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Abstract

Designing control policies whose performance level is guaranteed to remain above
a given threshold in a span of environments is a critical feature for the adoption
of reinforcement learning (RL) in real-world applications. The search for such
robust policies is a notoriously difficult problem, often cast as a two-player game,
whose formalization dates back to the 1970’s. This two-player game is strongly
related to the so-called dynamic model of transition function uncertainty, where
the environment dynamics are allowed to change at each time step. But in practical
applications, one is rather interested in robustness to a span of static transition
models throughout interaction episodes. The static model is known to be harder to
solve than the dynamic one, and seminal algorithms, such as robust value iteration,
as well as most recent works on deep robust RL, build upon the dynamic model. In
this work, we propose to revisit the static model. We suggest an analysis of why
solving the static model under some mild hypotheses is a reasonable endeavor, and
formalize the general intuition that robust MDPs can be solved by tackling a series
of static problems. We introduce a generic meta-algorithm called IWOCS, which
incrementally identifies worst-case transition models so as to guide the search for a
robust policy. Discussion on IWOCS sheds light on new ways to decouple policy
optimization and adversarial transition functions and opens new perspectives for
analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive
with state-of-the-art algorithms on classical benchmarks.

1 Introduction

One major obstacle in the way of real-life deployment of reinforcement learning (RL) algorithms is
their inability to produce policies that retain, without further training, a guaranteed level of efficiency
when controlling a system that somehow differs from the one they were trained upon. This property
is referred to as robustness, by opposition to resilience, which is the ability to recover, through
continued learning, from environmental changes. For example, when learning control policies for
aircraft stabilization using a simulator, it is crucial that the learned controller be able to control a span
of aircraft configurations with different geometries, or masses, or in various atmospheric conditions.
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Depending on the criticality of the considered application, one will prefer to optimize the expected
performance over a set of environments —thus weighting in the probability of occurrence of a given
configuration— or, at the extreme, optimize for the worst case configuration. In the present work, we
consider such worst case guarantees and revisit the framework of robust Markov Decision Processes
(MDPs) [Iyengar, 2005].

Departing from the common perspective which views robust MDPs as two-player games, we investi-
gate whether it is possible to solve them through a series of non-robust problems. The two-player
game formulation is called the dynamic model of transition function uncertainty, as an adversarial
environment is allowed to change the transition dynamics at each time step. The solution to this
game can be shown to be equivalent, under mild hypotheses, to that of the static model, where the
environment retains the same transition function throughout the time steps. Our first contribution
is a series of arguments which cast the search for a robust policy as a resolution of the static model
(Section 2). We put this formulation in perspective of recent related works in robust RL (Section 3).
Then, we introduce a generic meta-algorithm which we call IWOCS for Incremental Worst-Case
Search (Section 4). IWOCS builds upon the idea of incrementally identifying worst case transition
functions and expanding a discrete uncertainty set, for which a robust policy can be approximated
through a finite set of non-robust value functions. We instantiate two IWOCS algorithms, one on a
toy illustrative problem with a discrete state space, then another on popular, continuous states and
actions, robust RL benchmarks where it is shown to be competitive with state-of-the art robust deep
RL algorithms (Section 5).

2 Problem statement

Reinforcement Learning (RL) [Sutton and Barto, 2018] considers the problem of learning a decision
making policy for an agent interacting over multiple time steps with a dynamic environment. At each
time step, the agent and environment are described through a state s P S, and an action a P A is
performed; then the system transitions to a new state s1 according to probability T ps1|s, aq, while
receiving reward rps, a, s1q. The tuple MT “ pS,A, T, rq forms a Markov Decision Process (MDP)
[Puterman, 2014], which is often complemented with the knowledge of an initial state distribution
p0psq. Without loss of generality and for the sake of readability, we will consider a unique starting
state s0 in this paper, but our results extend straightforwardly to a distribution p0psq. A stationary
decision making policy is a function πpa|sq mapping states to distributions over actions (writing
πpsq the action for the special case of deterministic policies). Training a reinforcement learning
agent in MDP MT consists in finding a policy that maximizes the expected discounted return:
Jπ
T “ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ π, st`1 „ T s “ V π

T ps0q, where V π
T is the value function of

π in MDP MT . An optimal policy in MT will be noted π˚
T and its value function V ˚

T . A convenient
notation is the state-action value function Qπ

T ps, aq “ Es1„T rrps, a, s1q ` γV π
T ps1qs of policy π in

MDP MT , and the corresponding optimal Q˚
T .

Robust MDPs, as introduced by Iyengar [2005] or Nilim and El Ghaoui [2005], introduce an
additional challenge. The transition functions T are picked from an uncertainty set T and are allowed
to change at each time step. A common assumption, called sa-rectangularity, states that T is a
Cartesian product of independent marginal sets of distributions on S, for each state-action pair.
The value of a stationary policy π in the sequence of MDPs induced by T “ tTtutPN is noted V π

T .
The pessimistic value function for π is V πpsq “ minT V

π
T psq, where the agent plays a sequence

of actions at P A drawn from π, against the environment, which in turn picks transition models
Tt P T so as to minimize the overall return. The robust value function is the largest such pessimistic
value function and hence the solution to V ˚psq “ maxπ minT V

π
T psq. The robust MDP problem

can be cast as the zero-sum two-player game, where π̂ denote the decision making policy of the
adversarial environment, deciding Tt P T based on previous observations. Then, the problem
becomes maxπ minπ̂ V

π
π̂ psq, where V π

π̂ is the expected value of a trajectory where policies π and
π̂ play against each other. Hence, the optimal policy becomes the minimax policy, which makes it
robust to all possible future evolutions of the environment’s properties.

Robust Value Iteration. Following Iyengar [2005, Theorem 3.2], the optimal robust value
function V ˚psq “ maxπ minT V

π
T psq is the unique solution to the robust Bellman equation

V psq “ maxa minT Es1„T rrps, a, s1q ` γV ps1qs “ LV psq. This directly translates into a robust
value iteration algorithm which constructs the Vn`1 “ LVn sequence of value functions [Satia and
Lave Jr, 1973, Iyengar, 2005]. Such robust policies are, by design, very conservative, in particu-
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lar when the uncertainty set is large and under the rectangularity assumption. Several attempts at
mitigating this over-conservativeness have been made from various perspectives. For instance, Lim
et al. [2013] propose to learn and tighten the uncertainty set, echoing other works that incorporate
knowledge about this set into the minimax resolution [Xu and Mannor, 2010, Mannor et al., 2012].
Other approaches [Wiesemann et al., 2013, Lecarpentier and Rachelson, 2019, Goyal and Grand-
Clement, 2022] propose to lift the rectangularity assumption and capture correlations in uncertainties
across states or time steps, yielding significantly less conservative policies. Ho et al. [2018] and
Grand-Clément and Kroer [2021] retain the rectangularity assumption and propose algorithmic
schemes to tackle large but discrete state and action spaces.

The static model. In many applications, one does not wish to consider non-stationary transition func-
tions, but rather to be robust to any transition function from T which remains stationary throughout
a trajectory. This is called the static model of transition function uncertainty, by opposition to the
dynamic model where transition functions can change at each time step. Hence, the static model’s
minimax game boils down to maxπ minT V

π
T psq. If the agent is restricted to stationary policies

πpa|sq, then maxπ minT V
π
T psq “ maxπ minT V

π
T psq [Iyengar, 2005, Lemma 3.3], that is the static

and dynamic problems are equivalent, and the solution to the dynamic problem is found for a static
adversary.1 In this paper, we will only consider stationary policies.

No-duality gap. Wiesemann et al. [2013, Equation 4 and Proposition 9] introduce an important
saddle point condition stating that maxπ minT V

π
T psq “ minT maxπ V

π
T psq.

Incrementally solving the static model. Combining the static and dynamic models equivalence
and the no-duality gap condition, we obtain that, for rectangular uncertainty sets and stationary
policies, the optimal robust value function V ˚psq “ maxπ minT V

π
T psq “ maxπ minT V

π
T psq “

minT maxπ V
π
T psq “ minT V

˚
T psq. The key idea we develop in this paper stems from this formu-

lation. Suppose we are presented with MT0
and solve it to optimality, finding V ˚

0 psq “ V ˚
T0

psq.
Then, suppose we identify MT1

as a possible better estimate of a worst case MDP in T than T1. We
can solve for V ˚

T1
and V ˚

1 psq “ mintV ˚
T0

psq, V ˚
T1

psqu is the robust value function for the discrete
uncertainty set T1 “ tT0, T1u. The intuition we attempt to capture is that by incrementally identifying
candidate worst case MDPs, one should be able to define a sequence of discrete uncertainty sets
Ti “ tTjujPr0,is whose robust value function V ˚

i may converge to V ˚. In other words, it should be
possible to incrementally robustify a policy by identifying the appropriate sequence of transition
models and solving individually for them, trading the complexity of the dynamic model’s resolution
for a sequence of classical MDP problems. The algorithm we propose in Section 4 follows this idea
and searches for robust stationary policies in the static model, by incrementally growing a finite
uncertainty set.

3 Related work

Robust RL as two-player games. A common approach to solving robust RL problems is to cast the
dynamic formulation as a zero-sum two player game, as formalized by Morimoto and Doya [2005].
In this framework, an adversary, denoted by π̂ : S Ñ T , is introduced, and the game is formulated
as maxπ minπ̂ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ πp¨|stq, Tt “ π̂pstq, st`1 „ Ttp¨|st, atqs. Most

methods differ in how they constrain π̂’s action space within the uncertainty set. A first family of
methods define π̂pstq “ Tref ` ∆pstq, where Tref denotes the reference transition function. Among
this family, Robust Adversarial Reinforcement Learning (RARL) [Pinto et al., 2017] applies external
forces at each time step t to disturb the reference dynamics. For instance, the agent controls a planar
monopod robot, while the adversary applies a 2D force on the foot. In noisy action robust MDPs
(NR-MDP) [Tessler et al., 2019] the adversary shares the same action space as the agent and disturbs
the agent’s action πpsq. Such gradient-based approaches incur the risk of finding stationary points
for π and π̂ which do not correspond to saddle points of the robust MDP problem. To prevent
this, Mixed-NE [Kamalaruban et al., 2020] defines mixed strategies and uses stochastic gradient
Langevin dynamics. Similarly, Robustness via Adversary Populations (RAP) [Vinitsky et al., 2020]
introduces a population of adversaries, compelling the agent to exhibit robustness against a diverse
range of potential perturbations rather than a single one, which also helps prevent finding stationary
points that are not saddle points. Aside from this first family, State Adversarial MDPs [Zhang

1This does not imply the solution to the static model is the same as that of the dynamic model in the general
case: the optimal static π may be non-stationary and solving the static model is known to be NP-hard.
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et al., 2020, 2021, Stanton et al., 2021] involve adversarial attacks on state observations, which
implicitly define a partially observable MDP. The goal in this case is not to address robustness to
the worst-case transition function but rather against noisy, adversarial observations. A third family
of methods considers the general case of π̂pstq “ Tt where Tt P T . Minimax Multi-Agent Deep
Deterministic Policy Gradient (M3DDPG) [Li et al., 2019] is designed to enhance robustness in
multi-agent reinforcement learning settings, but boils down to standard robust RL in the two-agents
case. Max-min TD3 (M2TD3) [Tanabe et al., 2022] considers a policy π, defines a value function
Qps, a, T q which approximates Qπ

T ps, aq “ Es1„T rrps, a, s1q ` γV π
T ps1qs, updates an adversary π̂ so

as to minimize Qps, πpsq, π̂psqq by taking a gradient step with respect to π̂’s parameters, and updates
the policy π using a TD3 gradient update in the direction maximizing Qps, πpsq, π̂psqq. As such,
M2TD3 remains a robust value iteration method which solves the dynamic problem by alternating
updates on π and π̂, but since it approximatesQπ

T , it is also closely related to the method we introduce
in the next section.

