.856 27.288 26.810 9.686 22.621 17.276

w/o lmhead 4.435 17.019 14.455 18.866 25.759 33.887 11.945 25.012 23.130
w/o embed 5.011 17.875 14.986 19.305 26.874 32.491 12.455 24.170 23.843
top grad 2.986 15.874 10.039 14.012 25.183 23.456 6.758 20.417 14.009
tail grad 4.736 16.689 15.006 19.424 26.780 33.699 12.274 23.510 23.356
mid grad 4.630 17.492 14.890 17.764 27.733 33.383 10.429 22.304 22.285
weight 4.832 17.316 14.284 19.259 26.671 33.034 12.218 23.313 23.409
weightr 4.727 17.134 13.855 18.736 26.033 32.682 11.769 22.237 23.030

GRADS ours 5.372 18.496 15.396 20.270 28.026 35.985 13.364 24.822 24.872

Table 6: Ablation Study. We select 50% of data for training except for base and all.
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Figure 4: Semantic distribution of training instances. The green dots indicate selected instances whereas the red
dots indicate dropped instance.

the gradients from the Embed Layer and LM Head933

Layer that are normalized and summed to derive a934

gradient distribution. Besides, weightr entails rank-935

ing the gradients of each instance from the Embed936

Layer and LM Head Layer in descending order and937

summing their ranks’ reciprocals to obtain the dis-938

tribution. Subsequently, both weight and weightr939

utilize the same data selection criteria as GrADS.940

The experimental results indicate that our orig-941

inal GrADS consistently achieves optimal or sub-942

optimal performance, thereby validating the ratio-943

nale behind our methodological design.944

D Data Diversity945

One concern is that selecting data based on the high-946

est probability density might compromise the diver-947

sity of the chosen dataset, an aspect that is essential948

for effective large language model (LLM) train- 949

ing. Therefore, in this section, we apply GrADS 950

with Qwen1.5-7B for data selection across three 951

domains. To obtain the semantic distribution of 952

training instances, we apply Text_Embedding_V3 953
4 for embedding representation and TSNE (Van der 954

Maaten and Hinton, 2008) technique for dimen- 955

sionality reduction and visualization. 956

The results illustrated in Figure 4 suggest that 957

the probability density of gradients has few rele- 958

vance to semantic meanings. Notably, the data se- 959

lected by GrADS maintain considerable diversity, 960

regardless of the situation of 50% or 10% selection. 961

As we have discussed in the Introduction section, 962

LLMs can perform like absolutely rational college 963

4https://www.alibabacloud.com/help/en/model-
studio/developer-reference/text-embedding-synchronous-api
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Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc Instruct Acc BLEU ROUGE BLEU ROUGE Acc Acc

CMedQA

base 54.360 73.328 46.020 18.593 33.002 16.362 28.321 44.681 50.686

all 8.794 5.523 3.942 4.271 16.108 4.782 16.971 16.783 23.068
rdn 15.480 18.023 6.823 5.811 18.120 6.636 19.507 16.879 27.863
grads 16.480 19.695 10.008 6.468 19.098 7.810 20.765 25.679 31.484

LawQA
all 30.451 25.363 34.572 14.833 28.227 13.966 25.468 26.137 40.017
rdn 32.756 38.227 36.012 16.103 29.974 15.284 27.242 28.995 41.983
grads 33.717 37.974 37.225 15.709 29.080 13.637 26.671 37.681 42.036

FinQA
all 13.953 2.947 1.365 1.418 9.869 2.832 12.448 7.416 11.678
rdn 18.823 5.794 2.578 2.032 11.751 3.638 14.495 10.861 14.884
grads 26.017 19.089 4.250 3.717 15.649 4.911 16.776 21.025 24.481

Table 7: Supplementary experiments of Catastrophic Forgetting on ChatGLM3-6B. We select 50% of data for
training with rdn and grads

Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc Instruct Acc BLEU ROUGE BLEU ROUGE Acc Acc

CMedQA

base 46.657 97.832 58.226 3.903 16.089 3.229 7.443 27.150 44.167

all 0.291 0.000 0.682 0.894 9.215 0.861 9.317 7.061 6.333
rdn 0.390 0.036 0.076 0.777 8.749 0.860 9.310 10.535 5.583
grads 0.509 0.073 0.758 1.679 10.827 1.131 10.800 14.672 10.250

LawQA
all 3.634 3.343 2.729 4.438 13.415 4.624 14.708 15.643 32.333
rdn 4.506 0.727 3.033 4.105 12.859 4.298 13.869 22.714 37.250
grads 4.869 6.017 4.701 6.311 15.585 5.326 16.081 25.143 41.583

FinQA
all 0.363 1.817 0.227 0.491 6.985 0.558 10.297 1.500 2.750
rdn 1.438 9.084 0.455 0.683 7.019 0.667 8.091 2.571 3.917
grads 6.541 21.148 0.607 1.019 7.514 0.739 8.473 1.929 3.833

