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Abstract

Adapting keyphrase generation models to001
new domains typically involves few-shot fine-002
tuning with in-domain labeled data. However,003
annotating documents with keyphrases is of-004
ten prohibitively expensive and impractical, re-005
quiring expert annotators. This paper presents006
silk, an unsupervised method designed to ad-007
dress this issue by extracting silver-standard008
keyphrases from citation contexts to create009
synthetic labeled data for domain adaptation.010
Extensive experiments across three distinct011
domains demonstrate that our method yields012
high-quality synthetic samples, resulting in013
significant and consistent improvements in in-014
domain performance over strong baselines.015

1 Introduction016

Keyphrase generation aims at automatically pre-017

dicting a set of keyphrases —words or phrases018

that represent the main concepts— given a source019

text. Because they distill the important informa-020

tion from documents, keyphrases are useful for021

many applications in natural language processing022

and information retrieval, most notably for doc-023

ument indexing (Fagan, 1987; Zhai, 1997; Jones024

and Staveley, 1999; Gutwin et al., 1999; Boudin025

et al., 2020) and summarization (Zha, 2002; Wan026

et al., 2007; Liu et al., 2021; Koto et al., 2022).027

Keyphrase generation differs from its extractive028

counterpart in that it requires the capability of pre-029

dicting keyphrases that do not necessarily appear030

in the source text (Liu et al., 2011; Meng et al.,031

2017). Current models for this task are built upon032

sequence-to-sequence models, and achieve remark-033

able prediction performance when a large amount034

of labeled data is available (Meng et al., 2021).035

However, keyphrase-labeled data is notably036

scarce even for resource-rich languages. To date,037

there are only a handful of available datasets large038

enough to train keyphrase generation models, there-039

fore restricting their applicability to specific do-040

Citation contextsCited paper

Huang et al. (2012) learns multi-
prototype embeddings by clustering the 
context window features of a word.
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2 Related Work

Several unsupervised methods generate dense
single prototype word embeddings. These
include Word2vec (Mikolov et al., 2013),
which learns embeddings that maximize the co-
sine similarity of embeddings of co-occurring
words, and Glove (Pennington et al., 2014) and
Swivel (Shazeer et al., 2016) that learn embed-
dings by factorizing the word co-occurrence ma-
trix. (Dhillon et al., 2015; Stratos et al., 2015)
use canonical correlation analysis (CCA) to learn
word embeddings that maximize correlation with
context. (Levy and Goldberg, 2014; Levy et al.,
2015) showed that SVD based methods can com-
pete with neural embeddings. (Lebret and Col-
lobert, 2013) use Hellinger PCA, and claim that
Hellinger distance is a better metric than Eu-
clidean distance in discrete probability space.

Multiple works have considered converting the
existing embeddings to interpretable ones. Mur-
phy et al. (2012) use non-negative matrix factor-
ization of the word-word co-occurrence matrix to
derive interpretable word embeddings. (Sun et al.,
2016; Han et al., 2012) change the loss function in
Glove to incorporate sparsity and non negativity
respectively to capture interpretability. (Faruqui
et al., 2015) propose Sparse Overcomplete Word
Vectors (SPOWV ), by solving an optimization
problem in dictionary learning setting to produce
sparse non-negative high dimensional projection
of word embeddings. (Subramanian et al., 2018)
use a k-sparse denoising autoencoder to produce
sparse non-negative high dimensional projection
of word embeddings, which they called SParse In-
terpretable Neural Embeddings (SPINE). How-
ever, all these methods lack a natural extension for
disambiguating the sense of a word in a context.

In a different line of work, Vilnis and McCal-
lum (2015) proposed representing words as Gaus-
sian distributions to embed uncertainty in dimen-
sions of the embedding to better capture concepts
like entailment. However, Athiwaratkun and Wil-
son (2017) argued that such a single prototype
model can’t capture multiple distinct meanings
and proposed Word2GM to learn multiple Gaus-
sian embeddings per word. The prototypes were
generalized to ellipical distributions in (Muzellec
and Cuturi, 2018). A major limitation with such
an approach is the restriction on the number of
prototypes per word that can be learned, which is
limited to 2 or 3 due to computational constraints.

Many words such as ‘Cell’ can have more than 5
senses. Another open issue is that of disambiguat-
ing senses of a polysemous word in a context –
there is no obvious way to embed phrases and sen-
tences with such embeddings.

Multiple works have proposed multi-prototype
embeddings to capture the senses of a polysemous
word. For example, Neelakantan et al. (2015) ex-
tends the skipgram model to learn multiple em-
beddings of a word, where the number of senses
of a word is either fixed or is learned through a
non-parametric approach. Huang et al. (2012)
learns multi-prototype embeddings by clustering
the context window features of a word. However,
these methods can’t capture concepts like entail-
ment. Tian et al. (2014) learns a probabilistic ver-
sion of skipgram for learning multi-sense embed-
dings and hence, can capture entailment. How-
ever, all these models suffer from computational
constraints and either restrict the number of pro-
totypes learned for each word to 2-3 or restrict the
words for which multiple prototypes are learned to
the top k frequent words in the vocabulary.

Prior attempts at representing polysemy in-
clude (Pantel and Lin, 2002), who generate global
senses by figuring out the best representative
words for each sense from co-occurrence graph,
and (Reisinger and Mooney, 2010), who gener-
ate senses for each word by clustering the con-
text vectors of the occurrences of the word. Fur-
ther attempts include Arora et al. (2018), who ex-
press single prototype dense embeddings, such as
Word2vec and Glove, as linear combinations of
sense vectors. However, their underlying linearity
assumption breaks down in real data, as shown by
Mu et al. (2017). Further, the linear coefficients
can be negative and have values far greater than 1
in magnitude, making them difficult to interpret.
Neelakantan et al. (2015) and Huang et al. (2012)
represent a context by the average of the embed-
dings of the words to disambiguate the sense of a
target word present in the context. On the other
hand, Mu et al. (2017) suggest representing sen-
tences as a hyperspace, rather than a single vector,
and represent words by the intersection of the hy-
perspaces representing the sentences it occurs in.

A number of works use naı̈ve Bayesian method
(Charniak et al., 2013) and topic models (Brody
and Lapata, 2009; Yao and Van Durme, 2011;
Pedersen, 2000; Lau et al., 2012, 2013, 2014) to
learn senses from local contexts, treating each in-

Huang et al. (2012) presented an 
RNN model that uses document-level 
context information to construct more 
accurate word representations.

Model Dim = 100 Dim = 300 Dim = 600
n. v. adj. adv. All n. v. adj. adv. All n. v. adj. adv. All

SGE + C 37.2 31.6 37.1 42.2 36.6 39.2 35.0 39.0 55.4 40.9 39.7 35.7 39.9 56.2 41.6
HTLE 42.4 33.9 38.1 49.7 40.3 44.9 37.0 41.0 50.9 42.8 45.2 37.2 42.1 51.9 43.4

Table 4: GAP scores on the candidate ranking task on LS-SE07 for different part-of-speech categories.

that these two methods are consistent with how we
train HTLE and STLE.

The sampled method, similar to HTLE, uses the
HDP model to assign topics to word occurrences
during testing. The expected method, similar to
STLE, uses the HDP model to learn the probabil-
ity distribution of topics of the context sentence
and uses the entire distribution to compute the sim-
ilarity. For the Skipgram baseline we compute the
similarity SimSGE+Cpws, wtq as follows:

cosphpwsq,hpwtqq `
∞

c cosphpwsq,opwcqq
C

which uses the similarity between the substitution
word and all words in the context, as well as the
similarity of target and substitution words.

Table 3 shows the GAP scores of our models
and baselines.1 One can see that all models us-
ing multiple embeddings per word perform better
than SGE. Our proposed models outperform both
SGE and MSSG in both evaluation sets, with more
pronounced improvements for LS-CIC. We further
observe that our expected method is more robust
and performs better for all embedding sizes.

Table 4 shows the GAP scores broken down
by the main word classes: noun, verb, adjective,
and adverb. With 100 dimensions our best model
(HTLE) yields improvements across all POS tags,
with the largest improvements for adverbs and
smallest improvements for adjectives. When in-
creasing the dimension size of embeddings the im-
provements hold up for all POS tags apart from
adverbs. It can be inferred that larger dimension
sizes capture semantic similarities for adverbs and
context words better than other parts-of-speech
categories. Additionally, we observe for both eval-
uation sets that the improvements are preserved
when increasing the embedding size.

4 Related Work

While the most commonly used approaches learn
one embedding per word type (Mikolov et al.,

1We use the nonparametric rank-based Mann-Whitney-
Wilcoxon test (Sprent and Smeeton, 2016) to check for sta-
tistically significant differences between runs.

2013a; Pennington et al., 2014), recent studies
have focused on learning multiple embeddings per
word due to the ambiguous nature of language
(Qiu et al., 2016). Huang et al. (2012) cluster word
contexts and use the average embedding of each
cluster as word sense embeddings, which yields
improvements on a word similarity task. Nee-
lakantan et al. (2014) propose two approaches,
both based on clustering word contexts: In the
first, they fix the number of senses manually, and
in the second, they use an ad-hoc greedy procedure
that allocates a new representation to a word if
existing representations explain the context below
a certain threshold. Li and Jurafsky (2015) used
a CRP model to distinguish between senses of
words and train vectors for senses, where the num-
ber of senses is not fixed. They use two heuris-
tic approaches for assigning senses in a context:
‘greedy’ which assigns the locally optimum sense
label to each word, and ‘expectation’ which com-
putes the expected value for a word in a given con-
text with probabilities for each possible sense.