Regularization. Derman et al. [2021], Eysenbach and Levine [2022] also highlighted the strong
link between robust MDPs and regularized MDPs, showing that a regularized policy learned during
interaction with a given MDP was actually robust to an uncertainty set around this MDP. Kumar et al.
[2023] propose a promising approach in which they derive the adversarial transition function in a
closed form and demonstrate that it is a rank-one perturbation of the reference transition function.
This simplification results in more streamlined computation for the robust policy gradient.

Domain randomization (DR) [Tobin et al., 2017] learns a value function V psq “

maxπ ET„UpT qV
π
T psq which maximizes the expected return on average across a fixed (generally

uniform) distribution on T . As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications [Mehta et al., 2020, OpenAI et al., 2019].
Similar approaches also aim to refine a base DR policy for application to a sequence of real-world
cases [Lin et al., 2020, Dennis et al., 2020, Yu et al., 2018].

For a more complete survey of recent works in robust RL, we refer the reader to the work of Moos
et al. [2022]. To the best of our knowledge, the approach sketched in the previous section and
developed in the next one is the only one that directly addresses the static model. For that purpose, it
exploits the equivalence with the dynamic model for stationary policies and solves the dual of the
minimax problem, owing to the no-duality gap property.

4 Incremental Worst-case Search

In order to search for robust policies, we consider the no-duality gap property: the best performance
one can expect in the face of transition function uncertainty maxπ minT V

π
T ps0q, is also the worst

performance the environment can induce for each transition function’s optimal policy minT V
˚
T ps0q.

If the value V π
T ps0q was strictly concave / convex with respect to π / T respectively, we could hope

to solve for the robust policy through a (sub)gradient ascent / descent method. Unfortunately, it
seems V π

T ps0q easily admits more convoluted optimization landscapes, involving stationary points,
and local minima and maxima. The maxπ problem often benefits from regularization [Geist et al.,
2019]. Although one could study regularization for the minT problem [Grand-Clément and Petrik,
2022] or the equivalence with a regularized objective [Derman et al., 2021], we turn towards a
simpler process conceptually. We consider a (small) discrete set of MDPs Ti “ tTjujPr0,is, for
which we derive the corresponding optimal value functions Q˚

Tj
. Notably, Ti is a subset of a

(supposed) sa-rectangular uncertainty set, but is not sa-rectangular itself, so there is no guarantee
that the static-dynamic equivalence holds in Ti. However, one can consider the sa-rectangular set
T̃i “

Ś

s,atTjp¨|s, aqujPr0,is composed of the cartesian product of all local tTjp¨|s, aqujPr0,is sets for
each s, a pair. Then we implicitly define Qi as the function that maps any pair s, a to the smallest
expected optimal outcome Qips, aq “ minjPr0,istQ

˚
Tj

ps, aqu. Consequently, Qi is an upper-bound

on the robust Q-function with respect to the T̃i uncertainty set. We abusively call Qi the Ti-robust
value function. In s0, Qi coincides with the robust value function for the static model of uncertainty
with respect to the Ti uncertainty set. The corresponding greedy policy is πipaq “ argmaxaQips, aq

and is a candidate for the robust policy. Let us write Ti`1 “ argminTPT V
πi

T ps0q. Then, if
V πi

Ti`1
ps0q “ Qips0, πips0qq, we have found a robust policy for all transition models in T . Otherwise,

we can solve for Q˚
Ti`1

, append Ti`1 to Ti to form Ti`1 and repeat. Of course, one bottleneck
difficulty lies in solving the minT problem accurately enough, but at least this approach decouples
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this difficulty from the policy optimization process, which is only concerned with static MDPs.
Consequently, the idea we develop is to incrementally expand Ti by solving minTPT V

πi

T ps0q using
optimization methods that can cope with ill-conditioned optimization landscapes. We call Incremental
Worst Case Search (IWOCS) this general meta-algorithm, which we summarize in Algorithm 1. We
illustrate IWOCS in the current section on a toy example, while Section 4 extends it to the case of
high-dimensional state and action spaces, which involve a need for function approximation, and
permit only collecting samples in a sub-part of the state space.

Algorithm 1: Incremental Worst-Case Search meta-algorithm
Input: T , T0, max number of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

Find Q˚
Ti

“ maxπ Q
π
Ti

/* Non-robust policy optimization */
1 Define Ti “ tTjujPr0,is

2 Define Qi : s, a ÞÑ minjPr0,istQ
˚
Tj

ps, aqu /* Ti-robust value function */
3 Define πipsq “ argmaxapQips, aqq /* Candidate policy */
4 Find Ti`1 “ argminTPT V

πi

T ps0q /* Identify worst T */
5 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

6 return πi, Ti`1, V πi

Ti`1
ps0q /* Early termination condition */

return πM , TM`1, V πM

TM`1
ps0q

We implement an IWOCS algorithm for robust MDPs, using value iteration (VI) as the policy
optimization algorithm and a brute force search across transition functions to identify worst-case
MDPs (V πi

T ps0q is evaluated through Monte-Carlo rollouts). Detailed pseudo-code is provided in
Appendix B. Note that any policy optimization method, or optimization method for T , is a suitable fit
here. The goal here is to illustrate the behavior of IWOCS, compare it to the seminal robust value
iteration (RVI) algorithm, and validate empirically that IWOCS is able to find worst-case static MDPs
and robust policies.

This vanilla IWOCS is evaluated on the “windy walk” grid-world MDP illustrated on Figure 1a,
where an agent wishes to navigate from a starting position S to a goal G. Actions belong to the
discrete tN,S,E,W u set and transitions are deterministic, except in the “corridors”, where wind
can knock back the agent to the left. In the topmost corridor, the probability of being knocked left is
α, in the middle corridor it is α3 and it is α6 in the bottom corridor (details in Appendix B). Hence,
the uncertainty set is fully parameterized by α, which takes 25 discrete values, uniformly distributed
in r0, 0.5s. Rewards are ´1 at each time step and the goal is an absorbing state yielding zero reward.

Figure 1b illustrates how IWOCS converges to the robust value function V ˚. RVI builds the sequence
Vn`1 “ LVn and we plot |Vnps0q ´ V ˚ps0q| versus the number of robust Bellman iterates n. On
the other hand, IWOCS requires its first policy optimization to terminate before it can report its
first Qips0, πips0qq. Thus, we plot |Qips0, πips0qq ´ V ˚ps0q| after a fixed number of 100 standard
Bellman backups for VI. It is important to note that one iterate of the standard Bellman operator
requires solving a maxa in each state, while an iterate of the robust Bellman operator requires
solving a more costly maxa minT problem in each state. Therefore, the x-axis does not account for
computational time. IWOCS finds the worst-case static model after two iterations and converges to
the same value as RVI.

5 Deep IWOCS

We now turn towards challenging robust control problems and introduce an instance of IWOCS meant
to accommodate large and continuous state and action spaces, using function approximators such as
neural networks. This instance of IWOCS uses Soft Actor Critic (SAC) Haarnoja et al. [2018] as
the policy optimization method. One motivation for using SAC is that it has been proven to yield a
locally robust policy around the MDP it is trained upon [Eysenbach and Levine, 2022].
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(a) Windy walk grid-world.
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(b) Convergence to V ˚ versus Bellman iterates.

Figure 1: IWOCS and RVI.

5.1 Method

Accounting for regularization terms. Since SAC learns a regularized Q-function which accounts
for the policy’s entropy, and lets the importance of this term vary along the optimization, orders of
magnitude may change between QTi

and QTj
. To avoid the influence of this regularization term

when defining the Ti-robust Q-function, we train an additional unregularized Q-network which only
takes rewards into account. We call πT the policy network which approximates the optimal policy of
the regularized MDP based on T . This policy’s (regularized) value function is approximated by the
Q1

T network (our implementation uses double Q-networks as per the common practice — all details
in Appendix C), while an additional QT network (double Q-network also) tracks the unregularized
value function of πT . The Ti-robust Q-function is defined with respect to this unregularized value
function as Qips, aq “ minjPr0,istQTj

ps, aqu.

Partial state space coverage. In large state space MDPs, it is likely that interactions will not explore
the full state space. Consequently, the different QTj functions are trained on replay buffers whose
empirical distribution’s support my vary greatly. Evaluating neural networks outside of their training
distribution is prone to generalization errors. This begs for indicator functions specifying on which
ps, aq pair each QT is relevant. We chose to implement such an indicator function using predictive
coding [Rao and Ballard, 1999] on the dynamical model Tj . Note that other choices can be equally
good (or better), such as variance networks [Neklyudov et al., 2019], ensembles of neural networks
[Lakshminarayanan et al., 2016] or 1-class classification [Béthune et al., 2023]. Our predictive coding
model for Tj predicts T̂jps, aq “ s1 for deterministic dynamics, by minimizing the expected value of
the loss ℓpT̂jps, aq; s1q “ }T̂jps, aq ´ s1}1. At inference time, along a trajectory, we consider QTj

has been trained on sufficient data in st, at, if ℓpT̂jpst´1, at´1q; stq ď ρj , ie. if the prediction error
for st is below the threshold ρj (details about tuning ρj in Appendix D). We redefine Q˚

Tj
to be `8

in all states where ℓpT̂jpst´1, at´1q; stq ą ρj , so that it does not participate in the definition of Qi.

