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Abstract
A key aspect of intelligence is the ability to
demonstrate a broad spectrum of behaviors for
adapting to unexpected situations. Over the
past decade, advancements in deep reinforcement
learning have led to groundbreaking achievements
to solve complex continuous control tasks. How-
ever, most approaches return only one solution
specialized for a specific problem. We introduce
Quality-Diversity Actor-Critic (QDAC), an off-
policy actor-critic deep reinforcement learning al-
gorithm that leverages a value function critic and a
successor features critic to learn high-performing
and diverse behaviors. In this framework, the
actor optimizes an objective that seamlessly uni-
fies both critics using constrained optimization to
(1) maximize return, while (2) executing diverse
skills. Compared with other Quality-Diversity
methods, QDAC achieves significantly higher per-
formance and more diverse behaviors on six chal-
lenging continuous control locomotion tasks. We
also demonstrate that we can harness the learned
skills to adapt better than other baselines to five
perturbed environments. Finally, qualitative anal-
yses showcase a range of remarkable behaviors:
adaptive-intelligent-robotics.github.io/QDAC.

1. Introduction
Reinforcement Learning (RL) has enabled groundbreaking
achievements like mastering discrete games (Mnih et al.,
2013; Silver et al., 2016) but also continuous control do-
mains for locomotion (Haarnoja et al., 2019; Heess et al.,
2017). These milestones have showcased the extraordinary
potential of RL algorithms in solving specific problems.
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In contrast, human intelligence is beyond mastering a single
task, and adapts to unforeseen environments by combining
skills. Empowering artificial agents with diverse skills was
shown to improve exploration (Gehring et al., 2021), to
facilitate knowledge transfer (Eysenbach et al., 2018), to
enable hierarchical problem-solving (Allard et al., 2022),
to enhance robustness and adaptation (Kumar et al., 2020;
Cully et al., 2015) and finally, to foster creativity (Zahavy
et al., 2023; Lehman et al., 2020).

Following this observation, methods have been developed
to make agents more versatile, including Goal-Conditioned
Reinforcement Learning (GCRL) (Liu et al., 2022), Unsu-
pervised Reinforcement Learning (URL) (Eysenbach et al.,
2018; Sharma et al., 2019), and reward design (Margolis
& Agrawal, 2022). However, designing algorithms to learn
expressive skills that are useful to solve downstream tasks
remains a challenge. Reward design requires a lot of manual
work and fine-tuning while being very brittle. GCRL and
URL try to achieve goals or execute skills while disregard-
ing other objectives like safety or efficiency, leaving a gap
in our quest for machines that can execute expressive and
optimal skills to solve complex tasks.

Quality-Diversity (QD) optimization (Pugh et al., 2016)
is a family of methods, originating from Evolutionary
Algorithms, that generate a diverse population of high-
performing solutions. QD algorithms have shown promising
results in hard-exploration settings (Ecoffet et al., 2021), to
recover from damage (Cully et al., 2015) or to reduce the
reality gap (Chatzilygeroudis et al., 2018). In particular,
QD algorithms have been scaled to challenging, continuous
control tasks, by synergizing evolutionary methods with
reinforcement learning (Faldor et al., 2023b; Pierrot et al.,
2022). Other approaches like SMERL (Kumar et al., 2020)
and DOMiNO (Zahavy et al., 2022) share the same objective
of finding diverse and near-optimal policies and optimize a
quality-diversity trade-off employing a pure reinforcement
learning formulation. Most QD algorithms guide the di-
versity search towards relevant behaviors using a manually
defined behavior descriptor function, that meaningfully char-
acterizes solutions for the type of diversity desired (Cully
& Demiris, 2018; Mouret & Clune, 2015). Two notable

1

https://adaptive-intelligent-robotics.github.io/QDAC/


Quality-Diversity Actor-Critic

Update
Lagrange

Policy Improvement

Policy Evaluation

a)

c)

b)

Figure 1. a) QDAC’s architecture: the agent π(a|s, z) learns high-performing and diverse behaviors with a dual critics optimization
V (s, z) and ψ(s, z) which are balanced with a Lagrange multiplier λ(s, z). b) Example of diverse behaviors on a set of challenging
continuous control tasks. c) Few-shot adaptation tasks and hierarchical learning tasks using the diversity of skills learned by QDAC.

exceptions are AURORA (Grillotti & Cully, 2022b) and
SMERL, that learn an unsupervised diversity measure, us-
ing an autoencoder architecture and DIAYN respectively.

In this work, we aim to solve the Quality-Diversity problem,
i.e. to learn a large number of high-performing and diverse
behaviors, where the diversity measure is given as part of
the task, as a function of state-action occupancy (see Sec-
tion 3 for a detailed problem statement). First, we introduce
an approximate policy skill improvement update based on
successor features, analogous to the classic policy improve-
ment update based on value function (Section 4.1). Second,
we show that the policy skill improvement update based on
successor features enables the policy to efficiently learn to
execute skills with a theoretical justification (see Proposition
in Section 4.1). Third, we formalize the goal of Quality-
Diversity into a problem that seamlessly unifies value func-
tion and successor features critics using constrained opti-
mization to (1) maximize performance, while (2) executing
desired skills (see Problem P3 in Section 4.1). Finally, we in-
troduce Quality-Diversity Actor-Critic (QDAC), a practical
algorithm that solves this problem by leveraging two inde-
pendent critics — the value function criticizes the actions
made by the actor to improve quality while the successor
features criticizes the actions made by the actor to improve
diversity (Section 4.2).

We evaluate our approach on six continuous control tasks
and show that QDAC achieves 15% more diverse behav-
iors and 38% higher performance than other baselines (Sec-
tion 5.4.1). Finally, we show that the skills can be used to
adapt to downstream tasks in a few shots or via hierarchical
learning (Section 5.4.2).

2. Background
We consider the reinforcement learning framework (Sutton
& Barto, 2018) where an agent interacts with a Markov
Decision Process (MDP) to maximize the expected sum of
rewards. At each time step t, the agent observes a state
st ∈ S and takes an action at ∈ A, which causes the

environment to transition to a next state st+1 ∈ S , sampled
from the dynamics p(st+1 | st, at). Additionally, the agent
receives a reward rt = r(st, at) and observes features ϕt =
ϕ(st, at) ∈ Φ ⊂ Rd. In this work, we assume the features
ϕt are provided by the environment as part of the task,
akin to the rewards, and are not learned by the agent. We
denote ρπ(s) = limt→∞ P (st = s|s0, π) the stationary
distribution of states under a policy π, which we assume
exists and is independent of s0 (Sutton et al., 1999).

The objective of the agent is to find a policy π that maxi-
mizes the expected discounted sum of rewards, or expected
return Eπ [

∑
t γ

trt]. The so-called value-based methods
in RL rely on the concept of value function V π(s), de-
fined as the expected return obtained when starting from
state s and following policy π thereafter (Puterman, 1994):
V π(s) = Eπ

[∑∞
i=0 γ

irt+i

∣∣ st = s
]
. In this work, the

value function is approximated via a neural network pa-
rameterized by θV . Similarly to Mnih et al. (2013), those
parameters are optimized by minimizing the Bellman error:

JV (θV ) = Eπ

[(
VθV (st)− rt − γVθ′

V
(st+1)

)2]
(1)

where θ′V are the parameters of a target network, which are
updated at a lower pace to improve training stability (Mnih
et al., 2015).

In addition to the value function, we also leverage the con-
cept of successor features ψπ(s), which is the expected
discounted sum of features obtained when starting from
state s and following policy π thereafter (Barreto et al.,
2017): ψπ(s) = Eπ

[∑∞
i=0 γ

iϕt+i

∣∣ st = s
]
. The succes-

sor features captures the expected features under a given
policy, offering insights into the agent’s future behavior and
satisfies a Bellman equation in which ϕt plays the role of
the reward ψπ(s) = Eπ [ϕt + γψπ(st+1)|st = s], and can
be learned with any RL methods (Dayan, 1993). In this
work specifically, the successor features are approximated
via a neural network parameterized by θψ . Analogously to
the value function network, θψ is optimized by minimizing
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the Bellman error:

Jψ(θψ) = Eπ

[∥∥∥ψθψ
(st)− ϕt − γψθ′

ψ
(st+1)

∥∥∥2
2

]
(2)

where θ′ψ are the parameters of the corresponding target
network.

In practice, we make use of a universal value function ap-
proximator V π(s, z) (Schaul et al., 2015) and of a univer-
sal successor features approximator ψπ(s, z) (Borsa et al.,
2018) that depend on state s but also on the skill z condi-
tioning the policy. The value function quantifies the per-
formance while the successor features characterizes the be-
havior of the agent. For conciseness, we omit π from the
notations ρπ , V π , ψπ and we note πz(a|s) := π(a|s, z).

3. Problem Statement
In this work, we aim to solve the Quality-Diversity problem,
i.e. to learn a policy that can execute a large number of
different and high-performing behaviors. In this section, we
formalize this intuitive goal into a concrete optimization
problem. The behavior of a policy π is characterized by
the expected features under the policy’s stationary distribu-
tion, limT→∞

1
T

∑T−1
t=0 ϕt = Eπ [ϕ(s, a)] and we define

the space of all possible behaviors to be the skill space Z .

Given this definition, we intend to learn a skill-conditioned
policy π(a|s, z) that (1) maximizes the expected return, and
(2) is subject to the expected features converge to the desired
skill z. In other words, we solve the following constrained
optimization problem, for all z ∈ Z ,

maximize Eπz

[ ∞∑
i=0

γirt+i

]
subject to Eπz [ϕ(s, a)] = z

(P1)

The feature function ϕ can be any arbitrary function of
the state of the MDP and of the action taken by the agent.
Computing diversity based on the raw observations in high-
dimensional environments (e.g., pixel observations) may
not lead to interesting behaviors. Thus, the features can be
thought of as relevant characteristics or events for the type
of diversity desired, such as joint positions, contact with the
ground, speed and so on. To illustrate the generality of this
problem formulation, we now give two examples. Consider
a robot whose objective is to minimize energy consumption,
and where the features characterize the velocity of the robot
ϕt = vt =

[
vx(t) vy(t)

]⊺
and the skill space Z = R2.

For each desired velocity z ∈ Z , π(a|s, z) is expected to
(1) minimize energy consumption, while (2) following the
desired velocity z in average, limT→∞

1
T

∑T−1
t=0 vt = z.