Table 8: Supplementary experiments of Catastrophic Forgetting on Llama3-8B. We select 50% of data for training
with rdn and grads

students who select courses they need not just what964

they like.965

E Supplementary Experiments of966

Catastrophic Forgetting967

In this section, we provide supplementary exper-968

imental results regarding catastrophic forgetting969

problem. Table 7 and table 8 illustrate the results970

of ChatGLM3-6B and Llama3-8B, which validate971

that GrADS not only substantially alleviate catas-972

trophic forgetting for Qwen1.5-7B, but also for973

ChatGLM3-6B and Llama3-8B.974

F Supplementary Experiments of LoRA975

Tuning976

Apart from full parameter fine-tuning, we also in-977

vestigate how GrADS would facilitate LoRA tun-978

ing. Table 9 provides the results of LoRA tuning979

whereas table 10, table 11, and table 12 provide980

the results of the catastrophic forgetting problem981

of Qwen1.5-7B, ChatGLM3-6B, and Llama3-8B982

after LoRA tuning, respectively.983

Those experiments validate GrADS’s effective- 984

ness across full parameter fine-tuning and LoRA 985

tuning. In the meantime, for those who seeking a 986

balance between domain capabilities and general 987

capabilities (less catastrophic forgetting), the com- 988

bination of GrADS and LoRA tuning should be a 989

good choice. 990

G Baseline Illustration 991

We present a brief introduction of our baselines 992

in this section. BM25 (Robertson et al., 2009) 993

featurizes examples by their word frequency statis- 994

tics (i.e., TF-IDF) to rank the training instances, 995

and select the top k% of the training instances 996

with the highest scores to construct Dtrain. DSIR 997

(Xie et al., 2023) uses n-gram features to weight 998

candidate training data D. We resample k% of 999

the training instances according to the importance 1000

weights. RDS (Representation-based Data Selec- 1001

tion) (Zhang et al., 2018a; Hanawa et al., 2020) 1002

uses the model’s hidden representations as features 1003

for data selection. We follow the settings in Xia 1004
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Base Model Method CMedQA LawQA FinQA
BLEU ROUGE METEOR BLEU ROUGE METEOR BLEU ROUGE METEOR

Qwen1.5-7B

base 2.627 12.180 10.860 9.066 20.050 21.392 3.188 11.194 14.669
all 4.075 17.739 12.966 14.580 27.382 31.207 7.316 20.192 15.365

rdn 3.839 17.219 12.250 14.293 25.581 27.769 6.372 19.415 14.108
bm25 3.555 16.875 11.208 12.937 24.837 25.981 5.709 18.793 12.283
dsir 3.840 16.698 11.475 13.057 24.880 24.512 5.716 17.397 12.388
rds 3.818 17.022 11.549 13.235 24.320 23.898 6.875 20.051 12.648
ppl 4.526 17.481 13.569 14.862 24.383 25.485 7.769 20.651 16.866
less 4.757 17.596 14.984 16.012 26.057 30.136 7.892 20.135 17.200
grads 5.018 18.243 14.696 17.963 26.755 32.802 9.103 21.154 18.848

ChatGLM3-6B

base 2.568 11.274 10.634 7.966 19.733 19.011 3.174 11.437 14.926
all 3.551 15.960 12.124 12.903 22.514 23.174 8.047 20.820 17.159

rdn 3.498 15.824 11.970 10.010 20.038 21.166 8.155 19.896 17.032
bm25 3.539 16.296 12.035 10.457 20.745 20.899 8.100 20.043 16.747
dsir 3.667 16.187 11.892 9.964 20.819 20.451 8.269 19.803 16.760
rds 3.256 15.517 11.389 9.854 19.899 20.016 7.079 19.266 16.148
ppl 4.286 17.536 13.492 11.914 20.188 22.358 8.177 20.375 16.658
less 3.932 16.774 13.758 11.616 21.089 21.648 8.524 20.793 17.617
grads50 4.483 18.216 14.447 12.724 22.214 23.857 8.896 21.301 17.966

Llama3-8B

base 0.026 0.249 0.291 0.259 1.905 2.164 0.178 1.293 1.225
all 3.138 16.695 11.782 16.125 25.588 28.327 9.336 22.480 18.751

rdn 2.851 16.030 10.956 14.478 24.515 27.160 8.931 21.267 16.922
bm25 2.543 15.381 9.075 13.308 21.629 25.584 7.856 20.639 14.487
dsir 2.738 15.683 10.719 13.985 24.205 26.650 8.857 20.977 17.356
rds 2.918 15.984 10.270 14.041 23.388 26.986 8.844 20.074 17.706
ppl 3.326 16.540 12.016 15.427 23.958 29.836 9.328 20.890 19.027
less 3.517 16.310 12.022 15.811 24.018 28.895 9.085 20.228 18.750
grads 3.446 16.019 12.527 16.475 25.487 30.699 9.919 22.807 18.940

Table 9: Supplementary experiments of LoRA tuning. base denotes no further training implemented, all denotes
full dataset, and otherwise we select 50% of the data for training.

