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ABSTRACT

In recent years, trust region on-policy reinforcement learning has achieved impres-
sive results in addressing complex control tasks and gaming scenarios. However,
contemporary state-of-the-art algorithms within this category primarily empha-
size improvement in expected performance, lacking the ability to control over the
worst-case performance outcomes. To address this limitation, we introduce a novel
objective function; optimizing which leads to guaranteed monotonic improvement
in the lower bound of near-total performance samples. We call it improvement
of absolute performance. Building upon this groundbreaking theoretical advance-
ment, we further introduce a practical solution called Absolute Policy Optimization
(APO). Our experiments demonstrate the effectiveness of our approach across
challenging continuous control benchmark tasks and extend its applicability to
mastering Atari games. Our findings reveal that APO significantly outperforms
state-of-the-art policy gradient algorithms, resulting in substantial improvements
in worst-case performance, as well as expected performance.

1 INTRODUCTION

Figure 1: Illustration of performance improvement.

Existing reinforcement learning algorithms have taken the expectation of improving cumulative
rewards (referred to as performance) as their core optimization objective. Within this framework,
trust region-based on-policy reinforcement learning algorithms have achieved the most outstanding
results. However, the representative trust-region policy optimization (TRPO) Schulman et al. (2015)
only ensures the monotonic improvement of the expectation of this performance distribution, it fails
to exert control over the worst-case performance sample originating from the same distribution. In
this paper, we introduce a novel theoretical breakthrough that ensures the monotonic improvement of
the lower bound of near-total performance samples (absolute performance) from the distribution.
Subsequently, we implement a series of approximations to transform this theoretically-grounded
algorithm into a practical solution, which we refer to as Absolute Policy Optimization (APO).
Remarkably, APO exhibits scalability and can efficiently optimize nonlinear policies characterized
by tens of thousands of parameters. Our experimental results underscore the effectiveness of APO,
demonstrating substantial performance improvements in terms of both absolute performance and
expected performance compared to state-of-the-art policy gradient algorithms. These improvements
are evident across challenging continuous control benchmark tasks and extend to the realm of playing
Atari games. Figure 1 provides a visual representation of our approach’s superiority, where APO
can effectively handle tasks that other algorithms inherently struggle to optimize, spanning both
continuous and discrete control domains. This work serves as the next generation base reinforcement
learning algorithm, and represents a significant step towards developing practical RL algorithms that
can be robustly applied to many real-world problems.
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2 RELATED WORKS

Model-Free Deep Reinforcement Learning Model-free deep reinforcement learning (RL) algo-
rithms have found applications from the realm of games (Mnih et al., 2013b; Silver et al., 2016) to
the intricate domain of robotic control (Schulman et al., 2015). The leading contenders of the model
free reinforcement learning algorithms include (i) deep Q-learning (Mnih et al., 2013a; Hausknecht &
Stone, 2015; van Hasselt et al., 2015; Hessel et al., 2018), (ii) off-policy policy gradient methods (Sil-
ver et al., 2014; Lillicrap et al., 2015; Gu et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018),
and (iii) trust region on-policy policy gradient methods (Schulman et al., 2015; 2017).

Among those categories, Q-learning-based techniques, augmented with function approximation,
have exhibited remarkable prowess over tasks with discrete action spaces, e.g. Atari game playing
(Bellemare et al., 2013). However, these methods performs poorly in the realm of continuous control
benchmarks, notably exemplified in OpenAI Gym (Brockman et al., 2016a; Duan et al., 2016).

In contrast, off-policy policy gradient methods extend Q-learning-based strategies via introducing
an independent actor network to handle continuous control tasks, as exemplified by the Deep
Deterministic Policy Gradient (DDPG)(Lillicrap et al., 2015). However, off-policy methods suffer
from stability issues and susceptibility to hyperparameter tuning nuances(Haarnoja et al., 2018).
Recently, enhancements are made to incorporate entropy to foster exploration (Haarnoja et al.,
2018) and mitigate the overestimation bias through target networks (Fujimoto et al., 2018). Despite
these advancements, the convergence characteristics of off-policy policy gradient methods remain
incompletely understood, primarily explored under stringent assumptions such as infinite sampling
and Q-updates (Fujimoto et al., 2018). Moreover, off-policy policy gradient methods are primarily
tailored for continuous action spaces.