Now consider another example with a legged robot, where
the objective is to go forward as fast as possible, and the

Figure 2. The Lagrange multiplier is optimized to balance the
quality-diversity trade-off, see Eq. 5. a) If the expected features
(1− γ)ψ(s, z) is in the neighborhood of z, then λ(s, z) decreases
to focus on maximizing the return. b) Otherwise, λ(s, z) increases
to focus on executing z. c) After the Lagrange multiplier is up-
dated, the policy is optimized according to the objective.

features characterize which foot is in contact with the ground
at each time step. For example, ϕt =

[
1 0

]⊺
for a biped

robot that is standing on its first leg and with the second leg
not touching the ground at time step t. With these features,
the i-th component of the skill z (i.e. average features) will
be the proportion of time during which the i-th foot of the
robot is in contact with the ground, denoted as feet contact
rate. In that case, the skill space characterizes the myriad
of ways the robot can walk and specifically, how often each
leg is being used. Notice that to achieve a feet contact of
z =

[
0.1 0.6

]⊺
, the robot needs to use 10% of the time

the first foot and 60% of the time the second foot over a
trajectory of multiple time steps.

4. Methods
In this section, we present Quality-Diversity Actor-Critic
(QDAC), a quality-diversity reinforcement learning algo-
rithm that discovers high-performing and diverse skills.
First, we present a concrete optimization problem that op-
timizes for quality and diversity as defined in Section 3.
Second, we define the notion of successor features policy
iteration that we combine with value function policy itera-
tion to derive a tractable objective for the actor, that solves
problem P1 approximately. Third, we derive a practical
algorithm that optimizes this objective.

4.1. Actor Objective

First, we relax the constraint from Problem P1 using the
L2 norm and δ, a threshold that quantifies the maximum ac-
ceptable distance between the desired skill and the expected
features. We solve the optimization problem, for all z ∈ Z ,

maximize Eπz

[ ∞∑
i=0

γirt+i

]
subject to ∥Eπz [ϕ(s, a)]− z∥2 ≤ δ

(P2)
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Second, we derive an upper bound for the distance between
desired skill and expected features, whose proof is provided
in Appendix B. A similar proposition is proven in a more
general case in Appendix B.1. The goal is to minimize the
bound so that the constraint in Problem P2 is satisfied.

Proposition. Consider an infinite horizon, finite MDP with
observable features in Φ. Let π be a policy and let ψ be the
discounted successor features. Then, for all skills z ∈ Z ,
we can derive an upper bound for the distance between z
and the expected features under π:

∥Eπz [ϕ(s, a)]− z∥2 ≤ Eπz [∥(1− γ)ψ(s, z)− z∥2] (3)

Third, we derive a new Problem P3 by replacing the in-
tractable constraint from Problem P2 with the tractable up-
per bound in Equation 3. The constraint in Problem P3 is
more restrictive than that of Problem P2. Indeed, the above
proposition ensures that if the constraint in Problem P3 is
satisfied, then the constraint in Problem P2 is necessarily
satisfied as well. For all z ∈ Z ,

maximize Eπz [V (s, z)]

subject to Eπz [∥(1− γ)ψ(s, z)− z∥2] ≤ δ
(P3)

Finally, we solve Problem P3 using the method of Lagrange
multipliers as described by Abdolmaleki et al. (2018; 2023).
For all states s, and all skills z ∈ Z , we maximize the
Lagrangian function, subject to 0 ≤ λ(s, z) ≤ 1,

(1− λ(s, z))V (s, z)−λ(s, z)∥(1− γ)ψ(s, z)− z∥2 (4)

The first term in red aims at maximizing the return, while
the second term in blue aims at executing the desired skill.
To optimize the actor to be high-performing while executing
diverse skills, we use a generalized policy iteration method.
The algorithm consists in (1) policy evaluation for both
critics V (s, z) and ψ(s, z), and (2) policy improvement
via optimization of the Lagrangian function introduced in
Equation 4. This formulation combines the classic policy
improvement based on value function with a novel policy
skill improvement based on successor features.

The Lagrange multiplier λ is optimized to balance the
quality-diversity trade-off. If ∥(1− γ)ψ(s1, z1)− z1∥2 ≤
δ is satisfied for (s1, z1), we expect λ(s1, z1) to decrease
to encourage maximizing the return. On the contrary, if the
constraint is not satisfied for (s2, z2), we expect λ(s2, z2)
to increase to encourage satisfying the constraint.

4.2. Practical Algorithm

The objective in Equation 4 can be optimized with any
reinforcement learning algorithm that implements general-
ized policy iteration. We give two variants of our method,
one variant named QDAC, that is model-free and that
builds on top of SAC, and one variant named QDAC-MB,

that is model-based and that builds on top of DreamerV3.
Additional details about QDAC-MB are provided in Ap-
pendix C.2. In this section, we detail the model-free variant.

QDAC’s model-free pseudocode is provided in Algorithm 1.
At each iteration, a skill z is uniformly sampled for an
episode of length T , during which the agent interacts with
the environment following skill z with π(·|s, z). At each
time step t, the transition is stored in a replay buffer D,
augmented with the features ϕ(st, at) and with the current
desired skill z.

Then, the Lagrange multiplier is updated to balance the
quality-diversity trade-off. The parameters θλ are optimized
so that λ(s, z) increases when the actor is unable to execute
the desired skill z, to put more weight on executing the skill.
Conversely, the parameters θλ are optimized so that λ(s, z)
decreases when the actor is able to execute the desired skill
z, to put more weight on maximizing the return. The update
of the Lagrange multiplier and its role in the actor objective
are depicted in Figure 2. In practice, we use a cross-entropy
loss to optimize θλ:

Jλ(θλ) = Es∼ρ
z∼U(Z)

[− (1− y) log (1− λ (s, z))

− y log (λ (s, z))]

where y =

{
0 if ∥(1− γ)ψ(s, z)− z∥2 ≤ δ

1 otherwise

(5)

Finally, the critics V , ψ and the actor πz are trained with
a policy iteration step adapted from SAC and following
Equation 4. The objective is optimized with stochastic gra-
dient descent using a mini-batch of transitions sampled from
the replay buffer. To improve sample efficiency, the transi-
tions from the mini-batch are duplicated with new random
skills sampled uniformly in the skill space. Additional in-
formation about QDAC’s training procedure are provided in
Appendix C.1.

5. Experiments
The goal of our experiments is twofold: (1) evaluate
QDAC’s ability to learn high-performing and diverse skills
based on a wide range of features, (2) evaluate QDAC’s
ability to harness learned skills to solve downstream tasks.

5.1. Tasks

5.1.1. LEARNING DIVERSE HIGH-PERFORMING SKILLS

We evaluate our method on a range of challenging contin-
uous control tasks using the Google Brax (Freeman et al.,
2021) physics engine. We consider the three classic loco-
motion environments Walker, Ant and Humanoid that we
combine with four different feature functions that we call
feet contact, velocity, jump and angle. The first two features
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Algorithm 1 QDAC
input Parameters θπ , θV , θψ , θλ ▷ Initial parameters for the actor, critics and Lagrange multiplier
D ← ∅ ▷ Initialize an empty replay buffer
repeat

z ∼ U (Z) ▷ Sample skill uniformly from skill space
for T steps do

▷ Environment steps
at ∼ π(at|st, z) ▷ Sample action from policy
st+1 ∼ p(st+1|st, at, z) ▷ Sample transition from the environment
D ← D ∪ {(st, at, r(st, at),ϕ(st, at), st+1, z)} ▷ Store transition in the replay buffer
▷ Training steps
θλ ← θλ − αλ∇Jλ(θλ) ▷ Update Lagrange multiplier with Eq. 5
θV ← θV − αV∇JV (θV ) ▷ Policy evaluation for value function with Eq. 1
θψ ← θψ − αψ∇Jψ(θψ) ▷ Policy evaluation for successor features with Eq. 2
θπ ← θπ + απ∇Jπ(θπ) ▷ Policy improvement with Eq. 4

end for
until convergence

are traditional benchmark tasks that have been extensively
studied in the Quality-Diversity and GCRL literature (Cully
et al., 2015; Faldor et al., 2023a; Nilsson & Cully, 2021;
Zhu et al., 2021; Finn et al., 2017), while the two last ones
are challenging tasks that we introduce in this work. In these
locomotion tasks, the objective is to go forward as fast as
possible while minimizing energy consumption.

Feet Contact features indicate for each foot of the agent,
if the foot is in contact or not with the ground, exactly as
defined in DCG-ME’s original paper (Faldor et al., 2023a).
For example, if the Ant only touches the ground with its
second foot at time step t, thenϕ(st, at) =

[
0 1 0 0

]⊺
.

The diversity of feet contact found by such QD algorithms
has been demonstrated to be very useful in downstream
tasks such as damage recovery (Cully et al., 2015). The
expected features correspond to the proportion of time each
foot is in contact with the ground.

Velocity features are two-dimensional vectors indicating
the velocity of the agent in the xy-plane, ϕ(st, at) =[
vx(t) vy(t)

]⊺
. We evaluate on the velocity features to

show that our method works on classic GCRL tasks. More-
over, the velocity features are interesting because satisfying
a velocity that is negative on the x-axis is directly opposite
to maximizing the forward velocity reward.

Jump features are one-dimensional vectors indicating the
height of the lowest foot. For example, if the left foot of the
humanoid is 10 cm above the ground and if its right foot is
3.5 cm above the ground, then the features ϕ(st, at) =[
0.035

]
. The skills derived from the jump features are

also challenging to execute because to maintain an average
z = 1

T

∑T−1
i=0 ϕt+i, the agent is forced to oscillate around

that value z because of gravity.

Angle features are two-dimensional vectors indicating the
angle α of the main body about the z-axis, ϕ(st, at) =[
cos(α) sin(α)

]⊺
. The goal of this task is to go as fast

as possible in the x-direction while facing any directions,
forcing the agent to sidestep or moonwalk.

5.1.2. HARNESSING SKILLS FOR FEW-SHOT
ADAPTATION AND HIERARCHICAL LEARNING

We evaluate our method on few-shot adaptation scenarios
with four types of perturbation and on one hierarchical learn-
ing task. For each task, the reward is the same but the MDP’s
dynamics is perturbed. Additional details are available in
Appendix D.2.