5 Conclusions

We have introduced an approach to learn topic-
sensitive word representations that exploits the
document-level context of words and does not re-
quire annotated data or linguistic resources. Our
evaluation on the lexical substitution task suggests
that topic distributions capture word senses to
some extent. Moreover, we obtain statistically sig-
nificant improvements in the lexical substitution
task while not using any syntactic information.
The best results are achieved by our hard topic-
labeled model which learns topic-sensitive repre-
sentations by assigning topics to target words.
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Huang et al. (2012) cluster word contexts 
and use the average embedding of each 
cluster as word sense embeddings […]
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Figure 6: Effect of depth in contextual word simi-
larity. Three hidden layers is optimal for this task.

if adding depth to our context-sensitive autoen-
coder will improve its performance in the contex-
tual word similarity task.

Figure 6 shows that as we increase the depth of
our autoencoders, their performances initially im-
prove. The CSAE-LGC model that uses both lo-
cal and global context benefits more from greater
number of hidden layers than CSAE-LC that only
uses local context. We attribute this to the use of
global context in CSAE-LGC that leads to more
accurate representations of words in their context.
We also note that with just a single hidden layer,
CSAE-LGC largely improves the performance as
compared to CSAE-LC.

6 Related Work

Representation learning models have been ef-
fective in many tasks such as language model-
ing (Bengio et al., 2003; Mikolov et al., 2013b),
topic modeling (Nguyen et al., 2015), paraphrase
detection (Socher et al., 2011), and ranking tasks
(Yih et al., 2013). We briefly review works that
use context information for text representation.

Huang et al. (2012) presented an RNN model
that uses document-level context information to
construct more accurate word representations. In
particular, given a sequence of words, the ap-
proach uses other words in the document as exter-
nal (global) knowledge to predict the next word in
the sequence. Other approaches have also mod-
eled context at the document level (Lin et al.,
2015; Wang and Cho, 2015; Ji et al., 2016).

Ji et al. (2016) presented a context-sensitive
RNN-based language model that integrates repre-
sentations of previous sentences into the language
model of the current sentence. They showed that
this approach outperforms several RNN language
models on a text coherence task.

Liu et al. (2015) proposed a context-sensitive
RNN model that uses Latent Dirichlet Alloca-
tion (Blei et al., 2003) to extract topic-specific
word embeddings. Their best-performing model
regards each topic that is associated to a word in a
sentence as a pseudo word, learns topic and word
embeddings, and then concatenates the embed-
dings to obtain topic-specific word embeddings.

Mikolov and Zweig (2012) extended a basic
RNN language model (Mikolov et al., 2010) by
an additional feature layer to integrate external in-
formation (such as topic information) about inputs
into the model. They showed that such informa-
tion improves the perplexity of language models.

In contrast to previous research, we integrate
context into deep autoencoders. To the best of
our knowledge, this is the first work to do so.
Also, in this paper, we depart from most previ-
ous approaches by demonstrating the value of con-
text information in sentence-level semantic simi-
larity and ranking tasks such as QA ranking tasks.
Our approach to the ranking problems, both for
Answer Ranking and Question Ranking, is dif-
ferent from previous approaches in the sense that
we judge the relevance between inputs based on
their context information. We showed that adding
sentential or document context information about
questions (or answers) leads to better rankings.

7 Conclusion and Future Work

We introduce an effective approach to integrate
sentential or document context into deep autoen-
coders and show that such integration is impor-
tant in semantic similarity tasks. In the future, we
aim to investigate other types of linguistic context
(such as POS tag and word dependency informa-
tion, word sense, and discourse relations) and de-
velop a unified representation learning framework
that integrates such linguistic context with repre-
sentation learning models.
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Figure 1: Illustration of the silk method for mining
silver-standard keyphrases from citation contexts.

mains (Ye and Wang, 2018; Wu et al., 2022; Garg 041

et al., 2023). Here, we are concerned with gener- 042

ating keyphrases from scientific papers, for which 043

datasets only exist in the broader scope of com- 044

puter science (Meng et al., 2017; Mahata et al., 045

2022; Garg et al., 2022) and biomedicine (Houbre 046

et al., 2022). This data scarcity issue is all the more 047

important since current models demonstrate very 048

limited generalization capabilities (Gallina et al., 049

2020; Meng et al., 2021). All of this, coupled with 050

the high computational cost of training models, 051

underscores the necessity of developing domain 052

adaptation methods for keyphrase generation. 053

An effective strategy for addressing this chal- 054

lenge involves low-resource fine-tuning (Wu et al., 055

2022; Meng et al., 2023), wherein a pre-trained 056

model is exposed to a limited amount of in-domain 057

data with annotated keyphrases. Nevertheless, an- 058

notating even a limited number of documents can 059

be prohibitively expensive, and often impractical 060

due to the necessity for expert annotators (Chau 061

et al., 2020). Finding a way to collect such data 062

in an unsupervised fashion would open up possi- 063

bilities for effortlessly adapting models to new do- 064

mains. Here, we propose silk, a method to do so 065

that relies on extracting silver-standard keyphrases 066

from citation contexts to generate synthetic labeled 067

data for domain adaptation (see Figure 1). 068

1



Citation contexts —text passages within the cit-069

ing document containing the reference— often070

highlight the contributions of a cited paper, and071

have be shown to be useful not only for paper072

summarization (Nakov et al., 2004; Schwartz and073

Hearst, 2006; Mei and Zhai, 2008; Abu-Jbara and074

Radev, 2011; Mao et al., 2022, inter alia), but also075

for tasks such as claim verification (Wadden et al.,076

2020) or information extraction (Viswanathan et al.,077

2021). In this paper, we advocate for using cita-078

tion contexts, specifically in the mining of phrases079

representing the key concepts of cited papers, to080

generate synthetic data for adapting keyphrase gen-081

eration models to new domains. Earlier research on082

keyphrase extraction has emphasized the value of083

citation context information as a feature for rank-084

ing phrases (Das Gollapalli and Caragea, 2014;085

Caragea et al., 2014). We take this idea further086

and explore how it can be applied to create silver-087

labeled in-domain data for fine-tuning keyphrase088

generation models. Our contributions can be sum-089

marized as follows:090

(1) We propose silk, a method that leverages091

citation contexts to create synthetic sam-092

ples of documents paired with silver-standard093

keyphrases for adapting keyphrase generation094

models to new domains.095

(2) We apply our method on three distinct sci-096

entific domains —namely, Natural Language097

Processing, Astrophysics and Paleontology—,098

thereby creating new adaptation data for each099

domain. We further provide three human-100

labeled test sets to assess the performance of101

keyphrase generation across these domains.102

We view this effort as a significant contribu-103

tion of our work.104

(3) We conduct experiments on few-shot fine-105

tuning a pre-trained model for keyphrase gen-106

eration and report significant improvements in107

in-domain performance using synthetic sam-108

ples generated by silk. Additionally, we un-109

dertake further experiments to validate the110

quality of the synthetic samples through both111

empirical (§5.1) and human (§5.3) evaluation,112

and we examine whether our adapted mod-113

els experience catastrophic forgetting of the114

initial domain (§5.2).115

Our code, model weights and data are available116

at http://anonymous.117

2 Method 118

This section describes the implementation details 119

of our method for producing synthetic fine-tuning 120

data from citation contexts. Given a collection 121

of in-domain scientific documents D, we start by 122

extracting the subset of sentences that contain ci- 123

tation anchors to build a set of citation contexts C. 124

Heuristics are applied to filter out citation contexts 125

that either reference a document d 6∈ D or whose 126

purpose of citing is ambiguous (i.e. containing mul- 127

tiple scattered citation anchors throughout the text). 128

For each cited document d ∈ D, we extract all 129

the phrases1 from its title td, abstract ad and corre- 130

sponding citation contexts cd to build a set of silver- 131

standard keyphrase candidates Pd. Our method for 132

generating synthetic samples from pairs of (d, Pd) 133

involves three steps, which are described below. 134

Step 1: Ranking Keyphrase Candidates 135

We rank each keyphrase candidate p ∈ Pd based 136

on three criteria: 137

• its salience, defined as the presence of p in td, 138

ad and cd. Here, we assume that a phrase si- 139

multaneously occurring in all elements holds 140

greater importance that a phrase found solely 141

in one or two of them. A boosting parame- 142

ter α = {1, 1.5, 2} is introduced to prioritize 143

phrases based on the number of elements in 144

which they appear. 145

• its relevance, computed as the cosine distance 146

between the embedding vectors of p and td. 147

We use the title as a high-level summary of the 148

document, and assume that relevant phrases 149

should be semantically close to it. We lever- 150

age SPECTER2 (Cohan et al., 2020), a BERT- 151

based model pre-trained on scientific docu- 152

ments, to compute the embedding vectors. 153

• its reliability, estimated by the number of ci- 154

tation contexts in which p occurs. We rely on 155

the citation context frequency as a means to 156

estimate how reliable a phrase is, the hypothe- 157

sis being that phrases that appears in multiple 158

citation contexts are more likely to be reliable. 159

Specifically, we use the log-frequency of p in 160

cd to squash the range of values in a log-scale. 161

1We use spacy (en_core_web_sm model) and consider the
noun phrases (/Adj*Noun+/) in their lemma forms as candi-
dates. Irrelevant candidates are filtered out using a stoplist of
high-frequency phrases.