Conversely, trust region on-policy policy gradient methods harmoniously accommodate both con-
tinuous and discrete action spaces while showcasing superior stability and dependable convergence
properties. Notably, the representative Trust Region Policy Optimization (TRPO)Schulman et al.
(2015), complemented by its pragmatic counterpart, Proximal Policy Optimization (PPO)Schulman
et al. (2017), have consistently delivered impressive performance across an array of demanding bench-
mark tasks. Furthermore, those methods have largely helped training of groundbreaking artificial
intelligence applications, including ChatGPT (Schulman et al., 2022), the automated Rubik’s Cube
solver with a robotic hand (Akkaya et al., 2019), and the championship-level drone racing (Kaufmann
et al., 2023), thereby reaffirming their profound impact on advancing the frontiers of AI technology.

Attempts to Improve Trust Region Methods Recently, many efforts are made to improve trust
region on-policy methods, including (i) improve computation efficiency. TREFree (Sun et al.,
2023) introduced a novel surrogate objective that eliminates trust region constraints. (ii) encourage
exploration. COPOS (Pajarinen et al., 2019) applied compatible value function approximation to
effectively control entropy during policy updates. (iii) improve training stability and data-efficiency.
Truly PPO (TR-PPO) (Wang et al., 2020) introduced a new clipping function and trust region-based
triggering condition. Generalized PPO (GePPO) (Queeney et al., 2021) extended PPO to an off-policy
variant, thereby enhancing sampling efficiency through data reuse. AlphaPPO (Xu et al., 2023)
introduced alpha divergence, a parametric metric that offers a more effective description of policy
differences, resulting more stable training performance.

There are also improvements considering variance control, including (i) variance reduction of policy
gradient. Xu et al. and Papini et al. applied the stochastic variance reduced gradient descent (SVRG)
technique for getting stochastic variance-reduced version of policy gradient (SVRPO) to improve the
sample efficiency. (Yuan et al.) incorporates the StochAstic Recursive grAdient algoritHm (SARAH)
into the TRPO framework to get more stable variance. (ii) variance reduction of performance update.
(Tomczak et al., 2019) introduced a surrogate objective with approximate importance sampling to
strike a balance between performance update bias and variance. (iii) variance reduction of importance
sampling. (Lin et al., 2023) introduced sample dropout to bound the variance of importance sampling
estimate by dropping out samples when their ratio deviation is too high.

Although trust region-based methods have achieved notable success, there remains substantial
potential for improvement. A critical gap in existing approaches lies in their inability to exert control
over the worst-case individual performance samples stemming from the policy. Unforeseen instances
of poor performance can result in training instability, thereby jeopardizing the reliability of solutions
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in real-world applications. In our research, we bridge this gap by introducing novel theoretical results
that ensure a monotonic improvement of the lower bound of near-total performance samples.

3 PROBLEM FORMULATION

3.1 NOTATIONS

Consider an infinite-horizon discounted Markov decision process (MDP) defined by the tuple
(S,A, �,R, P, µ), where S is the state space, and A is the control space, R : S ⇥ A 7! R is a
bounded reward function, 0  � < 1 is the discount factor, µ : S 7! R is the bounded initial state
distribution, and P : S ⇥A⇥ S 7! R is the transition probability. P (s0|s, a) is the probability of
transitioning to state s0 when the agent takes action a at state s. A stationary policy ⇡ : S 7! P(A) is
a mapping from states to a probability distribution over actions, with ⇡(a|s) denoting the probability
of selecting action a in state s. We denote the set of all stationary policies by ⇧. Subsequently, we
denote ⇡✓ as the policy that is parameterized by the parameter ✓.

