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ABSTRACT

Supervised training of deep neural networks for classification typically relies on
hard targets, which promote overconfidence and often limit calibration, general-
ization, and robustness. Self-distillation methods aim to mitigate this by leverag-
ing inter-class and sample-specific information present in the model’s own pre-
dictions, but often remain dependent on hard targets, limiting their effective-
ness. With this in mind, we propose Bayesian Self-Distillation (BSD), a prin-
cipled method for constructing sample-specific target distributions via Bayesian
inference using the model’s own predictions. Unlike existing approaches, BSD
does not rely on hard targets after initialization. BSD consistently yields higher
test accuracy (e.g. +1.4% for ResNet-50 on CIFAR-100) and significantly lower
Expected Calibration Error (ECE) (-40% ResNet-50, CIFAR-100) than existing
architecture-preserving self-distillation methods for a range of deep architectures
and datasets. Additional benefits include improved robustness against data cor-
ruptions, perturbations, and label noise. When combined with a contrastive loss,
BSD achieves state-of-the-art robustness under label noise for single-stage, single-
network methods. Code is available in the supplementary material.

1 INTRODUCTION

Despite the widespread use of deep neural networks for classification tasks, the implications of
using hard targets for loss computation have received relatively little attention. Intuitively, classes
can exhibit varying degrees of similarity, and individual samples may exhibit different levels of
resemblance to both their assigned and other classes. This nuanced, sample-specific information –
often referred to as dark knowledge (Hinton, 2014) – is not taken into account when relying solely
on hard targets. For instance, misclassifying an image of a dog as a teapot is fundamentally different
from misclassifying it as a cat. Nevertheless, deep neural networks are typically trained with hard
targets, which fail to capture inter-class relationships or sample-specific ambiguities, contributing to
poor calibration (Guo et al., 2017).

Self-distillation, an efficient variant of knowledge distillation (Hinton et al., 2015), leverages dark
knowledge by using a model’s own predictions as soft targets during training. In contrast, conven-
tional knowledge distillation provides soft targets to a model by leveraging another, often larger,
network. Existing self-distillation methods, however, exhibit varying limitations. Some modify the
network architecture with intermediate classifiers (Zhang et al., 2019; 2021), increasing parameter
count and computational cost. Others impose a consistency loss between current predictions and
those from the last epoch or mini-batch (Kim et al., 2021; Shen et al., 2022). Yet, epoch-wise con-
struction introduces variance under augmentations, while targets from the last mini-batch may be of
limited effectiveness, as they originate from nearly identical model states.

Fundamentally, existing self-distillation frameworks constrain their predictions by incorporating a
loss term derived from the hard targets (e.g. Furlanello et al. (2018); Kim et al. (2021); Shen et al.
(2022)). This reliance interferes with the goal of learning richer and more calibrated predictions, and
leaves the model sensitive to label noise. In the overparameterized regime, sensititivity to label noise
can exacerbate double descent (Nakkiran et al., 2021), a phenomenon where the test error initially
decreases, then increases, before decreasing again as model capacity or training time increase. We
hypothesize that a self-distillation method decoupled from the hard targets during training could pro-
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Figure 1: Bayesian update of a target. At each epoch, the target distributions are updated using the
model’s own predictions. Here, ⊕ denotes the Bayesian update, and × indicates discounting of the
previous posterior parameters by γ ∈ [0, 1]. See Section 3 for details.

vide smoother and more robust probability estimates, thereby mitigating these effects and providing
more predictable training dynamics.

To address these limitations, we propose Bayesian Self-Distillation (BSD), an efficient method for
leveraging dark knowledge by constructing rich, sample-specific target distributions in a single train-
ing run. BSD treats a model’s own predictions as evidence for Bayesian inference, without explicitly
relying on the hard targets after initialization. A diagram depicting BSD is included in Figure 1.

Our main contributions can be summarized as follows:

• We propose Bayesian Self-Distillation (BSD), a lightweight and principled method for self-
distillation that operates independently of hard targets after initialization.

• We provide the first, to our knowledge, theoretical formalization of dark knowledge and
use it to show that BSD captures rich sample-specific information.

• We demonstrate through extensive experiments that BSD consistently outperforms both
existing architecture-preserving self-distillation methods and conventional knowledge dis-
tillation in generalization and calibration for a variety of datasets and network architectures.

• We show that BSD provides robustness against data corruptions, perturbations, and label
noise. Notably, it mitigates epoch-wise double descent under label noise and achieves state-
of-the-art performance for single-stage, single-network methods when combined with a
contrastive loss.

2 RELATED WORK

Self-Distillation (SD) originates from Knowledge Distillation (KD) (Hinton et al., 2015), a technique
introduced for model compression using a teacher–student framework. Later work demonstrated
that identical (Born-Again) networks can be trained sequentially with KD to improve generalization
(Furlanello et al., 2018), thereby giving rise to self-distillation.

SD methods differ primarily in how they construct the teacher signal. One family of approaches
relies on architectural structure, such as introducing auxiliary classifiers or branches to provide in-
ternal supervision (Zhang et al., 2019; 2021; Zhu et al., 2018). Another category leverages temporal
knowledge transfer, using model snapshots from earlier epochs (Yang et al., 2019), moving aver-
ages of past predictions (Temporal Ensembling, TE) (Laine & Aila, 2016), or moving averages of
model parameters (mean teacher) (Tarvainen & Valpola, 2017) over epochs. A third set of meth-
ods leverages consistency, encouraging alignment between samples of the same class (Yun et al.,
2020) or between consecutive predictions of the same sample (Kim et al., 2021; Shen et al., 2022).
This category includes Progressive Self-Knowledge Distillation (PS-KD) (Kim et al., 2021), which
uses the model’s prediction from the last epoch as a soft target, and Self-Distillation from the Last
mini-Batch (DLB) (Shen et al., 2022), which constructs overlapping mini-batches and leverages the
prediction from the previous mini-batch. Despite their differences, these strategies remain anchored
to the original hard labels, which can be particularly problematic in settings where labels are noisy.

