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ABSTRACT

Computer-Assisted Surgery (CAS) aids the surgeon by enriching the surgical scene with additional information
in order to improve patient outcome. One such aid may be the superimposition of important structures (such as
blood vessels and tumors) over a laparoscopic image stream. In liver surgery, this may be achieved by creating
a dense map of the abdominal environment surrounding the liver, registering a preoperative model (CT scan)
to the liver within this map, and tracking the relative pose of the camera. Thereby, known structures may be
rendered into images from the camera perspective. This intraoperative map of the scene may be constructed, and
the relative pose of the laparoscope camera estimated, using Simultaneous Localisation and Mapping (SLAM).
The intraoperative scene poses unique challenges, such as: homogeneous surface textures, sparse visual features,
specular reflections and camera motions specific to laparoscopy. This work compares the efficacies of two state-of-
the-art SLAM systems in the context of laparoscopic surgery, on a newly collected phantom dataset with ground
truth trajectory and surface data. The SLAM systems chosen contrast strongly in implementation: one sparse and
feature-based, ORB-SLAM3,1–3 and one dense and featureless, ElasticFusion.4 We find that ORB-SLAM3 greatly
outperforms ElasticFusion in trajectory estimation and is more stable on sequences from laparoscopic surgeries.
However, when extended to give a dense output, ORB-SLAM3 performs surface reconstruction comparably to
ElasticFusion. Our evaluation of these systems serves as a basis for expanding the use of SLAM algorithms in
the context of laparoscopic liver surgery and Minimally Invasive Surgery (MIS) more generally.

Article DOI: https://doi.org/10.1117/12.2582121
Further author information: (Send correspondence to R.D.)
R.D.: E-mail: reuben.docea@nct-dresden.de
M.P.: E-mail: micha.pfeiffer@nct-dresden.de



Keywords: SLAM, Minimally Invasive Surgery, Augmented Reality, ElasticFusion, ORB-SLAM3, Trajectory
Estimation, Surface Reconstruction, Surgical Navigation

1. INTRODUCTION

Laparoscopic liver surgery poses many benefits over open liver surgery, such as lower morbidity and better
cost-effectiveness.5 However, it is especially difficult to perform for several reasons: it complicates hand-eye
coordination, it is difficult to anticipate the locations of significant blood vessels, and the surgeon cannot palpate
the liver to feel for tumors. We thus aim for a Computer-Assisted Surgery (CAS) system to aid liver navigation
by highlighting such structures of interest.

At present, surgical navigation often uses patient-specific preoperative computed tomography (CT) or mag-
netic resonance imaging (MRI) models. These models are used both during planning and operation, and serve to
facilitate the surgery.6 However, the surgeon must mentally fit what they observe from the preoperative models
onto what they see during surgery. Navigation is usually done using the laparoscopic video stream, complemented
by ultrasound, or in rare cases intraoperative CT.7,8 The CAS system for which we aim requires the knowledge
of the laparoscope pose, and a map of the intraoperative liver surface, to which the preoperative liver model is
registered. Currently, the pose of the laparoscope is tracked intraoperatively using an optical tracking device.9

Such devices frequently lose tracking, require additional setup time, and are limited to non-bendable devices. As
the name suggests, Simultaneous Localisation and Mapping (SLAM) methods build a map of the environment,
within which they localise the camera.10 Of these, Visual SLAM (vSLAM) methods use camera sensor data
alone. Sparse SLAM methods provide pose information,1–3 while dense SLAM methods additionally produce a
dense map.4,11 With stereo laparoscopic data being commonly available, we look to vSLAM methods to provide
the laparoscope pose and, if possible, the surface of the liver.