In few-shot adaption tasks, no re-training is allowed and we
evaluate the top-performing skills for each method while
varying the perturbation to measure the robustness of the
different algorithms, see Appendix D.2 for more details.
Humanoid - Hurdles requires the agent to jump over hurdles
of varying heights. Humanoid - Motor Failure requires the
agent to adapt to different degrees of failure in the motor
controlling its left knee. In Ant - Gravity, the agent needs
to adapt to different gravity conditions. Finally, Walker
- Friction requires the agent to adapt to varying levels of
ground friction. Here, we evaluate the agent’s ability to
adjust its locomotion strategy to a new perturbed MDP.

In the hierarchical learning task, named Ant - Wall, the agent
is faced with navigating around a wall. A meta-controller is
trained with Soft Actor-Critic (SAC) to maximize forward
movement. Here, we evaluate the ability to use the diversity
of skills discovered by QDAC for hierarchical RL.

5.2. Baselines

We compare QDAC with two families of methods that both
balance a quality-diversity trade-off. The first family con-
sists in evolutionary algorithms that maintain a diverse pop-
ulation of high-performing individuals whereas the second
family uses a pure reinforcement learning formulation. Ad-
ditionally, we perform three ablation studies.
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Quality-Diversity via Evolutionary Algorithms We
compare our method with PPGA (Batra et al., 2023), DCG-
ME (Faldor et al., 2023a;b) and QD-PG (Pierrot et al., 2022),
three evolutionary algorithms that optimize a diverse pop-
ulation of high-performing individuals. PPGA is a state-
of-the-art Quality-Diversity algorithm that mixes Proximal
Policy Optimization (PPO) (Schulman et al., 2017) with
CMA-MAEGA (Fontaine & Nikolaidis, 2023); it alternates
between (1) estimating the performance-feature gradients
with PPO and (2) maintaining a population of coefficients to
linearly combine those performance-feature gradients, those
coefficients are optimized to maximize archive improve-
ment. DCG-ME is another state-of-the-art Quality-Diversity
algorithm that evolves a population of both high-performing
and diverse solutions, and simultaneously distills those so-
lutions into a single skill-conditioned policy. QD-PG is a
Quality-Diversity algorithm that uses quality and diversity
policy gradients to optimize its population of policies.

Quality-Diversity via Reinforcement Learning We also
compare our method with DOMiNO (Zahavy et al., 2022),
SMERL (Kumar et al., 2020) and Reverse SMERL (Zahavy
et al., 2022) that balance a quality-diversity trade-off using a
pure reinforcement learning formulation. DOMiNO is a re-
inforcement learning algorithm designed to discover diverse
behaviors while preserving near-optimality. Analogous to
our method, it characterizes policies’ behaviors using suc-
cessor features. SMERL learns a latent-conditioned policy
that maximizes the mutual information between states s and
latent variables z, with a threshold to toggle the diversity
reward in the objective r+α1(R ≥ R∗−ϵ)r̃. The diversity
reward r̃ is measured from the likelihood of a discrimina-
tor q(z|s) coming from DIAYN. In other words, SMERL
maximizes a weighted combination of environment reward
and diversity reward when the policy is near-optimal, and
only the environment reward otherwise. Reverse SMERL
maximizes a similar reward 1(R < R∗− ϵ)r+αr̃. In other
words, Reverse SMERL maximizes a weighted combination
of environment reward and diversity reward when the policy
is not near-optimal, and only the diversity reward otherwise.

Ablations We perform three additional ablation studies,
that we call No-SF, Fixed-λ and UVFA. For No-SF, we re-
move the successor features representation and use a naive
distance to skill instead

∑
t γ

t ∥ϕt − z∥2 to understand the
contribution of the successor features critic to optimize di-
versity. For Fixed-λ, we remove the Lagrange multiplier
and use a fixed trade-off instead to understand the contri-
bution of constrained optimization. UVFA (Schaul et al.,
2015) is an algorithm that corresponds to the combination
of our two previous ablations, as such we consider it to be
an ablation in this work. A summarized description of all
baselines under study is provided in Table E.3.

Distance score
0.0

0.2

0.4

0.6

0.8

1.0

Performance score

QDAC
QDAC-MB

PPGA
DCG-ME
QD-PG

Fixed-λ
No-SF
UVFA

Figure 3. Distance and performance scores normalized and aggre-
gated across all tasks. The values correspond to the IQM while the
error bars represent IQM 95% CI.

5.3. Evaluation Metrics

We evaluate our method using two types of metrics from
the Quality-Diversity literature that aim at evaluating the
performance and the diversity of the discovered skills: (1)
the distance to skill metrics, that evaluate the ability of an
agent to execute desired skills, and (2) the performance met-
rics, that quantify the ability of an agent to maximize return
while executing desired skills. Each experiment is replicated
10 times with random seeds. We report the Inter-Quartile
Mean (IQM) value for each metric, with the estimated 95%
Confidence Interval (CI) (Agarwal et al., 2021). The sta-
tistical significance of the results is evaluated using the
Mann-Whitney U test (Mann & Whitney, 1947) and the
probabilities of improvement are reported in Appendix A.1.

Distance to skill metrics To evaluate the ability of a pol-
icy to achieve a given skill z, we estimate the expected
distance to skill, denoted d(z), by averaging the euclidean
distance between the desired skill z and the observed skill
over 10 rollouts, as defined by Faldor et al. (2023a;b).
First, we use d(z) to compute distance profiles on Fig-
ure 4, which quantify for a given distance d, the propor-
tion of skills in the skill space that have an expected dis-
tance to skill smaller than d, computed with the function
d 7→ 1

Nz

∑Nz

i=1 1(d(zi) < d). Second, we summarize the
ability of a policy to execute skills with the distance score,
1
Nz

∑Nz

i=1−d(zi).

Performance metrics To evaluate the ability of a policy to
solve a task given a skill z, we estimate the expected undis-
counted return, denoted R(z), by averaging the return over
10 rollouts, as defined by Flageat & Cully (2023); Grillotti
et al. (2023). First, we use R(z) to compute performance
profiles on Figure 4, which quantify for a given return R, the
proportion of skills in the skill space that have an expected
return larger than R, after filtering out the skills that are
not achieved by the policy. To this end, we compute the
expected distance to skill d(z), and discard skills with an ex-
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Figure 4. (top) Distance profiles and (bottom) performance profiles for each task defined in Section 5.3. The lines represent the IQM for
10 replications, and the shaded areas correspond to the 95% CI. Figure D.33 illustrates how to read distance and performance profiles.

pected distance to skill that is larger than a predefined thresh-
old, d(z) > deval. More precisely, the performance profile is
the function R 7→ 1

Nz

∑Nz

i=1 1(d(zi) < deval, R(zi) > R).
Second, we summarize the ability of a policy to maximize
return while executing skills, with the performance score,
1
Nz

∑Nz

i=1 R(z)1(d(zi) < deval).

5.4. Results

The goal of our experiments is to answer two questions: (1)
Does QDAC solve the Quality-Diversity problem? (2) Can
we harness the high-performing and diverse skills to adapt
to perturbed MDP? In Section 5.4.1, we demonstrate that
QDAC achieves significantly higher performance and more
diverse behaviors on six challenging continuous control lo-
comotion tasks (Fig. 3). In Section 5.4.2, we show that we
can harness the learned skills to adapt better than other base-
lines to five perturbed MDP (Fig. 6). The code is available
at: github.com/adaptive-intelligent-robotics/QDAC.

5.4.1. LEARNING DIVERSE HIGH-PERFORMING SKILLS

In this section, we evaluate QDAC with metrics coming
from the Quality-Diversity literature, namely the distance
to skill and performance metrics. However, DOMiNO and
SMERL optimize for diversity, without the focus on execut-
ing specific skills. Consequently, the concept of ‘distance to
skill’ does not apply and thus, the traditional QD metrics are
not applicable. Nonetheless, we compare our approach with
these baselines on adaptation tasks, for which they were
initially designed, in Section 5.4.2.

QDAC and QDAC-MB outperform all baselines in execut-
ing a wide range of skills (Fig. 4), except on Humanoid
Jump where DCG-ME and QD-PG achieve a better distance
profile than our model-free variant. Yet, QDAC-MB outper-

forms those baselines, due to the representation capabilities
of the world model. The jump features are challenging be-
cause of the min operator, and because the features are not
explicitly available in the observations given to the agent.

Notably, QDAC and QDAC-MB are capable of achieving
skills that are contrary to the task reward, as illustrated
by the velocity features in Figure 4 and Figure 5, which
is not the case for PPGA, DCG-ME and QD-PG. Finally,
our approach outperforms DCG-ME that fails to explicitly
minimize the expected distance to skill, a common issue
among QD algorithms (Flageat & Cully, 2023).

QDAC-MB outperforms Fixed-λ on all tasks, showing the
importance of using constrained optimization to solve the
QD problem. Furthermore, QDAC-MB achieves better per-
formance than No-SF on all tasks, showing the importance
of the successor features critics to optimize diversity. Fi-
nally, QDAC significantly outperforms No-SF and UVFA
on all tasks. On feet contact tasks, No-SF and UVFA can
only execute skills in the corners of the skill space where
z = ϕt, as shown in Figure A.12. This is because these
baselines employ a naive approach that consists in minimiz-
ing the distance between the features and the desired skill.
Thus, they can only execute skills where the legs are always
or never in contact with the ground. These comparisons
supports the claim that QDAC is capable of accurately exe-
cuting a diversity of skills and highlight the significance of
the policy skill improvement term in blue in Equation 4.

QDAC and QDAC-MB outperform DCG-ME and QD-PG
in maximizing return (Fig. 3), as the latter don’t achieve
many skills in the first place, and the performance score only
evaluates the performance of skills successfully executed by
the policy. While PPGA achieves a performance score com-
parable to QDAC, it does so by finding fewer robust policies,
albeit with better performance (Fig. 4). Fixed-λ is the only
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baseline that gets performance scores and profiles compara-
ble to QDAC-MB. However, Fixed-λ covers a smaller range
of skills, as evidenced by the edges of the skill space on
Figure A.12. Additionally, QDAC-MB outperforms Fixed-λ
on the challenging jump task (Fig. 4), due to the necessity
of a strong weight on the constraint. Ultimately, using an
adaptive λ proves advantageous for our approach.

As summarized in Figure 3, QDAC and QDAC-MB achieve
a better quality-diversity trade-off than other baselines, quan-
tified by the distance score and the performance score.