Label noise remains an obstacle in deep learning, contributing to overfitting and the undesirable
training dynamics. Proposed solutions range from regularization techniques such as label smooth-
ing (Szegedy et al., 2016) and Mixup (Zhang et al., 2017), to robust loss functions like Symmetric
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Cross Entropy (Wang et al., 2019). More sophisticated methods include sample selection via optimal
transport Feng et al. (2023); Chang et al. (2023), label correction by interpolation between the pre-
diction and label (Xu et al., 2025), or even complex multi-stage (Liu et al., 2023) or multi-network
training pipelines (Zhang et al., 2024). These methods, however, often rely on heuristics rather
than reformulating the learning objective to explicitly model uncertainty. In contrast, probabilistic
modeling provides a principled way to estimate uncertainty and improves interpretability.

Bayesian methods in deep learning have gained attention for their ability to model predictive un-
certainty. Methods like Variational inference (Blundell et al., 2015), Monte Carlo dropout (Gal
& Ghahramani, 2016), and deep ensembles (Lakshminarayanan et al., 2017) can be used to quan-
tify uncertainty, improve calibration and increase robustness to out-of-distribution data. Recently,
Bayesian optimization of hyperparameters has been paired with born-again networks to improve
generalization over generations of networks. Related work has also shown that KD itself can serve
as a mechanism to transfer better calibration from a teacher to a student (Hebbalaguppe, 2024).

Our proposed method, Bayesian Self-Distillation (BSD), draws inspiration from these domains.
Like SD, it softens target distributions, but views the problem from a Bayesian perspective where
model predictions serve as evidence for updating target distributions. Note that BSD is distinct from
both Bayesian neural networks and Bayesian optimization, where the former regards distributions
over model weights and the latter is a method for optimizing black-box functions, whereas BSD
places priors over target distributions and refines them over epochs. This allows targets to evolve
independently without the continual influence of hard targets, providing richer and more flexible
self-supervision that inherently offers robustness to label noise.

3 METHOD

As discussed in Section 1, a network trained exclusively on hard targets is hardly encouraged to learn
meaningful inter-class relationships or account for sample-specific ambiguities. To address this, we
frame the training process as Recursive Bayesian Estimation, with the goal of approximating the true
latent target distributions y. Rather than viewing the network as a static generator of fixed predic-
tions, we treat it as a noisy sensor observing the external dataset D. By recursively integrating these
noisy signals, we aim to construct stable target distributions that capture both class relationships and
sample-specific information, thereby improving generalization and reducing overconfidence. The
proposed method, Bayesian Self-Distillation (BSD), is summarized in Algorithm 1.

3.1 NOTATION

Consider the supervised classification problem with a dataset D = {(xi,y
0
i )}ni=1, samples xi ∈ Rd

and one-hot targets y0
i ∈ ∆k. Let f : Rd → Rk denote a neural network with parameters θ with

a softmax activation as its last layer, L the loss function, and let ŷt
i denote the prediction the model

outputs for sample i at epoch t.

3.2 BAYESIAN SELF-DISTILLATION

Training a deep neural network is a stochastic process where randomness enters through stochas-
tic optimization (e.g., SGD), data augmentation, and regularization mechanisms. SGD dynamics
approximate a posterior distribution over model parameters (Mandt et al., 2017), while stochastic
regularization (e.g. dropout) allows the network’s output to be viewed as a draw from a predictive
distribution (Gal & Ghahramani, 2016). Consequently, the model’s prediction for a sample xi at any
training step can be seen as a random sample from an implicit predictive distribution.

From this perspective, we treat the network as a noisy sensor measuring the true latent class dis-
tribution yi of the external input xi. This interpretation is similar to established frameworks in
that it views neural network training as Recursive Bayesian Estimation (Singhal & Wu, 1988). At
epoch t, the network provides a prediction ŷt

i , serving as a noisy measurement of the true state
yi. Although the sensor evolves during training making the measurement noise non-stationary,
this dynamic is consistent with adaptive filtering and probabilistic self-training frameworks (e.g.,
Expectation-Maximization). Importantly, this framing allows for model predictions to be viewed
as external and independent evidence. The predictions ŷt

i constitute measurements as read by the
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sensor f , conditioned on the independent input xi. To formalize this, we introduce a latent class
variable zi ∈ {1, . . . , k} for each sample xi and model its distribution as categorical,

zi ∼ Cat(yi). (1)

where yi = [yi,1, yi,2, . . . , yi,k] represents the probabilities for each of the k classes.

To express prior beliefs about yi, we use a Dirichlet distribution yi ∼ Dir(αi) due to its con-
jugacy and representation of accumulated evidence as independent components. Specifically, a
Dirichlet distribution can be generated by normalizing a set of independent Gamma variables
vi,j ∼ Gamma(αi,j , 1) such that yi,j = vi,j/

∑
k vi,k. This allows us to interpret the prior as

maintaining independent evidence counters for each class. When the input xi triggers a non-zero
prediction for a secondary class (e.g., “cat” features in a “dog” image), it acts as an independent
sensor update for that specific class. Assuming that the model learns to extract relevant feature rep-
resentations during training, the predictions will capture semantically meaningful knowledge rather
than model hallucinations. We encode prior belief in the class corresponding to the label by letting

α0
i,j =

{
c, if j = argmax

l
y0i,l,

ϵ, otherwise,
(2)

where ϵ≪ c. For sufficiently small ϵ, the prior implies p(zi|α0
i )j ≈ 1 for the labeled class.

At each epoch t, the model outputs a prediction ŷt
i which we treat as a noisy measurement to update

our beliefs. We assume the likelihood

p (ŷi|yi) ∝
k∏

j=1

y
ŷi,j

i,j , (3)

which generalizes the categorical likelihood to fractional evidence and is conjugate to the prior
(Bishop & Nasrabadi, 2006). This likelihood treats the prediction as partial evidence, where higher
predicted probabilities correspond to stronger observations.