Recently, SLAM has received increasing attention due to it’s great potential in applications such as au-
tonomous driving, exploration of new environments and, in a similar vein as this work, Augmented Reality
(AR).10 However, it is seldom used in surgery. Sparse methods such as ORB-SLAM31–3 are feature-based, and
perform pose-graph optimisation and bundle adjustment on loop closures, emphasising camera pose estimation.
As for dense SLAM methods, recent significant works begin with KinectFusion,12 from which Kintinuous13 is
built. Kintinuous, as with many sparse methods, features a pose-graph. A contrasting dense method is the
map-centric ElasticFusion, which optimises a surfel-based map rather than a pose-graph, and is able to handle
loopy trajectories.4

The intraoperative scene poses unique challenges: homogeneous surface textures, sparse visual features, a
deforming environment, specular reflections from endoscopic light sources, small mapped volumes and camera
motion patterns specific to laparoscopy, to name a few. Only a handful of works apply SLAM to minimally
invasive surgery (MIS). Grasa et al.14 apply extended kalman filter (EKF) SLAM to monocular sequences from
the abdominal cavity. Other works apply ORB-SLAM to MIS, such as Mahmoud et al.,15 who build upon
the method to provide a dense scene reconstruction. Similarly, Song et al. extend ORB-SLAM21,2 to a dense
deformable configuration they refer to as MIS-SLAM.16

In this work, we evaluate two state-of-the-art vSLAM systems, ORB-SLAM31–3 and ElasticFusion,4 which
are sparse and dense methods, respectively. We conduct this evaluation in the context of laparoscopic liver
navigation using a new phantom dataset with ground truth trajectories and surfaces (which were collected at
the NCT imaging platform), as well as a qualitative assessment on two sequences from real laparoscopic liver
surgeries. We take the metrics of trajectory estimation error and surface reconstruction error as tools to assess
each algorithm in relation to the intricacies of SLAM in MIS. Given the nascent status of SLAM in MIS, our
evaluation of contrasting SLAM algorithms on data from both phantom and human laparoscopic liver surgeries
will serve as a base for further development in this area.

2. METHODS

2.1 ElasticFusion

ElasticFusion by Whelan et al.4 takes as input RGB-D image pairs, which we provided using a stereo laparoscope
and depth estimation as in Yang et al.17 In a similar strategy to many SLAM methods, tracking and mapping are



separate processes. ElasticFusion does not implement pose-graph optimisation, but rather optimises the depth
and colour of a surfel-based model of the environment, drawing on work from Keller et al.18 These surfels are
grouped as either active or inactive based on the time that has elapsed since they were last updated, δt. With
each incoming RGB-D pair, a camera pose, PS , is estimated by registering them against the active portion of
the map by a combined geometric-photometric loss-minimisation procedure. A randomised fern encoding based
place recognition system from Glocker et al.19 is used to detect loop closures, upon the detection of which a
non-rigid deformation of the surfel map is performed.

ElasticFusion receives depth data in uint16 format, where the value represents the distance in millimeters.
In the application of laparoscopic liver surgery, the maximum distance of structures from the camera is likely
to be around 30cm, which is 10% of the default depth range for ElasticFusion with millimeter input. Given
the smaller scale of the abdomen, depth data was provided to ElasticFusion in 0.1mm scale. Lastly, to reduce
computation time of depth estimation, Yang et al. introduce a maximum disparity up to which the method will
compute. This value was left unchanged, which corresponded to around 2cm in depth.

2.2 ORB-SLAM3

ORB-SLAM3 is a versatile method, usable with monocular, stereo and RGB-D input.1–3 Of these, we used the
stereo configuration as this reflects the type of data acquired from our laparoscopic setup. The system utilises
three main threads: one for tracking, a second for local mapping and a third for the detection of loop closures
and the optimisation of a pose graph. A fourth thread is also used for performing full bundle adjustment (BA)
following loop closure. As suggested by the name, ORB-SLAM3 uses ORB features20 for place recognition, due
to their efficiency in computation and efficacy in recall. The system maintains a covisibility graph, whose nodes
represent keyframes and edges the numbers of shared observations, which is refined through pose graph opti-
misation. For place recognition, loop detection and relocalisation, ORB-SLAM3 implements a novel algorithm,
which checks for geometrical consistency and local consistency in candidate keyframes. Furthermore, within
ORB-SLAM3, a procedure to handle the creation and merging of multiple maps is implemented.