5.4.2. HARNESSING SKILLS FOR FEW-SHOT
ADAPTATION AND HIERARCHICAL LEARNING

QDAC and QDAC-MB demonstrate competitive perfor-
mance in few-shot adaptation and hierarchical RL tasks,
see Figure 6. On the hurdles task, when considering hur-
dle heights strictly greater than 0, QDAC-MB significantly
outperforms other baselines by consistently jumping over
higher hurdles and showcases remarkable behaviors. On the
motor failure task, although performing worse than PPGA,
QDAC shows great robustness, especially in the high dam-
age regime. QDAC-MB performs better than QDAC on low
damage, but QDAC can adapt to 100% damage strength
on the left knee, still achieving more than 5,000 in return.
In other words, QDAC has found a way to continue walk-
ing despite not being able to control at all the left knee.
QDAC does not seem able to adapt to gravity variations,
but QDAC-MB shows competitive performance although
performing slightly worse than PPGA and DOMiNO. On
Walker - Friction, QDAC outperforms all baselines except
PPGA and DCG-ME that achieve marginally better perfor-
mance. Finally, QDAC’s learned skills appear to be the
best on the hierarchical RL task, as it achieves significantly
higher performance than other baselines.

Our extensive experiments and analyses in Sections 5.4.1

and 5.4.2 firmly establish the efficacy of QDAC and QDAC-
MB in addressing the dual challenges of learning high-
performing and diverse skills. These methods not only sur-
pass traditional Quality-Diversity algorithms in optimizing
for specific pre-defined skills but also demonstrate remark-
able adaptability and robustness in perturbed environments.

6. Related Work
QD optimization (Pugh et al., 2016; Cully & Demiris, 2018)
is a family of algorithms that generate large collections
of solutions, such as policies, that are both diverse and
high-performing. Those methods originate from Novelty
Search (Lehman & Stanley, 2011a;b) and Evolutionary Al-
gorithms literature, where the diversity is defined across a
population of solutions. Quality-Diversity algorithms have
been shown to be competitive with skill discovery rein-
forcement learning methods (Chalumeau et al., 2022), and
promising for adaptation to unforeseen situations (Cully
et al., 2015). When considering large neural network poli-
cies, the sample efficiency of QD algorithms can be im-
proved by using Evolution Strategies (Fontaine et al., 2020;
Colas et al., 2020), RL-based methods (Pierrot et al., 2022;
Nilsson & Cully, 2021; Faldor et al., 2023a; Tjanaka et al.,
2022; Batra et al., 2023; Xue et al., 2024). The sample
efficiency can be further improved by decomposing the
policies into several parts and coevolving a sub-population
for each part (Xue et al., 2024). However, most QD al-
gorithms output a large number of policies, which can
be difficult to deal with in downstream tasks. Similarly
to QDAC, DCG-ME addresses that issue by optimizing a
single skill-conditioned policy (Faldor et al., 2023a). Fi-
nally, approaches like SMERL (Kumar et al., 2020) or
DOMiNO (Zahavy et al., 2022) also solve the QD objective
employing a pure reinforcement learning formulation. Con-
trary to QDAC, the policies discovered by DOMiNO are not
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trained to execute specific target skills.

Most Unsupervised Reinforcement Learning approaches dis-
cover diverse behaviors by maximizing an intrinsic reward
defined in terms of the discriminability of the trajectories.
Usually, the methods maximize the Mutual Information (MI)
between the trajectories and the skills I(τ, z) (Gregor et al.,
2016; Sharma et al., 2019; Mazzaglia et al., 2022), simpli-
fied to an MI-maximization between skills and states with
the following lower bound: I(τ, z) ≥ ∑T

t=1 I(st, z). It
has been shown that MI-based algorithms are equivalent to
distance-to-skill minimization algorithms (Choi et al., 2021;
Gu et al., 2021), and therefore present similarities with our
work. However, most URL algorithms maximize an intrin-
sic reward while disregarding any other objective, making it
difficult to discover useful and expressive behaviors.

While diversity can be achieved by maximizing a mutual
information objective, it can also be explicitly defined as
a distance between behavioral descriptors. Such descrip-
tors can take the form of successor features (Zahavy et al.,
2022; 2023) or of expected features obtained though entire
episodes (Cully et al., 2015; Batra et al., 2023). In this work,
we rely on this latter definition, as expressed in Problems P1
and P2. The features ϕ can be defined in different ways.
First, they can be a subpart of the state of the agent such as
the joint positions and velocities (Zahavy et al., 2022), torso
velocity (Cheng et al., 2023), or feet contacts (Cully et al.,
2015). In this case, the state of the agent may guide the
search towards relevant notions of diversity; however, this
requires expert knowledge about the task, and the choice
of feature definition strongly influences the quality and di-
versity of the generated solutions (Tarapore et al., 2016).
Second, to avoid hand-defining features, we could define
ϕ as the full state (Kumar et al., 2020) or as an unsuper-
vised low-dimensional encoding of it (Grillotti & Cully,
2022b; Mazzaglia et al., 2022; Liu & Abbeel, 2021). In
this case, additional techniques can be used to ensure the
learned behaviors are relevant, such as adding an extrinsic
reward term (Chalumeau et al., 2022), promoting diversity

in the neighborhood of relevant solutions (Grillotti & Cully,
2022a), or adding constraints for near-optimality (Zahavy
et al., 2022; Kumar et al., 2020). Instead, QDAC constrains
the agent’s behavior to follow a given hand-defined skill z,
and maximizes the performance for all skills z ∈ Z .

7. Conclusion
In this work, we present QDAC, an actor-critic deep rein-
forcement learning algorithm, that leverages a value func-
tion critic and a successor features critic to learn high-
performing and diverse behaviors. In this framework, the
actor optimizes an objective that seamlessly unifies both crit-
ics using constrained optimization to (1) maximize return,
while (2) executing diverse skills.

Empirical evaluations suggest that QDAC outperforms pre-
vious Quality-Diversity methods on six continuous con-
trol locomotion tasks. Quantitative results demonstrate that
QDAC is competitive in adaptation tasks, while qualitative
analyses reveal a range of diverse and remarkable behaviors.

In the future, we hope to apply QDAC to other tasks with
different properties than the tasks from this paper. For exam-
ple, it would be interesting to apply QDAC to non-ergodic
environments such as Atari games.

Furthermore, like the vast majority of Quality-Diversity al-
gorithms, QDAC uses a manually defined diversity measure
to guide the diversity search towards relevant behaviors.
An exciting direction for future work would be to learn
the feature function in an unsupervised manner to discover
task-agnostic skills.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Supplementary Results
A.1. Quantitative Results
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Figure A.7. Probabilities of improvement of QDAC over all other baselines, aggregated across all tasks, as defined by Agarwal et al.
(2021).
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Figure A.8. Probabilities of improvement of QDAC-MB over all other baselines, aggregated across all tasks, as defined by Agarwal et al.
(2021).
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Figure A.9. IQM for distance and performance scores per task.
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Figure A.10. Per-task probabilities of improvement (as defined by Agarwal et al. (2021)) of QDAC over all other baselines.
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Figure A.11. Per-task probabilities of improvement (as defined by Agarwal et al. (2021)) of QDAC-MB over all other baselines.
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A.2. Heatmaps

In Figures A.12 to A.17, we report the heatmaps for the metrics defined in Section 5.3: the negative distance to skill (in the
top row) and the performance (in the bottom row). Each heatmap represents the skill space of the corresponding task. In the
first row, the color of each cell represents the negated distance to the closest skill achieved by the policy (the darker the
better). In the bottom row, empty cells show which skills are not successfully executed (i.e. d(z) > deval); while colorized
cells indicate the performance score (i.e. the return) achieved by the agent for the corresponding skill.
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Figure A.12. Humanoid Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The
heatmap represents the skill space of feet contacts Z = [0, 1]2. This space is discretized into cells, with each cell representing a distinct
skill z =

[
z1 z2

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row, empty
cells show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for
the corresponding skill.
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Figure A.13. Ant Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The heatmap
represents the skill space of feet contacts Z = [0, 1]4. This space is discretized into cells, with each cell representing a distinct skill
z =

[
z1 z2 z3 z4

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row,
empty cells show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score
obtained for the corresponding skill.
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Figure A.14. Walker Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The
heatmap represents the skill space of feet contacts Z = [0, 1]2. This space is discretized into cells, with each cell representing a distinct
skill z =

[
z1 z2

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row, empty
cells show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for
the corresponding skill.
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Figure A.15. Humanoid Jump Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The heatmap
represents the skill space of jumping skills Z = [0, 0.25]. This space is discretized into cells, with each cell representing a distinct skill; in
this task, the skills refer to the average of the lowest foot heights over an entire episode. In the bottom row, empty cells show which skills
are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for the corresponding
skill.
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Figure A.16. Ant Velocity Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The heatmap
represents the skill space Z = [−5 m/s, 5 m/s]2, of target velocities. This space is discretized into cells, with each cell representing a
distinct skill z =

[
vx vy

]⊺. In the bottom row, empty cells show which skills are not successfully executed (i.e. d(z) > deval), while
colorized cells indicate the performance score obtained for the corresponding skill.
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Figure A.17. Humanoid Angle Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. The heatmap
represents the skill space of body angles Z =]− π, π]. This space is discretized into cells, with each cell representing a distinct skill; in
this task, the skills refer to the angle of the humanoid body about the z-axis. In the bottom row, empty cells show which skills are not
successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for the corresponding skill.
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A.3. Results without filtering with deval

In Figures A.18 to A.24, we report the profiles and heatmaps defined in Section 5.3 except that skills that are not successfully
executed (i.e. d(z) > deval) are not filtered out.
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Figure A.18. (top) Distance profiles and (bottom) performance profiles for each task defined in Section 5.3 similar to Figure 4 except that
skills that are not successfully executed (i.e. d(z) > deval) are not filtered out. The lines represent the IQM for 10 replications, and the
shaded areas correspond to the 95% CI. Figure D.33 illustrates how to read distance and performance profiles.
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Figure A.19. Humanoid Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the
bottom row, the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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Figure A.20. Ant Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the bottom
row, the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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Figure A.21. Walker Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the
bottom row, the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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Figure A.22. Humanoid Jump Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the bottom
row, the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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Figure A.23. Ant Velocity Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the bottom row,
the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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Figure A.24. Humanoid Angle Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. In the bottom
row, the skills that are not successfully executed (i.e. d(z) > deval) are not filtered out.
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A.4. Archive Profiles and Heatmaps for DOMiNO, SMERL and Reverse SMERL

In Figures A.25 to A.31, we present the archive profiles and heatmaps achieved by DOMiNO, SMERL, and Reverse SMERL
using a method analogous to that in (Chalumeau et al., 2022): we generate an archive from the intermediate policies
encountered during training, and use this archive to compare against QDAC and QDAC-MB.
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Figure A.25. (top) Distance profiles and (bottom) performance profiles for each task defined in Section 5.3. We present here the results
from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The lines represent the IQM
for 10 replications, and the shaded areas correspond to the 95% CI. Figure D.33 illustrates how to read distance and performance profiles.
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Figure A.26. Humanoid Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We
present here the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The
heatmap represents the skill space of feet contacts Z = [0, 1]2. This space is discretized into cells, with each cell representing a distinct
skill z =

[
z1 z2

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row, empty
cells show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for
the corresponding skill.
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Figure A.27. Ant Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We present
here the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The heatmap
represents the skill space of feet contacts Z = [0, 1]4. This space is discretized into cells, with each cell representing a distinct skill
z =

[
z1 z2 z3 z4

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row,
empty cells show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score
obtained for the corresponding skill.
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Figure A.28. Walker Feet Contact Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We present
here the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The heatmap
represents the skill space of feet contacts Z = [0, 1]2. This space is discretized into cells, with each cell representing a distinct skill
z =

[
z1 z2

]⊺, where zi is the proportion of time that leg i touches the ground over an entire episode. In the bottom row, empty cells
show which skills are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for the
corresponding skill.