Formally, after observing a prediction ŷt
i at epoch t, the posterior distribution is

yi|ŷt
i ,α

t−1
i ∼ Dir

(
αt

i

)
, where αt

i = αt−1
i + ŷt

i , (4)

which accumulates the noisy measurements into sample-specific distributions over the class prob-
abilities y. To predict the distribution over the labels, we use the posterior predictive distribution.
However, because the quality of measurements is expected to improve during training (as the model
learns), the measurement noise is non-stationary. Standard Bayesian updating would weight early,
noisy observations equally to later, more accurate ones. To address this, we adopt a discounted
Bayesian model (West & Harrison, 2006), effectively forgetting old evidence to adapt to the im-
proving network. For a discounting factor γ ∈ [0, 1], we have αt

i = γαt−1
i + ŷt

i , yielding the
update rules

yt
i =

γAt−1
i

γAt−1
i + 1

yt−1
i +

(
1− γAt−1

i

γAt−1
i + 1

)
ŷt
i , At

i = γAt−1
i + 1, (5)

for At
i =

∑k
j=1 α

t
ij .

Intuitively, the Dirichlet parameters accumulate the model’s belief about how much each class is
supported by the input xi. Discounting ensures that more recent predictions are weighted more
heavily than earlier, likely worse, ones. Early in training, when predictions are more likely to have
high variance, the prior dominates. As training progresses, predictions are expected to become more
consistent, providing stronger and more reliable evidence.

3.3 RELATIONSHIP BETWEEN BSD AND OTHER METHODS

If initialized at its fixed point A0
i = 1

1−γ , the recurrence At
i = A0

i = 1
1−γ gives the EMA update

yt
i = γyt−1

i + (1− γ)ŷt
i . (6)
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Algorithm 1 Bayesian Self-Distillation (BSD)
Input: Training set D = {(xi,y

0
i )}ni=1

Model: Neural network f with parameters θ, optimizer h
Parameters: Number of epochs T , Dirichlet prior α0

i = [α0
i,1, . . . , α

0
i,k], discount factor γ.

Initialize: A0
i =

∑k
j=1 α

0
ij

for epoch t← 1 to T do
for mini-batch B ⊆ D do

ŷt
i ← f(xi;θ), ∀i ∈ B ▷ Model prediction
L ← 1

|B|k
∑

i∈B ℓ
(
ŷt
i ,y

t−1
i

)
▷ Compute loss

Compute∇θL
θ ← h (θ,∇θL) ▷ Gradient descent step

yt
i ←

γAt−1
i

γAt−1
i +1

yt−1
i +

(
1− γAt−1

i

γAt−1
i +1

)
ŷt
i , ∀i ∈ B ▷ Update targets

At
i = γAt−1

i + 1, ∀i ∈ B ▷ Update prior hyperparameters
end for

end for
Return θ ▷ Trained parameters

Similarly,

At
i = γAt−1

i + 1 = γtA0
i +

t−1∑
j=0

γj = A0
i γ

t +
1− γt

1− γ
(7)

so in the limit we have that
lim
t→∞

At
i =

1

1− γ
, (8)

i.e. the weight of new observations converges to 1− γ exponentially. In the case of non-zero ϵ, and
if we initialize at the fixed point A0

i = 1
1−γ for γ close to 1, BSD will approximate label smoothing

(Szegedy et al., 2016).

Related self-distillation methods can be interpreted as special cases of BSD. Conventional training
corresponds to taking c → ∞, which fixes the target distribution and prevents Bayesian updating.
In this limit, the framework reduces to standard distribution matching, as KL-divergence and cross-
entropy are equivalent under fixed one-hot targets. PS-KD (Kim et al., 2021) is recovered by setting
γ = 0, so that only the most recent prediction contributes to the target. DLB (Shen et al., 2022)
performs the same Bayesian update as PS-KD but applies it at the mini-batch level rather than
epoch-wise. Meanwhile, TE (Laine & Aila, 2016) corresponds to assuming an improper prior (a zero
vector) and applying an explicit weighting schedule to the accumulated evidence. Although these
methods differ from BSD in that they include a supervised loss term based on one-hot labels, apply
temperature scaling or modify the loss function, all of them implicitly construct a target distribution
from an accumulation of past predictions. BSD makes this shared structure explicit by interpreting
it as Bayesian evidence aggregation under a Dirichlet prior.

4 EXPERIMENTS

Experimental Setup. We evaluate ResNet (He et al., 2016a), DenseNet (Huang et al., 2017),
and ViT (Dosovitskiy et al., 2020) models on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), Tiny ImageNet (Stanford CS231n, 2017) and ImageNet Russakovsky
et al. (2015). We report the average of three runs. For BSD, we set ϵ = 0, γ = 0.95, and use
c = 1000 and c = 50 for the CNNs and ViTs, respectively, on all datasets except for ImageNet. On
Imagenet, we set ϵ = 0.05, γ = 0.99, and use c = 400. The experimental setup is described in more
detail in the appendix, including the hyperparameters used for the baselines.

5
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4.1 EMERGENCE OF DARK KNOWLEDGE

(a) Conventional training

(b) BSD

Figure 3: Inter-class component µ of
dark knowledge. Semantical patterns
emerge between classes, accentuated by
BSD (ResNet-18, CIFAR-10).

(a) Conventional training

(b) BSD

Figure 4: Sample-specific component of
dark knowledge. BSD promotes learning
of sample-specific information (ResNet-
18, CIFAR-10).

We first validate that dark knowledge emerges natu-
rally during training, and show that BSD promotes fur-
ther discovery of underlying structures in the data. In
an attempt to formalize the notion of dark knowledge,
we decompose the output of the network, for an input
xi with integer label yi = argmax

k
y0
i,k, as

f(xi) = µyi + δ(xi). (9)

Here, µyi
∈ ∆K is a row of the matrix with elements

µij =
1

2
(E[f(X) | Y = i]j + E[f(X) | Y = j]i)

(10)
and captures the inter-class component of dark knowl-
edge under a symmetry constraint. The function δ :
Rd → RK captures the sample-specific deviation from
µyi and is calculated as δ(xi) = f(xi)− µy .

We visualize µ and δ from a ResNet-18 trained on
CIFAR-10 in Figures 3 and 4. The log-scale heatmaps
of µ in Figure 3 reveal that the networks learn mean-
ingful inter-class relationships. For instance, they cap-
ture similarities between animals but also between bird
and airplane, with these clusters being more prominent
and the probabilities larger for BSD. The per-sample
absolute deviation from µ presented in Figure 4 val-
idates the emergence of δ and shows that BSD pro-
motes learning of sample-specific information.