While internally ORB-SLAM3 uses a sparse representation of the map, to obtain a dense output we used
a method based on that recommended by the ORB-SLAM2 authors:2 From each camera pose ORB-SLAM3
provides, we used the estimated disparity17 of the corresponding stereo image pair to project the left image into
3D space. To reduce noise, the space occupied by each new point was first checked to determine whether it
was already occupied by a point from previous frames, and whether that point had a similar hue. If so, the
previous point’s internal counter was raised by one to indicate that it had been detected in multiple camera
frames. If no previous point was found, the new point was added. After fusion, we only accepted points into
the final dense representation of the map if they had been seen a certain number of times: in this case, 30. The
dense reconstruction that we performed was done post-hoc, after ORB-SLAM3 had been run on a sequence and
with the full trajectory that it output. Here, the use of Robotic Operating System (ROS) to pass data between
processes may have introduced timing delays. However, the impact on results is expected to be negligible.

2.3 Phantom Data

Phantom data was acquired using the imaging platform at NCT Dresden (Figures 1 & 2), along with an exper-
imental setup consisting of: the OpenHELP phantom, a human body model for open and laparoscopic surgery
research;21 a silicone liver replica positioned in different ways, giving a set of six distinct deformations, D; var-
ious materials in place of other organs such as the stomach and fatty tissue. More specifically, the different
deformations were achieved by changing the position of the silicone liver, rearranging different substitute organs
or materials, and pulling or compressing the liver with cloths in a way that mimics the falciform ligament which
suspends it. A rigid stereo laparoscope (KARL STORZ TIPCAM 1∗) with a 30-degree angled tip and a baseline
of 6mm was used to record multiple sweeping views over the abdomen at 30fps with a resolution of 960x540.
This recording process was repeated for every deformation d ∈ D , in each case yielding a set of recordings R.
Between each recording r ∈ R, the intensity of the light source attached to the laparoscope and the starting
position for the recording were varied. An optical tracking device, the Polaris Spectra†, was used to record

∗https://www.karlstorz.com/de/en/index.htm
†https://www.ndigital.com/medical/products/polaris-family/



Figure 1: Experimental setup in the NCT imaging platform.

poses for both the phantom and laparoscope in 3D space. A hand-eye calibration22 from a laparoscope-attached
optical marker Mcamera to the left laparoscope camera allowed the camera pose to be tracked using the deter-
mined offset, Pcal. For each deformation, a CT scan of the full phantom was taken with slice thickness 0.6mm.
During all recordings, a Robot Operating System (ROS)‡ implementation of ORB-SLAM22 was used to pace
recordings, in an attempt to ensure that they were not overly difficult to track - a set sequences which contain
movement that is too fast is not useful for this evaluation as the difficulty of the sequences would likely cause the
methods to fail and, therefore, evaluating their accuracy while operational is more difficult. As with the surface
reconstruction in Section 2.2, timing issues associated with passing data between processes with ROS may have
occurred. Although in all cases the influence of this is believed to be negligible, in one of the recordings used in
Section 2.4, poses were extracted with a lower frequency and thus fewer poses were acquired (though still high
in number).

2.4 Parameter Selection

Initially, there were 33 individual recordings, r, from the six different deformations of the phantom. Six of
these were rejected due to the presence of a ‘lid’ on the phantom belly which was not scanned in CT, or due to
prolonged occlusions of the optically tracked markers. This left 27 recordings, which were spread approximately
evenly over the six deformations D. Of the remaining recordings, one was selected at random from each of the
three deformations which had the lowest number of recordings. These were used to tune the parameters of the
algorithms by carrying out a parameter sweep in two stages. All parameter values used and the results of either
stage can be found in Appendices A.1 and A.2.