The standard goal for MDP is to learn a policy ⇡ that maximizes a performance measure J (⇡) which
is computed via the discounted sum of reward:

J (⇡) = E⌧⇠⇡ [
P1

t=0 �
tR(st, at, st+1)] , (1)

where ⌧ = [s0, a0, s1, · · · ], and ⌧ ⇠ ⇡ is shorthand for that the distribution over trajectories depends
on ⇡ : s0 ⇠ µ, at ⇠ ⇡(·|st), st+1 ⇠ P (·|st, at). And the objective is to select a policy ⇡ that
maximizes the performance measure: max

⇡2⇧
J (⇡) .

3.2 ABSOLUTE PERFORMANCE BOUND

Notice that the above considers maximizing the expected reward performance, which, unfortunately,
does not provide control over each individual performance sample derived from the policy ⇡. To
clarify, a performance sample is defined here as R⇡(s0)

.
=

P1
t=0 �

tR(st, at, st+1), where the state
action sequence ⌧̂ = [a0, s1, . . . ] ⇠ ⇡ starts with an initial state s0, which follows initial state
distribution µ. In practical reinforcement learning setting, unexpected poor performance samples
can lead to training instability, compromising the reliability of solutions in real-world applications.
To tackle this issue, our fundamental insight is that policy optimization should not be solely fixated
on enhancing expected performance, but also on improving the worst-case performance samples
originating from the distribution of the variable R⇡(s0).

However, it’s important to acknowledge that within the Markov Decision Process framework, any
possible state visitation is inherently assigned a non-zero probability. In essence, any policy per-
formance distribution inherently accommodates the statistical possibility of all conceivable R⇡(s0).
Therefore, our ultimate goal is to improve the lower bound of near-total performance samples derived
from the policy. We denote this lower bound as the absolute performance bound for the policy:
Definition 1 (Absolute Performance Bound). Bk(⇡) is called the absolute performance bound with
pk confidence if it satisfies the following condition:

Pr
�
R⇡(s0) � Bk(⇡)

�
� pk, (2)

where pk
.
= 1 � 1

k2 2 (0, 1) and k is the probability factor (k > 1 and k 2 R), which can be set
according to the demand for probability magnitude.
Remark 1. Definition 1 shows that more than pk of the samples from the distribution of R⇡(s0) will
be larger than the bound Bk(⇡). By setting pk ! 1, Bk(⇡) represents the lower bound of near-total
performance samples of policy ⇡.

3.3 ABSOLUTE MARKOV DECISION PROCESS

In this paper, our focus is on a special class of Markov Decision Processes (MDP) characterized
by improvement of the absolute absolute performance. This unique class is termed Abosolute
Markov Decision Process (AMDP). Much like a standard MDP, an AMDP is defined by a tu-
ple (S,A, �,R, P, µ, k), with the inclusion of an extra probabilistic factor denoted as k, which
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serves to modulate the degree of conservatism in the absolute performance bound. In accordance
with Definition 1, the overarching objective within the AMDP framework is to identify a pol-
icy ⇡ that effectively improves Bk. For an unknown performance distribution, we first define

V(⇡) .
= E

⌧⇠⇡

�P1
t=0 �

tR(st, at, st+1)� J (⇡)
�2
�

as the variance of the performance distribution.

Then, we can leverage the Chebyshev’s inequality theory Saw et al. (1984) to obtain an absolute
performance bound as Bk(⇡)

.
= J (⇡)� kV(⇡), which is guaranteed to satisfy Definition 1 (proved

in Proposition 1). Thus, AMDP addresses the following optimization

max
⇡2⇧

J (⇡)� kV(⇡). (3)

Here we define the on-policy value function as V⇡(s)
.
= E⌧⇠⇡[R⇡(s)|s0 = s], the on-policy action-

value function as Q⇡(s, a) = Q⇡(s, a, s0)
.
= E⌧⇠⇡[R⇡(s)|s0 = s, a0 = a], and the advantage

function as A⇡(s, a) = A⇡(s, a, s0)
.
= Q⇡(s, a) � V⇡(s). We also define Ā⇡(s) as the expected

advantage of ⇡0 over ⇡ at state s: Ā⇡(s)
.
= Ea⇠⇡0 [A⇡(s, a)].