24



Quality-Diversity Actor-Critic
−
d
(z

) QDAC QDAC-MB DOMiNO SMERL Reverse SMERL

0 0.25

Pe
rfo

rm
an

ce

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

2000

4000

6000

Figure A.29. Humanoid Jump Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We present
here the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The heatmap
represents the skill space of jumping skills Z = [0, 0.25]. This space is discretized into cells, with each cell representing a distinct skill; in
this task, the skills refer to the average of the lowest foot heights over an entire episode. In the bottom row, empty cells show which skills
are not successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for the corresponding
skill.
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Figure A.30. Ant Velocity Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We present here
the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The heatmap
represents the skill space Z = [−5 m/s, 5 m/s]2, of target velocities. This space is discretized into cells, with each cell representing a
distinct skill z =

[
vx vy

]⊺. In the bottom row, empty cells show which skills are not successfully executed (i.e. d(z) > deval), while
colorized cells indicate the performance score obtained for the corresponding skill.
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Figure A.31. Humanoid Angle Heatmaps of (top) negative distance to skill, (bottom) performance defined in Section 5.3. We present
here the results from DOMiNO, SMERL and Reverse SMERL using a method analogous to that in (Chalumeau et al., 2022). The heatmap
represents the skill space of body angles Z =]− π, π]. This space is discretized into cells, with each cell representing a distinct skill; in
this task, the skills refer to the angle of the humanoid body about the z-axis. In the bottom row, empty cells show which skills are not
successfully executed (i.e. d(z) > deval), while colorized cells indicate the performance score obtained for the corresponding skill.
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B. Theoretical Results
Proposition. Consider an infinite horizon, finite MDP with observable features in Φ. Let π be a policy and let ψ be the
discounted successor features. Then, for all skills z ∈ Z , we can derive an upper bound for the distance between z and the
expected features under π:

∥Eπz [ϕ(s, a)]− z∥2 ≤ Eπz [∥(1− γ)ψ(s, z)− z∥2] (6)

Proof. For all states s ∈ S, the Bellman equation for ψ gives:

ψ(s, a, z) = ϕ(s, a) + γEs′∼p(.|s,a) [ψ(s
′, z)] (7)

For all skills z ∈ Z and for all sequences of T states (s0, a0, . . . , sT−1) sampled from πz, we have:∥∥∥∥∥ 1T
T−1∑
t=0

ϕ(st, at)− z

∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T−1∑
t=0

(
ψ(st, at, z)− γEst+1∼p(.|st,at) [ψ(st+1, z)]− z

)∥∥∥∥∥
2

(Equation 7)

=

∥∥∥∥∥ 1T
T−1∑
t=0

((1− γ)ψ(st, at, z)− z) +
γ

T

T−1∑
t=0

(
ψ(st, at, z)− Est+1∼p(.|st,at) [ψ(st+1, z)]

)∥∥∥∥∥
2

≤
∥∥∥∥∥ 1T

T−1∑
t=0

(1− γ)ψ(st, at, z)− z

∥∥∥∥∥
2

+ γ

∥∥∥∥∥ 1T
T−1∑
t=0

(
ψ(st, at, z)− Est+1∼p(.|st,at) [ψ(st+1, z)]

)∥∥∥∥∥
2

(triangular inequality)

We denote ρ(s) = limt→∞ P (st = s|s0, πz) the stationary distribution of states under πz, which we assume exists and is
independent of s0. Consequently, by taking the right term to the limit as T →∞:

lim
T→∞

1

T

T−1∑
t=0

(
ψ(st, at, z)− Est+1∼p(.|st,at) [ψ(st+1, z)]

)
= lim

T→∞

1

T

T−1∑
t=0

ψ(st, at, z)− lim
T→∞

1

T

T−1∑
t=0

(
Est+1∼p(.|st,at) [ψ(st+1, z)]

)
= E s∼ρ

a∼π(.|s,z)
[ψ(s, a, z)]− E s∼ρ

a∼π(.|s,z)

[
Es′∼p(.|s,a) [ψ(s

′, z)]
]

= Es∼ρ [ψ(s, z)]− E s∼ρ
a∼π(.|s,z)
s′∼p(.|s,a)

[ψ(s′, z)]

= Es∼ρ [ψ(s, z)]− Es′∼ρ [ψ(s
′, z)]

= 0

Furthermore, by taking the left term to the limit as T →∞:

lim
T→∞

1

T

T−1∑
t=0

(1− γ)ψ(st, at, z)− z = (1− γ)E s∼ρ
a∼π(.|s,z)

[ψ(s, a, z)]− z

= (1− γ)Es∼ρ [ψ(s, z)]− z

Finally, by taking the inequality to the limit as T →∞, we get:

∥Eπz [ϕ(s, a)]− z∥2 ≤ ∥(1− γ)Eπz [ψ(s, z)]− z∥2 + ∥0∥2
∥Eπz [ϕ(s, a)]− z∥2 ≤ Eπz [∥(1− γ)ψ(s, z)− z∥2] (Jensen’s inequality)
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Proposition B.1. Consider a continuous MDP with a bounded feature space Φ, a skill z ∈ Z , and π a policy
such that the sequence

(
1
T

∑T−1
t=0 ϕt

)
T≥1

almost surely1converges for trajectories sampled from πz. If we write

ϵ := supt Eπz [∥ϕt + γψ(st, at, z)−ψ(st+1, at+1, z)∥2], then:

Eπz

[∥∥∥∥∥ lim
T→∞

1

T

T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

]
≤ sup

t
Eπz [∥(1− γ)ψ(st, at, z)− z∥2] + ϵ (8)

Furthermore, it is worth noting that if the MDP dynamics p and π are deterministic, then ϵ = 0.

Proof. Let z ∈ Z .

To make the proof easier to read, we use the following notations:

ψt := ψ (st, at, z)

We define β as follows:

β := sup
t

Eπz [∥(1− γ)ψt − z∥2] (9)

Then we have, for all t,

Eπz [∥(1− γ)ψt − z∥2] ≤ β (10)

Eπz

[∥∥ϕt + γψt −ψt+1

∥∥
2

]
≤ ϵ (11)

The Bellman equation applied to Successor Features (SF) can be written:

ψt = ϕt + γEπz

[
ψt+1

∣∣ st, at] (12)

or also: ϕt = ψt − γEπz

[
ψt+1

∣∣ st, at] (13)

We can now derive an upper bound for
∥∥∥ 1
T

∑T−1
t=0 ϕt − z

∥∥∥
2
. For all sequences of T states s0:T−1 we have:∥∥∥∥∥ 1T

T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T−1∑
t=0

(ϕt − z)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T−1∑
t=0

(
ψt − γEπz

[
ψt+1

∣∣ st, at]− z
)∥∥∥∥∥

2

(from Equation 13)

=

∥∥∥∥∥ 1T
T−1∑
t=0

(
(1− γ)ψt + γψt − γEπz

[
ψt+1

∣∣ st, at]− z
)∥∥∥∥∥

2

=

∥∥∥∥∥ 1T
T−1∑
t=0

((1− γ)ψt − z) +
1

T

T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

≤
∥∥∥∥∥ 1T

T−1∑
t=0

((1− γ)ψt − z)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1T
T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

(triangular inequality)

Thus,

Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

]
≤ Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

((1− γ)ψt − z)

∥∥∥∥∥
2

]

+ Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

] (14)

1almost sure refers to the almost sure convergence from probability theory where rollouts are sampled from πz.
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We consider now the two terms on the right hand-side separately. First of all, we prove that the first term is lower than or
equal to β:

Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

((1− γ)ψt − z)

∥∥∥∥∥
2

]
≤ Eπz

[
1

T

T−1∑
t=0

∥((1− γ)ψt − z)∥2

]
(triangular inequality)

≤ 1

T

T−1∑
t=0

Eπz [∥((1− γ)ψt − z)∥2]

≤ 1

T

T−1∑
t=0

β (from Equation 10)

≤ β (15)

Also, we can prove that the second term of the right-hand side in Equation 14 is lower than or equal to ϵ + ηT where
limT→∞ ηT = 0. For all sequences of T states s0:T−1, we have:

T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at]) = T−1∑
t=0

γψt −
T−1∑
t=0

γEπz

[
ψt+1

∣∣ st, at]
= γψ0 − γEπz [ψT | sT−1, aT−1] +

T−1∑
t=1

γψt −
T−2∑
t=0

γEπz

[
ψt+1

∣∣ st, at]
= γψ0 − γEπz [ψT | sT−1, aT−1] +

T−2∑
t=0

γψt+1 −
T−2∑
t=0

γEπz

[
ψt+1

∣∣ st, at]
= γψ0 − γEπz [ψT | sT−1, aT−1] +

T−2∑
t=0

(
γψt+1 − γEπz

[
ψt+1

∣∣ st, at])

Thus, after dividing by T and applying the norm and expectation, we get:

Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

]
≤ Eπz

[∥∥∥∥ 1T (γψ0 − γEπz [ψT | sT−1, aT−1])

∥∥∥∥
2

]

+ Eπz

[∥∥∥∥∥ 1T
T−2∑
t=0

(
γψt+1 − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

]
(triangular inequality)