In the first stage: default parameters of the algorithms were varied by ±20% for parameters where it wasn’t
known how they might impact performance; default parameters where there was good reason to believe their
increase or decrease would result in better performance were trialed at +20% and +40%, or -20% and -40%,
respectively; and default parameters affected by image resolution were scaled proportionally with how the number
of pixels of our laparoscope images compared to the number of pixels of the resolution the default parameters of
either algorithm were specified for. For each setting s of a total of 81 settings S, the respective algorithms were
run on each recording r three times. The mean translation error (absolute euclidean distance), Emean, for each
of the three runs was computed, and the median Emedian of these was kept. For each s ∈ S, the mean of Emedian

‡https://www.ros.org/



Figure 2: Diagram of experimental setup. The markers Mphantom and Mcamera, attached to the phantom torso
and the laparoscope, respectively, were tracked by the Polaris optical tracking system. The offset between
Mphantom and the origin of the CT scanner was calibrated by identifying five small Teflon markers in both the
CT scan and by using an optically tracked stylus. A hand-eye calibration was used to determine the offset
Pcal between optical camera center and Mcamera. The camera pose estimated by the SLAM system for each
time frame, PS , gave the offset between the SLAM surface and the camera. By chaining these transformations
together, all data sources were mapped into a single, common coordinate system.

across the three sequences was computed to give an average error, Ēmedian. The settings, which produced the
lowest Ēmedian, were taken forward to the next stage. The second stage of the parameter sweep followed the
same procedure as the first stage, with the difference that the carried-forward parameters were only varied ±10%
of the default values for all parameters. The exception to this rule was again for those which were modified in
accordance with pixel count.

Although pose errors are composed of a translation and rotation error, the choice of minimising the mean
translation error was due to translation and rotation errors being difficult to reconcile, and also on the assumption
that the two errors are correlated. To constrain the parameter search, only parameters of the algorithms which
do not relate solely to loop closure were optimised. This was also partly due to the fact that only three sequences
were used in the parameter sweep, which limited the number of loop closures that the algorithms may be required
to handle. Thus, any parameters that may have otherwise been chosen, which relate to loop closure only, could
be overly influenced by these few examples.

2.5 Quantitative Evaluation

In this section, the algorithms, using the best parameters determined through the parameter sweep, were evalu-
ated on the remaining 16 recordings from the three remaining deformations.

2.5.1 Trajectory Evaluation

Due to occlusions or otherwise, pose estimates for the camera given by Polaris were not available for each
frame. The coordinate systems were aligned by setting the first concurrent poses from the tracking system and
SLAM algorithm equal to one another, and the changes in pose relative to this time point were compared for
subsequent concurrent pairs. Here, the translation and rotation (absolute angular error) errors were computed.
The algorithms were run on each recording three times and, as in Section 2.4, the trial representing Emedian was
taken as the representative result for that recording. The trajectory of the same Emedian trial was also taken
forward for surface reconstruction with ORB-SLAM3, to be used in Section 2.5.2.



2.5.2 Surface Reconstruction Evaluation

To evaluate the SLAM surface reconstructions, they were compared to the CT reference data. Since the CT data
were in CT-space and the SLAM systems constructed their surfaces in their own coordinate system (usually with
the origin at the camera pose of the first video frame), this required a transformation of both data sources into
a common coordinate system. Following Figure 2, transformations from both systems to the Polaris coordinate
system could be determined: The hand-eye calibration Pcal linked the current camera pose to the camera marker
Mcamera, the position of which was tracked by the Polaris and was thus known in Polaris space. The Phantom
torso contained 5 Teflon markers which were manually localized on the CT scan as well as via a tracked stylus,
allowing the calculation of a transformation from CT origin to the phantom marker Mphantom. This marker’s
position was again tracked by the Polaris system, completing the transformation chain from the CT data to the
Polaris coordinate system. As in Section 2.5.1, poses for the camera (PS and Mcamera) were chosen by identifying
the first time frame at which both were available.

To obtain reference surface models from the CT data of each deformation d ∈ D, voxels belonging to the
phantom were first extracted via a threshold filter. This binary segmentation was meshed to create a surface
polygon model. To reduce the redundantly high number of polygons and to reduce noise, the number of surface
elements was reduced to 10% of the original. The resulting models also contained sub-surface elements which
could never be seen by the SLAM algorithm and were thus manually selected and discarded.