4 ABSOLUTE POLICY OPTIMIZATION

To optimize equation 3, we need to evaluate the objective with respect to an unknown ⇡. Our main
intuition is to find a surrogate function for the objective, such that (i) it represents a tight lower bound
of the objective; and (ii) it can be easily estimated from the samples on the most recent policy. To
solve large and continuous AMDPs, policy search algorithms look for the optimal policy within a set
⇧✓ ⇢ ⇧ of parametrized policies. Mathematically, APO updates solve the following optimization:

⇡j+1 = argmax
⇡2⇧✓

J l
⇡,⇡j

� k
�
MV ⇡,⇡j + VM⇡,⇡j

�
, (4)

where J l
⇡,⇡j

represents the lower bound surrogate function for J (⇡) and
�
MV ⇡,⇡j + VM⇡,⇡j

�

represents the upper bound surrogate function for V(⇡).
Remark 2. Since the performance samples from the same start state belong to a one-dimensional
distribution, performance samples from different start states belong to a mixture of one-dimensional
distributions. MV⇡,⇡j reflects the upper bound of expected variance of the return over different start
states. VM⇡,⇡j reflects the upper bound of variance of the expected return of different start states.
The detailed interpretations are discussed in Equation (18), Lemma 1, and Lemma 2.

Here J l
⇡,⇡j

,MV ⇡,⇡j , V M⇡,⇡j are defined as:

J l
⇡,⇡j

.
= J (⇡j) +

1

1� �
Es⇠d⇡j ,a⇠⇡


A⇡j (s, a)�

2�✏⇡

1� �

r
1

2
DKL(⇡k⇡j)[s]

�
(5)

MV ⇡,⇡j

.
=

kµT k1
1� �2

max
s

����� E
a⇠⇡
s0⇠P

⇥
A⇡j (s, a, s

0)2
⇤
� E

a⇠⇡j

s0⇠P

⇥
A⇡j (s, a, s

0)2
⇤
+ |H(s, a, s0)|2max (6)

+ 2 E
a⇠⇡
s0⇠P

⇥
A⇡j (s, a, s

0)
⇤
· |H(s, a, s0)|max

�����+MV⇡j +
2�2kµT k1
1� �2

r
1

2
DKL(⇡k⇡j)[s] · k⌦⇡jk1

VM⇡,⇡j

.
= kµT k1max

s

����|⌘(s)|
2
max + 2|V⇡j (s)| · |⌘(s)|max

����� min (J (⇡))2 + E
s0⇠µ

[V 2
⇡j
(s0)]

(7)

where DKL(⇡k⇡j)[s] is KL divergence between two policy (⇡,⇡j) at state s, ✏⇡
.
=

maxs|Ea⇠⇡[A⇡j (s, a)]|, d⇡j
.
= (1 � �)

PH
t=0 �

tP (st = s|⇡j), ⌦⇡j

.
=

2

64
!⇡j (s

1)
!⇡j (s

2)
...

3

75, !⇡j (s)
.
=

E
a⇠⇡j ,s0⇠P

⇥
Q⇡j (s, a, s

0)2
⇤
� V⇡j (s)

2, MV⇡j

.
= E

s0⇠µ
[Var[R⇡j (s0)] and min (J (⇡))2

.
=

min
J (⇡)2[J l

⇡,⇡j
,J u

⇡,⇡j
]
(J (⇡))2 with J u

⇡,⇡j

.
= J (⇡j)+

1
1�� E

s⇠d⇡j

a⇠⇡


A⇡j (s, a)+

2�✏⇡

1��

q
1
2DKL(⇡k⇡j)[s]