2https://huggingface.co/sentence-transformers/
allenai-specter
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More formally, given a document d, the score of162

a keyphrase candidate p is calculated as follows:163

164

score(p, d) = α(p) · cos-sim
(
emb(p), emb(td)

)
165

· log
(
freqcc(p)

)
(1)166

where emb(s) denotes the embedding vector out-167

put of SPECTER for input text s, freqcc(p) is the168

number of citation contexts in which p occurs.169

Step 2: Selecting Silver-Standard Keyphrases170

To select the optimal subset of phrases from Pd, we171

define a set of constraints that mirrors the typical172

characteristics found in gold standard keyphrases173

of scientific papers. Building on past observations,174

our objective is to select between 3 and 5 phrases175

per document, comprising up to 3 phrases from176

its content (i.e. occurring in td or ad) and the re-177

mainder from the citation contexts. We promote178

the selection of diverse keyphrases by introduc-179

ing a maximum cross-phrase similarity threshold180

parameter λx. This parameter prevents the inclu-181

sion of redundant candidates, as determined by the182

cosine distance between their embedding vectors.183

Because candidates extracted from citation con-184

texts are inherently noisy, we introduce a second185

threshold parameter λr to filter out spurious candi-186

dates based on their relevance scores. In our study,187

both parameters are determined based on their ob-188

served values in the validation split of the KP20k189

dataset (Meng et al., 2017); specifically, λx = 0.85190

and λr = 0.75.191

Step 3: Ordering Samples by Confidence192

The final step involves ordering the cited docu-193

ments based on how confident our method is in its194

silver-standard keyphrases, and selecting the top-N195

ranked documents as synthetic labeled data. Here,196

we determine the confidence of our method by av-197

eraging the scores of its silver-standard keyphrases,198

as computed in Equation 1. We remind that our ob-199

jective is to generate small, high quality in-domain200

data for fine-tuning keyphrase generation models,201

which advocates for a conservative approach.202

3 Datasets203

We use the widely adopted KP20k dataset (Meng204

et al., 2017) as a starting point for pre-training205

keyphrase generation models. This dataset con-206

tains ≈ 514K scientific documents (titles and ab-207

stracts) paired with author-assigned keyphrases in208

the broader domain of computer science. We in- 209

vestigate the effectiveness of our domain adap- 210

tation method across three distinct scientific do- 211

mains: Natural Language Processing (nlp), Astro- 212

physics (astro), and Paleontology (paleo). These 213

domains differ with increasing distances from the 214

initial KP20k dataset, with nlp being the closest 215

and paleo standing as the furthest. This section 216

gives details about the data we use for each domain, 217

presents the statistics of the resulting synthetic in- 218

domain data we generate, and describes how we 219

collect3 annotated test data to validate the useful- 220

ness of our method for domain adaptation. 221

3.1 Natural Language Processing 222

For the nlp domain, we use the ACL Anthology 223

Sentence Corpus4 that contains the sentences of 224

65 662 papers from the ACL Anthology up until 225

2022. For quality reasons, we only consider sen- 226

tences from papers published in the last 20 years 227

(2003 and upwards) and occurring within the intro- 228

duction and related work sections. From these, we 229

extracted 260 324 citation contexts with the restric- 230

tion that they include at least one citation to a paper 231

within the ACL Anthology. For each cited paper, 232

we applied our method to extract silver-standard 233

keyphrases from citation contexts, resulting in a 234

confidence-ordered list of 6 199 synthetic samples. 235

As most papers in the ACL Anthology do not 236

provide keyphrases, we mainly relied on related 237

conferences and journals to compile the test data 238

for the nlp domain. More precisely, we manually 239

collected a set of 212 documents (title and abstract) 240

with author-assigned keyphrases from a variety of 241

sources (e.g. LREC, SIGIR, CIKM). 242

3.2 Astrophysics 243

Astrophysics is a branch of astronomy concerned 244

with the physical nature of stars, galaxies, inter- 245

stellar clouds, and other objects. For the astro 246

domain, we use the unarXive 2022 dataset (Saier 247

et al., 2023) that contains 1.9M full-text papers 248

from arXiv. We selected the subset of 198 349 249

papers that belong to the Astrophysics category 250

(astro-ph), and extracted 133 320 citation contexts 251

originating from the introduction sections of these 252

papers. Applying our method for each cited paper 253

results in a confidence-ordered list of 2 680 docu- 254

ments with silver-standard keyphrases. 255

3Detailed information on the sources can be found in A.4.
4https://kmcs.nii.ac.jp/resource/AASC/
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For the astro test data, we manually collected256

a set of 255 documents (title and abstract) paired257

with author-assigned5 keyphrases from both arXiv258

and journals. To guarantee diversity across vari-259

ous topics, we uniformly selected 20 documents260

from each astrophysics sub-category in arXiv and261

retrieved documents from broader-scope journals.262

3.3 Paleontology263

Palaeontology is the study of fossils and the evo-264

lution of life on Earth. To the best of our knowl-265

edge, no dataset of scientific papers is available for266

the paleo domain. To fill that gap, we collected267

12 353 open- or free-access papers in PDF format268

from a wide range of journals in Paleontology.6269

We use GROBID7 for extracting the full-text from270

PDF papers, detecting inline citations and pars-271

ing bibliography, as it was shown to outperform272

other freely available tools (Meuschke et al., 2023;273

Rohatgi et al., 2023). From the XML output of274

GROBID, we extracted 53 133 citation contexts275

from the introductory parts of the papers (i.e. “In-276

troduction”, “Materials and Methods’’ and “Geo-277

logical Settings”). Applying our method on such278

a small collection yields only 130 documents with279

silver-standard keyphrases. To generate sufficient280

data for fine-tuning keyphrase generation models,281

we adjusted the threshold for candidate relevance282

(i.e. λr = 0.75→ 0.60) and queried the Semantic283

Scholar API8 to include cited papers not present284

in our collection. These modifications resulted in285

our method generating a confidence-ordered list of286

2 806 documents with silver-standard keyphrases.287

For the paleo test data, we manually collected288

a set of 244 documents, each paired with author-289

assigned keyphrases, sourced from approximately290

10 different journals that encompass a wide spec-291

trum of palaeontological topics (e.g. palaeogeogra-292

phy, palaeoecology or stratigraphy).293

3.4 Statistics and Analysis294

In this section, our aim is to deepen our understand-295

ing of the characteristics of the datasets we use for296

each domain and to assess how the compiled test297

data aligns with existing test datasets.298

Table 1 summarizes the statistics of the datasets299

for each domain we apply our method on. There300

5It should be noted that controlled vocabularies are also
used to index papers in astrophysics, but we do not consider
those in our study.

6See Table 12 in Appendix A for the detailed sources.
7https://github.com/kermitt2/grobid
8https://www.semanticscholar.org/

is a noticeable diversity in characteristics across 301

the datasets, with nlp showing the highest citation 302

rate per document and paleo the lowest. We sus- 303

pect there are two reasons for this. First, papers 304

within the nlp domain seem to garner higher aver- 305

age citations compared to papers in the other two 306

domains. Second, papers from paleo tend to cite 307

works from both related domains (e.g. Biology, Ge- 308

ology) and sources outside our collection of gath- 309

ered papers. Conversely, the average number of 310

candidate keyphrases per document —those found 311

in the title, abstract, or citation contexts— remains 312

stable across the domains (≈80 candidates). 313

nlp astro paleo

# documents 65 662 198 349 12 353
# citation contexts 260 324 133 320 53 133

# cited doc 32 448 20 436 3 252
cites / doc 6.0 3.2 1.6

phrases / cited doc 72.9 76.8 87.4

↓ silk (top-1K - all) datasets ↑

doc len. (tokens) 149 202 278
keyphrase / doc 3.9 3.6 3.6 3.5 3.6 3.6

keyphrase len. 1.8 1.9 1.6
% abs keyphrases 23.7 21.8 16.7 14.8 4.3 5.3

Table 1: Statistics for the datasets and the top-1K syn-
thetics samples generated by silk for each domain.