4.2 CLASSIFICATION RESULTS

Methods compared. We benchmark BSD against
conventional training (baseline), Temporal Ensem-
bling (TE) (Laine & Aila, 2016), self-Distillation from
Last mini-Batch (DLB) (Shen et al., 2022) and Pro-
gressive Self-Knowledge Distillation (PS-KD) (Kim
et al., 2021). We do not compare with methods such as
(Zhang et al., 2019; 2021), as our focus is on modify-
ing label distributions rather than model architectures.
An ensemble of three models is included for reference,
whose knowledge is also distilled into a single model
of the same architecture, for a comparison with con-
ventional knowledge distillation.

4.2.1 GENERALIZATION

The main results are reported in Table 1. In all experi-
ments, BSD improves test accuracy relative to both the
baseline and related methods, surpassing conventional
knowledge distillation and approaching ensemble per-
formance.

The performance gains are most pronounced on
CIFAR-100 and TinyImageNet. For ResNet and
DenseNet, BSD boosts accuracy by about 3 percent-
age points (pp) over the baseline and by more than 1
pp over the strongest related methods on both datasets.
In contrast, on CIFAR-10, where baseline performance

6
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Table 1: Test set accuracy on CIFAR-10, CIFAR-100, and TinyImageNet. The models are trained
using standard training (baseline), related methods (Laine & Aila, 2016; Shen et al., 2022; Kim et al.,
2021), and the proposed method (BSD). The best results are highlighted in bold.

Dataset Model Baseline (%) TE (%) DLB (%) PS-KD (%) BSD (%) KD (%) Ens. (%)

CIFAR-10
ResNet-18 94.39±0.18 94.52±0.08 94.52±0.11 94.56±0.06 94.88 ±0.06 94.73±0.18 95.33
DenseNet-121 94.86±0.13 95.20±0.13 95.15±0.15 95.10±0.04 95.38 ±0.13 95.28±0.09 95.67
ViT-B/16 98.28±0.02 98.34±0.05 98.39±0.03 98.37±0.08 98.44 ±0.01 98.32±0.02 98.56

CIFAR-100
ResNet-50 75.82±0.41 76.07±0.40 77.22±0.23 77.71±0.20 79.09 ±0.11 77.69±0.08 79.29
DenseNet-169 76.63±0.28 76.33±0.11 78.43±0.09 77.88±0.04 79.47 ±0.12 78.72±0.18 79.83
ViT-B/16 89.16±0.05 89.11±0.23 88.72±0.04 89.36±0.11 89.54 ±0.13 89.35±0.11 90.27

TinyImageNet
ResNet-101 64.22±0.21 64.45±0.12 65.83±0.28 65.65±0.12 67.41 ±0.31 66.36±0.16 69.78
DenseNet-201 64.53±0.38 64.60±0.19 66.66±0.20 66.11±0.08 67.74 ±0.04 66.94±0.09 69.44
ViT-B/16 88.99±0.20 89.02±0.23 89.29±0.13 89.32±0.13 89.65 ±0.17 89.16±0.10 90.23

ImageNet ResNet-152 78.55±0.05 78.45±0.07 77.46±0.14 78.99±0.10 79.47 ±0.07 79.37±0.04 80.24

is already high, the improvements are more modest. Similarly, for ViT-B/16, we observe small but
consistent gains across all datasets. The trend continues on ImageNet, where BSD improves accu-
racy by roughly 1 pp over the baseline and 0.5 pp over the best-performing related method, indicating
that it also scales effectively to more complex datasets.

4.2.2 CALIBRATION

Table 2: ECE and NLL on CIFAR-100. The models are trained
using standard training (baseline), related methods (Laine & Aila,
2016; Shen et al., 2022; Kim et al., 2021), and the proposed method
(BSD). The best results are highlighted in bold.

Architecture Metric Baseline TE DLB PS-KD BSD

ResNet-50 ECE (%) 20.41±0.45 20.21±0.34 11.82±0.28 12.41±0.17 7.17 ±0.40

NLL 2.94±0.04 2.91±0.04 1.09±0.01 1.09±0.02 0.77 ±0.00

DenseNet-169 ECE (%) 19.33±0.24 19.63±0.16 12.42±0.09 12.35±0.10 7.67 ±0.10

NLL 2.59±0.03 2.63±0.01 1.06±0.01 1.08±0.01 0.75 ±0.00

ViT-B/16 ECE (%) 7.53±0.15 7.38±0.26 6.89±0.08 5.93±0.26 5.89 ±0.09

NLL 0.56±0.02 0.55±0.01 0.52±0.00 0.44±0.01 0.42 ±0.00

Given the importance of cal-
ibrated probability estimates
in many tasks, we evalu-
ate the calibration of models
trained on CIFAR-100 using
Expected Calibration Error
(ECE) (Naeini et al., 2015)
and Negative Log Likelihood
(NLL). The results are in-
cluded in Table 2, where
BSD demonstrates superior
calibration when compared
to related methods (DLB).
Figure 5 includes reliability diagrams where BSD’s curves lie closest to the diagonal line, indicating
better calibration. Furthermore, we compare BSD with standard and distillation-based calibration
methods in Table 7 (appendix), where it achieves state-of-the-art results across all metrics.

The improvements are significant compared to the baseline, with BSD reducing ECE by more than
60% and NLL by over 70% for the convolutional networks. Relative to the best-performing related
method, BSD lowers ECE by nearly 40% and NLL by about 29%. For ViT-B/16, the gains are more
modest, with a 22% reduction in ECE and a 25% reduction in NLL over the baseline, alongside
small but consistent improvements over related methods. As discussed in Section 4.2.5, careful
hyperparameter selection can further improve BSD’s calibration, e.g. an ECE of 1.33% for ResNet-
50 on CIFAR-100.

4.2.3 ROBUSTNESS

To assess our method’s performance under less ideal conditions, we evaluate the models trained on
CIFAR-10 on corrupted and perturbed images, and introduce symmetric and asymmetric label noise.