�
.
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Additionally,

|H(s, a, s0)|max
.
=

������
� E
s0=s0

⌧̂⇠⇡j

 1X

t=0

�tĀ⇡j (st)

�
� E

s0=s
⌧̂⇠⇡j

 1X

t=0

�tĀ⇡j (st)

�������
+

2�(1 + �)✏

(1� �)2
DKL(⇡||⇡j)[s]

(8)

|⌘(s)|max
.
=

������
E

s0=s
⌧̂⇠⇡j

 1X

t=0

�tĀ⇡j (st)

�������
+

2�✏

(1� �)2
DKL(⇡k⇡j)[s] (9)

✏
.
= maxs,a|A⇡j (s, a)| . (10)

Theoretical Guarantees for APO
Theorem 1 (Monotonic Improvement of Absolute Performance). Suppose ⇡,⇡0 are related by
equation 4, then absolute performance bound Bk(⇡) = J (⇡)� kV(⇡) satisfies Bk(⇡0) � Bk(⇡).

The proof for Theorem 1 is summarized in Appendix A.

5 OPTIMIZED APO

In addition to the guaranteed enhancement of the absolute performance bound, it is also highly
desirable for policy optimization to improve expected performance. By leveraging the concept of
policy improvement bounds as introduced in trust region methods (Schulman et al., 2015; Achiam
et al., 2017), we can enhance APO by imposing additional constraint on the feasible solutions:

⇡j+1 = argmax
⇡2⇧✓

J l
⇡,⇡j

� k
�
MV ⇡,⇡j + VM⇡,⇡j

�
s.t. J l

⇡,⇡j
� J (⇡j) (11)

Remark 3. Any feasible solution to equation 11 ensures (i) monotonic improvement of absolute
performance [Theorem 1], and (ii) monotonic improvement of expected performance [Corollary 1,
Corollary 3, (Achiam et al., 2017)]. Additionally, ⇡j is always a feasible solution towards equation 11.

In local policy search (Peters & Schaal, 2008), the policy is iteratively updated by maximizing
objective within a local neighborhood of the most recent policy ⇡j . Inspired by trust region methods,
we approximates equation 11 with a trust region constraint instead of penalties on policy divergence:

⇡j+1 = argmax
⇡2⇧✓

1

1� �
E

s⇠d⇡j

a⇠⇡

⇥
A⇡j (s, a)

⇤
� k

�
MV ⇡,⇡j + VM⇡,⇡j

�
(12)

s.t. 1

1� �
E

s⇠d⇡j

a⇠⇡

⇥
A⇡j (s, a)

⇤
� 0 and D̄KL(⇡||⇡j)  �

where � is the step size, MV ⇡,⇡j

.
= MV ⇡,⇡j �MV⇡j �

2�2kµT k1
1��2

q
1
2DKL(⇡k⇡j)[s] ·k⌦⇡jk1 and

VM⇡.⇡j = VM⇡,⇡j � E
s0⇠µ

[V 2
⇡j
(s0)]. The set {⇡ 2 ⇧✓ : D̄KL(⇡||⇡j) = Es⇠⇡j [DKL(⇡k⇡j)[s]] 

�} is called trust region. Notice that MV⇡j and Es0⇠µ[V 2
⇡j
(s0)] are computable constant.

Equation 12 represents a constrained policy optimization problem, the solution to which has been
discussed in prior work (Achiam et al., 2017). In practical implementations, due to various approxima-
tion errors, equation 12 may often lead to infeasible solutions. Hence, the line search trick (Achiam
et al., 2017) results in very small step sizes and makes it hard to update the policy effectively. To
overcome that challenge, we optimize the problem in the form of weighted sum:

⇡j+1 = argmax
⇡2⇧✓

✓
w1

✓
1

1� �
E

s⇠d⇡j

a⇠⇡

⇥
A⇡j (s, a)

⇤◆
+ (13)

w2

✓
1

1� �
E

s⇠d⇡j

a⇠⇡

⇥
A⇡j (s, a)

⇤
� k

�
MV ⇡,⇡j + VM⇡,⇡j

�◆◆

s.t. D̄KL(⇡||⇡j)  �

where w1, w1 are weights to control the importance of optimization objectives.
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(a) Goal (b) Push (c) Chase (d) Humanoid (e) H.Standup

Figure 2: Tasks of continuous experiments

(a) Point (b) Swimmer (c) Arm3 (d) Drone (e) Hopper (f) Ant (g) Walker

Figure 3: Robots of continuous tasks benchmark GUARD.