Worst case identification. When V πi

T ps0q is non differentiable with respect to T (or T ’s parameters),
one needs to fall back on black-box optimization to find Ti`1 “ argminTPT V

πi

T ps0q. We turn to
evolutionary strategies, and in particular CMA-ES [Hansen and Ostermeier, 2001] for that purpose,
for its ability to escape local minima and efficiently explore the uncertainty set T (hyperparameters
in Appendix C). Note that making V π

T ps0q differentiable with respect to T is feasible by making the
critic network explicitly depend on T ’s parameters, as in the work of Tanabe et al. [2022]. We do not
resort to such a model, as it induces the risk for generalization errors, but it constitutes a promising
alternative for research. To evaluate V πi

T ps0q for a given T , we run a roll-out from s0 by applying
πipsq in each encountered state s. Since we consider continuous action spaces and keep track of the
critics QTj

, Q1
Tj

and the actor πTj
for all Tj P Ti, we can make direct use of πTj

which is designed
to mimic an optimal policy in MTj

. Specifically, in s, we evaluate j˚ “ argminjďiQ
˚
Tj

ps, πTj
psqq,

and apply πipsq “ πj˚ psq. If no Q˚
Tj

is valid in s, we fall back to a default policy trained with
domain randomization.
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5.2 Empirical evaluation

Experimental framework. This section assesses the proposed algorithm’s worst-case performance
and generalization capabilities. Experimental validation was performed on optimal control problems
using the MuJoCo simulation environments [Todorov et al., 2012]. The algorithm was benchmarked
against state-of-the-art robust reinforcement learning methods, including M2TD3 [Tanabe et al.,
2022], M3DDPG [Li et al., 2019], and RARL [Pinto et al., 2017]. We also compare with Domain
Randomization (DR) [Tobin et al., 2017] for completeness. For each environment, two versions of the
uncertainty set are considered, following the benchmarks reported by Tanabe et al. [2022]. In the first
one, T is parameterized by a global friction coefficient and the agent’s mass, making T isomorphic to
R2. In the second one, a third, environment-dependent parameter is included (details in Appendix G).
To ensure a fair comparison, performance metrics were collected after 4 million steps for environments
with a 2D uncertainty set and after 5 million steps for those with a 3D uncertainty set. All reference
methods optimize a single policy along these 4 or 5 million steps, but IWOCS optimizes a sequence
of non-robust policies, for which we divided this sample budget: we constrained IWOCS to train
its default policy and each subsequent SAC agent for a fixed number of interaction steps, so that the
sum is 4 or 5 million steps. All results reported below were averaged over 10 distinct random seeds.

Worst-case performance. Table 1 reports the normalized worst-case scores comparing IWOCS,
M2TD3, SoftM2TD3, M3DDPG, RARL, and DR using TD3. The worst-case score for the policy
returned by IWOCS is a direct by-product of the algorithm’s last steps, since they search for worst-
case transition functions that minimize the value of Monte-Carlo rollouts. The worst-case scores for
all other methods are drawn from the M2TD3 paper [Tanabe et al., 2022] where they are evaluated
by defining a uniform grid over the transition function’s parameter space and performing roll-outs
for each transition model2. To obtain comparable metrics across environments, we normalized each
method’s score v using the vanilla TD3 (trained on the environment with default transition function
parameters) reference score vTD3 as a minimal baseline and the M2TD3 score vM2TD3 as target
score: pv ´ vTD3q{|vM2TD3 ´ vTD3|. Hence this metric reports how much a method improves upon
TD3, compared to how much M2TD3 improved upon TD3. The non-normalized scores are reported in
Appendix H. This instance of IWOCS demonstrates competitive performance, outperforming all other
methods in 7 out of the 11 environments (note that we did not report results on environments from
the literature that feature a simpler 1D uncertainty set). IWOCS permits a 2.36-fold improvement on
average across environments, over the state-of-the-art M2TD3. It seems that Ant is an environment
where IWOCS struggles to reach convincing worst case scores (and Humanoid to a lesser extent).
We conjecture this is due to the wide range of possible mass and friction parameters, which make the
optimization process very noisy (almost zero mass and friction is a worst-case T making the ant’s
movement rather chaotic and hence induces a possibly misleading replay buffer) and may prevent the
policy optimization algorithm to yield good non-robust policies and value functions given its sample
budget. However, IWOCS provides a major (up to 10-fold) improvement on Hopper.

Table 1: Avg. of normalized worst-case performance over 10 seeds for each method.
Environment IWOCS M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3)

Ant 2 ´0.19 ˘ 0.87 1.00 ˘ 0.04 0.92 ˘ 0.06 ´0.72 ˘ 0.05 ´1.32 ˘ 0.04 0.02 ˘ 0.05
Ant 3 0.45 ˘ 0.59 1.00 ˘ 0.09 0.97 ˘ 0.18 ´0.36 ˘ 0.20 ´1.28 ˘ 0.06 0.61 ˘ 0.03
HalfCheetah 2 1.35 ˘ 0.28 1.00 ˘ 0.05 1.07 ˘ 0.05 ´0.02 ˘ 0.02 ´0.05 ˘ 0.02 0.84 ˘ 0.04
HalfCheetah 3 1.84 ˘ 0.56 1.00 ˘ 0.14 1.39 ˘ 0.15 ´0.03 ˘ 0.05 ´0.13 ˘ 0.05 1.10 ˘ 0.04
Hopper 2 5.56 ˘ 0.74 1.00 ˘ 0.05 1.09 ˘ 0.06 0.46 ˘ 0.06 0.61 ˘ 0.17 0.87 ˘ 0.03
Hopper 3 9.32 ˘ 0.99 1.00 ˘ 0.09 0.68 ˘ 0.08 0.22 ˘ 0.04 0.56 ˘ 0.17 0.73 ˘ 0.13
HumanoidStandup 2 0.82 ˘ 0.18 1.00 ˘ 0.12 1.25 ˘ 0.16 0.98 ˘ 0.12 0.88 ˘ 0.13 1.14 ˘ 0.14
HumanoidStandup 3 0.90 ˘ 0.63 1.00 ˘ 0.11 0.96 ˘ 0.07 0.97 ˘ 0.07 0.88 ˘ 0.13 0.86 ˘ 0.06
InvertedPendulum 2 2.82 ˘ 0.00 1.00 ˘ 0.37 0.38 ˘ 0.08 ´0.00 ˘ 0.00 ´0.00 ˘ 0.00 0.15 ˘ 0.01
Walker 2 1.26 ˘ 0.34 1.00 ˘ 0.14 0.83 ˘ 0.15 0.04 ˘ 0.04 ´0.08 ˘ 0.01 0.71 ˘ 0.17
Walker 3 1.87 ˘ 0.50 1.00 ˘ 0.23 1.03 ˘ 0.20 0.06 ˘ 0.05 ´0.10 ˘ 0.01 0.65 ˘ 0.19

Aggregated 2.36 ˘ 0.51 1.00 ˘ 0.13 0.96 ˘ 0.11 0.14 ˘ 0.06 0.0 ˘ 0.07 0.70 ˘ 0.08

2The same grid was used as a sanity check for IWOCS to verify that CMA-ES indeed found the worst-case
transition function.
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Table 2: Avg. of normalized average performance over 10 seeds for each method.
Environment IWOCS M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3)

Ant 2 0.45 ˘ 0.51 1.00 ˘ 0.02 1.04 ˘ 0.00 ´0.13 ˘ 0.12 ´1.04 ˘ 0.02 1.28 ˘ 0.03
Ant 3 ´3.56 ˘ 2.96 ´1.00 ˘ 0.44 ´0.36 ˘ 0.46 ´6.98 ˘ 0.44 ´8.94 ˘ 0.18 0.92 ˘ 0.22
HalfCheetah 2 1.74 ˘ 0.26 1.00 ˘ 0.03 1.10 ˘ 0.04 ´1.08 ˘ 0.07 ´1.94 ˘ 0.03 1.84 ˘ 0.09
HalfCheetah 3 1.90 ˘ 0.32 1.00 ˘ 0.07 1.17 ˘ 0.03 ´1.43 ˘ 0.14 ´2.48 ˘ 0.05 2.33 ˘ 0.12
Hopper 2 1.90 ˘ 0.80 1.00 ˘ 0.07 0.74 ˘ 0.12 ´0.40 ˘ 0.11 1.86 ˘ 0.92 0.36 ˘ 0.08
Hopper 3 6.17 ˘ 3.30 ´1.00 ˘ 0.23 ´1.20 ˘ 0.13 ´2.20 ˘ 0.37 1.63 ˘ 1.53 1.17 ˘ 0.23
HumanoidStandup 2 3.00 ˘ 3.00 ´1.00 ˘ 0.67 0.67 ˘ 0.83 ´1.83 ˘ 0.67 ´3.00 ˘ 1.33 0.50 ˘ 0.67
HumanoidStandup 3 1.87 ˘ 4.12 1.00 ˘ 0.75 0.38 ˘ 0.37 0.00 ˘ 0.50 ´1.75 ˘ 0.87 0.38 ˘ 0.87
InvertedPendulum 2 2.86 ˘ 0.00 1.00 ˘ 0.68 1.06 ˘ 0.46 ´1.10 ˘ 0.25 ´0.47 ˘ 0.32 2.47 ˘ 0.03
Walker 2 1.03 ˘ 0.45 1.00 ˘ 0.06 0.83 ˘ 0.16 ´0.53 ˘ 0.11 ´1.21 ˘ 0.02 0.91 ˘ 0.15
Walker 3 1.19 ˘ 0.50 1.00 ˘ 0.13 0.96 ˘ 0.18 ´0.57 ˘ 0.09 ´1.43 ˘ 0.04 1.13 ˘ 0.10

Aggregated 1.68 ˘ 1.47 0.45 ˘ 0.28 0.58 ˘ 0.25 ´1.47 ˘ 0.25 ´1.70 ˘ 0.48 1.20 ˘ 0.23

Average performance. While our primary aim is to maximize the worst-case performance, we
also appreciate the significance of average performance in real-world scenarios. Table 2 reports the
normalized average score (non-normalized scores in Appendix H) obtained by the resulting policy
over a uniform grid of 100 transition functions in 2D uncertainty sets (1000 in 3D ones). Interestingly,
M3DDPG and RARL feature negative normalized scores and perform worse on average than vanilla
TD3 on most environments (as M2TD3 on 3 environments). DR and IWOCS display the highest
average performance. Although this outcome was anticipated for DR, it may initially seem surprising
for IWOCS, which was not explicitly designed to optimize mean performance. We posit this might be
attributed to two factors. First, in MDPs which have not been identified as worst-cases, encountered
states are likely to have no valid QTj

value function. In these MDPs, if we were to apply any of
the πTj

, its score could be as low as the worst cast value (but not lower, otherwise the MDP should
have been identified as a worst case earlier). But since IWOCS’ indicator functions identify these
states as unvisited, the applied policy falls back to the DR policy, possibly providing a slightly
better score above the worst case value for these MDPs. Second, the usage of indicator functions
permits defining the IWOCS policy as an aggregate of locally optimized policies, possibly avoiding
averaging issues. As for the worst-case scores, IWOCS does not perform well on Ant environments.
However, it provides better average scores than both DR and M2TD3 on the Humanoid benchmarks.
Overall, it performs better than all other methods on 7 out of the 11 environments and is only slightly
outperformed by DR on 2 more.

Tracking the convergence of IWOCS. IWOCS aims at solving iteratively the robust optimization
problem by covering the worst possible case at each iteration. Consequently, we could expect the
value of the candidate robust policy πi to increase throughout iterations. Figure 2 reports the score of
πi across iterations, averaged over 10 optimization runs, along with the observed standard deviation,
on all 3D uncertainty sets. In the three environments where IWOCS dominates over other reference
methods, we observe a nice steady increase in value, with limited standard deviations across runs.
Notably, in the Hopper environment, the search for a worst-case environment seems very beneficial
to IWOCS, enabling a large leap in score over the first iteration (causing the 10-fold increase reported
in Table 1). Results on the Ant benchmark seem to confirm the conjecture made to explain the poor
behavior of IWOCS: the large variance in πi scores tend to indicate that optimizing for non-robust
policies is somewhat noisy and might prevent finding robust policies overall.