Corruptions and perturbations. We evaluate the robustness to corruptions and perturbations of
BSD and related methods by evaluating the models trained on CIFAR-10 on CIFAR-10-C and
CIFAR-10-P (Hendrycks & Dietterich, 2019). The results are included in Table 3, where we report
test set accuracy and mean Flip Probability (mFP) for CIFAR-10-C and CIFAR-10-P, respectively.
BSD yields the highest accuracy and the lowest mFP for all models.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ResNet-50 (b) DenseNet-169 (c) ViT-B

Figure 5: Reliability Diagrams for CIFAR-100 Models. A curve closer to the diagonal indicates
better calibration. The models are trained using standard training (baseline), related methods (Laine
& Aila, 2016; Shen et al., 2022; Kim et al., 2021), and the proposed method (BSD).

Table 3: Performance on CIFAR-10-C and CIFAR-10-P. Accuracy and Mean Flip Probability of
BSD, baseline, and related methods (Laine & Aila, 2016; Shen et al., 2022; Kim et al., 2021) under
corruptions and perturbations. The best results for each metric are highlighted in bold.

Model CIFAR-10-C (Acc., %) CIFAR-10-P (mFP, %)

Baseline TE DLB PS-KD BSD Baseline TE DLB PS-KD BSD

ResNet-18 73.31±0.31 73.22±0.27 73.94±0.31 74.28±0.50 74.88 ±0.28 7.20±0.21 7.23±0.04 7.08±0.06 7.10±0.28 6.09 ±0.08

DenseNet-121 73.36±0.32 73.09±0.86 74.81±0.23 74.30±0.07 74.85 ±0.32 7.49±0.20 7.46±0.18 7.06±0.22 7.21±0.16 6.39 ±0.11

ViT-B 91.17±0.07 91.31±0.22 91.20±0.26 91.38±0.24 91.57 ±0.12 2.53±0.04 2.40±0.03 2.45±0.05 2.35±0.06 2.11 ±0.07

On CIFAR-10-C, BSD improves robustness across all architectures, raising accuracy by about 1.5 pp
for both ResNet-18 and DenseNet-121 and by 0.4 pp for ViT-B over the baseline, slightly surpassing
the best related methods. On CIFAR-10-P, BSD achieves the lowest mean flip probability for all
models, reducing mFP by around 10% compared to the best-performing related methods.

Label noise. We generate symmetric label noise by randomly reassigning a percentage of all labels,
and asymmetric noise using the class-dependent definition from prior work (Tanaka et al., 2018).
Figure 6 shows test error over epochs for the previously mentioned self-distillation methods under
20% label noise for ResNet-18 trained on CIFAR-10. BSD and TE are obtain the highest accuracy
under label noise, while the methods that rely more on the hard targets perform worse. Notably,
BSD flattens the characteristic double descent curve observed for other methods, indicating a more
robust learning process.

We compare BSD with lightweight regularization methods under noisy labels, including Label
Smoothing (LS) (Szegedy et al., 2016), Symmetric Cross Entropy Learning (SL) (Wang et al., 2019),
MixUp (Zhang et al., 2017) and Temporal Ensembling (TE) Laine & Aila (2016). We report the av-
erage best obtained accuracy, which for BSD is typically close to the final accuracy, but diverges in
varying amounts for the remaining methods. The results are included in upper section of Table 4,
where BSD yields the highest accuracy for all noise levels except under 10% asymmetric noise. We
hypothesize that the strong performance of BSD is due to the complete detachment from the original
targets during training, which would explain the robustness under high noise levels.

To compare BSD with state-of-the-art methods for learning with noisy labels, we combine it with
techniques from self-supervised learning (for more information refer to the Appendix). We restrict
our analysis to single-stage, single-network approaches, as multi-stage or ensemble methods may be
used to further enhance BSD’s performance. We include OT-Filter (Feng et al., 2023), Curriculum
and Structure-aware Optimal Transport (CSOT) (Chang et al., 2023) and Dynamic and Uniform
Label Correction (DULC) (Xu et al., 2025). Like other works, we consider a PreAct ResNet-18 (He
et al., 2016b), trained with SGD for 300 epochs with a batch size of 128 and weight decay of 5e−4,
learning rate of 0.02 and report the average best obtained accuracy. Results are summarized in the
lower section of Table 4, where BSD consistently matches or outperforms existing state-of-the-art
methods.
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Table 4: Test set accuracy under symmetric and asymmetric
label noise. Performance of lightweight methods (top, ResNet-
18) (Szegedy et al., 2016; Wang et al., 2019; Zhang et al., 2017;
Laine & Aila, 2016) and state-of-the-art methods (bottom, Pre-
Act ResNet-18) (Feng et al., 2023; Chang et al., 2023; Xu et al.,
2025) on CIFAR-10. The best results are highlighted in bold.

Method Symmetric Asymmetric

20% 50% 80% 10% 30% 40%

Baseline 86.76±0.37 81.49±0.26 63.63±0.38 90.07±0.26 85.23±0.29 80.30±0.60

LS 87.85±0.10 81.49±0.51 64.70±1.17 90.35±0.24 86.10±0.59 81.96±0.52

SL 91.86±0.12 86.39±0.32 72.89±0.45 91.95±0.14 86.39±0.21 80.57±0.07

MixUp 89.87±0.18 83.38±0.20 69.23±0.56 91.78±0.18 88.26±0.58 84.49±0.54

TE 93.07±0.07 90.70±0.14 72.61±0.74 94.37±0.15 92.86±0.07 90.81±0.07

BSD 93.39±0.05 90.71±0.26 77.50±0.49 94.18±0.07 93.20±0.14 91.65±0.06

OT-Filter 96.0 95.3 94.0 - - 95.1
CSOT 96.6 ±0.10 96.2 ±0.11 94.4 ±0.16 - - 95.5 ±0.06

DULC 96.6 96.0 95.0 96.7 95.5 95.2
BSD+ 96.9 ±0.04 96.2 ±0.06 95.1 ±0.06 97.0 ±0.12 96.3 ±0.13 95.6 ±0.25

Figure 6: Test Error Over
Epochs Under 20% Label Noise
on for ResNet-18 on CIFAR-10.
The models are trained using stan-
dard training (baseline), related
methods (Laine & Aila, 2016;
Shen et al., 2022; Kim et al.,
2021), and the proposed method
(BSD).