29



Quality-Diversity Actor-Critic

Let ηT := Eπz

[∥∥ 1
T (γψ0 − γEπz [ψT | sT−1, aT−1])

∥∥
2

]
, we then have:

Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

(
γψt − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

]

≤ ηT + Eπz

[∥∥∥∥∥ 1T
T−2∑
t=0

(
γψt+1 − γEπz

[
ψt+1

∣∣ st, at])
∥∥∥∥∥
2

]
(triangular inequality)

≤ ηT + Eπz

[
1

T

T−2∑
t=0

∥∥γψt+1 − γEπz

[
ψt+1

∣∣ st, at]∥∥2
]

≤ ηT + Eπz

[
1

T

T−2∑
t=0

∥∥γψt+1 + ϕt −ψt

∥∥
2

]
(from Equation 12)

≤ ηT +
1

T

T−2∑
t=0

Eπz

[∥∥γψt+1 + ϕt −ψt

∥∥
2

]
≤ ηT +

1

T

T−2∑
t=0

Eπz

[∥∥ϕt + γψt+1 −ψt

∥∥
2

]
≤ ηT +

1

T

T−2∑
t=0

ϵ

≤ ηT +
T − 1

T
ϵ (16)

After combining the two previously derived Equations 15 and 16, we get:

Eπz

[∥∥∥∥∥ 1T
T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

]
≤ β + ηT +

T − 1

T
ϵ (17)

Now we intend to prove that limT→∞ ηT = 0

ηT = Eπz

[∥∥∥∥ 1T (γψ0 − γEπz [ψT | sT−1, aT−1])

∥∥∥∥
2

]
=

γ

T
Eπz [∥(ψ0 − Eπz [ψT | sT−1, aT−1])∥2]

≤ γ

T
Eπz [∥ψ0∥2 + ∥Eπz [ψT | sT−1, aT−1]∥2] (triangular inequality)

≤ γ

T
(Eπz [∥ψ0∥2] + Eπz [∥Eπz [ψT | sT−1, aT−1]∥2])

As the space of features Φ is bounded, there exist a ρ > 0 such that for all ϕ ∈ Φ, ∥ϕ∥2 ≤ ρ. Hence, for all t,
∥ψt∥2 = Eπz

[∥∥∑∞
i=0 γ

iϕt+i

∥∥
2

∣∣ st, at] ≤ Eπz

[∑∞
i=0 γ

i
∥∥ϕt+i

∥∥
2

∣∣ st, at] ≤ ρ
1−γ . Hence,

ηT ≤
γ

T

(
ρ

1− γ
+ Eπz [∥Eπz [ψT | sT−1, aT−1]∥2]

)
≤ γ

T

(
ρ

1− γ
+ Eπz [Eπz [∥ψT ∥2| sT−1, aT−1]]

)
(Jensen’s inequality)

≤ γ

T

(
ρ

1− γ
+ Eπz [∥ψT ∥2]

)
(law of total expectation)

≤ γ

T

(
ρ

1− γ
+

ρ

1− γ

)
≤ 1

T

(
2ργ

1− γ

)
(18)
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Then, knowing that for all T , we have 0 ≤ ηT , the squeeze theorem ensures that limT→∞ ηT = 0.

Now we will prove that the left-hand side of Equation 14 converges, let XT :=
∥∥∥ 1
T

∑T−1
t=0 ϕt − z

∥∥∥
2
. For all T ,

|XT | ≤
1

T

T−1∑
t=0

∥ϕt∥2 + ∥z∥2 (triangular inequality)

≤ ρ+ ∥z∥2
Moreover, z is a fixed variable, which means that |XT | is bounded. In addition, Eπz [ρ+ ∥z∥2] < ∞, and the sequence

(XT )T≥1 converges almost surely (since
(

1
T

∑T−1
t=0 ϕt

)
T≥1

converges almost surely by hypothesis). The dominated

convergence theorem then ensures that (Eπz [XT ])T≥1 converges and:

lim
T→∞

Eπz [XT ] = Eπz

[
lim

T→∞
XT

]
(19)

Finally, by taking the Equation 14 to the limit as T →∞, we get:

lim
T→∞

Eπz


∥∥∥∥∥ 1T

T−1∑
t=0

ϕt − z

∥∥∥∥∥
2︸ ︷︷ ︸

XT

 ≤ lim
T→∞

(
β + ηT +

T − 1

T
ϵ

)

Eπz

[∥∥∥∥∥ lim
T→∞

1

T

T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

]
≤ β + lim

T→∞
ηT︸ ︷︷ ︸

=0

+ lim
T→∞

T − 1

T︸ ︷︷ ︸
=1

ϵ

Eπz

[∥∥∥∥∥ lim
T→∞

1

T

T−1∑
t=0

ϕt − z

∥∥∥∥∥
2

]
≤ β + ϵ
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Algorithm 2 Detailed training procedure of QDAC
input Parameters θπ , θV , θψ , θλ ▷ Initial parameters for the actor, critics and Lagrange multiplier
D ← ∅ ▷ Initialize an empty replay buffer
repeat
z ∼ U (Z) ▷ Sample skill uniformly from skill space
for T steps do
▷ Environment steps
at ∼ π(at|st, z) ▷ Sample action from policy
st+1 ∼ p(st+1|st, at, z) ▷ Sample transition from the environment
D ← D ∪ {(st, at, r(st, at),ϕ(st, at), st+1, z)} ▷ Store transition in the replay buffer
▷ Training steps
θλ ← θλ − αλ∇Jλ(θλ) ▷ Update Lagrange multiplier with Eq. 5
θQ,i ← θQ,i − αQ∇JQ(θQ,i) for i ∈ {1, 2} ▷ Policy evaluation for the Q-networks (Haarnoja et al., 2019)
θψ ← θψ − αψ∇Jψ(θψ) ▷ Policy evaluation for successor features with Eq. 2
θπ ← θπ + απ∇Jπ(θπ) ▷ Policy improvement with Eq. 21
β ← β − αβ∇Jβ(β) ▷ Adjust temperature as in (Haarnoja et al., 2019)
▷ Update target networks
θ′Q,i ← τθQ,i + (1− τ)θ′Q,i for i ∈ {1, 2}
θ′ψ ← τθψ + (1− τ)θ′ψ

end for
until convergence

C. Additional Training Details
C.1. Expanded Information on QDAC

The policy parameters θπ are optimized to maximize the objective function from Equation 4. To that end, we use the Soft
Actor-Critic (SAC) algorithm with adjusted temperature β (Haarnoja et al., 2019). Then the objective from Equation 4 needs
to be slightly modified to be optimized by SAC:

Jπ(θπ) = (1− λ(s, z))Q(s, a, z)− λ(s, z)∥(1− γ)ψ(s, a, z)− z∥2 + β log π(a|s, z)
Entropy regularization

term used in SAC

(20)

Using the same notations as (Haarnoja et al., 2019), each action a returned by the policy π can be seen as the function of the
state s, the skill z, and a random noise ϵ: a = fθπ (s, z, ϵ). Then the complete form of the actor’s objective function is as
follows:

Jπ(θπ) = (1− λ(s, z))Q(s, fθπ (s, z, ϵ), z)−λ(s, z)∥(1− γ)ψ(s, fθπ (s, z, ϵ), z)− z∥2+β log π(fθπ (s, z, ϵ)|s, z) (21)

In our setup, the policy π outputs a vector µ and a vector of standard deviations
(
σ1 · · · σn

)
. The action a is computed

as follows: a = µ+
(
σ1ϵ1 · · · σnϵn

)
, where ϵ ∼ N (0, I).

The Q-network is trained using the exact same procedure as in (Haarnoja et al., 2019), with a clipped double-Q trick (Fujimoto
et al., 2018). The successor features network ψ is trained to minimize the Bellman error (see Eq. 7). The targets of the
double Q-network and of the successor features network are updated at each iteration using soft target updates, in order to
stabilize training (Lillicrap et al., 2015).

Algorithm 2 provides a detailed description of the training procedure of QDAC.

C.2. Expanded Information on QDAC-MB

We provide here additional details on world models, and on our implementation of QDAC’s model-based variant.
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Algorithm 3 QDAC-MB
input Parameters θπ , θV , θψ , θλ, θW ▷ Initial parameters for the actor, critics, Lagrange multiplier and world model
D ← ∅ ▷ Initialize an empty replay buffer
repeat
z ∼ U (Z) ▷ Sample skill uniformly from skill space
for T steps do
▷ Environment steps
at ∼ π(at|s̃t, z) ▷ Sample action from policy
st+1 ∼ p(st+1|st, at, z) ▷ Sample transition from the environment
D ← D ∪ {(st, at, r(st, at),ϕ(st, at), st+1)} ▷ Store transition in the replay buffer
θW ← θW − αW∇JW(θW) ▷ Update world model
▷ Training steps from a rollout in imagination with skills z̃ ∼ U(Z)
θλ ← θλ − αλ∇Jλ(θλ) ▷ Update Lagrange multiplier with Eq. 5
θV ← θV − αV∇JV (θV ) ▷ Policy evaluation for value function with Eq. 1
θψ ← θψ − αψ∇Jψ(θψ) ▷ Policy evaluation for successor features with Eq. 2
θπ ← θπ + απ∇Jπ(θπ) ▷ Policy improvement with Eq. 23

end for
until convergence

C.2.1. WORLD MODELS

Learning a skill-conditioned function approximator is challenging because in general, the agent will only see a small subset
of possible (s, z) combinations (Schaul et al., 2015; Borsa et al., 2018). In that case, a world model can be used to improve
sample efficiency. One key advantage of model-based methods is to learn a compressed spatial and temporal representation
of the environment to train a simple policy that can solve the required task (Ha & Schmidhuber, 2018). World models are
particularly valuable for conducting simulated rollouts in imagination which can subsequently inform the optimization of
the agent’s behavior, effectively reducing the number of environment interactions required for learning (Hafner et al., 2019a).
Moreover, world models enable to compute straight-through gradients, which backpropagate directly through the learned
dynamics (Hafner et al., 2023). Most importantly, the small memory footprint of imagined rollouts enables to sample
thousands of on-policy trajectories in parallel (Hafner et al., 2023), making possible to learn skill-conditioned function
approximators with massive skill sampling in imagination.