Worst case paths in the uncertainty set. IWOCS seems to reliably find worst case MDPs and
policies in a number of cases. Table 3 permits tracking the worst case MDPs and policies along
iterations for the HalfCheetah 2D environment (all other results in Appendix I). Specifically, it reports
the score of the first optimized policy JπT0

T0
, then the parameters ψ1

1 and ψ1
2 (friction and mass) of

the worst case transition function T1, and the value Jπ0

T1
of the candidate robust policy π0 in T1. The

next columns repeats these values for later iterations. Each line corresponds to a different random
seed. At iteration 0, the first trained policy πT0 displays a large variance in score across runs, as is
often the case with deep RL methods (SAC included). In turn, it is no surprise that the identified
worst case MDPs differ from one line to the other and that their scores features some variability either.
However, all instances of T1 tend to lie on some corner of the uncertainty set. As IWOCS move on
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Figure 2: Worst-case performance for each iteration of IWOCS on 3D uncertainty sets

Table 3: Halfcheetah 2, worst parameters search for each iteration over 10 seeds.

J
πT0

T0
ψ1
1 ψ1

2 Jπ0

T1
J
πT1

T1
ψ2
1 ψ2

2 Jπ1

T2
J
πT2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 5753.2 4.0 7.0 2128.3 20559.5 4.0 0.1 3626.3 9724.7 4.0 7.0 3745.6
1 109.755 4.0 7.0 2027.0 3732.0 4.0 7.0 3827.6 6183.4 4.0 7.0 3827.6
2 5897.4 0.1 7.0 2354.0 9930.0 4.0 7.0 2497.4 3670.5 4.0 7.0 3874.4
3 6396.9 4.0 7.0 2473.0 3815.1 4.0 0.6 3053.9 6022.4 4.0 7.0 3825.5
4 2143.26 0.1 7.0 1633.3 3807.9 4.0 7.0 1978.4 6282.5 4.0 7.0 1978.4
5 4476.0 4.0 7.0 1983.2 13040.2 4.0 0.1 2597.4 3694.9 4.0 0.1 2822.3
6 6275.2 4.0 7.0 -91.1 3639.7 4.0 0.1 3448.4 5347.6 4.0 7.0 3986.0
7 6213.8 0.1 7.0 1587.1 2046.31 4.0 7.0 2411.1 3757.7 4.0 7.0 3769.5
8 6409.8 4.0 7.0 2053.8 3709.9 4.0 0.1 3182.3 3712.3 4.0 7.0 3872.9
9 6801.4 0.1 0.1 2341.4 3620.1 0.5 4.4 3619.3 5737.3 0.6 6.8 5431.3

avg 5047.6 1849.0 6790.1 3024.2 5413.3 3713.4
std 2210.6 740.5 5940.3 623.4 1886.8 876.3

to iteration 1, then 2, worst-case MDPs tend to concentrate on the same corner (the true worst-case
MDP) and robust scores tend to increase (as Figure 2 showed in the 3D case).

6 Conclusion

The search for robust policies in uncertain MDPs is a long-standing challenge. In this work, we
proposed to revisit the static model of transition function uncertainty, which is equivalent to the
dynamic model in the case of sa-rectangular uncertainty sets and stationary policies. We proposed
to exploit this equivalence and the no-duality-gap property to design an algorithm that trades the
resolution of a two-player game, for a sequence of one-player MDP resolutions. This led to the
IWOCS (Incremental Worst-Case Search) meta-algorithm, which incrementally builds a discrete,
non-sa-rectangular uncertainty set and a sequence of candidate robust policies. An instance of
IWOCS, using SAC for policy optimization, and CMA-ES for worst-case search, appeared as a
relevant method on popular robust RL benchmarks, and outperformed the state-of-the-art algorithms
on a number of environments. IWOCS proposes a new perspective on the resolution of robust MDPs
and robust RL problems, which appears as a competitive formulation with respect to traditional
methods. It also poses new questions, like the tradeoffs between policy optimization precision and
overall robustness, gradient-based methods for worst-case search, bounds due to approximate value
functions, or validity of using Qi as a surrogate of the robust value function for the Ti uncertainty set.
All these open interesting avenues for future research.
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A Computing resources

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 3090 GPU. Averages, medians, and standard deviations were computed
from 10 independent repetitions of each experiment.

B Windy-walk gridworld

The windy-walk environment used in Section 4 is a discrete grid-world environment illustrated in
Figure 3. It features 36 discrete states corresponding to positions on the grid, and 4 discrete actions
corresponding to cardinal moves. Six states are unreachable and correspond to walls, defining three
corridors. The transition model is deterministic by default, except in the corridors where the wind
blows. This transition model is parameterized by a scalar parameters α. In the Northern corridor:

• the W action moves West with probability 1,

• the N and S actions leave the position unchanged with probability 1 ´ α and the agent is
pushed West with probability α,

• the E action moves East with probability 1 ´ α and West with probability α.

The middle corridor works the same way, but with probability α3 instead of α. In the Southern
corridor:

• the W action moves West with probability 1,
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• the N (resp. S) action move the agent respectively North (resp. South) with probability
1 ´ α6 (unless it runs into a wall in which case the position is unchanged), and West with
probability α6,

• the E action moves East with probability 1 ´ α6 and West with probability α6.

Rewards are -1 for all transitions and the G state is an absorbing goal states yielding zero reward.
The agent always starts in state S. Consequently, windy-walk is a stochastic shortest path. For small
values of α, the optimal policy is to go straight from S to G, but as α increases, the wind blows
harder, and it becomes more interesting to make a detour through the middle then Southern corridors.
The corresponding robust MDP problem features an uncertainty set spanned by 25 discrete values of
α, uniformly distributed in r0, 0.5s.

The instance of IWOCS evaluated in Section 4 uses value iteration as a policy optimization algorithm
and a brute-force grid search as a search method for worst-case transition functions, as summarized
in Algorithm 2. In Algorithm 2 we abusively write Tα the transition model parameterized by α.

In the experiments of Section 4, value iteration is run until a tolerance of 10´3 is met. γ is set to
0.95. Monte-Carlo estimates of V πi

T ps0q use 300 independent rollouts (of length at most 104) from
the starting state.

Figure 3: Windy walk grid-world.

Algorithm 2: IWOCS with value iteration and brute force worst-case search
Input: T , T0, max number of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

Find Q˚
Ti

“ value_iterationpTiq /* Non-robust policy optimization */
1 Define Ti “ tTjujPr0,is

2 Define Qi : s, a ÞÑ minjPr0,istQ
˚
Tj

ps, aqu /* Ti-robust value function */
3 Define πipsq “ argmaxapQips, aqq /* Candidate policy */
4 V πi

Ti`1
ps0q “ `8

5 for α P T do /* Identify worst T */
6 Ṽ “ Monte-Carlo_rolloutspπiq

7 if Ṽ ă V πi

Ti`1
ps0q then

8 V πi

Ti`1
ps0q “ Ṽ

9 Ti`1 “ Tα

10 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

11 return πi, Ti`1, V πi

Ti`1
ps0q /* Early termination condition */

return πM , TM`1, V πM

TM`1
ps0q
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C Soft Actor-Critic and CMA-ES hyperparameters

Deep IWOCS uses SAC [Haarnoja et al., 2018] for policy optimization and trains jointly a predictive
coding model to predict the outcome of a state-action pair. Specifically, a single network called
“enhanced critic” is trained to predict the regularized value function Q1ps, aq, the unregularized value
function Qps, aq and a prediction of the transition outcome T̂ ps, aq. The network’s architecture is
summarized in Figure 4a. All activation functions are ReLU except for the output layers (identity
functions). Note that one more layer was necessary to appropriately estimate Q compared to Q1. Our
implementation also uses double critics as per the common practice, to avoid overestimating Q and
Q1 (totally independent networks, no shared layers). Given a replay buffer D, learning Q minimizes
the loss

LQ “ Es,a,s1„D,a1„π

“

Qps, aq ´ rr ` γQ´ps1, a1qs
‰2
,

where Q´ is a target network, updated through Polyak averaging. Similarly, Q1 minimizes

L1
Q “ Es,a,s1„D,a1„π

“

Q1ps, aq ´ rr ` γpQ1´ps1, a1q ´ α log πpa1|s1qqs
‰2
.

Finally, T̂ minimizes
LT̂ “ Es,a,s1„D

”

}T̂ ps, aq ´ s1}1

ı

.

These three objective functions are minimized in turn with three distinct Adam optimizers to account
for possible different orders of magnitude.

(a) Enhanced critic (b) Actor

Figure 4: Network architectures

The actor network is a standard SAC actor trained with respect to the regularized Q-function Q1.
The network’s architecture is depicted in Figure 4b. All activation functions are ReLU, except for
the output values (identify for µ and tanh for log σ as per the common practice). The output action
drawn from the network’s output is run through an additional tanh function following the usual SAC
implementations.

The search for worst case transition functions is performed by using the CMA-ES black-box opti-
mization method [Hansen and Ostermeier, 2001]. All hyperparameter values for SAC and CMA-ES
are summarized in Table 4. These values are the same across all experiments.

D Adaptive thresholding for predictive coding

As introduced in Section 5, the SAC-based implementation of IWOCS used in the experiments
exploits a predictive coding mechanism in order to characterize each policy’s training distribution
support and to avoid using a given πTi

on samples outside its training distribution. Policy πTi
and

value function QTi
are deemed usable in state st along the current trajectory if st was accurately
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Table 4: Hyperparameters of SAC
Hyperparameter Value
Learning rate actor 3e-4
Learning rate critic 1e-3
Adam epsilon 1e-5
Adam pβ1, β2q (0.9, 0.999)
Batch size 256
Memory size 1e6
Gamma 0.99
Polyak update 0.995
Number of steps before training 1e4

CMA-ES generations 10
CMAS-ES population size 100
CMA ES mean 0.5
CMA ES std 0.5

predicted by the dynamics model T̂ipst´1, at´1q. Specifically, we consider a threshold ρi on the
prediction error and consider QTi and πTi to be viable in st if ℓpT̂ipst´1, at´1q, stq ď ρi, with
ℓpT̂ipst´1, at´1q, stq “ }T̂ipst´1, at´1q ´ st}1. In states where QTi

is non-viable, we arbitrarily set
its value to `8 so that it does not participate inQips, aq “ minjďitQTj

ps, aqu. We noted in the main
text that alternative characterizations of the support distribution were possible, and we do not claim
the present choice outperforms the alternatives. Notably, all choices induce a number of parameters
to tune (here ρi). This leads to a number of design choices that make the implementation somehow
more convoluted than the simple principle of IWOCS. While the main text kept things focused on
the principles of IWOCS, we provide here a full pseudo-code (which is more representative of the
provided code) for the sake of completeness. Appendix C already covered the network structure, the
training losses and the training hyperparameters for SAC and CMA-ES. Hence, the present section
focuses on how to adjust each ρi.

Training of the enhanced critic network does not provide a usable value for ρi and experimental
results demonstrated that accurate characterization of the training distribution’s support required
per-MDP tuning. Since ρi needs to be tuned for πTi during iteration i (and is kept fixed thereafter),
we couple its search with that of the worst case transition model to permit better overall efficiency.
Specifically, at iteration i, we consider a discrete set R of possible values for threshold ρi. For each
value in R, we identify the worst case transition model. Then, we keep the value of ρi that enabled
the best pessimistic value. In a sense, this makes ρi a parameter of the candidate robust policy. This
parameter is single-dimensional and hence its optimization is computationally undemanding. We
emphasize that this tuning mechanism is both very naive and arbitrary. It is naive since it performs
a grid search over discrete values of ρi, where it could have exploited optimization methods. It is
arbitrary in the sense that it picks ρi by keeping as a selection heuristic the overall goal of identifying
robust policies.