Due to small errors in trajectory estimation, hand-eye calibration, tracking and timing, this surface registra-
tion process was likely to result in a not quite perfect alignment. Therefore, an Iterative Closest Point (ICP)
algorithm was run to further refine the rigid transformation. Examples of the aligned CT scans and SLAM-
generated surfaces can be seen in Figure 3. With both surfaces in the same coordinate system, for each point
in the SLAM surface the distance to the closest point on the aligned CT surface was recorded to determine the
overall surface reconstruction error.

Figure 3: Surface reconstructions for Deformation 1, Sequence 2. From left to right: ElasticFusion result (aligned
via Polaris tracking information only), Elastic Fusion result (aligned via tracking and ICP), ORB-SLAM3 result
(aligned via tracking and ICP).

2.6 Qualitative Evaluation on Human Laparoscopic Liver Surgery

As no ground truth trajectory or surface data were available for stereo sequences from real laparoscopic liver
surgeries, a qualitative evaluation was performed for the algorithms at hand. This involved observing the
behaviour of the algorithms on data from two human in-vivo exploratory videos. This means that there was
endoscope motion, drastic lighting changes and breathing motion, but no further tissue manipulation by the
surgeons. The laparoscope used in data acquisition for these experiments was different from that used to acquire
data with the phantom, and had a lower resolution of 640x512. Furthermore, the images provided as input to the



Figure 4: Sample rectified image from human in-vivo exploratory videos, as used in Section 2.6.

SLAM algorithms, after rectification, cropping, and the adjustment of calibration parameters, had resolutions of
536x373 in width and height. An example of the images which were input to the SLAM algorithms can be seen
in Figure 4.

The local Institutional Review Board (ethics committee at the Technische Universität Dresden) reviewed and
approved this study (approval number: BO-EK-137042018). Written informed consent was waived.

3. RESULTS AND DISCUSSION

3.1 Parameter Sweep

Through the parameter sweep process, parameters were found that reduce the mean Ēmedian error across the
three sequences used in the parameter sweep. In the case of ElasticFusion, the error was reduced from 58.5mm
to 24.1mm; while for ORB-SLAM3 the error fell from 5.1mm to 4.6mm. The parameters trialed in the sweep
stages, and those found to be best for both algorithms, can be found in Appendices A.1 and A.2. The timing
issues associated with ROS and mentioned in Section 2.3 are unlikely to have impacted the results, as more than
500 tracked poses were available for each sequence.

3.2 Quantitative Evaluation

3.2.1 Trajectory Evaluation

The results from having ran the algorithms on the remaining 16 recordings can be seen in Table 1. In almost every
case, ORB-SLAM3 achieved a considerably lower error in both translation and rotation. The average translation
errors across the 16 sequences were 24.5mm and 4.7mm for ElasticFusion and ORB-SLAM3, respectively. As for
errors in rotation, the averages across the 16 sequences were 12.9 degrees and 2.0 degrees for ElasticFusion and
ORB-SLAM3, respectively. A representative sample for the typical performance of either algorithm can be seen
in Figure 5.

Of the 16 sequences, the only sequence for which ElasticFusion determined itself to be lost was that of
Deformation 3, Sequence 3 in Table 1. This loss of tracking only lasted for around 4.4% of the sequence. It
appears that the larger errors that ElasticFusion suffered did not result from the algorithm becoming ’lost’,
but from it tracking incorrectly. This is illustrated in Figure 5. Here, ElasticFusion began by tracking well
and following the ground truth pose. At a certain point, however, it deviated from the ground truth where
ORB-SLAM3 continued to follow. Presumably, this resulted from the optimal transform computed through
ElasticFusion’s geometric-photometric loss being more ambiguous for the section where this deviation occured.



The deviation lead to the map being built out incorrectly, and ultimately the map and trajectory were disjoint
with respect to ground truth.