Upon examining the synthetic fine-tuning data 314

generated by our method (restricted to the top-1K), 315

we observe that nlp documents are nearly half 316

the length of those in the paleo domain, while 317

astro documents fall in-between. These differ- 318

ences in length directly impact the ratio of absent 319

keyphrases9, decreasing from 24% to below 10%. 320

These numbers further decrease when computed be- 321

yond the top-1K, as the number of citation contexts 322

declines and, consequently, as the pool of absent 323

keyphrase candidates reduces. Constraints we intro- 324

duced for selecting the optimal subset of phrases al- 325

low for an average of about 4 silver keyphrases per 326

document, predominantly unigrams and bigrams, 327

which is in line with both past observations and the 328

test data we compiled (see Table 2). 329

To analyze the disparities between the domains 330

we selected, and also how they depart from 331

KP20k (initial domain) and from other existing test 332

datasets for keyphrase generation, we compare the 333

9We follow the definition of (Boudin and Gallina, 2021)
and consider keyphrases that do not match contiguous se-
quences of (stemmed) words in the source document as absent.
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Dataset #doc lendoc #kp lenkp %abs

KP20k 20K 176 5.2 2.0 41.5

nlp 212 210 4.1 2.0 36.7
astro 255 224 4.9 2.1 47.8
paleo 244 255 5.5 1.5 38.6

Inspec 500 134 9.8 2.3 21.4
NUS 211 182 11.7 2.1 45.2

SemEval 100 203 14.5 2.1 60.7

Table 2: Statistics for the test data we collected for each
domain in comparison with commonly used test sets.

main statistics of their test splits in Table 2. Here,334

we include three additional datasets, Inspec (Hulth,335

2003), NUS (Nguyen and Kan, 2007) and SemEval-336

2010 (Kim et al., 2010), that are composed of sci-337

entific abstracts in the computer science domain.338

Together with KP20k, these are probably the most339

commonly-used datasets for evaluating keyphrase340

generation models. Overall, we observe many sim-341

ilarities between KP20k and the test data we col-342

lected for each domain, whether in terms of the343

number of gold keyphrases (≈5 per document),344

their average length (≈2 tokens) or the ratio of345

absent keyphrases (≈40%). This suggests a uni-346

form trend in author-assigned keyphrases across347

scientific domains, which should facilitate general-348

ization for keyphrase generation models. It should349

be noted that higher number of gold keyphrases350

in NUS, SemEval-2010 and Inspec stems from351

their distinct annotation processes, with the for-352

mer two combining author- and reader-assigned353

keyphrases and the latter relying on professional in-354

dexers. Comparing the sizes of our domain-specific355

test data with those of the test splits in existing356

datasets shows that they are on a similar scale.357

Lastly, we examine the differences between the358

domains from a semantic perspective. Figure 2359

shows a t-SNE visualization (van der Maaten and360

Hinton, 2008) of the gold keyphrases in the test361

data that we collected for each domain and those362

of the KP20k test split. We clearly discern the363

different domains within the vector space, roughly364

dividing it into four clusters. The most notable365

overlap occurs between nlp and KP20k (computer366

science), whereas astro and paleo exhibit clear367

separation. These visual insights support our initial368

assumptions regarding the growing differences of369

our selected domains from KP20k, with nlp being370

the closest and paleo standing as the furthest.371
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Figure 2: t-SNE 2-D projections of the gold keyphrases
from • KP20k, • nlp, • astro and • paleo. We lever-
age SPECTER to compute the keyphrase embeddings
and use the first 500 documents from KP20k for clarity.

4 Experimental Settings 372

4.1 Initial Model 373

We use BART (Lewis et al., 2020) as our initial pre- 374

trained language model and perform fine-tuning 375

on the KP20k training set for 15 epochs, follow- 376

ing (Wu et al., 2023). BART was shown to yield 377

state-of-the-art performance in keyphrase genera- 378

tion (Zhao et al., 2022; Meng et al., 2023), sur- 379

passing other pre-trained language models, such as 380

T5 (Wu et al., 2023). Following previous work, we 381

fine-tune BART in a ONE2MANY setting (Yuan 382

et al., 2020), that is, given a source text as in- 383

put, the task is to generate keyphrases as a single 384

sequence of delimiter-separated phrases. During 385

fine-tuning, gold keyphrases are arranged in the 386

present-absent order which was found to give the 387

best results (Meng et al., 2021). At test time, we 388

use either greedy decoding and let the model gener- 389

ate the most probable keyphrases, or beam search 390

(K=20) and assemble the top-k keyphrases from 391

all the beams as the model output. Implementation 392

details are given in Appendix A.2. 393

4.2 Domain Adaptation 394

For adapting our fine-tuned BART model to a spe- 395

cific domain, we continue fine-tuning it on the 396

synthetic labeled data generated by silk for 3 397

epochs. Specifically, we use the top-N most con- 398

fident silver-labeled examples to further fine-tune 399

BART, creating three gradually adapted models for 400

each domain by varying N ∈ {500, 1K, 2K}. We 401

compare the effectiveness of our domain adaptation 402

method with that of the only other unsupervised ap- 403

proach we are aware of, which is self-learning (Ye 404

and Wang, 2018; Meng et al., 2023). Self-learning 405
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consists in using a model to generate pseudo-labels406

for in-domain documents and then re-train itself on407

this data. Here, we use our fine-tuned BART model408

to generate keyphrases for the same documents as409

those produced by silk, and further fine-tune it on410

this self-labeled data for 3 epochs.411

4.3 Baselines412

Although the focus of this work is domain adap-413

tion for keyphrase generation, we also provide the414

results of two baselines as a point of reference.415

The first baseline is MultiPartiteRank (Boudin,416

2018), an unsupervised method for keyphrase ex-417

traction that leverages graph-based ranking and top-418

ical information. Despite being limited to present419

keyphrases, MultiPartiteRank yields the best re-420

sults among non deep learning methods (Do et al.,421

2023). We use the author’s implementation pro-422

vided by the pke toolkit.10 The second baseline423

is One2Set (Ye et al., 2021), a Transformer-based424

model for keyphrase generation that utilizes learned425

control codes to generate a set of keyphrases. This426

model achieves strong performance, often on-par427

with state-of-the-art models (Zhao et al., 2022; Wu428

et al., 2023). We use the model weights released429

by the authors, which were trained on KP20k.11430

4.4 Datasets and Evaluation Metrics431

We use the test split of KP20k for evaluating the432

initial performance of the models, and our man-433

ually collected test sets to assess their in-domain434

performance. Detailed statistics for these datasets435

are presented in Table 2. Following common prac-436

tice, we evaluate the performance of the models437

in terms of F1 score using exact match between438

gold and predicted keyphrases. Stemming (Porter439

stemmer) is applied to reduce the number of mis-440

matches and duplicates are removed. We compute441

the scores both at the top-k predicted keyphrases442

with k ∈ 5, 10, and at the number M of keyphrases443

predicted by the models as proposed in (Yuan et al.,444

2020). For F1@k scores, if the number of predicted445

keyphrases is below k, we append incorrect predic-446

tions until it reaches exactly k keyphrases. We also447

report scores for present and absent keyphrases sep-448

arately to get more insights about the extractive and449

generative capabilities of the models. We compute450

the Student’s paired t-test to assess the statistical451

significance of our results at p < 0.05.452

10https://github.com/boudinfl/pke
11https://github.com/jiacheng-ye/kg_one2set

4.5 Performance of Models on KP20k 453

Table 3 presents the results of our fine-tuned BART 454

model (hereafter denoted as BART-FT) and the 455

two baselines on the test split of KP20k. It should 456

be noted that MultiPartiteRank cannot be assessed 457

using F1@M as it requires setting a top-k param- 458

eter, and that One2Set cannot be assessed using 459

F1@10 since it only outputs the most probable 460

keyphrases (≈7 per document). Overall, BART-FT 461

demonstrates superior performance, significantly 462

outperforming the baselines for both all and only 463

the present keyphrases. We observe that One2Set 464

achieves the best scores for the absent keyphrases, 465

confirming previous findings (Wu et al., 2023). De- 466

spite employing the model weights and code pro- 467

vided by the authors, our scores for One2Set are 468

lower than those reported in the original paper. This 469

is due to preprocessing discrepancies. For instance, 470

in (Ye et al., 2021), abbreviations are removed from 471

gold keyphrases and digits are replaced with the 472

special token while we retain them in their origi- 473

nal form. In light of these results, we argue that 474

BART-FT is a strong model for keyphrase genera- 475

tion, providing a solid basis for the application of 476

our domain adaptation method. 477

Model F1@M F1@5 F1@10

all pres abs all pres abs all pres abs

MPRank - 13.6 17.3 - 12.8 15.1 -

One2Set 23.2 35.1 5.5† 23.5 29.9 4.2 -
BART-FT 28.7† 37.3† 2.4 28.0† 35.5† 5.9† 25.4† 29.2† 5.8

Table 3: Performance comparison on the KP20k test
set, with † indicating statistical significance. Scores for
present and absent keyphrases separately are reported.

5 Results 478

Table 4 presents the results of the keyphrase gener- 479

ation models and our domain adaptation method on 480

each domain.12 We observe that silk brings con- 481

sistent and significant improvements over BART- 482

FT on the three domains. The best overall perfor- 483

mance is achieved by fine-tuning the model with 484

the top-1K most confident synthetic samples, how- 485

ever gains are observed with just the top-500 sam- 486

ples. Self-learning for domain adaptation yields 487

only marginal gains at best and often degrades 488

performance. This suggests that the initial per- 489

formance of BART-FT on these domains is not 490

12See Table 13 in Appendix A for the detailed results of
present and absent keyphrases.
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Model FT nlp astro paleo

F1@M F1@5 F1@10 F1@M F1@5 F1@10 F1@M F1@5 F1@10

MPRank - 13.3 11.9 - 12.8 10.8 - 13.1 13.1
One2Set 21.6 24.1 - 13.2 12.7 - 13.4 12.1 -

BART-FT 30.8 29.8 24.8 19.1 18.6 16.5 18.4 18.9 18.8

+self-learning 500 31.2 30.0 24.5 19.1 18.9 16.2 18.8 18.7 18.6
1K 30.6 30.7 24.1 19.6 19.5 16.5 19.3 19.2 18.8
2K 29.8 29.2 24.4 18.4 19.1 16.3 18.9 19.7 18.4

+silk (ours) 500 31.0 29.7 25.2 18.8 19.2 17.0 19.0 19.3 19.2
1K 33.7† 32.2† 25.2 19.2 20.4† 17.7† 19.4 20.4† 19.5
2K 29.8 29.2 24.4 20.3 21.5† 17.9† 17.7 19.1 18.0