Algorithm 3 summarizes the complete IWOCS process with adaptive thresholding for predictive
coding. In the experiments of Section 5, R is a discrete set of 10 values evenly spaced between 0.1
and 1.

E Sample budgets

In order to enable a fair comparison with the results of Tanabe et al. [2022] which we report in Table 1,
we evaluate IWOCS with the same overall sample budget, ie. 4 million samples in 2D uncertainty set
environments and 5 million samples in 3D uncertainty set environments.

In 2D environments, the default DR policy is trained for 1.6 ¨ 106 steps, then 3 IWOCS iterations of
8 ¨ 105 each are run, for a total of 4 ¨ 106 collected samples.

In 3D environments, the default DR policy is trained for 1.8 ¨ 106 steps, then 4 IWOCS iterations of
8 ¨ 105 each are run, for a total of 5 ¨ 106 collected samples.
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Algorithm 3: Deep IWOCS with adaptive threshold
Input: T , T0, maximum number of iterations M , discrete thresholds set R
for i “ 0 to M do

Find QTi
, πTi

, T̂i “ SACpTiq // Non-robust SAC and pred coding
1 Define Ti “ tTjujPr0,is

2 Define V̂ “ ´8 // candidate worst value
3 for ρ P R do // loop over thresholds

4 Define Q̃Ti
ps, aq “

"

`8 if ℓpT̂ipst´1, at´1q; stq ą ρ for s “ st
QTi

ps, aq otherwise.
5 Define Q̃ips, aq “ minjďitQ̃Tj

ps, aqujPr0,is,@s, a // Ti-robust value function
6 Define J˚psq “ argminjďi Q̃Tj

ps, πTj
psqq,@s

7 Define π̃ipsq “

"

πdefaultpsq if Q̃ips, aq “ `8,
πTj˚ psq with j˚ P J˚psq otherwise. // Candidate policy

8 Find T̃i`1, V
π̃i

T̃i`1
ps0q “CMA-ESpV π̃i

T ps0qq // Identify worst T

9 if V πi

T 1
i`1

ps0q ě V̂ then // keep best ρ

10 ρj “ ρ

11 Ti`1 “ T̃i`1, πi “ π̃i, V πi

Ti`1
ps0q “ V π̃i

T̃i`1
ps0q, Qi “ Q̃i

12 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

13 return πi, Ti`1, V πi

Ti`1
ps0q // Early termination condition

return πM , TM`1, V πM

TM`1
ps0q

Environment SAC IWOCS
Ant 2 18h 44h
Ant 3 22.5h 76h
Halfcheetah 2 20h 43h
Halfcheetah 3 25h 66h
Walker 2 19h 47h
Walker 3 24h 64h
Hopper 2 20h 44h
Hopper 3 25h 65h
HumanoidStandup 2 18h 49h
HumanoidStandup 3 22.5h 68h

Table 5: Average wall-clock time for plain SAC and for IWOCS for the same number of samples.

No fine-tuning of these training durations was performed.

F Computational overhead due to IWOCS

In Table 5 we report the average wall-clock time needed for our implementation of SAC to cover
the 4 (resp. 5) million samples allocated for 2D (resp. 3D) environments without IWOCS. Then, we
report the time required by IWOCS to cover the same sample budget. This permits a fair evaluation
of the overhead computational cost of IWOCS, without the bias due to implementation optimizations.

G Uncertainty sets in MuJoCo environments

The experiments of Section 5 follow the evaluation protocol proposed by Tanabe et al. [2022] and
based on MuJoCo environments [Todorov et al., 2012]. These environments are designed with 2D or
3D uncertainty sets. Table 6 lists all environments evaluated, along with their uncertainty sets. The
uncertainty sets column defines the ranges of variation for the parameters within each environment.
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The reference parameters column indicates the nominal or default values. The uncertainty parameters
column describes the physical meaning of each parameter.

Table 6: List of environment and parameters for the experiements
Environment Uncertainty set T Reference values Uncertainty

parameters
Ant 2 r0.1, 3.0sˆr0.01, 3.0s p0.33, 0.04q torso mass; front left

leg mass
Ant 3 r0.1, 3.0s ˆ

r0.01, 3.0s ˆ

r0.01, 3.0s

p0.33, 0.04, 0.06q torso mass; front left
leg mass; front right

leg mass
HalfCheetah 2 r0.1, 4.0s ˆ r0.1, 7.0s p0.4, 6.36q world friction; torso

mass
HalfCheetah 3 r0.1, 4.0s ˆ

r0.1, 7.0s ˆ r0.1, 3.0s

p0.4, 6.36, 1.53q world friction; torso
mass; back thigh

mass
Hopper 2 r0.1, 3.0s ˆ r0.1, 3.0s p1.00, 3.53q world friction; torso

mass
Hopper 3 r0.1, 3.0s ˆ

r0.1, 3.0s ˆ r0.1, 4.0s

p1.00, 3.53, 3.93q world friction; torso
mass; thigh mass

HumanoidStandup 2 r0.1, 16.0sˆr0.1, 8.0s p8.32, 1.77q torso mass; right foot
mass

HumanoidStandup 3 r0.1, 16.0s ˆ

r0.1, 5.0s ˆ r0.1, 8.0s

p8.32, 1.77, 4.53q torso mass; right foot
mass; left thigh mass

InvertedPendulum 2 r1.0, 31.0s ˆ

r1.0, 11.0s

p4.90, 9.42q pole mass; cart mass

Walker 2 r0.1, 4.0s ˆ r0.1, 5.0s p0.7, 3.53q world friction; torso
mass

Walker 3 r0.1, 4.0s ˆ

r0.1, 5.0s ˆ r0.1, 6.0s

p0.7, 3.53, 3.93q world friction; torso
mass; thigh mass

H Non-normalized results

Table 7 reports the non-normalized worst case scores, averaged across 10 independent runs for each
benchmark. Table 8 reports the average score obtained by each agent across a grid of environments,
also averaged across 10 independent runs for each benchmark.

I Worst-case paths

Table 3 illustrated the path followed by the successive identified worst-case transition functions Ti
in the 2D uncertainty set of the HalfCheetah 2 environment, across 10 independent optimization
runs. For the sake of completeness, we provide here the same results for all environments, which
permit drawing similar conclusions. Tables 9 and 10 start by recalling the physical meaning of each
transition function’s parameters. Then, Tables 11 to 21 follow the same logic as Table 3 and report
the evolution of worst-case parameters and values on all other environments than HalfCheetah 2.

J Median scores

Table 1 reported the worst case score obtained by all algorithms, averaged across 10 independent
runs. Table 22 reports the median rather than the average across these runs.

Similarly, Table 2 reported the average score across a span of environments, averaged across 10
independent runs. Table 23 reports also the median across these runs rather than the average.

Unfortunately it was not possible to relate these figures to competitor methods as only averages are
reported in the work of Tanabe et al. [2022].
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Table 7: Avg. ˘ std. error of worst-case performance over 10 seeds for each method
Environment IWOCS M2TD3 SoftM2TD3M2-

DDPG
M3DDPGRARL

(DDPG)
DR

(TD3)
TD3
(ref)

Ant 2
`

ˆ103
˘

1.1 ˘

2.2
4.13˘

0.11
3.92˘

0.14
0.95˘

0.20
´0.25˘

0.13
´1.77˘

0.09
1.64˘

0.13
1.59˘

0.08
Ant 3

`

ˆ103
˘

´0.5˘

0.64
0.10˘

0.10
0.07˘

0.20
´1.13˘

0.28
´1.38˘

0.22
´2.38˘

0.07
´0.32˘

0.03
´0.99˘

1.13
HalfCheetah 2

`

ˆ103
˘

3.71˘

0.87
2.61˘

0.16
2.82˘

0.16
2.54˘

0.23
´0.58˘

0.06
´0.70˘

0.05
2.12˘

0.13
´0.53˘

0.06
HalfCheetah 3

`

ˆ103
˘

2.23˘

0.87
0.93˘

0.21
1.53˘

0.23
1.20˘

0.22
´0.66˘

0.08
´0.81˘

0.07
1.09˘

0.06
´0.61˘

0.08
Hopper 2

`

ˆ102
˘

28.7˘

3.78
5.33˘

0.28
5.79˘

0.29
4.30˘

0.57
2.58˘

0.29
3.34˘

0.89
4.68˘

0.15
0.21˘

0.04
Hopper 3

`

ˆ102
˘

25.3˘

2.67
2.84˘

0.25
1.98˘

0.22
2.25˘

0.29
0.73˘

0.11
1.64˘

0.46
2.10˘

0.35
0.14˘

0.03
HumanoidStandup 2

`

ˆ104
˘

5.46˘

1.06
6.50˘

0.70
7.94 ˘

0.90
6.24˘

0.54
6.37˘

0.72
5.78˘

0.73
7.31˘

0.78
0.73˘

0.07
HumanoidStandup 3

`

ˆ104
˘

5.63˘

3.55
6.20˘

0.64
5.99˘

0.37
5.96˘

0.58
6.01˘

0.38
5.54˘

0.76
5.41˘

0.34
0.57˘

0.04
InvertedPendulum 2

`

ˆ102
˘

10˘0 3.56˘

1.32
1.36˘

0.30
1.10˘

0.62
0.02˘

0.00
0.02˘

0.00
0.57˘

0.02
0.03˘

0.00
Walker 2

`

ˆ103
˘

3.91˘

0.97
3.14˘

0.39
2.64˘

0.43
0.85˘

0.12
0.39˘

0.11
0.06˘

0.04
2.31˘

0.50
0.28˘

0.07
Walker 3

`

ˆ103
˘

3.48˘

0.88
1.94˘

0.40
2.00˘

0.35
0.82˘

0.13
0.28˘

0.09
0.00˘

0.02
1.32˘

0.34
0.17`

0.06

Table 8: Avg. ˘ std. deviation of average performance over 10 seeds for each method
Environment IWOCS M2TD3 SoftM2TD3M3DDPG RARL DR

(TD3)
TD3
(ref)