In the parameter sweep, the assumption was made that error in translation and error in rotation are correlated.
With respect to Table 1, the correlations between these metrics (computed with Pearson’s correlation) were found
to be 0.994 (p=1.09e-16) and 0.482 (p=0.0430) for ElasticFusion and ORB-SLAM3, respectively. The statistical
significance of these correlation tests (p<0.05) confirm that there is a strong relationship between the two metrics.
Interestingly, however, the strength of the relationship is much greater for ElasticFusion than for ORB-SLAM3,
which may in part be due to the way ElasticFusion happens to generate disjoint maps: the building out of a
warped map, and a failure to detect this as incorrect, lead to an offset in both rotation and translation during
frame-to-model tracking and ultimately to a higher error in both metrics. This did not occur for ORB-SLAM3
as it did not sufficiently misinterpret translations within the sequence, although this may be a result of the
sequences being recorded under the ’supervision’ of ORB-SLAM2.2

Table 1: Mean and Standard deviation of translation errors (mm) and rotation errors (rad) on 16 sequences.
Values in bold represent the better result.

ElasticFusion ORB-SLAM3

Translation Rotation Translation Rotation

Deformation Sequence Mean ± Std Mean ± Std Mean ± Std Mean ± Std

1 1 62.0 ± 20.8 0.597 ± 0.550 5.2 ± 2.1 0.020 ± 0.023

1 2 8.6 ± 9.9 0.117 ± 0.233 5.6 ± 3.1 0.024 ± 0.027

1 3 10.7 ± 5.9 0.100 ± 0.072 4.0 ± 1.7 0.029 ± 0.025

1 4 4.0 ± 2.5 0.033 ± 0.016 3.8 ± 2.1 0.032 ± 0.022

1 5 32.9 ± 24.0 0.254 ± 0.293 5.9 ± 2.0 0.050 ± 0.051

1 6 5.5 ± 2.5 0.039 ± 0.037 3.9 ± 1.4 0.026 ± 0.028

2 1 15.7 ± 18.0 0.114 ± 0.145 3.2 ± 1.7 0.029 ± 0.029

2 2 8.5 ± 4.6 0.046 ± 0.050 6.3 ± 2.1 0.028 ± 0.016

2 3 82.0 ± 68.5 0.762 ± 0.834 3.7 ± 1.7 0.026 ± 0.031

2 4 18.1 ± 8.2 0.168 ± 0.177 7.4 ± 1.2 0.038 ± 0.012

2 5 8.7 ± 5.1 0.106 ± 0.128 5.6 ± 2.5 0.023 ± 0.023

3 1 23.7 ± 14.0 0.176 ± 0.175 5.2 ± 2.6 0.028 ± 0.033

3 2 13.1 ± 8.5 0.158 ± 0.126 2.7 ± 0.9 0.091 ± 0.011

3 3 8.5 ± 6.6 0.104 ± 0.151 4.7 ± 1.9 0.014 ± 0.016

3 4 45.4 ± 47.8 0.418 ± 0.425 3.5 ± 1.4 0.029 ± 0.035

3 5 79.6 ± 44.9 0.766 ± 0.888 9.5 ± 3.0 0.109 ± 0.033

Grand Mean 24.5 0.226 4.7 0.035

3.3 Surface Reconstruction Evaluation

Table 2 shows the point-to-point surface reconstruction errors on all 16 sequences for both ElasticFusion and
ORB-SLAM3. Similarly, Figure 6 contains box plots of the same surface reconstruction errors. From Figure 6, it
seems that the error in surface reconstruction of ElasticFusion varied more greatly between sequences. Although
ElasticFusion had a higher mean reconstruction error across all sequences than ORB-SLAM3 (2.99mm as opposed
to 2.33mm), the very low errors it achieved for a handful of sequences suggests that it fulfills its authors’ objective
of building a more consistent map. However, as evidenced by the greater variability in error, this high accuracy
and consistency is dependent on a good trajectory estimation. Despite the difference in the grand means across
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Figure 5: Representative trajectories for ElasticFusion and ORB-SLAM3, alongside the corresponding ground-
truth optically-tracked trajectory for Deformation 3, Sequence 5. ElasticFusion begins by tracking well before
suddenly doing so erroneously.