Table 4: Performance of keyphrase generation models on the nlp, astro and paleo domains for all keyphrases
(i.e. present and absent combined). Values in bold indicate best scores and † indicates significance over BART-FT.

sufficient to generate high-quality pseudo-labels. A491

closer look at the numbers shows that BART-FT492

performs comparably on nlp as it does on KP20k493

(see Table 3), but it gives substantially lower scores494

on paleo and astro. This empirically confirms the495

growing distance between KP20k and these three496

domains, correlating model performance with the497

distance from the initial domain.498

Among the three domains, paleo poses the great-499

est challenge for our method. We see two main500

reasons for this. First, the limited size of our collec-501

tion of full-text papers (≈12K), and the necessary502

parameter adjustments made to accommodate it,503

adversely affect the quality of the synthetic sam-504

ples. Second, the paleo domain in itself appears to505

be more challenging to handle due to its interdisci-506

plinary nature, spanning subjects such as geology,507

biology, history, and ecology, among others. Exam-508

ining the performance of the baselines, we observe509

the poor generalization of One2Set whose results510

nearly drop by half for non-computer science do-511

mains, and that is even surpassed by MultiPartiteR-512

ank. This latter delivers consistent, albeit modest,513

performance across domains which makes it rele-514

vant as an estimator of lower-bound performance515

for research on domain adaptation.516

In the remainder of this section, we conduct517

additional experiments to 1) validate the confi-518

dence ranking of the synthetic samples in silk;519

2) examine whether our domain adaptation method520

causes catastrophic forgetting of the initial domain;521

and 3) showcase the quality of the silver-standard522

keyphrases generated by silk through human eval-523

uation.524

5.1 Confidence Ranking of synthetic samples 525

The purpose of silk is to generate small, high qual- 526

ity in-domain data for fine-tuning keyphrase genera- 527

tion models. Accordingly, synthetic samples are or- 528

dered by confidence (described in §2) and only the 529

top-N ranked samples are employed for adapting 530

models. To validate the quality of our ranking, and 531

consequently the effectiveness of our keyphrase 532

candidate scoring function (see Equation 1), we 533

compare the performance of BART-FT when we 534

continue the fine-tuning with the top-1K, bottom- 535

1K and a random selection of 1K samples. Results 536

are presented in Table 5. We note that, uniformly 537

across the three domains, the random and top-1K 538

ordering schemes lead to improvements, with top- 539

1K yielding the best results. In contrast, using the 540

least confident samples (bottom-1K) systematically 541

degrades the performance. Insights from these re- 542

sults are twofold: 1) our confidence ranking proves 543

to be beneficial for selecting high-quality synthetic 544

samples, and 2) even samples beyond the top-1K 545

are qualitative enough for domain adaptation. 546

Model nlp astro paleo

F1@M F1@10 F1@M F1@10 F1@M F1@10

BART-FT 30.8 24.9 19.1 16.5 18.4 18.8

+silk (top) 33.7† 25.2 19.2 17.7† 19.4 19.5

+silk (ran) 33.2† 25.1 19.3 17.4 19.4 19.4

+silk (bot) 27.8 21.4 16.5 15.1 16.9 17.3

Table 5: Performance of BART-FT fine-tuned on the
top-1K, bottom-1K and random-1K (averaged over 5
runs) samples. † indicates significance over BART-FT.
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5.2 Forgetting of Domain Adaptation547

Although continued training is effective for domain548

adaptation, it has been found to adversely affect per-549

formance in the initial domain for language gener-550

ation tasks (Thompson et al., 2019; Li et al., 2022).551

Here, we investigate whether this phenomenon, re-552

ferred to in the literature as catastrophic forget-553

ting (French, 1999), also manifests in our adapted554

models. Table 6 presents the results of our domain555

adapted BART-FT models (using 1K synthetic sam-556

ples) on the KP20k test set. Overall, we observe557

no drop in performance for our adapted models.558

Rather surprisingly, we notice small improvements559

in F1@k scores over the initial BART-FT model.560

Upon closer examination, these gains derive from561

improved extractive capabilities, while the scores562

for absent keyphrases consistently degrade. We hy-563

pothesise that the domain adaption process makes564

the model lose generative ability and reinforces its565

extractive capability which translates more effec-566

tively across domains.567

Model F1@M F1@5 F1@10

all pres abs all pres abs all pres abs

BART-FT 28.7 37.3 2.4 28.0 35.5 5.9 25.4 29.2 5.8

+silk (nlp) 28.6 37.5 1.6 28.3 35.9 5.5 25.7 29.7 5.4

+silk (astro) 28.7 37.8 1.7 28.7 36.4 5.9 25.9 29.8 5.9

+silk (paleo) 28.4 37.5 1.4 28.6 36.2 5.7 25.8 29.7 5.6

Table 6: Performance comparison of BART-FT and its
adaptions (silk 1K) on the KP20k test set. Scores for
present and absent keyphrases are also reported.

5.3 Qualitative analysis568

We further examine the quality of the synthetic569

samples produced with silk by conducting a man-570

ual evaluation of the top-100 samples of the nlp571

domain.13 Annotators were instructed to assess the572

relevance of silver-standard keyphrases using a 3-573

point scale: “not relevant”, “partially relevant” and574

“relevant”. Additionally, we requested annotators575

to assess the well-formedness of the keyphrases576

with a binary rating. To quantify the qualitative577

difference between silk keyphrases and automati-578

cally generated ones, we perform a second round of579

human evaluation for BART-FT utilizing the same580

top-100 samples. Table 7 presents the results of581

our qualitative analysis. First, we note that nearly582

all silk keyphrases are well-formed, with any ex-583

ceptions attributable to tagging errors (e.g. “inter584

13Annotation guidelines and examples can be found in A.3.

alia”). More importantly, we observe that 80% 585

of silk keyphrases are relevant, demonstrating 586

the effectiveness of our method. In contrast, only 587

54.5% of the keyphrases generated by BART-FT 588

are deemed relevant, which explains why the self- 589

learning approach to domain adaptation falls short. 590

We also note that BART-FT tends to generate more 591

keyphrases (≈5.5 per document), many of which 592

are broader terms that are often irrelevant for the 593

NLP domain (e.g. “natural language processing”, 594

“statistics” or “machine learning”). 595

Model #kp WFness Relevance

no yes no part. yes

BART-FT 545 6.2 93.8 35.0 10.5 54.5
silk 411 2.9 97.1 11.9 8.0 80.0

Table 7: Human evaluation results (%) in terms of well-
formedness and relevance of the top-100 nlp samples
generated by silk and re-annotated using BART-FT.

6 Conclusion and Future Work 596

In this paper, we propose silk, an unsupervised 597

method that relies on citation contexts to create 598

silver-standard data for adapting keyphrase genera- 599

tion models to new domains. We conduct experi- 600

ments across three distinct scientific domains and 601

demonstrate the effectiveness of our method for 602

domain adaptation by few-shot fine-tuning a pre- 603

trained model for keyphrase generation. We further 604

validate the quality of the synthetic samples created 605

by silk through human evaluation and analysis. 606

Our work addresses the issue of domain adap- 607

tation in keyphrase generation by introducing a 608

solution that leverages citation contexts. Consid- 609

ering that citing papers is the de-facto means for 610

discussing past work in scientific writing, we argue 611

that it is possible to generate silver-standard data 612

for most domains, provided that there is a mini- 613

mal number of papers available. Such data would 614

not only be useful for adapting existing models to 615

new domains but also for keeping them up-to-date, 616

given the rapid expansion of scientific literature 617

and the evolving terminology across all domains. 618

Mining silver keyphrases from citation contexts 619

also adds another dimension in that they capture 620

the contributions of a paper according to its peers. 621

These do not necessarily align with the authors’ 622

keyphrases, raising further questions as to how pes- 623

simistic our intrinsic evaluation scores are. 624
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Limitations625

While our proposed method is both straightforward626

and effective, it is important to acknowledge its627

limitations. First, as our method leverages citation628

contexts, the generated synthetic samples are in-629

herently biased towards highly cited papers and630

their corresponding research topics. Second, we631

did not optimize each component of our method,632

relying instead on heuristics for selecting and fil-633

tering citation contexts and scoring silver-standard634

keyphrases using a simple combination of criteria.635

Since our work focuses on generating synthetic636

data for domain adaptation, and we did not search637

for the optimal fine-tuning parameters, and also638

relied on a single pre-trained model (BART-base).639

Even though we have conducted extensive exper-640

iments across three domains, it remains unclear641

how our findings generalize to other or larger pre-642

trained models. Manually evaluating the quality of643

automatically generated keyphrases is inherently644

subjective. Although we developed simple and645

detailed guidelines to minimize variability in as-646

sessments, it remains unclear how the results from647

our qualitative analysis extend beyond the top 100648

samples in nlp or to the other two domains.649

References650

Amjad Abu-Jbara and Dragomir Radev. 2011. Co-651
herent citation-based summarization of scientific pa-652
pers. In Proceedings of the 49th Annual Meeting of653
the Association for Computational Linguistics: Hu-654
man Language Technologies, pages 500–509, Port-655
land, Oregon, USA. Association for Computational656
Linguistics.657

Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei658
Chang. 2021. Select, extract and generate: Neu-659
ral keyphrase generation with layer-wise coverage660
attention. In Proceedings of the 59th Annual Meet-661
ing of the Association for Computational Linguistics662
and the 11th International Joint Conference on Nat-663
ural Language Processing (Volume 1: Long Papers),664
pages 1389–1404, Online. Association for Computa-665
tional Linguistics.666

Hareesh Bahuleyan and Layla El Asri. 2020. Diverse667
keyphrase generation with neural unlikelihood train-668
ing. In Proceedings of the 28th International Con-669
ference on Computational Linguistics, pages 5271–670
5287, Barcelona, Spain (Online). International Com-671
mittee on Computational Linguistics.672

Florian Boudin. 2018. Unsupervised keyphrase extrac-673
tion with multipartite graphs. In Proceedings of the674
2018 Conference of the North American Chapter of675

the Association for Computational Linguistics: Hu- 676
man Language Technologies, Volume 2 (Short Pa- 677
pers), pages 667–672, New Orleans, Louisiana. As- 678
sociation for Computational Linguistics. 679

Florian Boudin and Ygor Gallina. 2021. Redefining 680
absent keyphrases and their effect on retrieval effec- 681
tiveness. In Proceedings of the 2021 Conference of 682
the North American Chapter of the Association for 683
Computational Linguistics: Human Language Tech- 684
nologies, pages 4185–4193, Online. Association for 685
Computational Linguistics. 686

Florian Boudin, Ygor Gallina, and Akiko Aizawa. 687
2020. Keyphrase generation for scientific document 688
retrieval. In Proceedings of the 58th Annual Meet- 689
ing of the Association for Computational Linguistics, 690
pages 1118–1126, Online. Association for Computa- 691
tional Linguistics. 692

Cornelia Caragea, Florin Adrian Bulgarov, Andreea 693
Godea, and Sujatha Das Gollapalli. 2014. Citation- 694
enhanced keyphrase extraction from research pa- 695
pers: A supervised approach. In Proceedings of 696
the 2014 Conference on Empirical Methods in Nat- 697
ural Language Processing (EMNLP), pages 1435– 698
1446, Doha, Qatar. Association for Computational 699
Linguistics. 700

Hung Chau, Saeid Balaneshin, Kai Liu, and Ondrej 701
Linda. 2020. Understanding the tradeoff between 702
cost and quality of expert annotations for keyphrase 703
extraction. In Proceedings of the 14th Linguistic An- 704
notation Workshop, pages 74–86, Barcelona, Spain. 705
Association for Computational Linguistics. 706

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and 707
Zhoujun Li. 2018. Keyphrase generation with corre- 708
lation constraints. In Proceedings of the 2018 Con- 709
ference on Empirical Methods in Natural Language 710
Processing, pages 4057–4066, Brussels, Belgium. 711
Association for Computational Linguistics. 712

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and 713
Michael R. Lyu. 2019. Title-guided encoding for 714
keyphrase generation. In Proceedings of the Thirty- 715
Third AAAI Conference on Artificial Intelligence and 716
Thirty-First Innovative Applications of Artificial In- 717
telligence Conference and Ninth AAAI Symposium 718
on Educational Advances in Artificial Intelligence, 719
AAAI’19/IAAI’19/EAAI’19. AAAI Press. 720

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug 721
Downey, and Daniel Weld. 2020. SPECTER: 722
Document-level representation learning using 723
citation-informed transformers. In Proceedings 724
of the 58th Annual Meeting of the Association 725
for Computational Linguistics, pages 2270–2282, 726
Online. Association for Computational Linguistics. 727

Sujatha Das Gollapalli and Cornelia Caragea. 2014. 728
Extracting keyphrases from research papers using ci- 729
tation networks. Proceedings of the AAAI Confer- 730
ence on Artificial Intelligence, 28(1). 731

9

https://aclanthology.org/P11-1051
https://aclanthology.org/P11-1051
https://aclanthology.org/P11-1051
https://aclanthology.org/P11-1051
https://aclanthology.org/P11-1051
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/2020.coling-main.462
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/2021.naacl-main.330
https://doi.org/10.18653/v1/2021.naacl-main.330
https://doi.org/10.18653/v1/2021.naacl-main.330
https://doi.org/10.18653/v1/2021.naacl-main.330
https://doi.org/10.18653/v1/2021.naacl-main.330
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.3115/v1/D14-1150
https://doi.org/10.3115/v1/D14-1150
https://doi.org/10.3115/v1/D14-1150
https://doi.org/10.3115/v1/D14-1150
https://doi.org/10.3115/v1/D14-1150
https://aclanthology.org/2020.law-1.7
https://aclanthology.org/2020.law-1.7
https://aclanthology.org/2020.law-1.7
https://aclanthology.org/2020.law-1.7
https://aclanthology.org/2020.law-1.7
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.1609/aaai.v28i1.8946
https://doi.org/10.1609/aaai.v28i1.8946
https://doi.org/10.1609/aaai.v28i1.8946


Lam Do, Pritom Saha Akash, and Kevin Chen-732
Chuan Chang. 2023. Unsupervised open-domain733
keyphrase generation. In Proceedings of the 61st An-734
nual Meeting of the Association for Computational735
Linguistics (Volume 1: Long Papers), pages 10614–736
10627, Toronto, Canada. Association for Computa-737
tional Linguistics.738

J. Fagan. 1987. Automatic phrase indexing for docu-739
ment retrieval. In Proceedings of the 10th Annual740
International ACM SIGIR Conference on Research741
and Development in Information Retrieval, SIGIR742
’87, page 91–101, New York, NY, USA. Association743
for Computing Machinery.744

Robert M. French. 1999. Catastrophic forgetting in745
connectionist networks. Trends in Cognitive Sci-746
ences, 3(4):128–135.747

Ygor Gallina, Florian Boudin, and Béatrice Daille.748
2020. Large-scale evaluation of keyphrase extrac-749
tion models. In Proceedings of the ACM/IEEE Joint750
Conference on Digital Libraries in 2020, JCDL ’20,751
page 271–278, New York, NY, USA. Association for752
Computing Machinery.753

Krishna Garg, Jishnu Ray Chowdhury, and Cornelia754
Caragea. 2022. Keyphrase generation beyond the755
boundaries of title and abstract. In Findings of the756
Association for Computational Linguistics: EMNLP757
2022, pages 5809–5821, Abu Dhabi, United Arab758
Emirates. Association for Computational Linguis-759
tics.760

Krishna Garg, Jishnu Ray Chowdhury, and Cornelia761
Caragea. 2023. Data augmentation for low-resource762
keyphrase generation. In Findings of the Associ-763
ation for Computational Linguistics: ACL 2023,764
pages 8442–8455, Toronto, Canada. Association for765
Computational Linguistics.766

Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill-767
Manning, and Eibe Frank. 1999. Improving brows-768
ing in digital libraries with keyphrase indexes. Deci-769
sion Support Systems, 27(1):81–104.770

Maël Houbre, Florian Boudin, and Beatrice Daille.771
2022. A large-scale dataset for biomedical772
keyphrase generation. In Proceedings of the 13th773
International Workshop on Health Text Mining and774
Information Analysis (LOUHI), pages 47–53, Abu775
Dhabi, United Arab Emirates (Hybrid). Association776
for Computational Linguistics.777

Xiaoli Huang, Tongge Xu, Lvan Jiao, Yueran Zu, and778
Youmin Zhang. 2021. Adaptive beam search decod-779
ing for discrete keyphrase generation. Proceedings780
of the AAAI Conference on Artificial Intelligence,781
35(14):13082–13089.782

Anette Hulth. 2003. Improved automatic keyword ex-783
traction given more linguistic knowledge. In Pro-784
ceedings of the 2003 Conference on Empirical Meth-785
ods in Natural Language Processing, pages 216–786
223.787

Steve Jones and Mark S. Staveley. 1999. Phrasier: 788
A system for interactive document retrieval using 789
keyphrases. In Proceedings of the 22nd Annual 790
International ACM SIGIR Conference on Research 791
and Development in Information Retrieval, SIGIR 792
’99, page 160–167, New York, NY, USA. Associa- 793
tion for Computing Machinery. 794

Jihyuk Kim, Myeongho Jeong, Seungtaek Choi, and 795
Seung-won Hwang. 2021. Structure-augmented 796
keyphrase generation. In Proceedings of the 2021 797
Conference on Empirical Methods in Natural Lan- 798
guage Processing, pages 2657–2667, Online and 799
Punta Cana, Dominican Republic. Association for 800
Computational Linguistics. 801

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and 802
Timothy Baldwin. 2010. SemEval-2010 task 5 : Au- 803
tomatic keyphrase extraction from scientific articles. 804
In Proceedings of the 5th International Workshop on 805
Semantic Evaluation, pages 21–26, Uppsala, Swe- 806
den. Association for Computational Linguistics. 807

Fajri Koto, Timothy Baldwin, and Jey Han Lau. 2022. 808
LipKey: A large-scale news dataset for absent 809
keyphrases generation and abstractive summariza- 810
tion. In Proceedings of the 29th International Con- 811
ference on Computational Linguistics, pages 3427– 812
3437, Gyeongju, Republic of Korea. International 813
Committee on Computational Linguistics. 814

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 815
jan Ghazvininejad, Abdelrahman Mohamed, Omer 816
Levy, Veselin Stoyanov, and Luke Zettlemoyer. 817
2020. BART: Denoising sequence-to-sequence pre- 818
training for natural language generation, translation, 819
and comprehension. In Proceedings of the 58th An- 820
nual Meeting of the Association for Computational 821
Linguistics, pages 7871–7880, Online. Association 822
for Computational Linguistics. 823