In this work, we use a Recurrent State Space Model (RSSM) from Hafner et al. (2019b). At each iteration, the world
modelW is trained to learn the transition dynamics, and to predict the observation, reward, and termination condition. An
Imagination MDP (S̃,A, p̂, γ), can then be defined from the latent states s̃ ∈ S̃ and from the dynamics p̂ ofW . In parallel,
DreamerV3 trains a critic network V̂ (s̃t) to regress the λ-return Vλ(s̃t) (Sutton & Barto, 2018). Then, the actor is trained to
maximize Vλ, with an entropy regularization for exploration: Jπ(θπ) = E a∼π(.|s̃)

s̃′∼p̂(.|s̃,a)

[∑H
t=1 Vλ(s̃t)

]
.

C.2.2. QDAC-MB

QDAC-MB’s pseudocode is provided in Algorithm 3. At each iteration, a skill z is uniformly sampled and for T steps,
the agent interacts with the environment following skill z with π(·|·, z). At each step, the transition is stored in a dataset
D, which is used to perform a world model training step. Then, N skills are uniformly sampled to perform rollouts in
imagination, and those rollouts are used to (1) train the two critics V (s, z), ψ(s, z) and (2) train the actor π.

World model training The dataset is used to train the world modelW according to DreamerV3. In addition to the reward
r̂t, we extend the model to estimate the features ϕ̂t, like shown on Figure C.32.

Critic training The estimated rewards r̂t and features ϕ̂t predicted by the world model are used to predict the value
function V̂ and the successor features ψ̂ respectively. Then, similarly to DreamerV3, the value function V̂ and successor
features ψ̂ are trained to regress the λ-returns, Vλ and ψλ respectively. The successor features target is defined recursively

33



Quality-Diversity Actor-Critic

1 1 1 1 1 2 2 2 2 2 H H H H H

1 2 H

Figure C.32. Imagination rollout performed within the world modelW . Each individual rollout i generates on-policy transitions following
skill z̃i, starting from a state s̃1 for a fixed number of steps H . The world model predicts r̂i and ϕ̂i that enable to compute V̂i and ψ̂i

respectively.

as follows:

ψλ(s̃t, z̃) = ϕ̂t + γĉt

(
(1− λ) ψ̂(s̃t+1, z̃) + λψλ(s̃t+1, z̃)

)
and ψλ(s̃H , z̃) = ψ̂(s̃H , z̃)

(22)

Actor training For each actor training step, we sample N skills z̃1 . . . z̃N ∈ Z . We then perform N rollouts of horizon
H in imagination using the world model and policies π(·|·, z̃i). Those rollouts are used to train the critic v, the successor
features networkψ, and the actor by backpropagating through the dynamics of the model. The actor maximizes the following
objective, with an entropy regularization for exploration, where sg (·) represents the stop gradient function.

Jπ (θπ) = Es̃1:H∼W,π
z̃∼U(Z)

 H∑
t=1

(1− sg (λ))Vλ(s̃t, z̃)

Performance

− sg (λ) ∥(1− γ)ψλ(s̃t, z̃)− z̃∥2
Distance to desired skill z̃

 (23)
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D. Tasks and Metrics Details
D.1. Tasks

Table D.1. Tasks
FEET CONTACT JUMP VELOCITY ANGLE

HUMANOID ANT WALKER HUMANOID ANT HUMANOID

STATE DIM 244 27 17 244 27 244
ACTION DIM 17 8 6 17 8 17
FEATURES DIM 2 4 2 1 1 1
FEATURES SPACE {0, 1}2 {0, 1}4 {0, 1}2 [0, 0.25] [−5., 5]2 ]− π, π]
SKILL SPACE [0, 1]2 [0, 1]4 [0, 1]2 [0, 0.25] [−5., 5]2 ]− π, π]
EPISODE LENGTH 1000 1000 1000 1000 1000 1000
THRESHOLD δ 0.01 0.1 0.01 0.0025 0.1 0.06
DISTANCE EVAL deval 0.1 0.3 0.1 0.025 1.0 0.6
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D.2. Few-Shot Adaptation and Hierarchical Learning Tasks

For all adaptation tasks, the reward stays the same but the dynamics of the MDP is changed. The goal is to leverage the
diversity of skills to adapt to unforeseen situations.

Table D.2. Adaptation tasks

HURDLES MOTOR FAILURE GRAVITY FRICTION WALL
HUMANOID HUMANOID HUMANOID WALKER ANT

FEATURES Jump Feet Contact Feet Contact Feet Contact Velocity
ADAPTATION Few-shot Few-shot Few-shot Few-shot Hierarchy

D.2.1. FEW-SHOT ADAPTATION

For all few-shot adaptation tasks, we evaluate all skills for each replication of each method and select the best one to solve
the adaptation task. In Figure 6, the lines represent the IQM for the 10 replications and the shaded areas correspond to the
95% CI.

On Humanoid - Hurdles, we use the jump features to jump over hurdles varying in height from 0 to 50 cm.

On Humanoid - Motor Failure, we use the feet contact features to find the best way to continue walking forward despite the
damage. In this experiment, we scale the action corresponding to the torque of the left knee (actuator 10) by the damage
strength (x-axis of Figure 6) ranging from 0.0 (no damage) to 1.0 (maximal damage).

On Ant - Gravity, we use the feet contact features to find the best way to continue walking forward despite the change in
gravity. In this experiment, we scale the gravity by a coefficient ranging from 0.5 (low gravity) to 3.0 (high gravity).

On Walker - Friction, we use the feet contact features to find the best way to continue walking forward despite the change in
friction. In this experiment, we scale the friction by a coefficient ranging from 0.0 (low friction) to 5.0 (high friction).

D.2.2. HIERARCHICAL LEARNING

For the hierarchical learning task, we learn a meta-controller that selects the skills of the policy in order to adapt to the new
task.

On Ant - Wall, the meta-controller is trained with SAC to select the velocity skills that enables to go around the wall and
move forward as fast as possible in order to maximize performance.
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D.3. Evaluation Metrics Details

In this section, we illustrate how to compute and read the distance and performance profiles in Figure 4. In the Quality-
Diversity community, there is a consensus that the best evaluation metric is the “distance/performance profile” (Flageat
et al., 2022; Grillotti et al., 2023; Grillotti & Cully, 2022a; Batra et al., 2023). This metric is also being used in skill learning
for robotics (Margolis et al., 2022).

The profiles are favored because it effectively captures the essence of what QD algorithms aim to achieve: not just finding a
single optimal solution but exploring a diverse set of high-quality solutions. For a given distance d, the distance profile
shows the proportion of skills with distance to skill lower than d. For a given performance p, the performance profile shows
the proportion of skills with a performance higher than p. The bigger the area under the curve, the better the algorithm is.
The profiles have similarities with the cumulative distribution functions in probability.
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Figure D.33. Left Heatmaps of negated distance to skills and performance. Right Distance and performance profiles A skill z is considered
successfully executed if d(z) < deval, otherwise it is considered failed. All the skills that are not successfully executed by the policy
are filtered out before computing the performance heatmap and profile. This figure also illustrates how to read the performance of the
highest-performing skill (maximal performance of the agent) and the distance to skill of the best executed skill (minimal distance to skill
of the agent).
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E. Baselines details

Table E.3. Comparison of the main features for the different algorithms
Algorithm Objective Function Model-based Lagrange Multiplier λ

QDAC (1− λ)
∑

γtrt − λ
∥∥(1− γ)

∑
γtϕt − z

∥∥
2

✗ ✓

QDAC-MB (1− λ)
∑

γtrt − λ
∥∥(1− γ)

∑
γtϕt − z

∥∥
2

✓ ✓

DCG-ME † ∑
γt exp(−∥

z−z′∥
2

l
)rt ✗ ✗

QD-PG † ∑
γtrt or

∑
γtr̃t ✗ ✗

DOMiNO (1− λ)
∑

γtrt + λ
∑

γtr̃t ✗ ✓

SMERL ‡ ∑
γt (rt + λ1(R ≥ R∗ − ϵ)r̃t) ✗ ✗

Reverse SMERL ‡ ∑
γt (1(R < R∗ − ϵ)rt + λr̃t) ✗ ✗

No-SF (1− λ)
∑

γtrt − λ
∑

γt ∥ϕt − z∥2 ✓ ✓
Fixed-λ (1− λ)

∑
γtrt − λ

∥∥(1− γ)
∑

γtϕt − z
∥∥
2

✓ ✗

UVFA (1− λ)
∑

γtrt − λ
∑

γt ∥ϕt − z∥2 ✓ ✗

† DCG-ME and QD-PG learn diverse skills with mechanisms that are not visible in their objective function.
‡ see Section E.4 for a detailed explanation of the reward used in SMERL and Reverse SMERL.

E.1. DCG-ME

DCG-ME (Faldor et al., 2023a) is a QD algorithm based on MAP-Elites (Mouret & Clune, 2015), that combines evolutionary
methods with reinforcement learning to improve sample efficiency. DCG-ME addresses these challenges through two key
innovations: First, it enhances the Policy Gradient variation operator with a descriptor-conditioned critic. This allows for a
more nuanced exploration of the solution space by guiding the search towards uncharted territories of high diversity and
performance. Second, by utilizing actor-critic training paradigms, DCG-ME learns a descriptor-conditioned policy that
encapsulates the collective knowledge of the population into a singular, versatile policy capable of exhibiting a wide range
of behaviors without incurring additional computational costs.

E.2. QD-PG

QD-PG (Pierrot et al., 2022) is a QD algorithm based on MAP-Elites (Mouret & Clune, 2015) that integrates Policy Gradient
methods with QD approaches, aiming to generate a varied collection of neural policies that perform well within continuous
control environments. The core innovation of QD-PG lies in its Diversity Policy Gradient (DPG), a mechanism designed to
enhance diversity among policies in a sample-efficient manner. This is achieved by leveraging information available at each
time step to nudge policies toward greater diversity. The policies in the MAP-Elites grid are subjected to two gradient-based
mutation operators, specifically tailored to augment both their quality (performance) and diversity. This dual-focus approach
not only addresses the exploration-exploitation dilemma inherent in learning but also enhances robustness by producing
multiple effective solutions for the given problem.

The diversity policy gradient is based on the maximization of an intrinsic reward defined as: r̃t =
∑J

j=1 ∥ϕ(st)− ϕ(sj)∥2,
where the J states sj are coming from an archive of past encountered states.