Table 2: Mean, standard deviation and maximum surface reconstruction errors (in mm) of the two methods for
each sequence. Values in bold represent the better result.

ElasticFusion ORB-SLAM3

Deformation Sequence Mean ± Std Max Mean ± Std Max

1 1 4.92 ± 4.28 28.91 3.47 ± 2.81 22.75

1 2 2.75 ± 3.64 35.02 2.61 ± 2.24 27.15

1 3 1.14 ± 1.08 10.92 1.87 ± 1.66 24.25

1 4 0.57 ± 0.55 10.32 1.52 ± 1.13 7.75

1 5 2.36 ± 2.27 28.61 3.00 ± 2.61 25.57

1 6 1.02 ± 0.83 13.36 1.69 ± 1.40 12.35

2 1 2.83 ± 2.51 23.93 1.77 ± 1.53 13.91

2 2 1.39 ± 1.61 14.49 2.21 ± 1.70 11.90

2 3 6.37 ± 7.45 81.14 1.68 ± 1.44 20.68

2 4 1.16 ± 1.19 11.55 3.48 ± 3.02 25.35

2 5 1.05 ± 1.20 15.05 1.74 ± 1.39 15.43

3 1 3.98 ± 4.55 33.87 2.61 ± 2.55 20.65

3 2 7.55 ± 7.14 70.60 3.03 ± 2.97 28.67

3 3 1.42 ± 1.24 17.78 2.04 ± 2.17 22.21

3 4 6.56 ± 7.11 49.59 2.21 ± 2.26 22.25

3 5 2.73 ± 2.34 17.52 2.28 ± 2.44 28.52

Grand Mean 2.99 2.33
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Figure 6: Quantitative evaluation of the surface reconstruction error for each sequence when compared to surface
models extracted from corresponding CT scans: ElasticFusion (white); ORB-SLAM3 (orange).
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Figure 7: Translation Error VS Surface Error for ElasticFusion

all 16 sequences for both algorithms, a Wilcoxon Signed-Rank test between these found no statistically significant
difference (p=0.501).

Figure 7 shows mean surface reconstruction error plotted against mean translation error on all 16 sequences
for ElasticFusion. The figure suggests a linear relationship between the two metrics, and a Pearson’s correlation
test finds that they are strongly correlated with a value of 0.726 (p=1.47e-03). This implies that, by finding a way
to improve tracking for ElasticFusion, it is likely possible to also improve its surface reconstruction capabilities.
However, the same analysis does not find this to be the case for ORB-SLAM3 (p=0.739), where it may be the
case that trajectory estimation is not the limiting factor in surface reconstruction performance.

3.4 Qualitative Evaluation

In the first sequence, ElasticFusion began by tracking while the camera was still. However, as soon as the camera
was translated to the right, ElasticFusion determined itself to have lost tracking. The system then appeared to
continue to follow the camera pose well, but never relocalised itself when revisiting the previously mapped area.
Ultimately, the system failed to track entirely.

ElasticFusion began by steadily tracking the second sequence. However, it soon reached a point where it
made an error in estimating the transform from one pose to the next, causing it to deviate significantly from
the correct solution. This failure may again have been due to ambiguity in the solution to the geometric-
photometric optimisation procedure, or errors in the generated map which impacted frame-to-model tracking.
As the algorithm did not pick up on this tracking failure, the map-generation did not cease, and a loop was never
closed when it returned to previously seen areas. The resulting map was very disjoint. It should be noted that
the parameters specified for ElasticFusion through the parameter sweep were for a greater resolution, and this
may in part have been responsible for its worse performance here.

In the case of ORB-SLAM3, it successfully tracked for the entirety of the first sequence, apparently experi-
encing no issues. It is interesting to note that, from around 15cm away, almost no features were picked up on



the liver by ORB-SLAM3. This is likely due to the fact that the liver itself is dark and its features are low in
contrast.