Ant 2
`

ˆ103
˘

3.69 ˘

1.60
5.44 ˘

0.05
5.56 ˘

0.01
1.86 ˘

0.38
´1.00˘

0.06
6.32 ˘

0.09
2.28 ˘

0.09
Ant 3

`

ˆ103
˘

1.38 ˘

1.48
2.66 ˘

0.22
2.98 ˘

0.23
´0.33˘

0.22
´1.31˘

0.09
3.62 ˘

0.11
3.16 ˘

1.00
HalfCheetah 2

`

ˆ103
˘

5.63 ˘

0.44
4.35 ˘

0.05
4.52 ˘

0.07
0.77 ˘

0.12
´0.70˘

0.05
5.79 ˘

0.15
2.63 ˘

0.20
HalfCheetah 3

`

ˆ103
˘

4.98 ˘

0.42
3.79 ˘

0.09
4.02 ˘

0.04
0.58 ˘

0.18
´0.81˘

0.07
5.54 ˘

0.16
2.47 ˘

0.18
Hopper 2

`

ˆ103
˘

3.38 ˘

0.78
2.51 ˘

0.07
2.26 ˘

0.12
1.15 ˘

0.11
3.34 ˘

0.89
1.89 ˘

0.08
1.54 ˘

0.17
Hopper 3

`

ˆ103
˘

3.0 ˘

0.99
0.85 ˘

0.07
0.79 ˘

0.04
0.49 ˘

0.11
1.64 ˘

0.46
1.50 ˘

0.07
1.15 ˘

0.14
HumanoidStandup 2

`

ˆ105
˘

1.21 ˘

0.18
0.97 ˘

0.04
1.07 ˘

0.05
0.92 ˘

0.04
0.85 ˘

0.08
1.06 ˘

0.04
1.03 ˘

0.03
HumanoidStandup 3

`

ˆ105
˘

1.16 ˘

0.33
1.09 ˘

0.06
1.04 ˘

0.03
1.01 ˘

0.04
0.87 ˘

0.07
1.04 ˘

0.07
1.01 ˘

0.03
InvertedPendulum 2

`

ˆ102
˘

10 ˘ 0 6.13 ˘

1.42
6.26 ˘

0.95
1.76 ˘

0.51
3.07 ˘

0.66
9.18 ˘

0.07
4.05 ˘

0.52
Walker 2

`

ˆ103
˘

4.78 ˘

0.90
4.72 ˘

0.12
4.37 ˘

0.32
1.63 ˘

0.22
0.26 ˘

0.05
4.54 ˘

0.31
2.70 ˘

0.20
Walker 3

`

ˆ103
˘

4.58 ˘

0.83
4.27 ˘

0.21
4.21 ˘

0.30
1.65 ˘

0.15
0.21 ˘

0.07
4.48 ˘

0.16
2.60 ˘

0.18
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Table 9: Physical meaning of transition function parameters in 2D environments
Environment ψ1 ψ2

Ant 2 torso mass front left leg mass
Halfcheetah 2 world friction torso mass
Hopper 2 world friction torso mass
HumanoidStandup 2 torso mass right thigh mass
Walker 2 world friction torso mass
InvertedPendulum 2 pole mass cart mass

Table 10: Physical meaning of transition function parameters in 3D environments
Environment ψ1 ψ2 ψ3

Ant 3 torso mass front left leg mass front right leg mass
Halfcheetah 3 world friction torso mass back thigh mass
Hopper 3 world friction torso mass thigh mass
HumanoidStandup 3 torso mass left thigh mass right foot mass
Walker 3 world friction torso mass thigh mass

K How many valid policies in s ?

The Deep-IWOCS method proposed in Section 5 introduced indicator functions constraining the use
of a given policy to a subset of states. Depending on the environment and uncertainty parameters, we
expect some policies to remain within the same set of explored states, while others will cover a very
different state distribution. To quantify this aspect, we ran an experiment where the IWOCS final
policy is run on each benchmark, across a grid of transition functions. For each encountered state, we
count how many policies are valid. Figure 5 reports the corresponding histograms (note the log-scale
on the y-axis).

Obviously, the number of valid policies is capped by the number of iterations performed by IWOCS (3
in 2D environments, 4 in 3D ones). Depending on the environment, we observe a wide variety of state
coverages. For instance, optimizing policies for different transition functions of HalfCheetah induce
very different state distributions and very few states feature more than one valid policy. Conversely,
in Ant or Hopper environments, there seems to be a larger number of states that belong to the training
distribution of several policies.

L Iwocs using grid search

In the Deep IWOCS approach, CMA-ES is employed to conduct the worst-case search, described
by Ti`1 “ argminTPT V

pii
T ps0q. However, a grid search can also serve as an alternative method.

We’ve designated this variant as IWOCS*. For our worst-case search in IWOCS*, we adopted the
configuration suggested by [Tanabe et al., 2022]. Each dimension of the uncertainty space is divided
into 10 segments. This results in a total of 1000 grid points for 3 dimensions and 100 grid points for
2 dimensions.Due to the combinatorial nature of the search space, we refrained from conducting 3D
experiments, as they proved computationally prohibitive in terms of finding the worst-case scenario.
For SAC, we adhered to the hyperparameters listed in Table 4.

M Carbon Impact of Our Experiments

In recent years, the environmental impact of large-scale experiments has become a topic of increasing
importance. Here, we detail the carbon footprint resulting from the computational experiments
conducted for this paper.

To put things into perspective, the total computational time dedicated to our experiments amounted to
24,585 hours. Each hour of operation for our machine consumed 1 kW. Given that we are located in
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Table 11: Walker 3 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 5773.2 4.0 5.0 6.0 3159.6 5698.0 3.0 0.3 0.3 3339.8 4142.3 4.0 0.3 0.2 3426.7 174.3 4.0 2.9 6.0 3186.7
1 885.1 4.0 0.1 0.1 3469.4 4977.1 4.0 5.0 6.0 1833.3 782.7 0.3 5.0 0.1 2327.9 3851.3 4.0 5.0 5.8 2847.7
2 5194.5 4.0 5.0 6.0 3671.0 3233.1 4.0 5.0 6.0 3488.4 3875.6 4.0 5.0 0.1 4206.2 4891.6 4.0 1.6 6.0 3515.8
3 5743.1 4.0 5.0 6.0 2149.0 3688.3 4.0 5.0 6.0 2763.6 2997.6 4.0 5.0 4.3 2453.2 4261.8 4.0 5.0 6.0 2525.5
4 3967.8 4.0 0.1 0.1 2644.8 4760.4 4.0 0.1 0.1 2997.1 998.9 4.0 5.0 6.0 2674.0 3767.1 4.0 5.0 6.0 2884.0
5 4934.1 4.0 5.0 6.0 2843.1 6709.4 4.0 0.1 0.1 3108.7 4610.2 4.0 5.0 6.0 2048.6 3287.5 4.0 2.2 6.0 2333.4
6 5101.6 1.5 5.0 6.0 470.5 651.4 4.0 5.0 6.0 2910.4 2932.1 0.1 0.1 0.1 3183.0 4042.3 2.4 5.0 6.0 4286.7
7 4218.4 4.0 0.6 6.0 3862.5 3392.6 4.0 0.1 6.0 3885.9 3926.7 4.0 0.1 6.0 3885.9 5802.3 4.0 0.1 6.0 3885.9
8 5418.9 1.9 5.0 6.0 3765.5 4164.1 4.0 5.0 6.0 4825.9 5430.6 4.0 5.0 6.0 4954.7 4424.0 4.0 5.0 6.0 4954.8
9 5121.6 1.4 0.1 0.1 3752.2 4333.7 0.3 1.7 2.4 4000.5 69.7 0.1 0.1 0.1 4435.4 3814.6 0.1 0.1 0.1 4435.4

mean 4635.8 2978.8 4160.8 3315.4 2976.6 3359.5 3831.7 3485.6
std 1440.5 1046.7 1629.7 810.8 1793.1 989.1 1463.0 880.1

Table 12: Walker 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 4265.4 4.0 5.0 4108.0 4256.9 4.0 5.0 4134.6 5258.1 4.0 5.0 4094.9
1 3997.2 4.0 5.0 4353.9 5036.0 4.0 1.9 4515.3 2955.4 4.0 5.0 4422.6
2 5801.6 4.0 0.1 3428.5 201.6 4.0 5.0 3505.1 652.8 4.0 5.0 4320.2
3 5314.0 4.0 5.0 5181.1 3173.4 4.0 3.5 5250.7 3145.4 4.0 3.8 5161.9
4 5912.1 4.0 0.1 3524.2 5382.1 4.0 0.1 3360.3 3120.6 4.0 0.1 3360.3
5 567.9 4.0 5.0 1663.0 37.9 4.0 5.0 4543.1 4932.0 4.0 5.0 4306.8
6 5677.3 4.0 4.5 3481.8 4431.5 4.0 5.0 4243.9 4629.9 4.0 5.0 3710.1
7 4739.0 4.0 0.1 4693.6 2332.3 4.0 0.1 4595.2 2862.6 4.0 0.1 4870.1
8 5370.4 4.0 5.0 3316.4 4710.1 4.0 0.1 3297.3 4265.2 4.0 5.0 3164.1
9 157.6 4.0 5.0 1879.1 5101.4 4.0 0.1 3155.3 3163.5 4.0 5.0 1776.1

mean 4180.2 3562.9 3466.3 4060.1 3498.5 3918.7
std 2112.3 1123.1 1991.5 697.8 1341.5 975.4

France, the carbon emission for electricity is notably low due to the heavy reliance on nuclear power.
Specifically, for every kW consumed per hour, 60 grams of CO is emitted.

To compute the total carbon emission for our work, we use the following formula:

Total Carbon Emission (kg) “
Total Hours ˆ Power per Hour (kW) ˆ Carbon per kW-hour (g)

1000

Plugging in our values:

Total Carbon Emission (kg) “
24585 ˆ 1 ˆ 60

1000
“ 1475.1 kg

Hence, the carbon footprint for the entirety of our experiments is 1,475.1 kg of CO. It underscores
the need for efficient algorithms and sustainable energy sources in reinforcement learning research.
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Table 13: InvertedPendulum 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 1000 16.8 8.5 1000.0 1000 16.8 8.5 1000.0 1000 16.8 8.5 1000.0
1 1000 11.8 4.2 1000.0 1000 11.8 4.2 1000.0 1000 11.8 4.2 1000.0
2 1000 25.3 2.4 1000.0 1000 25.3 2.4 1000.0 1000 25.3 2.4 1000.0
3 1000 16.0 4.5 1000.0 1000 16.0 4.5 1000.0 1000 16.0 4.5 1000.0
4 1000 27.9 10.9 1000.0 1000 27.9 10.9 1000.0 1000 27.9 10.9 1000.0
5 402 16.5 8.0 1000.0 1000 16.5 8.0 1000.0 1000 16.5 8.0 1000.0
6 1000 11.3 9.7 1000.0 1000 11.3 9.7 1000.0 1000 11.3 9.7 1000.0
7 1000 22.6 4.3 1000.0 1000 22.6 4.3 1000.0 1000 22.6 4.3 1000.0
8 1000 9.8 5.7 1000.0 1000 9.8 5.7 1000.0 274 9.8 5.7 1000.0
9 1000 20.8 4.8 1000.0 1000 20.8 4.8 1000.0 1000 20.8 4.8 1000.0