et al. (2024), which computes the similarity score1005

using Equation (2) of Xia et al. (2024) but replace1006

the gradient features with the final layer represen-1007

tations of the last token of each sequence. LESS1008

(Low-rank gradiEnt Similarity Search) (Xia et al.,1009

2024) utilizes gradients as well and selects train-1010

ing instances based on their similarity to few-shot1011

examples embodying a specific capability.1012

H Implementation Details1013

Our experiment is conducted on 8 A100 GPUs,1014

each with 80G memories. All experiments are con-1015

ducted with LLaMA-Factory5 training architecture1016

and deepspeed_z3. For all methods, we set the1017

learning rate of 3e-5, warmup ratio of 0.1, and1018

batch size of 8. Regarding LLMs’ API, we adopt1019

GPT-4o. For LoRA experiments, the rank is set to1020

16. For all randomly selected data, we set the ran-1021

dom seed of 42. To maintain some basic instruction1022

following capabilities for more precise evaluation1023

(especially for rdn and all), for all catastrophic1024

forgetting related experiments, we only report the1025

5https://github.com/hiyouga/LLaMA-Factory/tree/main

score on the test set after 1 training epoch. For 1026

the rest of the experiments, we report the average 1027

scores on the test set after the training epochs of 1, 1028

2, and 3. 1029
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Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc Instruct Acc BLEU ROUGE BLEU ROUGE Acc Acc

CMedQA

base 65.189 87.427 55.497 14.967 29.207 15.097 27.529 43.807 51.365

all 35.512 42.124 22.592 7.368 23.634 5.681 19.265 23.087 31.415
rdn 29.420 29.940 33.131 10.441 27.717 7.044 21.033 28.596 37.847
grads 34.101 40.638 44.806 14.600 31.424 8.644 22.966 31.138 42.636

LawQA
all 34.323 32.615 53.373 14.408 28.252 14.031 26.393 28.650 41.684
rdn 39.673 39.598 53.146 14.841 29.121 14.970 27.211 33.757 50.220
grads 41.307 38.484 53.980 12.970 26.678 13.504 25.160 35.766 49.814

FinQA
all 48.365 68.870 17.664 3.528 18.015 4.178 15.660 17.174 24.269
rdn 50.817 70.653 20.849 3.976 19.035 4.356 16.408 21.235 33.471
grads 27.637 22.956 28.506 8.582 26.069 6.000 18.344 27.451 36.045

Table 10: Supplementary experiments of Catastrophic Forgetting after LoRA tuning on Qwen1.5-7B. We select
50% of data for training with rdn and grads

Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc Instruct Acc BLEU ROUGE BLEU ROUGE Acc Acc

CMedQA

base 54.360 73.328 46.020 18.593 33.002 16.362 28.321 44.681 50.686

all 25.186 28.232 25.929 11.616 27.839 11.079 24.465 25.318 33.572
rdn 30.163 29.822 30.857 13.497 29.993 12.162 25.685 31.664 38.055
grads 28.678 40.416 33.207 14.455 31.127 12.426 25.974 32.042 39.776

LawQA
all 39.673 60.327 42.077 17.661 32.429 14.814 27.301 30.285 40.069
rdn 39.004 64.859 43.821 17.929 32.610 15.249 27.640 35.460 46.734
grads 40.119 64.636 44.655 17.895 32.517 15.065 27.446 37.261 48.588

FinQA
all 23.031 42.422 22.214 10.278 26.400 10.022 22.785 16.292 25.106
rdn 28.158 40.416 26.005 11.090 27.576 10.744 23.197 22.234 30.217
grads 31.055 45.840 24.867 11.863 28.318 12.641 25.519 28.656 35.785

Table 11: Supplementary experiments of Catastrophic Forgetting after LoRA tuning on ChatGLM3-6B. We
select 50% of data for training with rdn and grads

Domain Method C-Eval GSM8k ALPACA Safety Attack
Acc Instruct Acc BLEU ROUGE BLEU ROUGE Acc Acc

CMedQA

base 46.657 97.832 58.226 3.903 16.089 3.299 7.443 27.150 44.167

all 2.674 1.783 15.693 6.706 21.267 3.343 14.913 15.714 20.333
rdn 9.212 14.413 17.664 6.666 21.489 3.149 15.131 21.071 26.750
grads 9.509 18.127 23.730 8.970 25.342 5.402 18.493 22.286 29.167

LawQA
all 39.376 81.278 54.814 17.542 33.502 10.398 21.001 24.643 31.250
rdn 44.428 92.422 55.800 16.637 32.829 9.611 19.168 26.143 34.333
grads 43.908 91.976 58.302 17.660 33.339 8.545 17.339 28.643 40.667

FinQA
all 22.140 28.826 30.857 6.806 25.282 5.200 17.511 7.214 14.250
rdn 28.158 54.309 32.980 7.548 26.324 5.536 18.784 11.857 19.417
grads 23.626 35.364 34.117 9.022 27.687 6.566 19.203 14.143 24.083

Table 12: Supplementary experiments of Catastrophic Forgetting after LoRA tuning on Llama3-8B. We select
50% of data for training with rdn and grads
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