E.3. DOMiNO

DOMiNO (Zahavy et al., 2022) considers a set of policies (πi)i∈[1,N ], and intends to maximize simultaneously their quality
while also maximizing the diversity of those that are near-optimal. Thus each policy πi maximizes the following objective:

(1− λ)
∑

γtrit + λ
∑

γtr̃it

where rit is the task reward (also called extrinsic reward) and r̃it is the diversity reward. Also, λi refers to the Lagrange
multiplier of policy πi; it is used to balance between (1) the maximization of the extrinsic reward when the policy is not
near-optimal, and (2) the maximization of diversity when the policy is near-optimal. The definition of near-optimality is
given by the first policy π1.

The first policy π1 only maximizes the expected sum of extrinsic rewards without considering any diversity. Hence, r̃1 = 0
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and its Lagrange multiplier λ1 is always equal to 0. Its average extrinsic reward Ṽ 1
e is estimated empirically and used to

define when the other policies are near-optimal. The other policies (πi)i≥2 are considered near-optimal when their average
extrinsic reward Ṽ i

e is higher than αṼ 1
e (considering Ṽ 1

e is positive) where α is a constant between 0 and 1. If a policy is
not near-optimal, its Lagrange coefficient λi decreases to focus on maximizing the task reward; if it is near-optimal, the
coefficient increases to give more importance to the diversity reward r̃i. For policies (πi)i≥2, the diversity reward balances

between repulsion and attraction of the average features ψ̃
i

experienced by the policies:

r̃it =

(
1−

(
li
l0

)3
)
ϕi
t · (ψ̃

i − ψ̃j∗

)

where j∗ = argminj

∥∥∥ψ̃i − ψ̃j

∥∥∥
2

and l0 is a constant.

E.4. SMERL and Reverse SMERL

To estimate the optimal return RM(π∗
M) required by SMERL, we apply the same method as Kumar et al. (2020). We

trained SAC on each environment and used SAC performance RSAC as the the optimal return value for each environment.
Similarly to Kumar et al. (2020), we choose λ = 2.0 by taking the best value when evaluated on HalfCheetah environment.

We use SMERL with continuous DIAYN with a Gaussian discriminator (Choi et al., 2021), so that the policy learns a
continuous range of skills instead of a finite number of skills (Kumar et al., 2020). Finally, we use DIAYN + prior (Eysenbach
et al., 2018; Chalumeau et al., 2022) to guide SMERL and Reverse SMERL towards relevant skills as explained in DIAYN’s
original paper.

With a Gaussian discriminator q(zDIAYN|s) = N (zDIAYN|µ(s),Σ(s)), the intrinsic reward is of the form r̃ =

log q(zDIAYN|s) − log p(zDIAYN) ∝ ∥µ(s)− zDIAYN∥22 up to an additive and a multiplicative constant, as demon-
strated by Choi et al. (2021). Replacing the state s with the prior information ϕ(s) in the discriminator gives
r̃ ∝ −∥µ(ϕ(s))− zDIAYN∥22. Consequently, we can see that the intrinsic reward from DIAYN corresponds to executing a la-
tent skill zDIAYN (i.e. achieving a latent goal) in the unsupervised space defined by the discriminator q(zDIAYN|ϕ(s)). Indeed,
the intrinsic reward is analogous to the reward used in GCRL of the form r ∝ −∥ϕ(s)− g∥2 (Liu et al., 2022). Moreover,
the bijection between the latent skills (i.e. latent goals) and the features (i.e. goals) is given by zDIAYN ∼ q(zDIAYN|ϕ(s)).

E.5. No-SF

We can show that the constraint in QDAC’s objective function is easier to satisfy than No-SF’s constraint.

For all skills z ∈ Z and for all sequences of states (st)t≥0, we have:∥∥∥∥∥(1− γ)

∞∑
t=0

γtϕt − z

∥∥∥∥∥
2

=

∥∥∥∥∥(1− γ)

( ∞∑
t=0

γtϕt −
∞∑
t=0

γtz

)∥∥∥∥∥
2

=

∥∥∥∥∥(1− γ)

∞∑
t=0

γt(ϕt − z)

∥∥∥∥∥
2

≤ (1− γ)

∞∑
t=0

γt ∥ϕt − z∥2

Thus, we have the following inequality:

∥(1− γ)ψ(s, z)− z∥2 ≤ (1− γ)

∞∑
t=0

γt ∥ϕt − z∥2

At each timestep t, No-SF tries to satisfy ϕt = z, whereas QDAC approximately tries to satisfy limT→∞
1
T

∑T
t=0 ϕt = z,

which is less restrictive.
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F. Hyperparameters
We provide here all the hyperparameters used for QDAC and all baselines. QDAC-MB uses the same hyperparameters as
the ones used by DreamerV3 (Hafner et al., 2023), hence we provide here only the parameters mentioned in this work.

The implementation of QDAC-MB is based on the implementation of DreamerV3. Its successor features network is also
implemented as a distributional critic. In our implementation, the Lagrange multiplier network λ is only conditioned on the
skill z, as we noticed no difference in performance.

The hyperparameters for SMERL, Reverse SMERL and DCG-ME are exactly the same as in their original papers, where
they were fine-tuned on similar locomotion tasks. We also tried using hidden layers of size 512 for those baselines, in
order to give them an architecture that is closer to QDAC. We noticed a statistically significant decrease in performance for
Reverse SMERL and DCG-ME, and no statistically significant change in performance for SMERL. Each algorithm is run
until convergence for 107 environment steps.

The hyperparameters for DOMiNO are based on the ones suggested by Zahavy et al. (2022) and fine-tuned for our tasks.

Table F.4. QDAC hyperparameters

Parameter Value

Actor network [512, 512, |A|]
Value function network [512, 512, 1]
Successor feature network [512, 512, |Z|]
Lagrange multiplier network [512, 512, 1]
Real environment exploration batch size 256
Total timesteps 1× 107

Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 2× 106

Discount factor γ 0.99
Target smoothing coefficient τ 0.005

Table F.5. QDAC-MB hyperparameters

Parameter Value

Actor network [512, 512, |A|]
Value function network [512, 512, 1]
Successor feature network [512, 512, |Z|]
Lagrangian network [8, 1]
Imagination batch size N 1024
Real environment exploration batch size 16
Total timesteps 1× 107

Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.997
Imagination horizon H 15
Target smoothing coefficient τ 0.005
Sampling period T 100
Lambda Return λ 0.95
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Table F.6. DCG-ME hyperparameters

Parameter Value

Number of centroids 1024
Evaluation batch size b 256
Policy networks [128, 128, |A|]
Number of GA variations g 128
GA variation param. 1 σ1 0.005
GA variation param. 2 σ2 0.05
Actor network [256, 256, |A|]
Critic network [256, 256, 1]
TD3 batch size N 100
Critic training steps n 3000
PG training steps m 150
Optimizer Adam
Policy learning rate 5× 10−3

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.99
Actor delay ∆ 2
Target update rate 0.005
Smoothing noise var. σ 0.2
Smoothing noise clip 0.5
lengthscale l 0.008
Descriptor sigma σd 0.0004
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Table F.7. QD-PG hyperparameters

Parameter Value

Number of centroids 1024
Evaluation batch size b 256
Policy networks [128, 128, |A|]
Number of GA variations g 86
Number of Quality-PG variations 85
Number of Diversity-PG variations 85
GA variation param. 1 σ1 0.005
GA variation param. 2 σ2 0.05
Critic network — task reward [256, 256, 1]
Critic network — diversity reward [256, 256, 1]
TD3 batch size N 100
Critic training steps — task reward 300
Critic training steps — diversity reward 300
PG training steps m 150
Optimizer Adam
Policy learning rate 5× 10−3

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.99
Actor delay ∆ 2
Target update rate 0.005
Smoothing noise var. σ 0.2
Smoothing noise clip 0.5
Archive acceptance threshold 0.1
Archive maximal size 104

K-nearest neighbors 3

Table F.8. DOMiNO hyperparameters

Parameter Value

Actor network [256, 256, |A|]
Critic network — task reward [256, 256, 1]
Critic network — diversity reward [256, 256, 1]
Online batch size 60
Batch size 600
Optimizer Adam
Learning rate 1× 10−4

Replay buffer size 1.5× 106

Discount factor γ 0.99
Target smoothing coefficient τ 0.005
Number of policies 10
Optimality ratio α 0.9

ṽavg
πi decay factor αṽavg

d 0.9

ψ̃
avg
πi decay factor αψ̃

avg

d 0.99
Lagrange learning rate 1× 10−3

Lagrange optimizer Adam
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Table F.9. SMERL hyperparameters

Parameter Value

Actor network [256, 256, |A|]
Critic network [256, 256, 1]
Batch size 256
Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.99
Target smoothing coefficient τ 0.005
Skill distribution Normal distribution
Diversity reward scale 10.0
SMERL target RSAC
SMERL margin 0.1RSAC

Table F.10. Reverse SMERL hyperparameters

Parameter Value

Actor network [256, 256, |A|]
Critic network [256, 256, 1]
Batch size 256
Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.99
Target smoothing coefficient τ 0.005
Skill distribution Normal distribution
Diversity reward scale 10.0
SMERL target RSAC
SMERL margin 0.1RSAC

Table F.11. No-SF hyperparameters

Parameter Value

Actor network [512, 512, |A|]
Critic network [512, 512, 1]
Lagrangian network [8, 1]
Imagination batch size N 1024
Real environment exploration batch size 16
Total timesteps 1× 107

Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.997
Imagination horizon H 15
Target smoothing coefficient τ 0.005
Sampling period T 100
Lambda Return λ 0.95
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Table F.12. Fixed-λ hyperparameters

Parameter Value

Actor network [512, 512, |A|]
Critic network [512, 512, 1]
Successor Feature network [512, 512, |Z|]
Lagrangian network [8, 1]
Imagination batch size N 1024
Real environment exploration batch size 16
Total timesteps 1× 107

Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.997
Imagination horizon H 15
Target smoothing coefficient τ 0.005
Sampling period T 100
Lambda Return λ 0.95
Lambda λ 0.5

Table F.13. UVFA hyperparameters

Parameter Value

Actor network [512, 512, |A|]
Critic network [512, 512, 1]
Lagrangian network [8, 1]
Imagination batch size N 1024
Real environment exploration batch size 16
Total timesteps 1× 107

Optimizer Adam
Learning rate 3× 10−4

Replay buffer size 106

Discount factor γ 0.997
Imagination horizon H 15
Target smoothing coefficient τ 0.005
Sampling period T 100
Lambda Return λ 0.95
Lagrange multiplier λ 0.66
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