4.2.4 AUGMENTATION

As data augmentation is a standard component in image classification, we examine the interaction of
BSD with two widely used augmentation methods, CutOut (DeVries & Taylor, 2017) and CutMix
(Yun et al., 2019). CutOut masks out a patch of an image with zeros, while CutMix replaces the
patch with a segment from another image and interpolates the labels. For BSD, the augmentations
are applied to half of the images in each mini-batch, while the remaining half is used for distillation.
This reduces the frequency of label updates but also changes CutMix to combine soft targets rather
than one-hot labels. To compensate, we set γ = 0.9 and c = 500. We include DLB (Shen et al.,
2022) and conventional training for comparison. Results are reported in Table 5.

CutMix. BSD consistently improves upon both the baseline and DLB across datasets and architec-
tures. On CIFAR-100, BSD boosts convolutional networks by over 3 pp relative to the baseline, and
by about +2.3 pp (DenseNet-169) and +1.3 pp (ResNet-50) compared to DLB. On TinyImageNet,
BSD surpasses the baseline by roughly +2 pp for ResNet-101 and over +4 pp for DenseNet-201,
both exceeding DLB by more than 1 pp. For ViT-B/16, BSD achieves gains of +0.5 pp over the
baseline and +0.3 pp over DLB on CIFAR-100, and +1.15 pp and +0.6 pp on TinyImageNet. On
CIFAR-10, improvements are smaller but consistent across all models. Compared with Table 1, Cut-
Mix enhances BSD’s performance, offering consistent gains over both standard training and DLB.

CutOut. The effect of CutOut is more nuanced. On CIFAR-10 and CIFAR-100, BSD consistently
performs best, improving convolutional networks by more than +3 pp over the baseline and over
+2 pp over DLB on CIFAR-100. For ViT-B/16, BSD remains competitive with the baseline and
performs better than DLB, though the gains are modest given the already high baseline accuracy.
On TinyImageNet, however, CutOut does not provide additional benefits: BSD still surpasses the
baseline, but the accuracy is lower than without CutOut (cf. Table 1), and ViT-B/16 shows little
change relative to baseline or DLB. We speculate that the poor results for BSD on TinyImageNet
and DLB overall is due to over-regularization. Overall, BSD remains stronger than DLB under
CutOut, but the augmentation itself appears less complementary to BSD than CutMix.

4.2.5 ABLATION

We perform ablations on the hyperparameters γ and c, analyzing their effect on accuracy and ECE
for ResNet-50 on CIFAR-100. The results are plotted in Figure 8. We observe high accuracy and
low ECE for a range of values. Interestingly, the set of hyperparameters that minimizes ECE does
not coincide exactly with the values that maximizes accuracy.
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Table 5: Accuracy on CIFAR-10, CIFAR-100, and TinyImageNet with CutMix and CutOut.
The models are trained using standard training (baseline), DLB (Shen et al., 2022) and the proposed
method (BSD). The best results are highlighted in bold.

Dataset Model + CutOut (%) + CutMix (%)

Baseline DLB BSD Baseline DLB BSD

CIFAR-10
ResNet-18 95.71±0.09 95.47±0.07 95.94 ±0.07 95.75±0.02 95.70±0.04 96.23 ±0.06

DenseNet-121 96.09±0.08 95.87±0.12 96.21 ±0.12 96.17±0.20 96.34±0.10 96.84 ±0.08

ViT-B/16 98.65±0.04 98.58±0.06 98.68 ±0.08 98.82±0.02 98.69±0.04 98.86 ±0.04

CIFAR-100
ResNet-50 76.61±0.43 76.38±0.33 79.70 ±0.16 79.73±0.13 80.15±0.30 81.42 ±0.08

DenseNet-169 77.10±0.17 77.87±0.16 80.14 ±0.35 79.31±0.27 79.93±0.11 82.18 ±0.14

ViT-B/16 90.30±0.06 89.91±0.10 90.31 ±0.13 90.31±0.05 90.50±0.11 90.87 ±0.04

TinyImageNet
ResNet-101 64.08±0.35 64.26±0.44 66.45 ±0.18 68.32±0.16 68.74±0.14 70.29 ±0.14

DenseNet-201 65.58±0.17 64.84±0.34 67.62 ±0.21 66.54±0.60 69.22±0.48 70.63 ±0.30

ViT-B/16 89.63±0.04 89.72±0.03 89.96 ±0.20 89.48±0.03 90.03±0.05 90.63 ±0.14

(a) Accuracy

(b) ECE
Figure 8: Impact of γ and c. Validation
accuracy and ECE for different values
of γ and c (ResNet-50, CIFAR-100).

The lowest ECE is achieved for γ = 0.97 and c = 2000,
while the highest accuracy is observed at γ = 0.96 and
c = 1000. Notably, the lowest ECE obtained is 1.33% on
the validation set, which is substantially lower than for
the other methods in Table 2. While this comes at the
cost of a slight decrease in accuracy, calibration may be
prioritized for certain tasks or applications. Furthermore,
by comparing γ = 1.0 with the remainder of the values
in Figure 8, we note that the discounting is a valuable
addition that appears to improve both accuracy and ECE.

While BSD appears offer low ECE and high accuracy for
wide range of values of γ and c, we note that if hyper-
parameters are chosen poorly (e.g. γ = 0.9, c = 50.0),
performance deteriorates. This is likely due to underfit-
ting caused by relying too much on predictions too early.

5 DISCUSSION

Overall, our results demonstrate that BSD can improve
test set accuracy, ECE and NLL across a variety of
datasets, architectures, and augmentation strategies com-
pared to conventional training and related self-distillation
methods. BSD does not seem to overfit to noise in the
same way as conventional training and contrastive self-
distillation methods, and achieves higher test set accu-
racy under label noise than other architecture-preserving
self-distillation methods. Additionally, BSD+ yields state-of-the-art accuracy under label noise on
CIFAR-10.

Computational cost and memory requirements. The Bayesian update in Equation 5 requires first
computing a per-example scalar weight from A and then applying that weight to the two target
tensors. For a mini-batch of size B and K classes, this is O(BK) and negligible compared with a
forward-backward pass. Memory-wise, we store the target distributions y and per-example counts
A. With float16 this requires 2NK bytes for y and 2N bytes for A. TE and PS-KD require the same
amount of memory for storing the targets, whereas DLB requires a batch-wise buffer of 2BK bytes.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

(a) Conventional training

(b) BSD

Figure 10: Inter-class component µ of
dark knowledge. Semantical patterns
emerge between classes, accentuated by
BSD (ResNet-50, CIFAR-100).