6 PRACTICAL IMPLEMENTATION

In this section, we show how to (i) simplify complex computations (ii) implement an efficient
approximation to Equation (13) and (iii) encourage learning even when Equation (13) becomes
infeasible. The full APO pseudocode is provided as Algorithm 1 in Appendix B.

Special Hyperparameters for Practical Implementation For practical implementation, we treat
two items when implementing Equation (13) as hyperparameters. (i) kµT k1: we treat the infinity
norm of µ (initial distribution of the system) as a constant parameter due to its inaccessibility during
implementation. (ii) |H(s, a, s0)|max: We can either compute |H(s, a, s0)|max from the most
recent policy with equation 8 or treat it as a hyperparameter since |H(s, a, s0)|max is bounded for
any system with a bounded reward function. In practice, we found that the hyperparameter option
helps increasing the performance. This setting will be discussed more detailedly in Section 7.5.

Efficient Approximation of APO We first estimate the expected reward advantage in Equation (13)
via importance sampling with a sampling distribution ⇡k (Schulman et al., 2015) as

Ea⇠⇡,s0⇠P

⇥
A⇡j (s, a, s

0)2
⇤
= Ea⇠⇡j ,s0⇠P

⇥
(⇡(a|s)/⇡j(a|s))A⇡j (s, a, s

0)2
⇤

(14)

Equation (14) allows us to replace Ea⇠⇡,s0⇠P

⇥
A⇡j (s, a, s

0)2
⇤

with empirical estimates at each
state-action pair (s, a) from rollouts by the previous policy ⇡j . The empirical estimate of reward
advantage is given by R(s, a, s0) + �V⇡j (s

0) � V⇡j (s). V⇡j (s) can be computed at each state by
taking the discounted future return. To proceed, we convexify Equation (13) by approximating the
objective via first-order expansions, and the trust region constraint via second-order expansions. Then,
Equation (13) can be efficiently solved using duality (Schulman et al., 2015).

Infeasible Solution An update to ✓ is computed according to the techniques described in Schulman
et al. (2015) every time Equation (13) is solved. However, due to approximation errors, sometimes
Equation (13) can become infeasible. In that case, we use a line search to ensure improvement of the
surrogate objective and satisfaction of the KL divergence constraint. Starting with the maximal value
of the step length, we shrink it exponentially until the objective improves. Without this line search,
the algorithm occasionally computes large steps that cause a catastrophic degradation of performance.

7 EXPERIMENT

In our experiements, we want to answer the following questions:
Q1: How does APO compare with state-of-the-art on-policy RL algorithms?
Q2: What benefits are demonstrated by directly optimizing the absolute performance?
Q3: Is treating Hmax as a hyparameter necessary?
Q4: What are the impacts of different probability factor k choices?
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Figure 4: Comparison of results from four representative test suites in low dimensional continuous systems

Figure 5: Comparison of results from four representative test suites in high dimensional continuous systems

7.1 EXPERIMENT SETUP

To answer the above, we run experiments on both continuous domain and the discrete domain.