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xi- 824
aohu Liu, Fan Xing, Chenlei Guo, and Yang Liu. 825
2022. Overcoming catastrophic forgetting during 826
domain adaptation of seq2seq language generation. 827
In Proceedings of the 2022 Conference of the North 828
American Chapter of the Association for Computa- 829
tional Linguistics: Human Language Technologies, 830
pages 5441–5454, Seattle, United States. Associa- 831
tion for Computational Linguistics. 832

Yizhu Liu, Qi Jia, and Kenny Zhu. 2021. Keyword- 833
aware abstractive summarization by extracting set- 834
level intermediate summaries. In Proceedings of the 835
Web Conference 2021, WWW ’21, page 3042–3054, 836
New York, NY, USA. Association for Computing 837
Machinery. 838

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and 839
Maosong Sun. 2011. Automatic keyphrase extrac- 840
tion by bridging vocabulary gap. In Proceedings of 841
the Fifteenth Conference on Computational Natural 842
Language Learning, pages 135–144, Portland, Ore- 843
gon, USA. Association for Computational Linguis- 844
tics. 845

10

https://doi.org/10.18653/v1/2023.acl-long.592
https://doi.org/10.18653/v1/2023.acl-long.592
https://doi.org/10.18653/v1/2023.acl-long.592
https://doi.org/10.1145/42005.42016
https://doi.org/10.1145/42005.42016
https://doi.org/10.1145/42005.42016
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1145/3383583.3398517
https://doi.org/10.1145/3383583.3398517
https://doi.org/10.1145/3383583.3398517
https://doi.org/10.18653/v1/2022.findings-emnlp.427
https://doi.org/10.18653/v1/2022.findings-emnlp.427
https://doi.org/10.18653/v1/2022.findings-emnlp.427
https://doi.org/10.18653/v1/2023.findings-acl.534
https://doi.org/10.18653/v1/2023.findings-acl.534
https://doi.org/10.18653/v1/2023.findings-acl.534
https://doi.org/https://doi.org/10.1016/S0167-9236(99)00038-X
https://doi.org/https://doi.org/10.1016/S0167-9236(99)00038-X
https://doi.org/https://doi.org/10.1016/S0167-9236(99)00038-X
https://doi.org/10.18653/v1/2022.louhi-1.6
https://doi.org/10.18653/v1/2022.louhi-1.6
https://doi.org/10.18653/v1/2022.louhi-1.6
https://doi.org/10.1609/aaai.v35i14.17546
https://doi.org/10.1609/aaai.v35i14.17546
https://doi.org/10.1609/aaai.v35i14.17546
https://aclanthology.org/W03-1028
https://aclanthology.org/W03-1028
https://aclanthology.org/W03-1028
https://doi.org/10.1145/312624.312671
https://doi.org/10.1145/312624.312671
https://doi.org/10.1145/312624.312671
https://doi.org/10.1145/312624.312671
https://doi.org/10.1145/312624.312671
https://doi.org/10.18653/v1/2021.emnlp-main.209
https://doi.org/10.18653/v1/2021.emnlp-main.209
https://doi.org/10.18653/v1/2021.emnlp-main.209
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://aclanthology.org/2022.coling-1.303
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.naacl-main.398
https://doi.org/10.18653/v1/2022.naacl-main.398
https://doi.org/10.18653/v1/2022.naacl-main.398
https://doi.org/10.1145/3442381.3449906
https://doi.org/10.1145/3442381.3449906
https://doi.org/10.1145/3442381.3449906
https://doi.org/10.1145/3442381.3449906
https://doi.org/10.1145/3442381.3449906
https://aclanthology.org/W11-0316
https://aclanthology.org/W11-0316
https://aclanthology.org/W11-0316


Debanjan Mahata, Navneet Agarwal, Dibya Gautam,846
Amardeep Kumar, Swapnil Parekh, Yaman Kumar847
Singla, Anish Acharya, and Rajiv Ratn Shah. 2022.848
Ldkp: A dataset for identifying keyphrases from849
long scientific documents.850

Yuning Mao, Ming Zhong, and Jiawei Han. 2022. Cite-851
Sum: Citation text-guided scientific extreme summa-852
rization and domain adaptation with limited super-853
vision. In Proceedings of the 2022 Conference on854
Empirical Methods in Natural Language Processing,855
pages 10922–10935, Abu Dhabi, United Arab Emi-856
rates. Association for Computational Linguistics.857

Qiaozhu Mei and ChengXiang Zhai. 2008. Gener-858
ating impact-based summaries for scientific litera-859
ture. In Proceedings of ACL-08: HLT, pages 816–860
824, Columbus, Ohio. Association for Computa-861
tional Linguistics.862

Rui Meng, Tong Wang, Xingdi Yuan, Yingbo Zhou,863
and Daqing He. 2023. General-to-specific transfer864
labeling for domain adaptable keyphrase generation.865
In Findings of the Association for Computational866
Linguistics: ACL 2023, pages 1602–1618, Toronto,867
Canada. Association for Computational Linguistics.868

Rui Meng, Xingdi Yuan, Tong Wang, Sanqiang Zhao,869
Adam Trischler, and Daqing He. 2021. An empir-870
ical study on neural keyphrase generation. In Pro-871
ceedings of the 2021 Conference of the North Amer-872
ican Chapter of the Association for Computational873
Linguistics: Human Language Technologies, pages874
4985–5007, Online. Association for Computational875
Linguistics.876

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing877
He, Peter Brusilovsky, and Yu Chi. 2017. Deep878
keyphrase generation. In Proceedings of the 55th879
Annual Meeting of the Association for Computa-880
tional Linguistics (Volume 1: Long Papers), pages881
582–592, Vancouver, Canada. Association for Com-882
putational Linguistics.883

Norman Meuschke, Apurva Jagdale, Timo Spinde, Je-884
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A Appendices1020

A.1 Related work1021

Keyphrase generation was first introduced by (Liu1022

et al., 2011) and subsequently formulated as a1023

sequence-to-sequence language generation task1024

by (Meng et al., 2017). They proposed an RNN-1025

based encoder-decoder model with attention and1026

copy mechanisms, which was later enhanced by1027

the addition of decoding constraints to improve1028

keyphrase diversity (Chen et al., 2018; Zhao and1029

Zhang, 2019; Bahuleyan and El Asri, 2020; Yuan1030

et al., 2020; Huang et al., 2021), or by learning1031

to encode the structural information of input docu-1032

ments (Ye and Wang, 2018; Chen et al., 2019; Kim1033

et al., 2021). Later work switched to Transformers-1034

based models (Meng et al., 2021; Ye et al., 2021;1035

Ahmad et al., 2021), reporting better performance.1036

Recently, pre-trained language models (PLMs)1037

have been used for keyphrase generation, predomi-1038

nantly through continued fine-tuning (Zhao et al.,1039

2022; Meng et al., 2023; Wu et al., 2023).1040

Our work also intersects with unsupervised mod-1041

els for keyphrase generation (Shen et al., 2022; Do1042

et al., 2023), which evaluate the informativeness1043

of keyphrases based on their semantic similarity to1044

the source document. Another direction to mitigate1045

the data scarcity issue in keyphrase generation in-1046

volves leveraging both labeled and unlabeled data1047

for training. Ye and Wang (2018) proposed a self-1048

learning approach to augment the training data with1049

synthetic samples. Similarly, Meng et al. (2023) ex-1050

tended this concept to adapt models to new domains1051

by generating domain-specific synthetic samples.1052

In a low-resource setting, Garg et al. (2023) intro-1053

duced a data augmentation method that leverages1054

the full text of the documents to add diversity to1055

the training samples.1056

Our work is closely related to the use of cita-1057

tion contexts in automated models for producing1058

keyphrases. For keyphrase extraction, Das Golla-1059

palli and Caragea (2014) proposed a graph-ranking1060

approach that leverages citation contexts while scor-1061

ing candidates, and Caragea et al. (2014) use the1062

occurrence of candidates in citation contexts as1063

a feature in a supervised model. For keyphrase1064

generation, Garg et al. (2022) proposed to append1065

citation contexts to enrich the input document.1066

A.2 Implementation Details1067

We use the BART-base model weights as our ini-1068

tial pre-trained language model and perform fine-1069

tuning on the KP20k training set for 15 epochs. We 1070

use the AdamW optimizer with a learning rate of 1071

1e-5 and a batch size of 24. Fine-tuning the model 1072

using 2 Nvidia GeForce RTX 2080 took 62 hours. 1073

For adapting BART-FT to a each domain, we 1074

continue fine-tuning on N ∈ {500, 1K, 2K} syn- 1075

thetic samples for 3 epochs. We use the AdamW 1076

optimizer with a learning rate of 1e-6 and a batch 1077

size of 16. Few-shot fine-tuning, conducted on 1078

a MacBook Pro M1 Max, required an average of 1079

5 minutes per model, totaling 3 hours for all 12 1080

models per domain. 1081

A.3 Guidelines for manual evaluation 1082

We evaluate the silver-standard keyphrases created 1083

by silk and those generated by BART-FT along 1084

two criteria: their relevance with respect to the 1085

source document, and their well-formedness. An- 1086

notators (authors of this paper) were given the title, 1087

the abstract and access to the full-text paper when 1088

evaluating the quality of the keyphrases. We per- 1089

form manual evaluation on the top-100 synthetic 1090

samples generated by silk, confined to the nlp 1091

domain for which annotators have expertise. 1092

Relevance is assessed on a 3-point scale, where 1093

0 indicates that the keyphrase is not relevant, 1094

1 that it is partially relevant (i.e. covering a 1095

related concept) and 2 that it is relevant to the 1096

source document. 1097

Well-formedness is assessed on a binary scale, 1098

with 0 indicating that the keyphrase lacks 1099

proper form, such as being improperly 1100

structured (e.g. “algorithms and data struc- 1101

tures”) or not forming a self-contained phrase 1102

(e.g. “large amount”), while 1 signifies that 1103

the keyphrase is well-formed. 1104

Orthographic variants occurring in a set of 1105

keyphrases (e.g. “co-reference resolution” and 1106

“coreference resolution”) are identified, and only 1107

one of them is considered as relevant. We do not 1108

consider abbreviations as variants of their expanded 1109

forms. Broader terms such as “natural language 1110

processing”, “machine learning” or “neural net- 1111

works” are generally considered as too generic and 1112

not relevant. 1113

An example of output for silk and BART-FT is 1114

shown is Table 8. 1115
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Get To The Point: Summarization with Pointer-Generator Networks (Bibkey: see-etal-2017-get)