(a) Conventional training

(b) BSD
Figure 11: Total sample-wise deviation
δ(xi) of dark knowledge. BSD pro-
motes learning of sample-specific infor-
mation (ResNet-50, CIFAR-100).

Unless otherwise stated, all models trained on CIFAR
and TinyImageNet datasets use the Adam optimizer
(Kingma, 2014) with a batch size of 256, a maximum
learning rate of 0.01 scheduled via the 1cycle policy
(Smith & Topin, 2019), and basic augmentations (ran-
dom cropping and horizontal flipping) for 200 epochs
(40 for ViTs, with a maximum learning rate of 5e-5).
For ImageNet, we train with SGD for 90 epochs using
a per-GPU batch size of 128 on 8 GPUs, a learning rate
of 0.5 (scheduled via cosine annealing with 5 epochs of
warm-up), a weight decay of 1e−4, and random resized
crops of 224 pixels combined with horizontal flipping.

Architectures. Because of the small size of the images,
the ResNet and DenseNet networks have been modified
to include a 3×3 convolution instead of the usual 7×7
convolution for all datasets except ImageNet. The ViT-
B (Dosovitskiy et al., 2020) model has been pretrained
on ImageNet for all experiments and is available in Py-
torch (Paszke et al., 2019).

Method-specific hyperparameters. For the temporal
ensemble, we set the momentum parameter α = 0.6,
gradually ramping up the distillation loss over the first
100 epochs (45 for ImageNet) and anneal Adam’s β1

to zero during the final 50 epochs. For DLB, we fol-
low Shen et al. (2022) and use a temperature of 3 and
set α = 1.0, but train for only 100 epochs to offset the
doubled mini-batch size. For PS-KD, we let αT = 0.8
(αT = 0.3 for ImageNet). For the knowledge distilla-
tion of the ensembles, we use a temperature of 3.

Label Noise. Inspired by methods in semi-supervised
learning, we construct BSD+ by combining BSD with
a contrastive loss term. We do this by utilizing a strong
and a weak set of augmentations, where the weak set is
used for BSD, and the strong is used for the contrastive
term. We define the contrastive loss as

Lc =
λa

m

m∑
j=1

KL(f(Tj(xi)), ŷ
t), (11)

where m is the number of strongly augmented views,
and Tj is the corresponding transform. For the strong
set of augmentations, we utilize AutoAugment (Cubuk
et al., 2018), in combination with CutMix (Yun et al.,
2019) and Random Erasing (Zhong et al., 2020). For
BSD+, we set m = 2 for all noise levels and schedule
the learning rate using cosine annealing (Loshchilov &
Hutter, 2016).
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(a) Conventional training

(b) BSD

Figure 13: Inter-class component µ of
dark knowledge. Semantical patterns
emerge between classes, accentuated by
BSD (ResNet-101, Tiny ImageNet).

(a) Conventional training

(b) BSD

Figure 14: Total sample-wise deviation
δ(xi) of dark knowledge. BSD pro-
motes learning of sample-specific infor-
mation (ResNet-101, Tiny ImageNet).

Because BSD may excessively smooth the label distri-
butions when labels are noisy, we introduce a sharpen-
ing parameter τ into the loss

L ← 1

|B|k
∑
i∈B

ℓ

(
ŷt
i ,

(
yt−1
i

)1/τ
∥
(
yt−1
i

)1/τ ∥1
)
, (12)

for both BSD and BSD+, where |B| is the batch size.
In the absence of noise, we use τ = 1 to avoid pro-
moting overconfident predictions, while we set τ = 0.8
for all experiments with label noise. For BSD, we set
γ = 0.85 and c = 2000 when injecting symmetric
noise, and γ = 0.9 and c = 1000 for asymmetric noise.
For BSD+, we set γ = 0.95 and c = 1000 for all ex-
periments, and set λc = 2 under asymmetric noise. For
BSD+ under symmetric noise we set λc = 4, λc = 7
and λc = 14 for noise levels 20%, 50% and 80%, re-
spectively.

A.2 ADDITIONAL EXPERIMENTS

Emergence of dark knowledge. We include visualiza-
tions of the inter-class distributions for CIFAR-100 and
Tiny ImageNet in Figures 10 and 13, with their corre-
sponding sample-wise deviations plotted in Figures 11
and 14, respectively. We observe similar patterns as for
ResNet-18 in Figure 3, but on a larger scale, and larger
sample-wise deviations for the larger datasets.

To study the emergence of dark knowledge during train-
ing, we compute the average KL divergence between
the output distributions of the model over epochs and
those of the final model, while adjusting for tempera-
ture scaling (Guo et al., 2017). The results for are plot-
ted in Figure 15, where the decrease of KL divergence
over epochs suggest that dark knowledge is a property
that emerges gradually.

Out-of-distribution calibration and detection. To
evaluate model calibration under distributional shifts,
we tested models trained on CIFAR-10 against the
CIFAR-10-C benchmark, which applies 19 different
corruptions (e.g., brightness, blur, noise) across five
severity levels. As shown in Figure 16, BSD consis-
tently achieves the lowest Expected Calibration Error
(ECE) across all severity levels compared to the base-
line and related methods. Importantly, the performance
gap widens as data quality degrades, and we observe
that the related methods’ ECE increases more rapidly at
high corruption severities, while BSD maintains a flat-
ter ECE curve. This indicates that BSD reduces over-
confidence under increasing covariate shift.

Furthermore, we study the performance of BSD and
related methods under domain shifts by measuring
the area under the receiver operating characteristic
curve (AUROC) for models trained on CIFAR-10 and
CIFAR-100, evaluated against the Street View House
Numbers (SVHN) dataset Netzer et al. (2011). While
the best performing method varies with dataset and
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(a) ResNet-18 on CIFAR-10 (b) ResNet-50 on CIFAR-100 (c) ResNet-101 on Tiny ImageNet

Figure 15: Evolution of the average Temperature-Adjusted KL Divergence of predictions be-
tween the current and final model. Dark knowledge emerges gradually during training.