Continuous Tasks Our continuous experiments are conducted on GUARD (Zhao et al., 2023),
a challenging robot locomotion benchmark build upon Mujoco (Todorov et al., 2012) and Gym.
Seven different robots are included: (i) Point: (Figure 3a) A point-mass robot (A ✓ R2) that can
move on the ground. (ii) Swimmer: (Figure 3b) A three-link robot (A ✓ R2) that can move on
the ground. (iii) Arm3: (Figure 3c) A fixed three-joint robot arm(A ✓ R3) that can move its end
effector around with high flexibility. (iv) Drone: (Figure 3d) A quadrotor robot (A ✓ R4) that can
move in the air. (v) Hopper: (Figure 3e) A one-legged robot (A ✓ R5) that can move on the ground.
(vi) Ant: (Figure 3f) A quadrupedal robot (A ✓ R8) that can move on the ground. (vii) Walker:
(Figure 3g) A bipedal robot (A ✓ R10) that can move on the ground. Furthermore, three different
types of tasks are considered, including (i) Goal: (Figure 2a) robot navigates towards a series of
2D or 3D goal positions. (ii) Push: (Figure 2b) robot pushes a ball toward different goal positions.
(iii) Chase: (Figure 2c) robot tracks multiple dynamic targets. Considering these different robots
and tasks, we design 8 low-dim test suites and 4 high-dim test suits with 7 types of robots and 3
types of tasks, which are summarized in Table 3 in Appendix. We name these test suites as {Task
Type}_{Robot}. Further details are listed in Appendix C.1.

Additionally, we conduct continuous control experiments on Mujoco Openai Gym (Brockman et al.,
2016b). Two tasks are considered: (i) Humanoid: (Figure 2d) The 3D bipedal robot (A ✓ R17) is
designed to simulate a human. And the goal of the environment is to walk forward as fast as possible
without falling over. (ii) Humanoid Standup: (Figure 2e) The robot (A ✓ R17) is same with task
Humanoid, but the goal is to make the humanoid standup and then keep it standing by applying
torques on the various hinges. These two tasks are also summarized in Table 3.

Discrete Tasks We also test APO in all 62 Atari environments of (Brockman et al., 2016b) which are
simulated on the Arcade Learning Environment benchmark (Bellemare et al., 2018). All experiments
are based on ‘v5’ environments and ‘ram’ observation space.

Comparison Group We compare APO to the state-of-the-art base on-policy RL algorithms: (i)
TRPO (Schulman et al., 2015) (ii) Advantage Actor Critic (A2C) (Mnih et al., 2016) (iii) PPO
(Schulman et al., 2017). For all experiments, we take the best specific parameters mentioned in the
original paper and keep the common parameters as the same. The policy ⇡, the value V ⇡ are all
encoded in feedforward neural networks using two hidden layers of size (64,64) with tanh activations.
The full list of parameters of all methods and tasks compared can be found in Appendix C.2.
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7.2 COMPARISON TO OTHER ALGORITHMS IN THE CONTINUOUS DOMAIN

7.2.1 GUARD BENCHMARK

Low dimension Figure 4 shows representative comparison results on low dimensional system (See
Appendix D for all results). APO is successful at getting more steady and higher final reward. We
notice that PPO only gains faster convergence in part of the simplest task owing to its exploration
abilities, the advantage decreases rapidly with more complex tasks such as PUSH. In difficult tasks,
APO can perform best at the combined level of convergence speed and final performance.

High dimension Figure 5 reports the comparison results on challenging high-dimensional
Ant_{PUSH, CHASE} and Walker_{PUSH, CHASE} tasks, where APO outperforms other baselines
in getting higher reward and convergence speed.

7.2.2 MUJOCO BENCHMARK

Figure 6: Additional experiments on MuJoCo

To showcase the performance of APO on other high-
dimensional continuous benchmark, we conduct ad-
ditional experiments involving 3D humanoid robot
(details have been introduced in Section 7.1) and
compare the results with baseline method TRPO. See
Table 5 for detailed hyperparameters and Figure 6 for
learning curves.