avg 940.2 1000 1000.000 1000.000 927.400 1000.000
std 189.1 0 0 0 229.5 0

Table 14: Halfcheetah 3 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2861.4 4.0 0.1 0.1 572.7 4226.3 4.0 0.1 0.1 1329.2 3577.5 4.0 7.0 3.0 1221.3 4490.9 4.0 7.0 0.1 1781.1
1 6543.0 4.0 7.0 0.1 650.8 3645.6 4.0 7.0 3.0 1932.2 4250.6 0.1 0.1 3.0 1835.7 5277.7 4.0 7.0 3.0 1863.6
2 6227.7 0.1 0.1 3.0 338.1 4273.2 4.0 7.0 3.0 1116.4 3593.7 4.0 7.0 0.2 1133.7 3549.4 0.1 0.1 0.1 1659.6
3 4943.3 4.0 7.0 3.0 824.7 10990.4 4.0 0.1 3.0 2016.6 11954.7 4.0 1.2 3.0 2380.5 15077.8 4.0 0.1 3.0 2402.4
4 5377.0 4.0 0.1 0.4 1019.4 15130.2 0.1 7.0 3.0 85.4 12553.3 4.0 7.0 3.0 1414.6 10673.7 4.0 0.1 0.1 1016.5
5 4849.7 0.1 0.1 3.0 812.0 6698.7 0.3 0.2 0.3 4363.3 7513.8 0.3 0.2 0.3 4363.3 3612.6 0.3 0.2 0.3 4363.3
6 6547.4 0.1 7.0 3.0 -109.3 3572.7 0.3 0.3 0.5 2414.9 5265.6 0.3 0.3 0.5 2414.9 4027.0 0.3 0.3 0.5 2414.9
7 3896.5 4.0 7.0 0.1 158.4 18261.8 4.0 7.0 3.0 2315.3 3598.3 4.0 7.0 3.0 1996.3 4339.0 4.0 2.3 3.0 2307.8
8 6481.7 4.0 7.0 3.0 1077.4 4013.2 4.0 7.0 0.1 2415.3 3697.0 4.0 0.1 3.0 2428.4 17035.0 4.0 0.1 3.0 2503.1
9 5853.4 4.0 7.0 0.2 1676.7 6602.8 4.0 7.0 3.0 1955.0 6720.0 4.0 0.9 3.0 2047.2 3677.4 4.0 0.9 3.0 2047.2

mean 5358.1 702.1 7741.5 1994.4 6272.4 2123.6 7176.0 2235.9
std 1242.0 508.2 5277.3 1102.1 3444.8 922.7 5150.4 873.2

Table 15: Halfcheetah 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 5753.2 4.0 7.0 2128.3 20559.6 4.0 0.1 3626.3 9724.8 4.0 7.0 3745.6
1 109.8 4.0 7.0 2027.0 3732.0 4.0 7.0 3827.6 6183.5 4.0 7.0 3827.6
2 5897.5 0.1 7.0 2354.0 9930.0 4.0 7.0 2497.4 3670.6 4.0 7.0 3874.4
3 6396.9 4.0 7.0 2473.0 3815.1 4.0 0.6 3053.9 6022.4 4.0 7.0 3825.5
4 2143.3 0.1 7.0 1633.3 3807.9 4.0 7.0 1978.4 6282.5 4.0 7.0 1978.4
5 4476.0 4.0 7.0 1983.2 13040.2 4.0 0.1 2597.4 3694.9 4.0 0.1 2822.3
6 6275.2 4.0 7.0 -91.1 3639.7 4.0 0.1 3448.4 5347.6 4.0 7.0 3986.0
7 6213.8 0.1 7.0 1587.1 2046.3 4.0 7.0 2411.1 3757.7 4.0 7.0 3769.5
8 6409.9 4.0 7.0 2053.8 3709.9 4.0 0.1 3182.3 3712.3 4.0 7.0 3872.9
9 6801.4 0.1 0.1 2341.4 3620.1 0.5 4.4 3619.3 5737.4 0.6 6.8 5431.3

mean 5047.7 1849.0 6790.1 3024.2 5413.4 3713.3
std 2210.7 740.6 5940.3 623.4 1886.9 876.3

Table 16: Hopper 3 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2959.1 3.0 0.1 0.1 1167.7 1016.4 3.0 3.0 4.0 2618.9 1479.5 3.0 3.0 4.0 2660.0 3605.8 2.8 1.8 2.4 2731.0
1 864.7 3.0 0.1 0.1 1224.4 1333.9 2.8 0.5 0.7 2763.3 1720.0 2.1 0.6 0.8 2801.2 3247.3 0.8 0.6 0.9 2747.6
2 716.7 3.0 0.1 0.1 1068.8 3381.1 3.0 3.0 4.0 2572.9 3702.9 3.0 3.0 4.0 2572.9 1197.7 3.0 3.0 4.0 2572.9
3 1222.3 3.0 0.1 0.1 1158.5 417.2 3.0 3.0 4.0 2272.9 4193.7 0.4 0.6 0.6 2657.4 3189.8 0.4 0.1 0.4 2142.3
4 2533.3 3.0 0.1 0.1 1164.8 3033.3 2.1 0.6 0.5 2696.7 2586.3 1.7 2.0 0.9 2682.9 2808.7 3.0 0.1 0.1 2223.6
5 1022.2 0.7 0.4 0.4 1999.0 1902.1 1.4 1.8 3.0 2746.7 1559.3 1.6 0.2 0.1 1891.8 3220.8 3.0 0.1 0.1 2731.3
6 1704.2 3.0 0.1 0.1 1152.3 994.7 2.9 0.6 0.8 2361.9 1845.2 0.1 0.1 0.1 1503.0 3462.2 3.0 1.9 1.2 2158.1
7 2458.2 3.0 0.1 0.1 1173.5 3504.1 2.3 3.0 4.0 2744.1 780.8 2.1 3.0 4.0 2706.2 3662.7 2.0 3.0 0.1 2882.2
8 1019.8 3.0 0.1 0.1 1045.1 516.7 3.0 3.0 4.0 2590.0 3786.4 1.4 0.5 4.0 2457.6 1649.9 3.0 3.0 4.0 2623.2
9 768.0 3.0 0.1 0.1 1125.6 3429.2 2.0 2.0 3.4 2353.4 3491.4 3.0 3.0 4.0 2273.7 1392.0 1.1 0.2 0.2 2547.5

mean 1526.8 1228.0 1952.9 2572.1 2514.6 2420.7 2743.7 2536.0
std 832.5 275.9 1264.7 181.4 1196.2 418.5 954.6 267.8
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Table 17: Hopper 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 821.3 3.0 0.1 3091.5 3431.0 3.0 2.9 3101.6 3709.7 2.6 1.5 3061.0
1 636.4 3.0 0.1 2854.2 1318.7 3.0 3.0 3169.6 2055.3 2.9 0.2 1847.3
2 829.4 3.0 3.0 2982.7 2967.9 3.0 0.6 2875.3 1951.7 1.7 0.5 3012.2
3 976.6 3.0 0.1 2906.8 1231.2 1.4 2.6 3294.3 3736.7 3.0 0.6 2902.8
4 872.5 3.0 0.1 3166.5 3601.7 3.0 3.0 3102.7 1338.4 2.9 2.3 3028.8
5 2467.8 3.0 0.1 2720.5 1308.5 1.6 3.0 2995.4 2090.7 2.6 0.2 3112.0
6 1363.3 1.8 0.2 2410.1 3066.3 0.9 3.0 2893.4 1852.3 2.9 2.9 3032.2
7 943.7 3.0 0.1 2952.7 1431.0 1.5 3.0 3061.7 834.7 0.1 3.0 3027.3
8 1177.2 3.0 0.9 2899.6 3491.6 1.4 0.2 3024.6 1491.0 2.3 0.1 3003.1
9 3411.0 3.0 0.1 3027.0 3553.9 1.8 2.9 3283.7 1437.3 3.0 0.1 2689.2

mean 1349.9 2901.2 2540.2 3080.2 2049.8 2871.6
std 889.4 212.9 1068.0 142.9 961.6 378.4

Table 18: Ant 3 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2118.9 0.1 0.0 1.2 -613.8 5659.7 3.0 0.0 1.8 -916.5 6973.9 3.0 2.2 0.0 -963.8 6298.0 1.6 1.0 0.3 -98.9
1 1513.4 2.1 1.1 0.5 -188.3 901.9 0.3 0.2 2.8 -151.0 7378.7 0.3 0.2 2.8 -151.0 1856.7 2.1 3.0 3.0 -1469.4
2 5615.7 1.6 2.1 0.0 -1229.9 4238.6 3.0 2.1 3.0 -1542.7 1620.0 3.0 2.1 3.0 -1542.7 3002.5 3.0 2.1 3.0 -1542.7
3 -6.9 2.5 2.1 1.9 -942.4 420.8 1.9 0.0 3.0 -948.5 6022.8 3.0 3.0 0.0 271.4 2891.4 3.0 3.0 0.0 271.4
4 6455.8 1.0 1.7 0.3 -998.6 903.3 0.1 3.0 3.0 -336.2 -6.0 0.1 3.0 3.0 -336.2 861.7 0.1 3.0 3.0 -336.2
5 4932.0 0.6 0.4 2.9 -574.9 6406.5 0.2 2.5 2.2 944.5 893.2 0.1 3.0 3.0 768.9 2012.7 1.9 1.1 1.0 245.3
6 4036.4 1.8 0.9 0.2 -1189.2 1183.7 1.1 1.6 0.9 -852.1 2000.7 2.6 2.2 0.8 -852.0 4910.0 2.6 2.2 0.8 -852.0
7 4989.9 0.5 0.8 1.5 -1174.4 7149.6 1.1 0.0 0.0 -625.6 3224.3 3.0 3.0 0.0 -420.7 7073.9 3.0 3.0 3.0 -150.3
8 1013.7 0.1 0.0 3.0 -698.5 5122.7 3.0 3.0 0.0 746.8 -0.8 3.0 3.0 0.0 746.8 7215.3 3.0 3.0 2.5 -888.1
9 5693.1 3.0 0.0 0.0 -230.2 923.3 3.0 3.0 0.1 48.9 2420.4 0.8 2.3 2.5 -1042.7 3157.8 0.1 2.2 0.1 -663.1

mean 3636.2 -784.0 3291.0 -363.2 3052.7 -352.2 3928.0 -548.4
std 2278.6 384.2 2669.8 782.1 2785.7 775.8 2289.3 646.8

Table 19: Ant 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 334.6 0.1 1.0 -530.0 5991.2 3.0 3.0 4926.7 5675.8 3.0 3.0 4926.7
1 3814.7 0.3 0.4 -1217.9 4217.9 0.8 2.7 -91.6 3002.6 1.9 2.5 812.6
2 90.0 1.3 0.2 -284.3 4617.7 2.3 2.8 -130.4 2558.6 2.3 2.8 -130.4
3 7028.6 0.8 0.4 -1111.3 5489.5 0.1 0.4 4867.3 563.4 0.2 0.6 4987.1
4 2692.2 1.2 2.4 1765.6 11.0 0.7 0.9 -448.8 5211.9 1.0 0.8 -361.8
5 189.2 0.8 0.5 -550.0 6698.5 0.6 0.3 2513.5 4153.0 0.2 1.7 126.8
6 5507.9 1.2 0.6 -317.4 5366.6 0.9 0.6 -1738.6 5327.7 0.9 0.6 -1738.6
7 7135.3 0.3 0.1 -1889.3 1077.5 2.6 1.8 409.8 6587.1 1.8 1.4 -214.7
8 60.2 0.7 1.6 -381.2 3493.4 0.3 1.9 630.1 6718.4 0.3 1.9 630.1
9 5846.8 0.6 1.8 120.7 5218.9 1.0 0.6 911.9 7165.3 0.4 0.2 1762.9

mean 3270.0 -439.5 4218.2 1185.0 4696.4 1080.1
std 2979.0 966.0 2146.9 2233.2 2113.4 2233.0