Neural sequence-to-sequence models have provided a viable new approach for abstractive text summarization (meaning they are
not restricted to simply selecting and rearranging passages from the original text). However, these models have two shortcomings:
they are liable to reproduce factual details inaccurately, and they tend to repeat themselves. In this work we propose a novel
architecture that augments the standard sequence-to-sequence attentional model in two orthogonal ways. First, we use a hybrid
pointer-generator network that can copy words from the source text via pointing, which aids accurate reproduction of information,
while retaining the ability to produce novel words through the generator. Second, we use coverage to keep track of what has been
summarized, which discourages repetition. We apply our model to the CNN / Daily Mail summarization task, outperforming the
current abstractive state-of-the-art by at least 2 ROUGE points.

silk summarization, pointer-generator network, sequence-to-sequence model, copy mechanism, coverage mechanism
well-formedness: 1 1 1 1 1 relevance: 1 1 1 1 1

BART-FT summarization, sequence-to-sequence models, attentional models, cnn, daily mail, neural networks, text mining
well-formedness: 1 1 1 1 1 1 1 relevance: 1 1 1 1 1 0 0

Improving Neural Machine Translation Models with Monolingual Data (Bibkey: sennrich-etal-2016-improving)

Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel
data for training. Target-side monolingual data plays an important role in boosting fluency for phrase-based statistical machine
translation, and we investigate the use of monolingual data for NMT. In contrast to previous work, which combines NMT models
with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the
same information as a language model, and we explore strategies to train with monolingual data without changing the neural
network architecture. By pairing monolingual training data with an automatic back-translation, we can treat it as additional
parallel training data, and we obtain substantial improvements on the WMT 15 task English German (+2.8-3.7 BLEU), and for
the low-resourced IWSLT 14 task Turkish->English (+2.1-3.4 BLEU), obtaining new state-of-the-art results. We also show that
fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English->German.

silk neural machine translation, monolingual data, back-translation, data augmentation, synthetic parallel corpus
well-formedness: 1 1 1 1 1 relevance: 1 1 1 1 1

BART-FT neural machine translation, monolingual data, language models, back-translation, language modeling and
translation, parallel training data
well-formedness: 1 1 1 1 0 1 relevance: 1 1 1 1 0 0.5

Table 8: Examples of document (title and abstract) from the nlp domain with silver-standard keyphrases generated
by silk and automatically generated keyphrases from BART-FT.

A.4 Sources used for collecting test data1116

Source Session / Volume #nb

SIGIR 2023 Language Models 6
Question Answering 3
Summarization & Text Generation 5
Short Research Papers¥ 16

CIKM 2023 Natural Language 24
WSDM 2023 Language Models and Text Mining 6

SIGIR 2022 NLP and Semantics 8
Question Answering 4
Sentiment Analysis and Classification 5
Short Research Papers¥ 14

CHI 2022 Natural Language 5
LREC 2022 Oral sessions¥ 81

NLP Journal14 Volumes 2-5 35

Total 212

Table 9: Detailed information on the sources of the test
documents for the nlp domain. ¥ indicates that we
manually selected the documents to filter out out-of-
domain ones.

Source Category / Year #nb

arXiv astro-ph.HE (High Energy Astro. Phenomena) 20
(oct→dec 2023) astro-ph.CO (Cosmology and Nongalactic Astro.) 20

astro-ph.IM (Instrumentation and Methods for Astro.) 20
astro-ph.SR (Solar and Stellar Astro.) 20
astro-ph.EP (Earth and Planetary Astro.) 20
astro-ph.GA (Astro. of Galaxies) 20

Frontiers in Astro. 2022-23 (selected using arXiv keywords) 76
Astrophysics 2022-23 59

Total 255

Table 10: Detailed information on the sources of the
test documents for the astro domain.

Source Year #nb

Palaeontologia Electronica 2023-24 21
Acta Palaeontologica Polonica 2023 22

Palaeontology 2023 26
Cretaceous Research 2024 20

Palaeogeography, Palaeoclimatology, Palaeoecology 2024 47
Papers in Palaeontology 2023 29

Proc. Royal Soc. B: Biological Sciences 2023 25
Biology Letters 2023 25

Palaeobiodiversity and Palaeoenvironments 2023 16

Total 244

Table 11: Detailed information on the sources of the
test documents for the paleo domain.
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Source Licence Year #nb

Acta Geologica Sinica open 2021-2023 21
Acta Palaeontologica Polonica open 2002-2023 1 398
Alcheringa: An Australasian Journal of Palaeontology open 2016-2023 32
Carnets de Geologie open 2015-2023 147
Cretacious Research open 2019-2023 81
Journal of paleontology open 2015-2023 144
Journal of Systematic Palaeontology open 2016-2023 34
Journal of Vertebrate Paleontology open 2013-2023 95
Lethaia open/free 2018-2023 239
Nature open 2010-2023 705
Palaeobiodiversity and Palaeoenvironments open 2002-2023 811
Palaeodiversity open 2016-2023 74
Palaeogeography, Palaeoclimatology, Palaeoecology open 2019-2023 201
Palaeontologia Electronica open 1998–2023 841
Palaeontology open/free 1999-2023 1 474
Paleobiology open 2013-2023 133
Paleoceanography and Paleoclimatology open 2014-2023 128
PalZ open/free 2009-2023 651
Papers in Palaeontology open 2015-2023 71
Plos Paleontology open 2011-2017 237
Proceedings of the Royal Society B: Biological Sciences (paleontology) open/free 2009-2023 354
PubMedfreef ulltext (query="Paleontology[MeSH Terms]") open/free 1955-2023 3 462
Research in Paleontology and Stratigraphy open 2019-2023 157
Royal Society Science (paleontology) open/free 2014-2023 270
Royal Society Biology Letters (paleontology) open/free 2009-2023 235
Swiss Journal of Palaeontology open/free 2011-2023 282
Trends in Ecology and Evolution (paleobiology) open 2020-2022 15
Zookeys (paleontology) open 2015-2023 61

Total 12 353

Table 12: Detailed information on the sources of the scientific papers collected for the Paleontology corpus.

Model FT nlp astro paleo

F1@M F1@5 F1@10 F1@M F1@5 F1@10 F1@M F1@5 F1@10

pres abs pres abs pres abs pres abs pres abs pres abs pres abs pres abs pres abs

MPRank - 16.3 - 13.5 - - 17.0 - 13.1 - - 16.5 - 15.0 -
One2Set 36.1 3.3 28.3 2.8 - 20.1 1.6 17.3 1.2 - 18.6 0.3 16.5 0.2 -

BART-FT 38.8 2.0 36.8 3.7 27.9 3.6 26.7 0.2 25.6 1.4 20.2 1.4 23.5 0.5 24.3 1.3 22.6 1.2

+self-learning 500 38.9 2.0 36.9 3.0 27.7 3.0 26.5 0.0 26.0 0.7 19.9 0.7 24.1 0.5 23.8 1.2 22.6 1.1
1K 38.2 2.0 36.8 3.1 27.6 3.0 27.0 0.0 26.1 0.5 20.5 0.5 24.5 0.2 24.8 0.6 22.9 0.7
2K 37.2 2.6 36.8 3.2 27.8 3.0 25.3 0.2 25.3 0.5 20.2 0.7 24.3 0.2 25.7 0.6 22.7 0.6

+silk (ours) 500 39.1 0.5 36.2 2.8 28.2 2.9 26.4 0.2 26.7 1.1 21.1† 1.1 24.4 0.5 24.8 1.0 23.5 0.9
1K 41.7† 1.2 38.3 3.3 28.1 3.4 27.0 0.0 27.7† 1.1 21.7† 1.0 25.4 0.7 26.3† 0.6 23.5 0.5
2K 38.8 0.3 37.2 2.8 27.3 2.8 29.0 0.0 28.9† 0.2 22.2† 0.2 23.2 0.0 24.5 0.5 21.9 0.5

Table 13: Performance of keyphrase generation models on the nlp, astro and paleo domains for present and
absent keyphrases separately. Values in bold indicate best scores and † indicates significance over BART-FT.
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