7.3 COMPARISON TO OTHER ALGORITHMS IN THE ATARI DOMAIN

The hyperparameters for Atari Domain are also provided in Appendix C.2. For the other three
algorithms, we used hyperparameters that were tuned to maximize performance on this benchmark.
Then we follow the metrics of (Schulman et al., 2017) to quantitatively evaluate the strengths of APO:
(i) average expected reward per episode over all epochs of training (which favors fast learning),
and (ii) average expected reward per episode over last 100 epochs of training (which favors final
performance). Table 1 records the number of highest evaluation scores obtained by each algorithm
across all games. The learning curves for all testing atari games are provided in Appendix D. To
compare the performance of all testing algorithm to the TRPO baseline across games, we slightly
change the normalization algorithm proposed by (van Hasselt et al., 2015) to obtain more reasonable
score (See Appendix C.3 for further explanation of rationality) in percent. The score we used is
average reward per episode over last 100 epochs of training:

�1
.
= scoreagent � scorerandom, �2

.
= scoreTRPO � scorerandom (15)

scorenormalized =
�2

�1
if �1 < 0 and �2 < 0 else

�1

�2

Then we use stacked bar chart in Figure 7 to visualize APO’s capabilities. Figure 7 show that APO has
a superior combination of capabilities compared to other algorithms. So far the above experimental
comparison answers Q1.

APO PPO TRPO A2C Tie
(1) average expected reward over all epochs 26 22 10 3 1

(2) average expected reward over last 100 epochs 29 17 12 3 1

Table 1: The number of highest evaluation scores obtained by each algorithm across all games

7.4 ABSOLUTE PERFORMANCE COMPARISON

We use large probability factor k in practical implementation, which means we are close to optimizing
the lower bound for all samples. Thus we use another two similar metrics to evaluate the effectiveness
of algorithms for lower bound lifting: (iii) average worst reward per episode over all epochs of
training, and (iv) average worst reward per episode over last 20 epochs of training. We summarize
the absolute performance of APO in Atari games and GUARD in Table 2, which answers Q2.
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Figure 7: Stacked bar chart for all 62 atari games

APO PPO TRPO A2C Tie
(1) average worst reward over all epochs(Atari) 26 24 7 3 2

(2) average worst reward over last 100 epochs(Atari) 27 20 10 3 2
(3) average worst reward over all epochs(GUARD) 7 3 1 1 0

(4) average worst reward over last 20 epochs(GUARD) 8 2 2 0 0

Table 2: The number of highest evaluation scores obtained by each algorithm across all games

7.5 ABLATION ON Hmax HYPERPARAMETER TRICK

Figure 8: Ablation on Hmax hyperparameter trick

We chose Riverraid of discrete tasks and PUSH_Ant
of continuous tasks to perform ablation experiments
against the |H(s, a, s0)|max implementation. Fig-
ure 8 shows that although both boosts are similar
in the early stages of tasks, hypeterparameter method
can more consistently converge to a higher reward
value. Thus, the figures and description answer Q3.

7.6 ABLATION ON PROBABILITY FACTOR k

Figure 9: Ablation on probability
factor k

For ablation, we selected Riverraid to investigate the impact of dif-
ferent choices for the probability factor k. As illustrated in Figure
9, when k takes on a very small value, indicating optimization of
only a limited portion of performance samples, the effectiveness
diminishes. This is attributed to the loss of control over the lower
bound of near-total performance samples. Conversely, when k be-
comes excessively large, the optimization shifts its focus towards
the most extreme worst-case performance scenarios. This ultra-
conservative approach tends to render the overall optimization less
effective. Therefore, a moderate choice of k will be favorable to
the overall improvement of the effect, which answers Q4.

8 CONCLUSION

This paper proposed APO, the first general-purpose policy search algorithm that improve both ex-
pected performance and absolute performance. Our approach is grounded by a pioneering theoretical
advancement, where maximization of a specific objective function ensures monotonic improvement
of expected performance and lower bound of near-total performance samples. We demonstrate APO’s
effectiveness on challenging continuous control benchmark tasks and playing Atari games, showing
its significant performance improvement compared to existing methods and ability to enhance both
expected performance and worst-case performance.
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