Table 20: Humanoid 3 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 162787.3 11.6 2.2 3.7 63777.7 55351.3 12.5 2.2 4.0 55424.1 150555.6 14.7 1.0 2.6 67996.1 165042.5 5.6 1.7 2.3 69635.1
1 69734.9 13.3 4.4 2.2 50795.2 128973.5 6.8 2.4 0.1 48109.7 141463.0 6.8 2.4 0.1 48109.7 76982.5 6.8 2.4 0.1 48109.7
2 114519.9 14.2 3.9 0.1 34651.3 147848.4 13.3 3.8 2.6 34657.0 159586.1 13.3 3.8 2.6 34657.0 159965.9 13.3 3.8 2.6 34657.0
3 135133.6 3.4 3.6 7.1 35652.5 66055.7 15.2 3.6 0.4 42160.9 139086.8 2.4 0.2 6.3 44978.4 121269.4 2.4 0.2 6.3 44978.4
4 63038.4 14.7 4.2 3.8 26449.9 208955.3 3.8 4.5 4.7 29254.3 152341.9 3.8 4.5 4.7 29254.3 154287.1 14.3 0.4 0.4 29789.3
5 30299.9 13.1 1.9 0.8 25853.1 166377.0 9.6 2.6 7.7 35389.8 218770.6 16.0 5.0 8.0 58698.7 171419.5 4.9 3.0 3.3 29918.3
6 97248.9 14.8 3.8 0.3 44581.9 89458.9 13.4 4.9 6.0 56668.7 101301.8 10.1 3.4 1.8 61737.6 143184.0 10.1 3.4 1.8 61737.6
7 53534.5 14.3 1.8 1.3 43299.9 61420.6 8.6 3.0 1.4 40005.2 151359.1 6.1 1.2 7.1 62190.9 92987.9 7.7 0.5 0.5 41136.6
8 76997.8 15.6 2.7 3.0 37371.1 117196.9 12.0 0.5 4.0 56593.5 113955.7 12.0 0.5 4.0 56593.5 149949.0 13.3 0.5 0.7 54796.9
9 202835.2 14.6 4.2 3.9 153604.2 39919.8 10.6 4.6 0.7 141281.9 142541.7 10.6 4.6 0.7 150635.1 139585.8 10.6 4.6 0.7 150635.1

mean 100613.0 51603.7 108155.7 53954.5 147096.2 61485.1 137467.4 56539.4
std 53535.8 37581.6 55167.9 32210.3 31025.0 33718.3 31259.5 35591.2
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Table 21: Humanoid 2 worst parameters for each iteration over 10 seeds
Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 78293.6 13.3 2.7 56554.6 122494.6 12.1 4.8 58367.5 151787.6 11.7 6.7 58896.8
1 107439.5 13.6 5.8 32057.0 147989.1 12.3 4.0 34210.3 140336.8 2.2 0.3 44547.7
2 119721.4 12.6 0.1 42117.4 158982.0 7.5 4.7 53170.1 78200.1 7.5 4.7 53170.1
3 50555.7 15.7 5.2 59878.2 143796.3 14.1 3.7 70100.0 87890.5 14.1 3.7 70100.0
4 75409.0 13.2 2.3 39404.6 94033.2 1.4 0.1 71365.4 238079.6 1.4 0.1 71365.4
5 67846.3 13.7 0.9 43642.5 151772.1 11.4 4.6 63760.4 215882.7 13.1 2.4 60936.7
6 89674.2 3.2 0.3 29934.6 108442.9 10.0 5.7 40954.1 147999.7 10.4 0.2 43334.3
7 160686.9 8.6 1.6 55290.8 47858.6 8.7 0.2 51295.9 147361.0 8.7 0.2 51295.9
8 57969.2 14.7 5.4 36889.2 111322.2 14.0 0.1 52196.3 117439.7 14.0 0.1 52196.3
9 88735.1 13.9 0.3 32775.8 156550.1 9.5 5.7 38304.1 161132.0 13.9 0.3 40780.7

mean 89633.1 42854.5 124324.1 53372.4 148611.0 54662.4
std 32671.8 10882.7 35152.7 12869.5 49870.6 10633.2

Table 22: Median of the worst-case scores across 10 independent runs.
Environment Median Performance
Ant 2 378
Ant 3 -499
Halfcheetah 2 3826
Halfcheetah 3 2177
Hopper 2 3019
Hopper 3 2598
Humanoid 2 52683
Humanoid 3 46544
InvertedPendulum 2 1000
Walker 2 4200
Walker 3 3351

Table 23: Median of the average (on transition functions) scores across 10 independent runs.
Environment Median Performance
Ant 2 3827
Ant 3 1296
Halfcheetah 2 5690
Halfcheetah 3 5030
Hopper 2 3396
Hopper 3 3012
Humanoid 2 123401
Humanoid 3 111418
InvertedPendulum 2 1000
Walker 2 5084
Walker 3 4566
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Figure 5: Counting how many policies are valid in each state

Table 24: Avg. of normalized worst-case performance over 10 seeds for each method with standard
deviations. For the sake of brevity: HC = HalfCheetah, HS = HumanoidStandup, IP = InvertedPendu-
lum, IWOCS = IWOCS with CMA-ES, IWOCS* = IWOCS with grid-search.
Environment IWOCS IWOCS* M2TD3 SoftM2TD3 M3DDPG RARL (DDPG) DR (TD3)

Ant 2 ´0.23 ˘ 0.43 ´0.29 ˘ 0.29 1.00 ˘ 0.04 0.92 ˘ 0.06 ´0.72 ˘ 0.05 ´1.32 ˘ 0.04 0.02 ˘ 0.05
Ant 3 0.17 ˘ 0.55 - 1.00 ˘ 0.09 0.97 ˘ 0.18 ´0.36 ˘ 0.20 ´1.28 ˘ 0.06 0.61 ˘ 0.03
HC 2 1.12 ˘ 0.20 1.06 ˘ 0.25 1.00 ˘ 0.05 1.07 ˘ 0.05 ´0.02 ˘ 0.02 ´0.05 ˘ 0.02 0.84 ˘ 0.04
HC 3 1.63 ˘ 0.36 - 1.00 ˘ 0.14 1.39 ˘ 0.15 ´0.03 ˘ 0.05 ´0.13 ˘ 0.05 1.10 ˘ 0.04
Hopper 2 5.74 ˘ 0.05 5.70 ˘ 0.00 1.00 ˘ 0.05 1.09 ˘ 0.06 0.46 ˘ 0.06 0.61 ˘ 0.17 0.87 ˘ 0.03
Hopper 3 6.87 ˘ 1.70 - 1.00 ˘ 0.09 0.68 ˘ 0.08 0.22 ˘ 0.04 0.56 ˘ 0.17 0.73 ˘ 0.13
HS 2 0.80 ˘ 0.14 1.97 ˘ 0.62 1.00 ˘ 0.12 1.25 ˘ 0.16 0.98 ˘ 0.12 0.88 ˘ 0.13 1.14 ˘ 0.14
HS 3 0.80 ˘ 0.28 - 1.00 ˘ 0.11 0.96 ˘ 0.07 0.97 ˘ 0.07 0.88 ˘ 0.13 0.86 ˘ 0.06
IP 2 2.82 ˘ 0.00 - 1.00 ˘ 0.37 0.38 ˘ 0.08 ´0.00 ˘ 0.00 ´0.00 ˘ 0.00 0.15 ˘ 0.01
Walker 2 1.16 ˘ 0.42 1.19 ˘ 0.17 1.00 ˘ 0.14 0.83 ˘ 0.15 0.04 ˘ 0.04 ´0.08 ˘ 0.01 0.71 ˘ 0.17
Walker 3 1.60 ˘ 0.34 - 1.00 ˘ 0.23 1.03 ˘ 0.20 0.06 ˘ 0.05 ´0.10 ˘ 0.01 0.65 ˘ 0.19

Aggregated 2.04 ˘ 0.18 - 1.0 ˘ 0.13 0.96 ˘ 0.05 0.14 ˘ 0.06 0.0 ˘ 0.07 0.70 ˘ 0.08
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Table 25: Avg. ˘ std. error of worst-case performance over 10 seeds for each method. For the sake
of brevity: HC = HalfCheetah, HS = HumanoidStandup, IP = InvertedPendulum, IWOCS = IWOCS
with CMA-ES, IWOCS* = IWOCS with grid-search.
Environment IWOCS IWOCS*M2TD3 SoftM2TD3M2-

DDPG
M3DDPGRARL

(DDPG)
DR

(TD3)
TD3
(ref)

Ant 2
`

ˆ103
˘

1.0 ˘

1.1
0.85˘

0.73
4.13˘

0.11
3.92˘

0.14
0.95˘

0.20
´0.25˘

0.13
´1.77˘

0.09
1.64˘

0.13
1.59˘

0.08
Ant 3

`

ˆ103
˘

´0.8˘

0.6
- 0.10˘

0.10
0.07˘

0.20
´1.13˘

0.28
´1.38˘

0.22
´2.38˘

0.07
´0.32˘

0.03
´0.99˘

1.13
HC 2

`

ˆ103
˘

3.0˘

0.63
2.8 ˘

0.77
2.61˘

0.16
2.82˘

0.16
2.54˘

0.23
´0.58˘

0.06
´0.70˘

0.05
2.12˘

0.13
´0.53˘

0.06
HC 3

`

ˆ103
˘

1.9˘

0.55
- 0.93˘

0.21
1.53˘

0.23
1.20˘

0.22
´0.66˘

0.08
´0.81˘

0.07
1.09˘

0.06
´0.61˘

0.08
Hopper 2

`

ˆ102
˘

29.6˘

0.25
29.4˘

0.02
5.33˘

0.28
5.79˘

0.29
4.30˘

0.57
2.58˘

0.29
3.34˘

0.89
4.68˘

0.15
0.21˘

0.04
Hopper 3

`

ˆ102
˘

18.7˘

4.6
- 2.84˘

0.25
1.98˘

0.22
2.25˘

0.29
0.73˘

0.11
1.64˘

0.46
2.10˘

0.35
0.14˘

0.03
HS 2

`

ˆ104
˘

5.32˘

0.8
12.1˘

3.6
6.50˘

0.70
7.94˘

0.90
6.24˘

0.54
6.37˘

0.72
5.78˘

0.73
7.31˘

0.78
0.73˘

0.07
HS 3

`

ˆ104
˘

5.06˘

1.6
- 6.20˘

0.64
5.99˘

0.37
5.96˘

0.58
6.01˘

0.38
5.54˘

0.76
5.41˘

0.34
0.57˘

0.04
IP 2

`

ˆ102
˘

10˘0 - 3.56˘

1.32
1.36˘

0.30
1.10˘

0.62
0.02˘

0.00
0.02˘

0.00
0.57˘

0.02
0.03˘

0.00
Walker 2

`

ˆ103
˘

3.6˘

1.2
3.7 ˘

0.5
3.14˘

0.39
2.64˘

0.43
0.85˘
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