(a) ResNet-50 (b) DenseNet-169 (c) ViT-B

Figure 16: ECE under increasing corruptions. The models are trained using standard training
(baseline), related methods (Laine & Aila, 2016; Shen et al., 2022; Kim et al., 2021), and the pro-
posed method (BSD), on CIFAR-10 and evaluated on CIFAR-10-C.

Table 6: Out-of-Distribution Detection Performance (AUROC). Models trained on in-distribution
datasets (CIFAR-10, CIFAR-100) are evaluated against SVHN as the out-of-distribution dataset.
The models are trained using standard training (baseline), related methods (Laine & Aila, 2016;
Shen et al., 2022; Kim et al., 2021), and the proposed method (BSD). The best results are highlighted
in bold.

ID Dataset Model Baseline (%) TE (%) DLB (%) PS-KD (%) BSD (%)

CIFAR-10
ResNet-18 90.67±3.42 92.90±0.66 91.25±0.57 92.36±0.48 94.84±0.83

DenseNet-121 90.96±4.22 94.05±0.98 91.19±1.20 91.11±0.64 93.65±0.16

ViT-B/16 98.21±0.29 98.35±0.56 98.15±0.22 98.28±0.50 98.03±0.21

CIFAR-100
ResNet-50 74.35±2.23 74.68±1.53 82.51±0.61 76.66±2.40 78.19±1.19

DenseNet-169 77.92±0.57 68.97±6.85 80.55±3.56 73.95±2.06 82.41±1.79

ViT-B/16 88.42±1.19 89.12±0.64 89.52±1.16 88.82±0.39 90.71±0.50

model architecture, we observe that BSD yields the most consistent improvement across datasets and
architectures. Notably, while TE exhibits instability under this shift on CIFAR-100 (e.g., degrading
performance on DenseNet-169 trained on CIFAR-100 with respect to baseline), BSD maintains ro-
bust performance. For ViT-B, we observe performance saturation on CIFAR-10 (with all methods
> 98%), while for CIFAR-100, BSD yields a notable improvement (+2.29%) over the baseline.

Calibration. We train a WideResNet-40-1 on CIFAR-100 to benchmark BSD against different cal-
ibration methods including distillation-based method. We compare against Label Smoothing (LS)
(Szegedy et al., 2016), Temperature Scaling (TS) (Guo et al., 2017), MixUp (Zhang et al., 2017),
Correctness Ranking Loss (CRL) (Moon et al., 2020), PS-KD (Kim et al., 2021), Multi-class Dif-
ference in Confidence and Accuracy (MDCA) (Hebbalaguppe et al., 2022), AdaFocal (Ghosh et al.,
2022), Calibration by Pairwise Constraints (CPC) (Cheng & Vasconcelos, 2022), Margin-based La-
bel Smoothing (MbLS) (Liu et al., 2022), Adaptive and Conditional Label Smoothing (ACLS) (Park
et al., 2023) and combinations of the aforementioned method with knowledge distillation (Hebbal-
aguppe, 2024). The results in included in Table 7, where we observe that BSD yields the highest
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Table 7: Calibration Performance for WideResNet-40-1 on CIFAR-100. Result for all methods
(excl. BSD and baseline) are from (Hebbalaguppe, 2024). The best results are highlighted in bold.

Method Accuracy (%) ECE (%) SCE (%) ACE (%)

Baseline (NLL) 70.04 11.16 0.30 11.19
LS 70.07 1.30 0.21 1.49
TS 70.04 2.57 0.19 2.50
MMCE 69.69 7.34 0.25 7.37
MixUp 72.04 2.57 0.21 2.52
CRL 65.80 13.91 0.37 13.91
PS-KD 72.56 3.73 0.20 3.72
MDCA 68.51 1.35 0.21 1.34
AdaFocal 67.36 2.10 0.21 1.97
CPC 69.99 7.61 0.23 7.55
MBLS 69.97 5.37 0.22 5.37
ACLS 69.92 7.00 0.23 6.99

KD 69.60 15.18 0.37 15.18
KD + MixUp 72.48 1.21 0.20 1.17
KD + AdaFocal 71.70 1.19 0.19 1.34
KD + CPC 70.00 9.02 0.26 9.01
KD + MDCA 71.07 0.98 0.20 1.10
KD + MMCE 72.08 2.02 0.19 1.95

BSD (γ = 0.97, c = 2000) 72.34±0.26 0.85±0.08 0.18±0.00 0.87±0.19

BSD (γ = 0.96, c = 3000) 72.62±0.20 3.28±0.04 0.19±0.00 3.19±0.12

BSD (γ = 0.95, c = 4000) 72.79±0.45 7.08±0.40 0.23±0.00 7.08±0.40

(a) Baseline (b) BSD (c) Baseline (d) BSD

Figure 17: Penultimate layer representations of ResNet-50 on CIFAR-100. a-b: two semantically
similar classes with one dissimilar class. c-d: Three semantically dissimilar classes.

accuracy and the lowest ECE, Static Calibration Error (SCE) and Adaptive Calibration Error (ACE)
of all methods.

A.3 PENULTIMATE LAYER REPRESENTATIONS

Inspired by Müller et al. (2019), we visualize the penultimate layer representations in Figure 17.
BSD yields tighter, less overlapping clusters than conventional training, which is somewhat sur-
prising since BSD promotes learning of sample-specific features. It seems that learning similarities
between classes can help differentiate among them.

A.4 LIMITATIONS

While we experiment with various forms of data augmentation, the interaction with different aug-
mentation schemes as well as regularization techniques warrants further study. Intuitively, augmen-
tations that increase prediction variance may benefit from higher values of the discount factor γ.
Finally, BSD requires selecting the discount factor γ and the prior strength c, which, despite the ob-
served performance across a large range of settings, could be viewed as a methodological limitation.
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A.5 THE USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) in a limited capacity to improve the quality of the paper.
Specifically, LLMs assisted in writing to improve clarity and grammar, suggested related works for
us to consider, and were used as a tool for general feedback. The research ideas, experiments, and
methodological design were conceived and carried out by the authors. LLMs did not contribute new
scientific insights or results.
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