For the second trajectory, ORB-SLAM3 successfully tracked the majority of the sequence. When the camera
was translated near to a surface, however, the system lost track. Similarly, when the laparoscope was translated
quickly, the system again lost track. These are both difficult cases for the algorithms to deal with, and a loss of
tracking is to be expected given that the observed scene changes rapidly. In either case, the system initialised a
new map to track and, in a couple of cases, when returning to previously tracked areas, ORB-SLAM3 successfully
merged maps. As a result, a more comprehensive map was produced. This property of ORB-SLAM3’s, multi-
map generation and merging, is very useful for maximising the quantity of mapping done in difficult-to-track
sequences. During surgery, where surgeons move an endoscope in ways which are not ideal for SLAM to track,
ORB-SLAM3’s multi-map method would enable the surgeon to use such a system much more naturally than if
they had to return to previously mapped areas every time tracking was lost.

4. CONCLUSIONS

We find in this work that while ElasticFusion produces accurate and consistent maps of a human phantom, its
ability to do so is highly dependent on its success in tracking the current sequence. It additionally struggles to
detect previously visited areas and also to detect that it has lost tracking. The trajectory estimation procedure
of ORB-SLAM3, based on salient features points, is more robust than the frame-to-model geometric-photometric
method of ElasticFusion. In the context of laparoscopic liver surgery, the more erroneous camera pose estimation
of ElasticFusion is likely to hamper the usefulness of a CAS system which renders important structures into the
laparoscope view. Conversely, the very reliable tracking of ORB-SLAM3 and its ability to consistently detect
previously visited areas, consequently enable it to merge maps and maximise the use of incoming data. This
behaviour is very useful during surgery where movement patterns can be difficult to track. The dense output
that can be obtained is competitive with that of ElasticFusion, but in its current implementation cannot update
on loop-closure: which, alongside noise-robustness, is a property of ElasticFusion’s surface reconstruction that
could be benefited from.

The data used in this study contained many challenging aspects inherent to endoscopic data, such as: lighting
and contrast changes, small field-of-view, blurriness and endoscopic lens distortion. It did not, however, incor-
porate larger real-time deformations which occur when surgeons manipulate an organ. With recent work being
done on non-rigid SLAM systems,16,23 these situations should be explored further in future work.

APPENDIX A. IMPLEMENTATION DETAILS

Here we include the parameter values used in, and resulting from, the parameters sweep procedure described in
Section 2.4.

A.1 ElasticFusion

Parameters in Tables 3 and 4:

A) Surfel Confidence Threshold

B) Relative Iterative Closest Point (ICP) vs RGB weight

C) Local Loop Closure Residual Threshold

D) Local Loop Closure Inlier Threshold

E) Local Loop Closure Covariance Threshold



Table 3: Parameter values used in the first parameter sweep for ElasticFusion. Default parameters are in italics
and the parameters determined to be best are in bold.

A B C D E

Value 1 10 8 4e-05 35000 8e-06

Value 2 12 10 5e-05 47000 1e-05

Value 3 14 12 6e-05 59000 1.2e-05

Table 4: Parameter values used in the second parameter sweep for ElasticFusion. Parameters determined to be
best are in bold.

A B C D E

Value 1 13 7 5.5e-05 53000 1.1e-05

Value 2 14 8 6e-05 59000 1.2e-05

Value 3 15 9 6.5e-05 65000 1.3e-05

A.2 ORB-SLAM3

Parameters in Tables 5 and 6:

A) Number of ORB features extracted per image

B) Scale factor between levels in ORB scale pyramid

C) Number of levels in ORB scale pyramid

D) Initial response threshold for FAST detector

E) Minimum response threshold for FAST detector

Table 5: Parameter values used in the first parameter sweep for ORB-SLAM3. Default parameters are in italics
and the parameters determined to be best are in bold.

A B C D E

Value 1 1600 1.12 8 16 5

Value 2 2000 1.16 10 20 7

Value 3 2400 1.20 12 24 9



Table 6: Parameter values used in the second parameter sweep for ORB-SLAM3. Parameters determined to be
best are in bold.

A B C D E

Value 1 1400 1.18 11 18 4

Value 2 1600 1.20 12 20 5

Value 3 1800 1.22 13 22 6
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